1
|
Keener RM, Shi S, Dalapati T, Wang L, Reinoso-Vizcaino NM, Luftig MA, Miller SI, Wilson TJ, Ko DC. Human genetic variation reveals FCRL3 is a lymphocyte receptor for Yersinia pestis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.626452. [PMID: 39677730 PMCID: PMC11643160 DOI: 10.1101/2024.12.05.626452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Yersinia pestis is the gram-negative bacterium responsible for plague, one of the deadliest and most feared diseases in human history. This bacterium is known to infect phagocytic cells, such as dendritic cells and macrophages, but interactions with non-phagocytic cells of the adaptive immune system are frequently overlooked despite the importance they likely hold for human infection. To discover human genetic determinants of Y. pestis infection, we utilized nearly a thousand genetically diverse lymphoblastoid cell lines in a cellular genome-wide association study method called Hi-HOST (High-throughput Human in-vitrO Susceptibility Testing). We identified a nonsynonymous SNP, rs2282284, in Fc receptor like 3 (FCRL3) associated with bacterial invasion of host cells (p=9×10-8). FCRL3 belongs to the immunoglobulin superfamily and is primarily expressed in lymphocytes. rs2282284 is within a tyrosine-based signaling motif, causing an asparagine-to-serine mutation (N721S) in the most common FCRL3 isoform. Overexpression of FCRL3 facilitated attachment and invasion of non-opsonized Y. pestis. Additionally, FCRL3 colocalized with Y. pestis at sites of cellular attachment, suggesting FCRL3 is a receptor for Y. pestis. These properties were variably conserved across the FCRL family, revealing molecular requirements of attachment and invasion, including an Ig-like C2 domain and a SYK interaction motif. Direct binding was confirmed with purified FCRL5 extracellular domain. Following attachment, invasion of Y. pestis was dependent on SYK and decreased with the N721S mutation. Unexpectedly, this same variant is associated with risk of chronic hepatitis C virus infection in BioBank Japan. Thus, Y. pestis hijacks FCRL proteins, possibly taking advantage of an immune receptor to create a lymphocyte niche during infection.
Collapse
Affiliation(s)
- Rachel M. Keener
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Sam Shi
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Trisha Dalapati
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | | | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Samuel I. Miller
- Departments of Genome Sciences, Medicine, and Microbiology, U of Washington, Seattle, WA, USA
| | | | - Dennis C. Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, NC, USA
- Lead Contact
| |
Collapse
|
2
|
Rokan A, Hernandez JC, Nitiyanandan R, Lin ZY, Chen CL, Machida T, Li M, Khanuja J, Chen ML, Tahara SM, Siddiqi I, Machida K. Gut-derived Endotoxin-TLR4 Signaling Drives MYC-Ig Translocation to Promote Lymphoproliferation through c-JUN and STAT3 Activation. Mol Cancer Res 2023; 21:155-169. [PMID: 36287175 PMCID: PMC9898117 DOI: 10.1158/1541-7786.mcr-19-1209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 09/14/2020] [Accepted: 10/19/2022] [Indexed: 02/06/2023]
Abstract
Synergism between obesity and virus infection promotes the development of B-cell lymphoma. In this study, we tested whether obesity-associated endotoxin release induced activation-induced cytidine deaminase (AID). TLR4 activation in turn caused c-JUN-dependent and STAT3-dependent translocations of MYC loci to suppress transactivation of CD95/FAS. We used viral nucleocapside Core transgenic (Tg) mice fed alcohol Western diet to determine whether oncogenesis arising from obesity and chronic virus infection occurred through TLR4-c-JUN-STAT3 pathways. Our results showed B cell-specific, c-Jun and/or Stat3 disruption reduced the incidence of splenomegaly in these mice. AID-dependent t(8;14) translocation was observed between the Ig promoter and MYC loci. Comparison with human B cells showed MYC-immunoglobulin (Ig) translocations after virus infection with lipopolysaccharide stimulation. Accordingly, human patients with lymphoma with virus infections and obesity showed a 40% incidence of MYC-Ig translocations. Thus, obesity and virus infection promote AID-mediated translocation between the Ig promoter and MYC through the TLR4-c-JUN axis, resulting in lymphoproliferation. Taken together, preventative treatment targeting either c-JUN and/or STAT3 may be effective strategies to prevent tumor development. IMPLICATIONS Obesity increases gut-derived endotoxin which induces Toll-like receptor-mediated MYC-Ig translocation via c-JUN-STAT3, leading to lymphoproliferation.
Collapse
Affiliation(s)
- Ahmed Rokan
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
- Department of Medical Laboratory Sciences (MLS), Prince Sattam Bin Abdulaziz University (PSAU)
| | - Juan Carlos Hernandez
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
- California State University Channel Islands, Los Angeles, CA
| | - Rajeshwar Nitiyanandan
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Zi-Ying Lin
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Chia-Lin Chen
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Tatsuya Machida
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Meng Li
- Norris Medical Library, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Jasleen Khanuja
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Mo Li Chen
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Stanley M. Tahara
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Imran Siddiqi
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Keigo Machida
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA
| |
Collapse
|
3
|
Devi P, Engdahl K, Punga T, Bergqvist A. Next-Generation Sequencing Analysis of CpG Methylation of a Tumor Suppressor Gene SHP-1 Promoter in Stable Cell Lines and HCV-Positive Patients. Viruses 2022; 14:v14112352. [PMID: 36366451 PMCID: PMC9695419 DOI: 10.3390/v14112352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 02/01/2023] Open
Abstract
Hepatitis C virus (HCV) is the major causative pathogen associated with hepatocellular carcinoma and liver cirrhosis. The main virion component, the Core (C) protein, is involved in multiple aspects of HCV pathology including oncogenesis and immune evasion. In this study, we established a next-generation bisulfite sequencing (NGS-BS) protocol to analyze the CpG methylation profile at the tumor suppressor gene SHP-1 P2 promoter as a model system. Our data show that HCV C protein expression in the immortalized T cells correlated with a specific CpG methylation profile at the SHP-1 P2. The NGS-BS on HCV-positive (HCV+) patient-derived PBMCs revealed a considerably different CpG methylation profile compared to the HCV C protein immortalized T cells. Notably, the CpG methylation profile was very similar in healthy and HCV+ PBMCs, suggesting that the SHP-1 P2 CpG methylation profile is not altered in the HCV+ individuals. Collectively, the NGS-BS is a highly sensitive method that can be used to quantitatively characterize the CpG methylation status at the level of individual CpG position and also allows the characterization of cis-acting effects on epigenetic regulation.
Collapse
Affiliation(s)
- Priya Devi
- Department of Medical Sciences, Uppsala University, SE 75185 Uppsala, Sweden
| | - Katarina Engdahl
- Department of Medical Sciences, Uppsala University, SE 75185 Uppsala, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE 75123 Uppsala, Sweden
| | - Anders Bergqvist
- Department of Medical Sciences, Uppsala University, SE 75185 Uppsala, Sweden
- Clinical Microbiology and Hospital Infection Control, Uppsala University Hospital, SE 75185 Uppsala, Sweden
- Correspondence: ; Tel.: +46-186113937
| |
Collapse
|
4
|
Maslinska M, Kostyra-Grabczak K. The role of virus infections in Sjögren’s syndrome. Front Immunol 2022; 13:823659. [PMID: 36148238 PMCID: PMC9488556 DOI: 10.3389/fimmu.2022.823659] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
Primary Sjögren’s syndrome (pSS) is an autoimmune disease with a clinical picture of not only mainly exocrine gland involvement, with dryness symptoms, but also internal organ and systems involvement. The epithelial damage and releasing of antigens, which, in some circumstances, become autoantigens, underlay the pathogenesis of pSS. The activation of autoimmune processes in pSS leads to the hyperactivation of B cells with autoantibody production and other immunological phenomena such as hypergammaglobulinemia, production of cryoglobulins, or formation of extra-nodal lymphoid tissue. Among the risk factors for the development of this disease are viral infections, which themselves can activate autoimmune reactions and influence the host’s immune response. It is known that viruses, through various mechanisms, can influence the immune system and initiate autoimmune reactions. These mechanisms include molecular mimicry, bystander activation, production of superantigens—proteins encoded by viruses—or a programming to produce viral cytokines similar to host cytokines such as, e.g., interleukin-10. Of particular importance for pSS are viruses which not only, as expected, activate the interferon pathway but also play a particular role, directly or indirectly, in B cell activation or present tropism to organs also targeted in the course of pSS. This article is an attempt to present the current knowledge of the influence specific viruses have on the development and course of pSS.
Collapse
|
5
|
Panigrahi M, Palmer MA, Wilson JA. MicroRNA-122 Regulation of HCV Infections: Insights from Studies of miR-122-Independent Replication. Pathogens 2022; 11:1005. [PMID: 36145436 PMCID: PMC9504723 DOI: 10.3390/pathogens11091005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
Despite the advancement in antiviral therapy, Hepatitis C remains a global health challenge and one of the leading causes of hepatitis related deaths worldwide. Hepatitis C virus, the causative agent, is a positive strand RNA virus that requires a liver specific microRNA called miR-122 for its replication. Unconventional to the canonical role of miRNAs in translation suppression by binding to 3'Untranslated Region (UTR) of messenger RNAs, miR-122 binds to two sites on the 5'UTR of viral genome and promotes viral propagation. In this review, we describe the unique relationship between the liver specific microRNA and HCV, the current knowledge on the mechanisms by which the virus uses miR-122 to promote the virus life cycle, and how miR-122 impacts viral tropism and pathogenesis. We will also discuss the use of anti-miR-122 therapy and its impact on viral evolution of miR-122-independent replication. This review further provides insight into how viruses manipulate host factors at the initial stage of infection to establish a successful infection.
Collapse
Affiliation(s)
| | | | - Joyce A. Wilson
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
6
|
Anti-nuclear antibody and a granuloma could be biomarkers for iCIs-related hepatitis by anti-PD-1 treatment. Sci Rep 2022; 12:3669. [PMID: 35256688 PMCID: PMC8901662 DOI: 10.1038/s41598-022-07770-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
It has been reported that various kinds of immune checkpoint inhibitors (iCIs) could induce immune-related liver damage. We should focus on the programmed cell death-receptor-1 (PD-1) antibody and non-small cell lung cancer (NSCLC) to analyze the characteristics of hepatitis related to iCIs and find factors that could be useful biomarkers for the diagnosis. A single-center retrospective study of 252 NSCLC patients who received PD-1 antibody (nivolumab or pembrolizumab). Some of the biochemical markers and immunological markers were analyzed during PD-1-antibody treatment with or without ALT elevation. Histopathological features were reviewed by a single expert of hepatic pathology focusing on the following features: fibrosis, portal inflammation, lobular inflammation, lobular necrosis. The formation of macro- and micro-granulomas was also evaluated. The frequency of liver damage induced by nivolumab including grade 1 to 4 (ALT) was 41.9% (78/186 patients). The positive rate of anti-nuclear antibody in the nivolumab group with iCIs-related hepatitis was significantly higher than that in the nivolumab group without iCIs-related hepatitis (p = 0.00112). Granulomatous changes were significantly increased in patients with iCIs-related hepatitis compared with DILI and AIH patients (p < 0.05). The ratios of inflammatory cells CD4/CD8, and CD138/CD3 in ICIs-related hepatitis were significantly lower than those in AIH or DILI patients (p < 0.05). We demonstrated that the pre-existing ANA and characteristic liver histology including CD8+ cells dominancy and granulomatous hepatitis could be biomarkers for the diagnosis of iCIs-related hepatitis in the NSCLC with anti-PD-1 therapy.
Collapse
|
7
|
Risk of Non-Hodgkin Lymphoma among Patients with Hepatitis B Virus and Hepatitis C Virus in Taiwan: A Nationwide Cohort Study. Cancers (Basel) 2022; 14:cancers14030583. [PMID: 35158850 PMCID: PMC8833658 DOI: 10.3390/cancers14030583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/05/2022] [Accepted: 01/20/2022] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Non-Hodgkin lymphoma (NHL) is difficult to diagnose and has a high mortality rate. Large-scale database research is necessary to examine and strengthen the correlation between viral hepatitis and NHL. This retrospective cohort study analyzed differences in the risk of developing NHL for patients with hepatitis to elucidate these relationships by using nationwide data from Taiwan’s National Health Insurance Research Database. In this study, the incidence rate of NHL in patients with hepatitis B was 0.22%, and in patients with hepatitis C, the incidence rate of NHL was 0.35%. These comparisons indicate that patients with HBV or HCV have a higher incidence of NHL (OR, 2.37; 95% CI, 1.93–2.91). Abstract Hepatitis B virus (HBV) and hepatitis C virus (HCV) are associated with an increased risk of developing non-Hodgkin lymphoma (NHL); however, adequate data corroborating these associations are lacking. Therefore, a study based on the national database was performed to investigate the correlation between HBV and HCV with NHL in Taiwan. This research was a retrospective cohort study using a nationally representative database established by the Health and Welfare Data Science Center of the Ministry of Health and Welfare, Taiwan. The participants were patients with HBV and HCV, analyzed using the propensity score matching method. The study results indicated that the incidence rate of NHL (0.13%) was significantly higher than that in patients from the general population. After controlling related variables, the hazard ratio (HR) of the incidence of NHL in patients with hepatitis was 2.37 (95% CI, 1.93–2.91). Furthermore, the incidence of NHL in patients with HBV was significantly higher than in patients from the general population (HR, 2.49; 95% CI, 1.94–3.19). The incidence of NHL in patients with HCV was significantly higher than in patients from the general population (HR, 2.36; 95% CI, 1.73–3.22). This study indicated that HBV and HCV significantly increase the risk of NHL.
Collapse
|
8
|
Alhetheel AF. Impact of Hepatitis C Virus Infection of Peripheral Blood Mononuclear Cells on the Immune System. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2021.810231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatitis C is a worldwide liver disease caused by hepatitis C virus (HCV) infection. The virus causes acute and chronic liver inflammation, and it is transmitted mainly by exposure to contaminated blood. HCV is capable of infecting hepatocytes and peripheral blood mononuclear cells, causing complications and disease progression. This mini review provides an overview of HCV infection, including details on the virological aspects, infection of the immune cells, and its impact on the immune system.
Collapse
|
9
|
Cacoub P, Comarmond C, Vieira M, Régnier P, Saadoun D. HCV-related lymphoproliferative disorders in the direct-acting antiviral era: From mixed cryoglobulinaemia to B-cell lymphoma. J Hepatol 2022; 76:174-185. [PMID: 34600000 DOI: 10.1016/j.jhep.2021.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/31/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023]
Abstract
HCV has been shown to induce many B-cell lymphoproliferative disorders. B lymphocytes specialise in producing immunoglobulins and, during chronic HCV infection, they can cause manifestations ranging from polyclonal hypergammaglobulinaemia without clinical repercussions, through mixed cryoglobulinaemic vasculitis to B-cell non-Hodgkin lymphoma. This spectrum is supported by substantial epidemiological, pathophysiological and therapeutic data. Many, although not all, of the pathogenic pathways leading from one extreme to another have been decrypted. Chronic viral antigen stimulation of B lymphocytes has a central role until the final steps before overt malignancy. This has direct implications for treatment strategies, which always include the use of direct-acting antivirals sometimes alongside immunosuppressants. The role of direct-acting antivirals has been well established in patients with cryoglobulinaemia vasculitis. However, their positive impact on B-cell non-Hodgkin lymphoma needs to be confirmed in larger studies with longer follow-up.
Collapse
Affiliation(s)
- Patrice Cacoub
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Internal Medicine and Clinical Immunology, Paris, France; Centre de Référence des Maladies Auto-Immunes Systémiques Rares, Centre de Référence des Maladies Auto-Inflammatoires et de l'Amylose inflammatoire, F-75013, Paris, France; Institut National de la Santé et de la Recherche Médicale, INSERM, UMR_S 959, F-75013, Paris, France; CNRS, FRE3632, F-75005, Paris, France; Sorbonne Université, UPMC Univ Paris 06, Inflammation-Immunopathology-Biotherapy Department (DHU i2B), F-75005, Paris, France.
| | - Cloé Comarmond
- AP-HP, Lariboisière Hospital, Department of Internal Medicine and Clinical Immunology, Paris, France
| | - Matheus Vieira
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Internal Medicine and Clinical Immunology, Paris, France; Centre de Référence des Maladies Auto-Immunes Systémiques Rares, Centre de Référence des Maladies Auto-Inflammatoires et de l'Amylose inflammatoire, F-75013, Paris, France; Institut National de la Santé et de la Recherche Médicale, INSERM, UMR_S 959, F-75013, Paris, France; CNRS, FRE3632, F-75005, Paris, France; Sorbonne Université, UPMC Univ Paris 06, Inflammation-Immunopathology-Biotherapy Department (DHU i2B), F-75005, Paris, France
| | - Paul Régnier
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Internal Medicine and Clinical Immunology, Paris, France; Centre de Référence des Maladies Auto-Immunes Systémiques Rares, Centre de Référence des Maladies Auto-Inflammatoires et de l'Amylose inflammatoire, F-75013, Paris, France; Institut National de la Santé et de la Recherche Médicale, INSERM, UMR_S 959, F-75013, Paris, France; CNRS, FRE3632, F-75005, Paris, France; Sorbonne Université, UPMC Univ Paris 06, Inflammation-Immunopathology-Biotherapy Department (DHU i2B), F-75005, Paris, France
| | - David Saadoun
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Internal Medicine and Clinical Immunology, Paris, France; Centre de Référence des Maladies Auto-Immunes Systémiques Rares, Centre de Référence des Maladies Auto-Inflammatoires et de l'Amylose inflammatoire, F-75013, Paris, France; Institut National de la Santé et de la Recherche Médicale, INSERM, UMR_S 959, F-75013, Paris, France; CNRS, FRE3632, F-75005, Paris, France; Sorbonne Université, UPMC Univ Paris 06, Inflammation-Immunopathology-Biotherapy Department (DHU i2B), F-75005, Paris, France
| |
Collapse
|
10
|
Hepatitis C Virus Core Protein Down-Regulates Expression of Src-Homology 2 Domain Containing Protein Tyrosine Phosphatase by Modulating Promoter DNA Methylation. Viruses 2021; 13:v13122514. [PMID: 34960785 PMCID: PMC8709277 DOI: 10.3390/v13122514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Hepatitis C virus (HCV) is the major causative pathogen associated with liver cirrhosis and hepatocellular carcinoma. The main virion component, the core (C) protein, has been implicated in several aspects of HCV pathology including oncogenesis and immune subversion. Here we show that expression of the C protein induced specific tyrosine phosphorylation of the TCR-related signaling proteins ZAP-70, LAT and PLC-γ in the T cells. Stable expression of the C protein specifically reduced Src homology domain 2-containing protein tyrosine phosphatase 1 (SHP-1) mRNA and protein accumulation. Quantitative CpG methylation analysis revealed a distinct CpG methylation pattern at the SHP-1 gene promoter in the C protein expressing cells that included specific hypermethylation of the binding site for Sp1 transcription factor. Collectively, our results suggest that HCV may suppress immune responses and facilitate its own persistence by deregulating phosphotyrosine signaling via repressive epigenetic CpG modification at the SHP-1 promoter in the T cells.
Collapse
|
11
|
Lankipalli S, H S MS, Selvam D, Samanta D, Nair D, Ramagopal UA. Cryptic association of B7-2 molecules and its implication for clustering. Protein Sci 2021; 30:1958-1973. [PMID: 34191384 PMCID: PMC8376414 DOI: 10.1002/pro.4151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022]
Abstract
T-cell co-stimulation through CD28/CTLA4:B7-1/B7-2 axis is one of the extensively studied pathways that resulted in the discovery of several FDA-approved drugs for autoimmunity and cancer. However, many aspects of the signaling mechanism remain elusive, including oligomeric association and clustering of B7-2 on the cell surface. Here, we describe the structure of the IgV domain of B7-2 and its cryptic association into 1D arrays that appear to represent the pre-signaling state of B7-2 on the cell membrane. Super-resolution microscopy experiments on heterologous cells expressing B7-2 and B7-1 suggest, B7-2 form relatively elongated and larger clusters compared to B7-1. The sequence and structural comparison of other B7 family members, B7-1:CTLA4 and B7-2:CTLA-4 complex structures, support our view that the observed B7-2 1D zipper array is physiologically important. This observed 1D zipper-like array also provides an explanation for its clustering, and upright orientation on the cell surface, and avoidance of spurious signaling.
Collapse
Affiliation(s)
- Swetha Lankipalli
- Biological Sciences DivisionPoornaprajna Institute of Scientific Research (PPISR)BengaluruIndia
- Manipal Academy of Higher EducationManipalKarnatakaIndia
| | | | - Deepak Selvam
- Jawaharlal Nehru Center for Advance Scientific ResearchBengaluruKarnatakaIndia
- National Institute for Research in TuberculosisChennaiIndia
| | - Dibyendu Samanta
- School of Bioscience, Sir J. C. Bose Laboratory ComplexIndian Institute of Technology KharagpurKharagpurIndia
| | - Deepak Nair
- Centre for NeuroscienceIndian Institute of ScienceBangaloreIndia
| | - Udupi A. Ramagopal
- Biological Sciences DivisionPoornaprajna Institute of Scientific Research (PPISR)BengaluruIndia
| |
Collapse
|
12
|
Li HC, Yang CH, Lo SY. Cellular factors involved in the hepatitis C virus life cycle. World J Gastroenterol 2021; 27:4555-4581. [PMID: 34366623 PMCID: PMC8326260 DOI: 10.3748/wjg.v27.i28.4555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/04/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus (HCV), an obligatory intracellular pathogen, highly depends on its host cells to propagate successfully. The HCV life cycle can be simply divided into several stages including viral entry, protein translation, RNA replication, viral assembly and release. Hundreds of cellular factors involved in the HCV life cycle have been identified over more than thirty years of research. Characterization of these cellular factors has provided extensive insight into HCV replication strategies. Some of these cellular factors are targets for anti-HCV therapies. In this review, we summarize the well-characterized and recently identified cellular factors functioning at each stage of the HCV life cycle.
Collapse
Affiliation(s)
- Hui-Chun Li
- Department of Biochemistry, Tzu Chi University, Hualien 970, Taiwan
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
| | - Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| |
Collapse
|
13
|
Abstract
Antibody responses in hepatitis C virus (HCV) have been a rather mysterious research topic for many investigators working in the field. Chronic HCV infection is often associated with dysregulation of immune functions particularly in B cells, leading to abnormal lymphoproliferation or the production of autoantibodies that exacerbate inflammation and extrahepatic diseases. When considering the antiviral function of antibody, it was difficult to endorse its role in HCV protection, whereas T-cell response has been shown unequivocally critical for natural recovery. Recent breakthroughs in the study of HCV and antigen-specific antibody responses provide important insights into viral vulnerability to antibodies and the immunogenetic and structural properties of the neutralizing antibodies. The new knowledge reinvigorates HCV vaccine research by illuminating a new path for the rational design of vaccine antigens to elicit broadly neutralizing antibodies for protection.
Collapse
Affiliation(s)
- Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92109, USA
| |
Collapse
|
14
|
Mao S, Ou X, Wang M, Sun D, Yang Q, Wu Y, Jia R, Zhu D, Zhao X, Chen S, Liu M, Zhang S, Huang J, Gao Q, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Chen X, Cheng A. Duck hepatitis A virus 1 has lymphoid tissue tropism altering the organic immune responses of mature ducks. Transbound Emerg Dis 2020; 68:3588-3600. [PMID: 33369177 DOI: 10.1111/tbed.13966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022]
Abstract
Duck hepatitis A virus 1 (DHAV-1) is a highly prevalent pathogen within adult ducks causing acute as well as chronic hepatitis which closely emulates the progression of human hepatitis. However, the underlying mechanisms of DHAV-1 persistence and the pathogenesis of chronic liver disease are not well defined. The association between hematopoietic reservoirs of virus and persistent infection is increasingly concerning. Here, we explored the ability of lymphoid replication of DHAV-1 and the effect on immunity. We found that DHAV-1 was able to infect and replicate productively in the lymphoid organs of model ducks, persisting over 6 months. Moreover, a significant correlation of viral loads between these organs and blood was found, documenting a major contribution of lymphoid replication to DHAV-1 viraemia. Along with viral replication, the mRNA of PRRs and immune-related cytokines was up-regulated in these organs during the early phase of infection, showing tissue-dependent expression patterns but all inclining towards Th2 responses due to the consistently higher level of IL-4 than IL-2 and IFN-γ. Additionally, the expression of CCL19, CCL21, MHC-I and MHC-II, which are involved in T cell homing to the periphery and priming, was dysmodulated. Our data indicate that DHAV-1 possesses lymphoid tissue tropism, contributing to persistent infection and chronic hepatitis via altering the early endogenous transcription of immune-related genes and thereby perturbing organic immunity. These results may be useful to develop novel strategies to treat chronic viral hepatitis based on stimulation of the early innate system and regulation of T-cell trafficking.
Collapse
Affiliation(s)
- Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| |
Collapse
|
15
|
Arai J, Ito T, Shimozuma Y, Uchikoshi M, Nakajima Y, Sakaki M, Uozumi S, Kajiwara A, Sugiura I, Otoyama Y, Nozawa H, Kurihara T, Eguchi J, Nomura N, Sakuma D, Sato M, Deguchi Y, Yoshida H. Decreased expression of interferon-stimulated genes in B cells of patients with chronic hepatitis C during interferon-free therapy potentially suggests the eradication of hepatitis C virus in the B cells: A cohort study. Health Sci Rep 2020; 3:e176. [PMID: 32685701 PMCID: PMC7362757 DOI: 10.1002/hsr2.176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/14/2020] [Accepted: 06/03/2020] [Indexed: 01/03/2023] Open
Abstract
AIMS Hepatitis C virus (HCV) infection is monitored by the host innate immunity that includes the endogenous interferon (IFN), which up-regulates IFN-stimulated genes (ISGs). HCV is both hepatotropic and lymphotropic, but HCV replication in lymphoid cells is a controversial issue. Here, we analyzed the mRNA levels of the ISGs in B cells of HCV-infected patients during antiviral therapy and investigated the effects of viral eradication. METHODS One hundred and eighty-one patients with chronic hepatitis C and 26 healthy volunteers were enrolled in this study. Levels of HCV RNA and mRNA of ISGs in B cells isolated from the patients were monitored before, during, and after antiviral therapy. RESULTS HCV RNA was detected in B cells of 133/175 (76.0%) patients who achieved sustained virologic response (SVR) before therapy was started. The positive ratio of HCV RNA in B cells was higher in patients with genotype 1 and the non-major genotype of interleukin 28B. HCV RNA in B cells of most patients disappeared 1 week after antiviral therapy was started. The baseline expression of ISG mRNA was significantly higher in the patients than in the healthy volunteers. Levels of ISG mRNA were increased and remained high throughout the IFN-based therapy. In contrast, levels of ISG mRNA in patients who achieved SVR were significantly decreased 1 week after the IFN-free therapy was started and remained low during the therapy. CONCLUSIONS These results suggested that IFN-free therapy potentially eradicated HCV in the B cells, leading to the down-regulation of endogenous ISGs. The level of ISG mRNA could be used as a marker for viral eradication in B cells.
Collapse
Affiliation(s)
- Jun Arai
- Department of Medicine, Division of GastroenterologyShowa University School of MedicineTokyoJapan
| | - Takayoshi Ito
- Digestive Disease CenterShowa University Koto Toyosu HospitalTokyoJapan
| | - Yuu Shimozuma
- Department of Medicine, Division of GastroenterologyShowa University School of MedicineTokyoJapan
| | - Manabu Uchikoshi
- Department of Medicine, Division of GastroenterologyShowa University School of MedicineTokyoJapan
| | - Yoko Nakajima
- Department of Medicine, Division of GastroenterologyShowa University School of MedicineTokyoJapan
| | - Masashi Sakaki
- Department of Medicine, Division of GastroenterologyShowa University School of MedicineTokyoJapan
| | - Shojiro Uozumi
- Department of Medicine, Division of GastroenterologyShowa University School of MedicineTokyoJapan
| | - Atsushi Kajiwara
- Department of Medicine, Division of GastroenterologyShowa University School of MedicineTokyoJapan
| | - Ikuya Sugiura
- Department of Medicine, Division of GastroenterologyShowa University School of MedicineTokyoJapan
| | - Yumi Otoyama
- Department of Medicine, Division of GastroenterologyShowa University School of MedicineTokyoJapan
| | - Hisako Nozawa
- Department of Medicine, Division of GastroenterologyShowa University School of MedicineTokyoJapan
| | | | - Junichi Eguchi
- Digestive Disease CenterShowa University Koto Toyosu HospitalTokyoJapan
| | - Norihiro Nomura
- Digestive Disease CenterShowa University Koto Toyosu HospitalTokyoJapan
| | - Dai Sakuma
- Digestive Disease CenterShowa University Koto Toyosu HospitalTokyoJapan
| | - Masashi Sato
- Digestive Disease CenterShowa University Koto Toyosu HospitalTokyoJapan
| | - Yoshio Deguchi
- Digestive Disease CenterShowa University Koto Toyosu HospitalTokyoJapan
| | - Hitoshi Yoshida
- Department of Medicine, Division of GastroenterologyShowa University School of MedicineTokyoJapan
| |
Collapse
|
16
|
The Role of the Liver-Specific microRNA, miRNA-122 in the HCV Replication Cycle. Int J Mol Sci 2020; 21:ijms21165677. [PMID: 32784807 PMCID: PMC7460827 DOI: 10.3390/ijms21165677] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023] Open
Abstract
Hepatitis C virus (HCV) replication requires annealing of a liver specific microRNA, miR-122 to 2 sites on 5' untranslated region (UTR). While, microRNAs downregulate gene expression by binding to the 3' untranslated region of the target mRNA, in this case, the microRNA anneals to the 5'UTR of the viral genomes and upregulates the viral lifecycle. In this review, we explore the current understandings of the mechanisms by which miR-122 promotes the HCV lifecycle, and its contributions to pathogenesis. Annealing of miR-122 has been reported to (a) stimulate virus translation by promoting the formation of translationally active internal ribosome entry site (IRES) RNA structure, (b) stabilize the genome, and (c) induce viral genomic RNA replication. MiR-122 modulates lipid metabolism and suppresses tumor formation, and sequestration by HCV may influence virus pathogenesis. We also discuss the possible use of miR-122 as a biomarker for chronic hepatitis and as a therapeutic target. Finally, we discuss roles for miR-122 and other microRNAs in promoting other viruses.
Collapse
|
17
|
Choobin H, Bamdad T, Shekarabi M. The pattern of antiviral protein expression induced by interferon λ1 in peripheral blood mononuclear cells of patients with chronic hepatitis C virus infection. Arch Virol 2020; 165:583-592. [PMID: 31927635 DOI: 10.1007/s00705-019-04438-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/12/2019] [Indexed: 12/28/2022]
Abstract
Interferon lambda was discovered in recent years to be an antiviral agent, and research on different aspects of this antiviral factor in viral infection and investigations of its effectiveness are also progressing. The immunological effects of interferon lambda on different cell populations is not precisely known, which may be due to its use of a heterodimeric receptor consisting of IL-10R2 and IFN-λR1, which are not broadly expressed in all types of cells. In the present study, signaling by interferon lambda and its effect on the expression of hepatitis C virus (HCV) proteins were measured, and the expression pattern of some antiviral proteins and IL-10 levels were investigated in peripheral blood mononuclear cells (PBMCs). PBMCs were isolated from 50 patients with chronic genotype 1a HCV infection and 10 healthy individuals as controls. The PBMCs were treated with various doses of interferon lambda at different times of cultivation. Real-time PCR was used for relative quantification of Mxa, PKR, OAS, ISG15 and HCV core mRNAs. Expression of the NS5A protein was measured by flow cytometry, and IL-10 production was assessed by ELISA. A significant increase in the expression of mRNA encoding antiviral proteins and a decrease in the expression of mRNAs encoding the HCV core protein were observed when cells were treated with interferon lambda in an intermittent manner. The expression of HCV NS5A protein and interleukin 10 levels were also lower than in the control group. It was shown that the maximum antiviral effect of interferon lambda in PBMCs is dependent on the dose and treatment time.
Collapse
Affiliation(s)
- Hamzeh Choobin
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Taravat Bamdad
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Shekarabi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Wan Z, Liu J, Hu F, Shui J, Li L, Wang H, Tang X, Hu C, Liang Y, Zhou Y, Cai W, Tang S. Evidence that the second human pegivirus (HPgV-2) is primarily a lymphotropic virus and can replicate independent of HCV replication. Emerg Microbes Infect 2020; 9:485-495. [PMID: 32100631 PMCID: PMC7054972 DOI: 10.1080/22221751.2020.1730247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The second human pegivirus HPgV-2 is a novel blood-borne virus that is strongly associated with the hepatitis C virus (HCV) infection. However, the molecular evidence for their association as well as the natural history and tissue tropism of HPgV-2 remain to be elucidated. In this longitudinal study, a total of 753 patients including 512 HIV-1 and HCV co-infected patients were enrolled to characterize the natural history of HPgV-2 infection. Peripheral blood mononuclear cells (PBMCs) and liver biopsies were collected to determine the tissue tropism of HPgV-2 using immunohistochemical staining of the HPgV-2 antigen and in situ hybridization of HPgV-2 RNA. We documented both persistent HPgV-2 infection with the presence of HPgV-2 viral RNA and antibodies up to 4.6 years and resolved HPgV-2 infection, accompanied by a simultaneous decline of anti-HPgV-2 antibodies and clearance of HPgV-2 viremia. Furthermore, we observed the clearance of HCV, but not HPgV-2, by treatment with direct-acting antivirals (DAAs). Biochemical tests and pathological analyses did not reveal any indication of hepatic impairment caused by HPgV-2. HPgV-2 RNA and nonstructural antigen were detected in the lymphocytes, but not in the hepatocytes present in the liver biopsy samples. In addition, both positive- and negative-strand HPgV-2 RNAs were detected in PBMCs, especially in B cells. The present study is the first to provide evidence that HPgV-2 is a lymphotropic, but not a hepatotropic virus and that HPgV-2 replication is independent of HCV viremia. These new findings let us gain insights into the evolution and persistent infection of RNA viruses in humans.
Collapse
Affiliation(s)
- Zhengwei Wan
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Junwei Liu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Fengyu Hu
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jingwei Shui
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Linghua Li
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Haiying Wang
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaoping Tang
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Chengguang Hu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yuanhao Liang
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Yuanping Zhou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Weiping Cai
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shixing Tang
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China.,Dermatology Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
19
|
Kim M, Lee YK, Park B, Oh DJ, Choi HG. Hepatitis virus B and C infections are associated with an increased risk of non-Hodgkin lymphoma: A nested case-control study using a national sample cohort. J Med Virol 2019; 92:1214-1220. [PMID: 31825111 DOI: 10.1002/jmv.25653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/09/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hepatitis B virus (HBV) and hepatitis C virus (HCV) are suspected of being associated with non-Hodgkin lymphoma (NHL); however, persuasive data are lacking. Hence, a nested large-population case-control study was performed to investigate such associations in Koreans. METHODS Data were collected from 929 patients with NHL and 3716 healthy subjects, who were matched 1:4 for age, sex, income, and region of residence, from the Korean Health Insurance Review and Assessment Service-National Sample Cohort. The diagnoses of NHL and HBV/HCV infection were based on the International Classification of Diseases (version 10) codes. Conditional logistic regression models were used to assess odds ratios (ORs) for NHL with respect to HBV or HCV with adjustment for the Charlson comorbidity index. RESULTS HBV and HCV rates were higher in the NHL group (3.3% and 1.3%, respectively) than in the control group (0.9% and 0.3%, respectively; P < .001 for each). The adjusted OR of hepatitis infection in patients with NHL were 3.25 (95% confidence interval [CI] = 1.99-5.31) for HBV and 3.36 (95% CI = 1.51-7.46) for HCV (P < .001 for each). Subgroups categorized by age (<55 vs ≥55 years) or sex showed significantly higher adjusted ORs of HBV for NHL. Moreover, patients with NHL ≥ 55 years of age or those who were female showed significantly higher adjusted ORs of HCV; those <55 years or who were male also tended to have higher ORs of HCV. CONCLUSION Infection with either HBV or HCV is associated with NHL in Koreans.
Collapse
Affiliation(s)
- Miyoung Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Anyang, Korea
| | - Young Kyung Lee
- Department of Laboratory Medicine, Hallym University College of Medicine, Anyang, Korea
| | - Bumjung Park
- Department of Otorhinolaryngology-Head & Neck Surgery, Hallym University College of Medicine, Anyang, Korea
| | - Dong Jun Oh
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyo Geun Choi
- Department of Otorhinolaryngology-Head & Neck Surgery, Hallym University College of Medicine, Anyang, Korea.,Hallym Data Science Laboratory, Hallym University College of Medicine, Anyang, Korea
| |
Collapse
|
20
|
Helfritz FA, Bojkova D, Wanders V, Kuklinski N, Westhaus S, von Horn C, Rauen U, Gallinat A, Baba HA, Skyschally A, Swoboda S, Kinast V, Steinmann E, Heusch G, Minor T, Meuleman P, Paul A, Ciesek S. Methylene Blue Treatment of Grafts During Cold Ischemia Time Reduces the Risk of Hepatitis C Virus Transmission. J Infect Dis 2019; 218:1711-1721. [PMID: 29939277 DOI: 10.1093/infdis/jiy386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023] Open
Abstract
Background Although organ shortage is a rising problem, organs from hepatitis C virus (HCV) ribonucleic acid (RNA)-positive donors are not routinely transplanted in HCV-negative individuals. Because HCV only infects hepatocytes, other organs such as kidneys are merely contaminated with HCV via the blood. In this study, we established a protocol to reduce HCV virions during the cold ischemic time. Methods Standard virological assays were used to investigate the effect of antivirals, including methylene blue (MB), in different preservation solutions. Kidneys from mini pigs were contaminated with Jc1 or HCV RNA-positive human serum. Afterwards, organs were flushed with MB. Hypothermic machine perfusion was used to optimize reduction of HCV. Results Three different antivirals were investigated for their ability to inactivate HCV in vitro. Only MB completely inactivated HCV in the presence of all perfusion solutions. Hepatitis C virus-contaminated kidneys from mini pigs were treated with MB and hypothermic machine perfusion without any negative effect on the graft. Human liver-uPA-SCID mice did not establish HCV infection after inoculation with flow through from these kidneys. Conclusions This proof-of-concept study is a first step to reduce transmission of infectious HCV particles in the transplant setting and might serve as a model for other relevant pathogens.
Collapse
Affiliation(s)
- Fabian A Helfritz
- General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Germany
| | - Denisa Bojkova
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Verena Wanders
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Nina Kuklinski
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Sandra Westhaus
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Charlotte von Horn
- General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Germany
| | - Ursula Rauen
- Institute of Physiological Chemistry, University Hospital Essen, University Duisburg-Essen, Germany
| | - Anja Gallinat
- General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Germany
| | - Hideo A Baba
- Institute of Pathology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Andreas Skyschally
- Institute of Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, University Duisburg-Essen, Germany
| | - Sandra Swoboda
- General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Germany
| | - Volker Kinast
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Eike Steinmann
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Department of Molecular and Medical Virology, Ruhr-University Bochum, Germany
| | - Gerd Heusch
- Institute of Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, University Duisburg-Essen, Germany
| | - Thomas Minor
- General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Germany
| | - Philip Meuleman
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Belgium
| | - Andreas Paul
- General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Germany
| | - Sandra Ciesek
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Germany.,German Center for Infection Research (DZIF), External Partner Site Essen, Germany
| |
Collapse
|
21
|
Kondo Y, Kogure T, Ninomiya M, Fukuda R, Monma N, Ikeo K, Tanaka Y. The reduction of miR146b-5p in monocytes and T cells could contribute to the immunopathogenesis of hepatitis C virus infection. Sci Rep 2019; 9:13393. [PMID: 31527804 PMCID: PMC6746729 DOI: 10.1038/s41598-019-49706-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/30/2019] [Indexed: 02/06/2023] Open
Abstract
It has been reported that various kinds of miRNAs could affect the pathogenesis of hepatitis C virus infection. Recently, our group reported that deep-sequencing analysis was useful to detect disease-specific miRNAs. The aim of this study is to identify the HCV-specific miRNAs that could contribute to the immunopathogenesis of HCV by using clinical samples and in vitro analysis. Five miRNAs (hsa-miR181a-2-3p, hsa-miR-374a-3p, hsa-miR374a-5p, hsa-miR-204-5p and hsa-miR146b-5p) were shown to be significantly downregulated in CH-C by deep sequence analysis. The average ratio (PBMCs miRNAs/serum miRNAs) of hsa-miR146b-5p was highest among all the miRNAs. Moreover, serum hsa-miR146b-5p was significantly down-regulated in CH-C patients in comparison to CH-B patients and healthy subjects. The expression of hsa-miR146b-5p in CD3+ T cells and CD14+ monocytes of CH-C patients was significantly lower than that of the other groups. The hsa-miR146b-5p expression in CD14+ monocytes of SVR patients treated with Peg-IFN/RBV was significantly higher than in those of non-SVR patients treated with Peg IFN/RBV. However, the hsa-miR146b-5p expression in CD14+ monocytes of SVR patients treated with DCV and ASV was comparable to that in monocytes of non-SVR patients treated with DCV and ASV. Moreover, the expression levels of hsa-miR146b-5p in CD14+ monocytes were significantly increased after achieving SVR and 1(OH)Vitamin D3 treatment. Further, the expression of HCV-Core could suppress miR146b-5p expression in immune cells and affect the expression of various kinds of cytokines by affecting the NF-κB signaling. In conclusion, the reduction of miR146b-5p in monocytes and T cells could contribute to the immunopathogenesis of hepatitis C virus infection.
Collapse
Affiliation(s)
- Yasuteru Kondo
- Department of Hepatology, Sendai Kousei Hospital, 4-15 Hirose, Aoba, Sendai City, Miyagi, Japan. .,Department of Virology & Liver unit, Nagoya City University Graduate School of Medical Sciences, Kawasumi, Mizuho, Nagoya, 467-8601, Japan.
| | - Takayuki Kogure
- Division of Gastroenterology, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai City, Miyagi, Japan
| | - Masashi Ninomiya
- Division of Gastroenterology, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai City, Miyagi, Japan
| | - Ryo Fukuda
- Department of Hepatology, Sendai Kousei Hospital, 4-15 Hirose, Aoba, Sendai City, Miyagi, Japan
| | - Norikazu Monma
- Center for information Biology, National Institute of Genetics, Mishima, Japan
| | - Kazuho Ikeo
- Center for information Biology, National Institute of Genetics, Mishima, Japan
| | - Yasuhito Tanaka
- Department of Virology & Liver unit, Nagoya City University Graduate School of Medical Sciences, Kawasumi, Mizuho, Nagoya, 467-8601, Japan
| |
Collapse
|
22
|
Kuna L, Jakab J, Smolic R, Wu GY, Smolic M. HCV Extrahepatic Manifestations. J Clin Transl Hepatol 2019; 7:172-182. [PMID: 31293918 PMCID: PMC6609844 DOI: 10.14218/jcth.2018.00049] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 02/21/2019] [Accepted: 03/17/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) has been shown to affect many tissues other than liver. However, of the many extrahepatic manifestations (EMs) that have been associated with HCV, including cryoglobulinemia, lymphoma, insulin resistance, type 2 diabetes and neurological disorders, only a few have been shown to be directly related to HCV infection of extrahepatic tissues. HCV-triggered immune-mediated mechanisms account for most of the EMs. It is estimated that up to 74% of patients with chronic hepatitis C can develop at least one EM. All HCV patients with EMs should be considered for antiviral therapy, although not all will resolve with sustained virological response.
Collapse
Affiliation(s)
- Lucija Kuna
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Jelena Jakab
- Department of Pathophysiology and Physiology with Immunology, Faculty of Dental Medicine and Health, J. J. Strossmayer University of Osijek, Osijek, Croatia
- Department of Internal Medicine, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Robert Smolic
- Department of Pathophysiology and Physiology with Immunology, Faculty of Dental Medicine and Health, J. J. Strossmayer University of Osijek, Osijek, Croatia
- Department of Pharmacology, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - George Y Wu
- Department of Medicine, Division of Gastroenterology-Hepatology, University of Connecticut Health Center, Farmington, CT, USA
| | - Martina Smolic
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health, J. J. Strossmayer University of Osijek, Osijek, Croatia
- Department of Pharmacology, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
- *Correspondence to: Martina Smolic, Department of Pharmacology, J. J. Strossmayer University of Osijek Faculty of Medicine Osijek, J. Huttlera 4, Osijek 31000, Croatia. Tel: + 385-31-512-800, Fax: +385-31-512-833, E-mail:
| |
Collapse
|
23
|
Wróblewska A, Lorenc B, Cheba M, Bielawski KP, Sikorska K. Neutrocyte-to-lymphocyte ratio predicts the presence of a replicative hepatitis C virus strand after therapy with direct-acting antivirals. Clin Exp Med 2019; 19:401-406. [PMID: 31127433 PMCID: PMC6647462 DOI: 10.1007/s10238-019-00561-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/15/2019] [Indexed: 12/25/2022]
Abstract
Residual HCV-RNA can persist in liver tissue and peripheral blood mononuclear cells (PBMCs) long after antiviral therapy of chronic hepatitis C in patients repeatedly negative for viral RNA in serum. This occult infection associates with impaired immune response and the risk of lymphoproliferative disorders or progressive liver disease. There are currently no monitoring strategies for patients after treatment. We investigated if serum inflammation markers and interferon lambda (IFNL) genotype can be predictors of the presence of HCV-RNA and the replicative HCV-RNA (−) strand in patients who reached sustained virological response after interferon-free therapy. Forty-two consecutive patients who remained HCV-RNA negative in serum 24 weeks after the end of treatment (EOT) and during the follow-up were enrolled. Total HCV-RNA and HCV-RNA (−) strand were detected using ultrasensitive RT-PCR in PBMCs collected 12–15 months after EOT. Polymorphisms within IFNL3–IFNL4 region (rs12979860 and ss469415590) were genotyped with allele-specific PCR. Viral RNA was found in PBMCs from 31 (74%) patients, and of those 29 (69%) were also positive for HCV-RNA (−). Neither normalization of alanine aminotransferase nor IFNL genotype predicted the presence of residual HCV-RNA. A significantly higher neutrocyte-to-lymphocyte ratio (NLR) 24 weeks after the start of treatment predicted elimination of replicative HCV-RNA strand (OR 0.23; 95% CI 0.10–0.86; P = 0.019). Patients with no HCV-RNA (−) in PBMCs showed a greater increase in neutrocyte count between EOT and baseline (P = 0.028). Lack of significant elevation of NLR after therapy with direct-acting antivirals could predict the presence of residual replicative HCV-RNA strand in PBMCs.
Collapse
Affiliation(s)
- Anna Wróblewska
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology UG & MUG, Abrahama 58, 80-307, Gdańsk, Poland
| | - Beata Lorenc
- Pomeranian Center of Infectious Diseases and Tuberculosis, Smoluchowskiego 18, 80-214, Gdańsk, Poland
| | - Małgorzata Cheba
- Pomeranian Center of Infectious Diseases and Tuberculosis, Smoluchowskiego 18, 80-214, Gdańsk, Poland
| | - Krzysztof P Bielawski
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology UG & MUG, Abrahama 58, 80-307, Gdańsk, Poland
| | - Katarzyna Sikorska
- Department of Tropical Medicine and Epidemiology, Department of and Tropical Medicine and Parasitology, Faculty of Health Sciences, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Powstania Styczniowego 9b, 81-519, Gdynia, Poland.
| |
Collapse
|
24
|
Heterogeneity and coexistence of oncogenic mechanisms involved in HCV-associated B-cell lymphomas. Crit Rev Oncol Hematol 2019; 138:156-171. [PMID: 31092372 DOI: 10.1016/j.critrevonc.2019.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022] Open
Abstract
The association of HCV-infection with B-lymphomas is supported by the regression of most indolent/low-grade lymphomas following anti-viral therapy. Studies on direct and indirect oncogenic mechanisms have elucidated the pathogenesis of HCV-associated B-lymphoma subtypes. These include B-lymphocyte proliferation and sustained clonal expansion by HCV-envelope protein stimulation of B-cell receptors, and prolonged HCV-infected B-cell growth by overexpression of an anti-apoptotic BCL-2 oncogene caused by the increased frequency of t(14;18) chromosomal translocations in follicular lymphomas. HCV has been implicated in lymphomagenesis by a "hit-and-run" mechanism, inducing enhanced mutation rate in immunoglobulins and anti-oncogenes favoring immune escape, due to permanent genetic damage by double-strand DNA-breaks. More direct oncogenic mechanisms have been identified in cytokines and chemokines in relation to NS3 and Core expression, particularly in diffuse large B-cell lymphoma. By reviewing genetic alterations and disrupted signaling pathways, we intend to highlight how mutually non-contrasting mechanisms cooperate with environmental factors toward progression of HCV-lymphoma.
Collapse
|
25
|
Couronné L, Bachy E, Roulland S, Nadel B, Davi F, Armand M, Canioni D, Michot JM, Visco C, Arcaini L, Besson C, Hermine O. From hepatitis C virus infection to B-cell lymphoma. Ann Oncol 2019; 29:92-100. [PMID: 29045541 DOI: 10.1093/annonc/mdx635] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In addition to liver disorders, hepatitis C virus (HCV) is also associated with extrahepatic immune manifestations and B-cell non-Hodgkin lymphoma (NHL), especially marginal zone lymphoma, de novo or transformed diffuse large B-cell lymphoma and to a lesser extent, follicular lymphoma. Epidemiological data and clinical observations argue for an association between HCV and lymphoproliferative disorders. The causative role of HCV in NHL has been further supported by the response to antiviral therapy. Pathophysiological processes at stake leading from HCV infection to overt lymphoma still need to be further elucidated. Based on reported biological studies, several mechanisms of transformation seem however to emerge. A strong body of evidence supports the hypothesis of an indirect transformation mechanism by which sustained antigenic stimulation leads from oligoclonal to monoclonal expansion and sometimes to frank lymphoma, mostly of marginal zone subtype. By infecting lymphocytes, HCV could play a direct role in cellular transformation, particularly in de novo large B-cell lymphoma. Finally, HCV is associated with follicular lymphoma in a subset of patients. In this setting, it may be hypothesized that inflammatory cytokines stimulate proliferation and transformation of IgH-BCL2 clones that are increased during chronic HCV infection. Unraveling the pathogenesis of HCV-related B-cell lymphoproliferation is of prime importance to optimize therapeutic strategies, especially with the recent development of new direct-acting antiviral drugs.
Collapse
Affiliation(s)
- L Couronné
- Department of Hematology, Assistance Publique-Hôpitaux de Paris (APHP), Necker Hospital, Paris, France.,INSERM UMR 1163, CNRS ERL 8254, Imagine Institute, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - E Bachy
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, Lyon, France.,Department of Hematology, Lyon Sud Hospital, Lyon, France
| | - S Roulland
- Center of Immunology of Marseille-Luminy, Aix Marseille University, Marseille, France
| | - B Nadel
- Center of Immunology of Marseille-Luminy, Aix Marseille University, Marseille, France
| | - F Davi
- INSERM U1104, Marseille, France.,CNRS UMR 7280, Marseille, France.,Department of Hematology, Pitié-Salpêtrière Hospital, Pierre et Marie Curie University, Paris, France
| | - M Armand
- INSERM U1104, Marseille, France.,CNRS UMR 7280, Marseille, France.,Department of Hematology, Pitié-Salpêtrière Hospital, Pierre et Marie Curie University, Paris, France
| | - D Canioni
- Department of Pathology, Necker Hospital, AP-HP, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - J M Michot
- Department of Hematology and Drug Development, Gustave Roussy Institute, Villejuif; France
| | - C Visco
- Department of Cell Therapy and Hematology, San Bortolo Hospital, Vicenza, Italy
| | - L Arcaini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Departement of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - C Besson
- Department of Hematology and Oncology, Hospital of Versailles, Le Chesnay, France.,University of Versailles Saint Quentin en Yvelines, Paris-Saclay University, Communauté Paris-Saclay, Paris, France.,INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
| | - O Hermine
- Department of Hematology, Assistance Publique-Hôpitaux de Paris (APHP), Necker Hospital, Paris, France.,INSERM UMR 1163, CNRS ERL 8254, Imagine Institute, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Paris, France
| |
Collapse
|
26
|
Roles of the 5' Untranslated Region of Nonprimate Hepacivirus in Translation Initiation and Viral Replication. J Virol 2018; 92:JVI.01997-17. [PMID: 29343570 DOI: 10.1128/jvi.01997-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/09/2018] [Indexed: 12/26/2022] Open
Abstract
The 5' untranslated region (UTR) of hepatitis C virus (HCV), which is composed of four domains (I, II, III, and IV) and a pseudoknot, is essential for translation and viral replication. Equine nonprimate hepacivirus (EHcV) harbors a 5' UTR consisting of a large 5'-terminal domain (I); three additional domains (I', II, and III), which are homologous to domains I, II, and III, respectively, of HCV; and a pseudoknot, in the order listed. In this study, we investigated the roles of the EHcV 5' UTR in translation and viral replication. The internal ribosome entry site (IRES) activity of the EHcV 5' UTR was lower than that of the HCV 5' UTR in several cell lines due to structural differences in domain III. Domains I and III of EHcV were functional in the HCV 5' UTR in terms of IRES activity and the replication of the subgenomic replicon (SGR), although domain II was not exchangeable between EHcV and HCV for SGR replication. Furthermore, the region spanning domains I and I' of EHcV (the 5'-proximal EHcV-specific region) improved RNA stability and provided the HCV SGR with microRNA 122 (miR-122)-independent replication capability, while EHcV domain I alone improved SGR replication and RNA stability irrespective of miR-122. These data suggest that the region spanning EHcV domains I and I' improves RNA stability and viral replication regardless of miR-122 expression. The 5'-proximal EHcV-specific region may represent an inherent mechanism to facilitate viral replication in nonhepatic tissues.IMPORTANCE EHcV is the closest viral homolog to HCV among other hepaciviruses. HCV exhibits a narrow host range and liver-specific tropism, while epidemiological reports suggest that EHcV infects the liver and respiratory organs in horses, donkeys, and dogs. However, the mechanism explaining the differences in host or organ tropism between HCV and EHcV is unknown. In this study, our data suggest that the 5' untranslated region (UTR) of EHcV is composed of an internal ribosome entry site (IRES) element that is functionally exchangeable with HCV IRES elements. Furthermore, the 5'-proximal EHcV-specific region enhances viral replication and RNA stability in a miR-122-independent manner. Our data suggest that the region upstream of domain II in the EHcV 5' UTR contributes to the differences in tissue tropism observed between these hepaciviruses.
Collapse
|
27
|
Biased IGH VDJ gene repertoire and clonal expansions in B cells of chronically hepatitis C virus–infected individuals. Blood 2018; 131:546-557. [DOI: 10.1182/blood-2017-09-805762] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/11/2017] [Indexed: 12/13/2022] Open
Abstract
Key PointsChronic HCV infection leads to extensive BCR immunoglobulin gene repertoire alterations with pathological features even in absence of MC. Many large B-cell clones are consistently found, mainly among IgM+ memory B cells, showing a massive influence of HCV on this compartment.
Collapse
|
28
|
Authentic Patient-Derived Hepatitis C Virus Infects and Productively Replicates in Primary CD4 + and CD8 + T Lymphocytes In Vitro. J Virol 2018; 92:JVI.01790-17. [PMID: 29167333 DOI: 10.1128/jvi.01790-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/09/2017] [Indexed: 12/17/2022] Open
Abstract
Accumulated evidence indicates that immune cells can support the replication of hepatitis C virus (HCV) in infected patients and in culture. However, there is a scarcity of data on the degree to which individual immune cell types support HCV propagation and on characteristics of virus assembly. We investigated the ability of authentic, patient-derived HCV to infect in vitro two closely related but functionally distinct immune cell types, CD4+ and CD8+ T lymphocytes, and assessed the properties of the virus produced by these cells. The HCV replication system in intermittently mitogen-stimulated T cells was adapted to infect primary human CD4+ or CD8+ T lymphocytes. HCV replicated in both cell types although at significantly higher levels in CD4+ than in CD8+ T cells. Thus, the HCV RNA replicative (negative) strand was detected in CD4+ and CD8+ cells at estimated mean levels ± standard errors of the means of 6.7 × 102 ± 3.8 × 102 and 1.2 × 102 ± 0.8 × 102 copies/μg RNA, respectively (P < 0.0001). Intracellular HCV NS5a and/or core proteins were identified in 0.9% of CD4+ and in 1.2% of CD8+ T cells. Double staining for NS5a and T cell type-specific markers confirmed that transcriptionally competent virus replicated in both cell types. Furthermore, an HCV-specific protease inhibitor, telaprevir, inhibited infection in both CD4+ and CD8+ cells. The emergence of unique HCV variants and the release of HCV RNA-reactive particles with biophysical properties different from those of virions in plasma inocula suggested that distinct viral particles were assembled, and therefore, they may contribute to the pool of circulating virus in infected patients.IMPORTANCE Although the liver is the main site of HCV replication, infection of the immune system is an intrinsic characteristic of this virus independent of whether infection is symptomatic or clinically silent. Many fundamental aspects of HCV lymphotropism remain uncertain, including the degree to which different immune cells support infection and contribute to virus diversity. We show that authentic, patient-derived HCV productively replicates in vitro in two closely related but functionally distinct types of T lymphocytes, CD4+ and CD8+ cells. The display of viral proteins and unique variants, the production of virions with biophysical properties distinct from those in plasma serving as inocula, and inhibition of replication by an antiviral agent led us to ascertain that both T cell subtypes supported virus propagation. Infection of CD4+ and CD8+ T cells, which are central to adaptive antiviral immune responses, can directly affect HCV clearance, favor virus persistence, and decisively influence the development and progression of hepatitis C.
Collapse
|
29
|
Torres HA, Shigle TL, Hammoudi N, Link JT, Samaniego F, Kaseb A, Mallet V. The oncologic burden of hepatitis C virus infection: A clinical perspective. CA Cancer J Clin 2017; 67:411-431. [PMID: 28683174 PMCID: PMC5591069 DOI: 10.3322/caac.21403] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/18/2022] Open
Abstract
Answer questions and earn CME/CNE Chronic hepatitis C virus (HCV) infection affects millions of people worldwide and is associated with cancer. Direct-acting antivirals (DAAs) have changed HCV treatment paradigms, but little is known about the management of HCV infection in patients with cancer. The substantial burden of HCV infection and the inconclusive evidence regarding its detection and management in patients with cancer prompted the authors to review the literature and formulate recommendations. Patients for whom HCV screening is recommended included all patients with hematologic malignancies, hematopoietic cell transplantation candidates, and patients with liver cancer. There is a lack of consensus-based recommendations for the identification of HCV-infected patients with other types of cancer, but physicians may at least consider screening patients who belong to groups at heightened risk of HCV infection, including those born during 1945 through 1965 and those at high risk for infection. Patients with evidence of HCV infection should be assessed by an expert to evaluate liver disease severity, comorbidities associated with HCV infection, and treatment opportunities. DAA therapy should be tailored on the basis of patient prognosis, type of cancer, cancer treatment plan, and hepatic and virologic parameters. HCV-infected patients with cancer who have cirrhosis (or even advanced fibrosis) and those at risk for liver disease progression, especially patients with HCV-associated comorbidities, should have ongoing follow-up, regardless of whether there is a sustained virologic response, to ensure timely detection and treatment of hepatocellular carcinoma. HCV infection and its treatment should not be considered contraindications to cancer treatment and should not delay the initiation of an urgent cancer therapy. CA Cancer J Clin 2017. © 2017 American Cancer Society. CA Cancer J Clin 2017;67:411-431. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Harrys A. Torres
- H. A. Torres: Department of Infectious Diseases, Infection Control
and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX,
USA
| | - Terri Lynn Shigle
- T. L. Shigle: Division of Pharmacy, Section of Clinical Pharmacy
Services, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nassim Hammoudi
- N. Hammoudi and V. Mallet: Université Paris
Descartes-Sorbonne Paris Cité; Assistance Publique-Hôpitaux de
Paris, Groupe Hospitalier Cochin Port Royal, Hepatology service; Institut National
de la Santé et de la Recherche Médicale unité 1223; Institut
Pasteur; all in Paris, France
| | - J. T. Link
- J. T. Link and A. Kaseb: Department of Gastrointestinal Medical
Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Felipe Samaniego
- F. Samaniego: Department of Lymphoma & Myeloma, The University
of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ahmed Kaseb
- J. T. Link and A. Kaseb: Department of Gastrointestinal Medical
Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vincent Mallet
- N. Hammoudi and V. Mallet: Université Paris
Descartes-Sorbonne Paris Cité; Assistance Publique-Hôpitaux de
Paris, Groupe Hospitalier Cochin Port Royal, Hepatology service; Institut National
de la Santé et de la Recherche Médicale unité 1223; Institut
Pasteur; all in Paris, France
| |
Collapse
|
30
|
Visentini M, Fiorilli M, Casato M. From the pathogenesis to the cure of indolent B-cell lymphoproliferative disorders associated with hepatitis C virus infection: which role for direct-acting antivirals? Expert Rev Hematol 2017; 10:719-727. [PMID: 28675071 DOI: 10.1080/17474086.2017.1349607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Hepatitis C virus (HCV) causes monoclonal B cell lymphoproliferative disorders ranging from benign, such as in mixed cryoglobulinemia (MC), to indolent or aggressive lymphomas. MC and indolent lymphomas commonly regress when HCV is eradicated with interferon (IFN) therapy; however, sustained virologic response (SVR) to IFN is achieved only in ~50% of patients. The new all oral direct-acting antivirals (DAA), yielding nearly 100% SVR, promise a breakthrough in the treatment of HCV-associated lymphoproliferative disorders, but experience is still scanty. Areas covered: A literature search was performed to summarize current pathogenetic hypotheses in HCV-associated indolent lymphoproliferative disorders and to identify clinical trials focused on the use of antiviral therapy. Hematological outcomes of IFN-based and IFN-free DAA-based regimens were compared. Expert commentary: While MC appears to regress in most patients after DAA therapy, the still very limited experience with indolent lymphomas suggests that hematologic responses might be less than those observed with IFN. Furthermore, anecdotal observations of early progression to aggressive lymphoma after DAA are disquieting. Large studies are needed to determine the values and limits of DAA for treating HCV-associated indolent lymphomas and to identify subgroups at risk of non-response.
Collapse
Affiliation(s)
- Marcella Visentini
- a Department of Clinical Medicine , Sapienza University of Rome , Rome , Italy
| | - Massimo Fiorilli
- a Department of Clinical Medicine , Sapienza University of Rome , Rome , Italy
| | - Milvia Casato
- a Department of Clinical Medicine , Sapienza University of Rome , Rome , Italy
| |
Collapse
|
31
|
Ono C, Fukuhara T, Motooka D, Nakamura S, Okuzaki D, Yamamoto S, Tamura T, Mori H, Sato A, Uemura K, Fauzyah Y, Kurihara T, Suda T, Nishio A, Hmwe SS, Okamoto T, Tatsumi T, Takehara T, Chayama K, Wakita T, Koike K, Matsuura Y. Characterization of miR-122-independent propagation of HCV. PLoS Pathog 2017; 13:e1006374. [PMID: 28494029 PMCID: PMC5441651 DOI: 10.1371/journal.ppat.1006374] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/23/2017] [Accepted: 04/24/2017] [Indexed: 12/12/2022] Open
Abstract
miR-122, a liver-specific microRNA, is one of the determinants for liver tropism of hepatitis C virus (HCV) infection. Although miR-122 is required for efficient propagation of HCV, we have previously shown that HCV replicates at a low rate in miR-122-deficient cells, suggesting that HCV-RNA is capable of propagating in an miR-122-independent manner. We herein investigated the roles of miR-122 in both the replication of HCV-RNA and the production of infectious particles by using miR-122-knockout Huh7 (Huh7-122KO) cells. A slight increase of intracellular HCV-RNA levels and infectious titers in the culture supernatants was observed in Huh7-122KO cells upon infection with HCV. Moreover, after serial passages of HCV in miR-122-knockout Huh7.5.1 cells, we obtained an adaptive mutant, HCV122KO, possessing G28A substitution in the 5’UTR of the HCV genotype 2a JFH1 genome, and this mutant may help to enhance replication complex formation, a possibility supported by polysome analysis. We also found the introduction of adaptive mutation around miR-122 binding site in the genotype 1b/2a chimeric virus, which originally had an adenine at the nucleotide position 29. HCV122KO exhibited efficient RNA replication in miR-122-knockout cells and non-hepatic cells without exogenous expression of miR-122. Competition assay revealed that the G28A mutant was dominant in the absence of miR-122, but its effects were equivalent to those of the wild type in the presence of miR-122, suggesting that the G28A mutation does not confer an advantage for propagation in miR-122-rich hepatocytes. These observations may explain the clinical finding that the positive rate of G28A mutation was higher in miR-122-deficient PBMCs than in the patient serum, which mainly included the hepatocyte-derived virus from HCV-genotype-2a patients. These results suggest that the emergence of HCV mutants that can propagate in non-hepatic cells in an miR-122-independent manner may participate in the induction of extrahepatic manifestations in chronic hepatitis C patients. A liver-specific microRNA, miR-122, is one of the key determinants of hepatitis C virus (HCV) hepatotropism and is required for efficient propagation of HCV. On the other hand, chronic infection with HCV is often associated with extrahepatic manifestations (EHMs), and a low level of HCV-RNA replication has been detected in some non-hepatic cells. Nonetheless, the detailed mechanisms underlying these phenomena remain unknown. Here, we show that miR-122 is dispensable for low-level replication or infectious particle formation, and a mutant virus adapted to miR-122-knockout cells exhibited efficient but miR-122-independent propagation. The adaptive virus of HCV genotype 2a possessed a G28A substitution in the 5’UTR and facilitated efficient replication complex formation under an miR-122-deficient condition, while it propagated at a level comparable to the wild type HCV in the presence of miR-122. Moreover, various adaptive mutations including C30U were introduced into genotype 1b, which originally had an adenine at the nucleotide position 29. These observations suggest that substitutions that yield miR-122-independent propagation are not induced during propagation in hepatocytes; however, treatment with an miR-122 inhibitor or persistent infection of HCV in non-hepatic cells may induce the emergence of mutant viruses, as evidenced by clinical samples.
Collapse
Affiliation(s)
- Chikako Ono
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Okuzaki
- DNA-Chip Developmental Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Satomi Yamamoto
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tomokazu Tamura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hiroyuki Mori
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Asuka Sato
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kentaro Uemura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yuzy Fauzyah
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takeshi Kurihara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takahiro Suda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Akira Nishio
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Su Su Hmwe
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Toru Okamoto
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazuaki Chayama
- Department of Medicine and Molecular Science, Hiroshima University School of Medicine, Hiroshima, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- * E-mail:
| |
Collapse
|
32
|
Hepatitis C virus - Associated marginal zone lymphoma. Best Pract Res Clin Haematol 2017; 30:41-49. [PMID: 28288715 DOI: 10.1016/j.beha.2017.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 12/18/2022]
Abstract
The link between hepatitis C virus (HCV) infection and the development of B-cell non-Hodgkin lymphoma is now well established and based on a number of epidemiological studies. It is further supported by the observation of lymphoma regression after HCV eradication by antiviral treatment. The far most frequent entities are marginal zone lymphoma (MZL) and diffuse large B-cell lymphoma (DLBCL). MZL usually emerge on a background of mixed cryoglobulinemia, a low-grade lymphoproliferation, and often transform into DLBCL, thereby following a multistep oncogenesis process. The role of HCV in lymphomagenesis is not yet fully understood but several mechanisms have been proposed including (i) chronic external stimulation through the B-cell receptor and other surface receptors, and (ii) direct transformation by intracellular viral proteins, the former being probably predominant in MZL. Regression of HCV-associated MZL can be achieved with antiviral therapy and the novel generation of direct-acting antiviral agents appears highly effective and safe for the treatment of these lymphoma.
Collapse
|