1
|
Oluwole SA, Veríssimo NV, Denis AA, Garcia NT, Fura S, Jayaraman K, Valles JD, Del Rosario DH, Patel PN, Duran A, Hakim QA, Quintana AA, Agatemor C. Unusual photophysics of geranic acid deep eutectic solvents. Chem Commun (Camb) 2023; 59:10492-10495. [PMID: 37566436 DOI: 10.1039/d3cc02457a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The photophysics of natural deep eutectic solvents (NADESs) remains unexplored. Here, we report that a class of NADESs aggregates in water, enabling through-space interaction as evidenced by an unusual emission and redshifted UV absorption band. The NADESs enhanced fluorescence excitation and emission of fluorogenic proteins for improved bioimaging.
Collapse
Affiliation(s)
| | | | - Amina A Denis
- Department of Chemistry, University of Miami, Coral Gables, FL, USA.
| | | | - Samuel Fura
- Department of Chemistry, University of Miami, Coral Gables, FL, USA.
| | | | | | | | | | | | | | | | - Christian Agatemor
- Department of Chemistry, University of Miami, Coral Gables, FL, USA.
- Department of Biology, University of Miami, Coral Gables, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
2
|
Cao N, Bro-Jørgensen W, Zheng X, Solomon GC. Visualizing and comparing quantum interference in the π-system and σ-system of organic molecules. J Chem Phys 2023; 158:124305. [PMID: 37003722 DOI: 10.1063/5.0141577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Quantum interference effects in conjugated molecules have been well-explored, with benzene frequently invoked as a pedagogical example. These interference effects have been understood through a quantum interference map in which the electronic transmission is separated into interfering and non-interfering terms, with a focus on the π-orbitals for conjugated molecules. Recently, saturated molecules have also been reported to exhibit destructive quantum interference effects; however, the very different σ-orbital character in these molecules means that it is not clear how orbital contributions manifest. Herein, we demonstrate that the quantum interference effects in conjugated molecules are quite different from those observed in saturated molecules, as demonstrated by the quantum interference map. While destructive interference at the Fermi energy in the π-system of benzene arises from interference terms between paired occupied and virtual orbitals, this is not the case at the Fermi energy in saturated systems. Instead, destructive interference is evident when contributions from a larger number of non-paired orbitals cancel, leading to more subtle and varied manifestations of destructive interference in saturated systems.
Collapse
Affiliation(s)
- Ning Cao
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - William Bro-Jørgensen
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| | - Xiaohong Zheng
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Gemma C Solomon
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
3
|
Li X, Ge W, Guo S, Bai J, Hong W. Characterization and Application of Supramolecular Junctions. Angew Chem Int Ed Engl 2023; 62:e202216819. [PMID: 36585932 DOI: 10.1002/anie.202216819] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
The convergence of supramolecular chemistry and single-molecule electronics offers a new perspective on supramolecular electronics, and provides a new avenue toward understanding and application of intermolecular charge transport at the molecular level. In this review, we will provide an overview of the advances in the characterization technique for the investigation of intermolecular charge transport, and summarize the experimental investigation of several non-covalent interactions, including π-π stacking interactions, hydrogen bonding, host-guest interactions and σ-σ interactions at the single-molecule level. We will also provide a perspective on supramolecular electronics and discuss the potential applications and future challenges.
Collapse
Affiliation(s)
- Xiaohui Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen, 361005, China
| | - Wenhui Ge
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen, 361005, China
| | - Shuhan Guo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen, 361005, China
| | - Jie Bai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen, 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
4
|
Toren Y, Vilan A, Amdursky N. Solid-State Electron Transport Through Carbon Dots Junctions: The Role of Boron and Phosphorus Doping. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301371. [PMID: 36932877 DOI: 10.1002/smll.202301371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Carbon dots (CDs) are a new class of nanoparticles that gained widespread attention recently because of their easy preparation, water solubility, biocompatibility, and bright luminescence, leading to their integration in various applications. Despite their nm-scale and proven electron transfer capabilities, the solid-state electron transport (ETp) across single CDs was never explored. Here, a molecular junction configuration is used to explore the ETp across CDs as a function of their chemical structure using both DC-bias current-voltage and AC-bias impedance measurements. CDs are used with Nitrogen and Sulfur as exogenous atoms and doped with small amounts of Boron and Phosphorous. It is shown that the presence of P and B highly improves the ETp efficiency across the CDs, yet without an indication of a change in the dominant charge carrier. Instead, structural characterizations reveal significant changes in the chemical species across the CDs: the formation of sulfonates and graphitic Nitrogen. Temperature-dependent measurements and normalized differential conductance analysis reveal that the ETp mechanism across the CDs behaves as tunneling, which is common to all CDs used here. The study shows that the conductivity of CDs is on par with that of sophisticated molecular wires, suggesting CDs as new 'green' candidates for molecular electronics applications.
Collapse
Affiliation(s)
- Yuval Toren
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Ayelet Vilan
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|
5
|
Shin J, Eo JS, Jeon T, Lee T, Wang G. Advances of Various Heterogeneous Structure Types in Molecular Junction Systems and Their Charge Transport Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202399. [PMID: 35975456 PMCID: PMC9596861 DOI: 10.1002/advs.202202399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/11/2022] [Indexed: 05/31/2023]
Abstract
Molecular electronics that can produce functional electronic circuits using a single molecule or molecular ensemble remains an attractive research field because it not only represents an essential step toward realizing ultimate electronic device scaling but may also expand our understanding of the intrinsic quantum transports at the molecular level. Recently, in order to overcome the difficulties inherent in the conventional approach to studying molecular electronics and developing functional device applications, this field has attempted to diversify the electrical characteristics and device architectures using various types of heterogeneous structures in molecular junctions. This review summarizes recent efforts devoted to functional devices with molecular heterostructures. Diverse molecules and materials can be combined and incorporated in such two- and three-terminal heterojunction structures, to achieve desirable electronic functionalities. The heterojunction structures, charge transport mechanisms, and possible strategies for implementing electronic functions using various hetero unit materials are presented sequentially. In addition, the applicability and merits of molecular heterojunction structures, as well as the anticipated challenges associated with their implementation in device applications are discussed and summarized. This review will contribute to a deeper understanding of charge transport through molecular heterojunction, and it may pave the way toward desirable electronic functionalities in molecular electronics applications.
Collapse
Affiliation(s)
- Jaeho Shin
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Korea
- Department of ChemistryRice University6100 Main StreetHoustonTexas77005United States
| | - Jung Sun Eo
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Korea
| | - Takgyeong Jeon
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Korea
| | - Takhee Lee
- Department of Physics and AstronomyInstitute of Applied PhysicsSeoul National UniversitySeoul08826Korea
| | - Gunuk Wang
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Korea
- Department of Integrative Energy EngineeringKorea UniversitySeoul02841Korea
- Center for Neuromorphic EngineeringKorea Institute of Science and TechnologySeoul02792Korea
| |
Collapse
|
6
|
Wang X, Ismael A, Ning S, Althobaiti H, Al-Jobory A, Girovsky J, Astier HPAG, O'Driscoll LJ, Bryce MR, Lambert CJ, Ford CJB. Electrostatic Fermi level tuning in large-scale self-assembled monolayers of oligo(phenylene-ethynylene) derivatives. NANOSCALE HORIZONS 2022; 7:1201-1209. [PMID: 35913108 DOI: 10.1039/d2nh00241h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding and controlling the orbital alignment of molecules placed between electrodes is essential in the design of practically-applicable molecular and nanoscale electronic devices. The orbital alignment is highly determined by the molecule-electrode interface. Dependence of orbital alignment on the molecular anchor group for single molecular junctions has been intensively studied; however, when scaling-up single molecules to large parallel molecular arrays (like self-assembled monolayers (SAMs)), two challenges need to be addressed: 1. Most desired anchor groups do not form high quality SAMs. 2. It is much harder to tune the frontier molecular orbitals via a gate voltage in SAM junctions than in single molecular junctions. In this work, we studied the effect of the molecule-electrode interface in SAMs with a micro-pore device, using a recently developed tetrapodal anchor to overcome challenge 1, and the combination of a single layered graphene top electrode with an ionic liquid gate to solve challenge 2. The zero-bias orbital alignment of different molecules was signalled by a shift in conductance minimum vs. gate voltage for molecules with different anchoring groups. Molecules with the same backbone, but a different molecule-electrode interface, were shown experimentally to have conductances that differ by a factor of 5 near zero bias. Theoretical calculations using density functional theory support the trends observed in the experimental data. This work sheds light on how to control electron transport within the HOMO-LUMO energy gap in molecular junctions and will be applicable in scaling up molecular electronic systems for future device applications.
Collapse
Affiliation(s)
- Xintai Wang
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
- School of Information Science and Technology, Dalian Maritime University, Dalian, China
| | - Ali Ismael
- Physics Department, Lancaster University, Lancaster, LA1 4YB, UK.
- Department of Physics, College of Education for Pure Science, Tikrit University, Tikrit, Iraq
| | - Shanglong Ning
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Hanan Althobaiti
- Physics Department, Lancaster University, Lancaster, LA1 4YB, UK.
- Department of Physics, College of Science, Taif-University, Taif, Saudi Arabia
| | - Alaa Al-Jobory
- Physics Department, Lancaster University, Lancaster, LA1 4YB, UK.
- Department of Physics, College of Science, University of Anbar, Anbar, Iraq
| | - Jan Girovsky
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Hippolyte P A G Astier
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Luke J O'Driscoll
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK
| | - Martin R Bryce
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK
| | - Colin J Lambert
- Physics Department, Lancaster University, Lancaster, LA1 4YB, UK.
| | - Christopher J B Ford
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| |
Collapse
|
7
|
Molecular ensemble junctions with inter-molecular quantum interference. Nat Commun 2022; 13:4742. [PMID: 35961982 PMCID: PMC9374774 DOI: 10.1038/s41467-022-32476-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/01/2022] [Indexed: 11/08/2022] Open
Abstract
We report of a high yield method to form nanopore molecular ensembles junctions containing ~40,000 molecules, in which the semimetal bismuth (Bi) is a top contact. Conductance histograms of these junctions are double-peaked (bi-modal), a behavior that is typical for single molecule junctions but not expected for junctions with thousands of molecules. This unique observation is shown to result from a new form of quantum interference that is inter-molecular in nature, which occurs in these junctions since the very long coherence length of the electrons in Bi enables them to probe large ensembles of molecules while tunneling through the junctions. Under such conditions, each molecule within the ensembles becomes an interference path that modifies via its tunneling phase the electronic structure of the entire junction. This new form of quantum interference holds a great promise for robust novel conductance effects in practical molecular junctions. Quantum interference effect in the conductance of single molecule junctions has been attracting intensive interest in recent years. Here, Li and Selzer show the presence of intermolecular quantum interference over 40,000 molecules in a molecular ensemble junction with bismuth as the top electrode.
Collapse
|
8
|
Qu K, Pan ZY, Wang JY, Zhang B, Zeng H, Sang YF, Zhang QC, Chen ZN. Removing the Destructive Quantum Interference in Cross Conjugation System by Structural Restraint. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Li P, Zhou L, Zhao C, Ju H, Gao Q, Si W, Cheng L, Hao J, Li M, Chen Y, Jia C, Guo X. Single-molecule nano-optoelectronics: insights from physics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:086401. [PMID: 35623319 DOI: 10.1088/1361-6633/ac7401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Single-molecule optoelectronic devices promise a potential solution for miniaturization and functionalization of silicon-based microelectronic circuits in the future. For decades of its fast development, this field has made significant progress in the synthesis of optoelectronic materials, the fabrication of single-molecule devices and the realization of optoelectronic functions. On the other hand, single-molecule optoelectronic devices offer a reliable platform to investigate the intrinsic physical phenomena and regulation rules of matters at the single-molecule level. To further realize and regulate the optoelectronic functions toward practical applications, it is necessary to clarify the intrinsic physical mechanisms of single-molecule optoelectronic nanodevices. Here, we provide a timely review to survey the physical phenomena and laws involved in single-molecule optoelectronic materials and devices, including charge effects, spin effects, exciton effects, vibronic effects, structural and orbital effects. In particular, we will systematically summarize the basics of molecular optoelectronic materials, and the physical effects and manipulations of single-molecule optoelectronic nanodevices. In addition, fundamentals of single-molecule electronics, which are basic of single-molecule optoelectronics, can also be found in this review. At last, we tend to focus the discussion on the opportunities and challenges arising in the field of single-molecule optoelectronics, and propose further potential breakthroughs.
Collapse
Affiliation(s)
- Peihui Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Li Zhou
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Cong Zhao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Hongyu Ju
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, People's Republic of China
| | - Qinghua Gao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Wei Si
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Li Cheng
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Jie Hao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Mengmeng Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Yijian Chen
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
| |
Collapse
|
10
|
Liu Z, Shi X, Shu W, Qi S, Wang X, He X. The effect of hydration and dehydration on the conformation, assembling behavior and photoluminescence of PBLG. SOFT MATTER 2022; 18:4396-4401. [PMID: 35635105 DOI: 10.1039/d2sm00344a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydration and dehydration play crucial roles in hydrophobic effects (HEs) and are yet to be understood. Poly(γ-benzyl-L-glutamate) (PBLG) homopolymers in THF/water with various water contents were investigated. We discovered that PBLG was hydrated at low water contents and adopted a helical conformation. The chain became dehydrated with increasing water content, which converted the PBLG100 helix to a PPII-helix. The variation in the conformation resulted in an alteration of the self-assembled morphologies from fibers to particles. For PBLG12 with a shorter chain, the chain underwent an α-to-β transition in the conformation due to dehydration as the water content increased, and correspondingly the morphologies varied from tapes to helical ribbons, and eventually to toroids at a higher water content. We also observed that this α-to-β transition is accompanied by an increase in intensity of the fluorescence, which is attributed to the through-space-conjugation of tightly packed phenyl groups within the β-sheet. The discovered effect of hydration and dehydration on the PBLG chain conformation, self-assembling behavior and optical function is essential for the innovation of polypeptide materials and understanding of water-mediated biological systems.
Collapse
Affiliation(s)
- Zhen Liu
- School of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, shanghai 200241, China.
| | - Xinjie Shi
- School of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, shanghai 200241, China.
| | - Wenchao Shu
- School of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, shanghai 200241, China.
| | - Shuo Qi
- School of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, shanghai 200241, China.
| | - Xiaosong Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N21 3G1, Canada.
| | - Xiaohua He
- School of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, shanghai 200241, China.
| |
Collapse
|
11
|
Li X, Cazade PA, Qi P, Thompson D, Guo C. The role of externally-modulated electrostatic interactions in amplifying charge transport across lysine-doped peptide junctions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Jiang W, Tan Z, Almughathawi R, Wu Q, Liu Z, Liu J, Hou S, Zhang G, Lambert CJ, Hong W, Zhang D. Single-Molecule Charge-Transport Modulation Induced by Steric Effects of Side Alkyl Chains. Chemphyschem 2021; 22:2573-2578. [PMID: 34636146 DOI: 10.1002/cphc.202100634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/09/2021] [Indexed: 11/08/2022]
Abstract
The experimental investigation of side-chain effects on intramolecular charge transport in π-conjugated molecules is essential but remains challenging. Herein, the dependence of intra-molecular conductance on the nature of branching alkyl chains is investigated through a combination of the scanning tunneling microscope break junction (STM-BJ) technique and density functional theory. Three thiophene-flanked diketopyrrolopyrrole (DPP) derivatives with different branching alkyl chains (isopentane, 3-methylheptane, and 9-methylnonadecane) are used with phenylthiomethyl groups as the anchoring groups. The results of single-molecule conductance measurements show that as the alkyl chain becomes longer, the torsional angles between the aromatic rings increase due to steric crowding, and therefore, the molecular conductance of DPP decreases due to reduction in conjugation. Both theoretical simulations and 1 H NMR spectra demonstrate that the planarity of the DPPs is directly reduced after introducing longer branching alkyl chains, which leads to a reduced conductance. This work indicates that the effect of the insulating side chain on the single-molecule conductance cannot be neglected, which should be considered for the design of future organic semiconducting materials.
Collapse
Affiliation(s)
- Wenlin Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhibing Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Siming South Road, China
| | | | - Qingqing Wu
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK
| | - Zitong Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Siming South Road, China
| | - Songjun Hou
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Colin J Lambert
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Siming South Road, China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
13
|
Du C, Norris SR, Thakur A, Chen J, VanVeller B, Thuo M. Molecular Conformation in Charge Tunneling across Large-Area Junctions. J Am Chem Soc 2021; 143:13878-13886. [PMID: 34415163 DOI: 10.1021/jacs.1c06622] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Self-assembled monolayers are predicated on thermodynamic equilibrium; hence, their properties project accessible relaxation pathways. Herein, we demonstrate that charge tunneling correlates with conformational degrees of freedom(s). Results from open chain and cyclic head groups show that, as expected, distribution in tunneling data correlates with the orientation of the head group, akin to the odd-even effect and more importantly the degree of conformational freedom, but fluctuates with applied bias. Trends in nature of distributions in current density illuminate the need for higher statistical moments in understanding these rather dynamic systems. We employ skewness, kurtosis, and estimation plots to show that the conformational degree of freedom in the head group significantly amplifies the odd-even effect and may lead to enhanced or perturbed tunneling based on whether the head group is on an odd- or even-parity spacer.
Collapse
Affiliation(s)
- Chuanshen Du
- Department of Materials Science and Engineering, Iowa State University, 2220 Hoover Hall, Ames, Iowa 50011 United States
| | - Sean R Norris
- Department of Chemistry, Iowa State University, 3126 Hach Hall, 2438 Pammel Drive, Ames, Iowa 50011-3111, United States
| | - Abhishek Thakur
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Jiahao Chen
- Department of Materials Science and Engineering, Iowa State University, 2220 Hoover Hall, Ames, Iowa 50011 United States.,Micro-Electronic Research Center, Iowa State University, 133 Applied Sciences Complex I, 1925 Scholl Road, Ames, Iowa 50011, United States
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, 3126 Hach Hall, 2438 Pammel Drive, Ames, Iowa 50011-3111, United States
| | - Martin Thuo
- Department of Materials Science and Engineering, Iowa State University, 2220 Hoover Hall, Ames, Iowa 50011 United States.,Micro-Electronic Research Center, Iowa State University, 133 Applied Sciences Complex I, 1925 Scholl Road, Ames, Iowa 50011, United States.,Biopolymer and Biocomposites Research Team, Center for Bioplastics and Biocomposites Iowa State University, 1041 Food Sciences Building, Ames, Iowa 50011, United States
| |
Collapse
|
14
|
Huang L, Zhou Y, Chen Y, Ye J, Liu J, Xiao Z, Tang C, Xia H, Hong W. Sub-nanometer supramolecular rectifier based on the symmetric building block with destructive σ-interference. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1086-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Zhang B, Garner MH, Li L, Campos LM, Solomon GC, Venkataraman L. Destructive quantum interference in heterocyclic alkanes: the search for ultra-short molecular insulators. Chem Sci 2021; 12:10299-10305. [PMID: 34476051 PMCID: PMC8386164 DOI: 10.1039/d1sc02287c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/25/2021] [Indexed: 11/21/2022] Open
Abstract
Designing highly insulating sub-nanometer molecules is difficult because tunneling conductance increases exponentially with decreasing molecular length. This challenge is further enhanced by the fact that most molecules cannot achieve full conductance suppression with destructive quantum interference. Here, we present results for a series of small saturated heterocyclic alkanes where we show that conductance is suppressed due to destructive interference. Using the STM-BJ technique and density functional theory calculations, we confirm that their single-molecule junction conductance is lower than analogous alkanes of similar length. We rationalize the suppression of conductance in the junctions through analysis of the computed ballistic current density. We find there are highly symmetric ring currents, which reverse direction at the antiresonance in the Landauer transmission near the Fermi energy. This pattern has not been seen in earlier studies of larger bicyclic systems exhibiting interference effects and constitutes clear-cut evidence of destructive σ-interference. The finding of heterocyclic alkanes with destructive quantum interference charts a pathway for chemical design of short molecular insulators using organic molecules.
Collapse
Affiliation(s)
- Boyuan Zhang
- Department of Applied Physics and Applied Mathematics, Columbia University, New York New York 10027 USA
| | - Marc H Garner
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 Copenhagen Ø Denmark
| | - Liang Li
- Department of Chemistry, Columbia University, New York New York 10027 USA
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York New York 10027 USA
| | - Gemma C Solomon
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 Copenhagen Ø Denmark
| | - Latha Venkataraman
- Department of Applied Physics and Applied Mathematics, Columbia University, New York New York 10027 USA .,Department of Chemistry, Columbia University, New York New York 10027 USA
| |
Collapse
|
16
|
Wang X, Ismael A, Almutlg A, Alshammari M, Al-Jobory A, Alshehab A, Bennett TLR, Wilkinson LA, Cohen LF, Long NJ, Robinson BJ, Lambert C. Optimised power harvesting by controlling the pressure applied to molecular junctions. Chem Sci 2021; 12:5230-5235. [PMID: 34163759 PMCID: PMC8179551 DOI: 10.1039/d1sc00672j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022] Open
Abstract
A major potential advantage of creating thermoelectric devices using self-assembled molecular layers is their mechanical flexibility. Previous reports have discussed the advantage of this flexibility from the perspective of facile skin attachment and the ability to avoid mechanical deformation. In this work, we demonstrate that the thermoelectric properties of such molecular devices can be controlled by taking advantage of their mechanical flexibility. The thermoelectric properties of self-assembled monolayers (SAMs) fabricated from thiol terminated molecules were measured with a modified AFM system, and the conformation of the SAMs was controlled by regulating the loading force between the organic thin film and the probe, which changes the tilt angle at the metal-molecule interface. We tracked the thermopower shift vs. the tilt angle of the SAM and showed that changes in both the electrical conductivity and Seebeck coefficient combine to optimize the power factor at a specific angle. This optimization of thermoelectric performance via applied pressure is confirmed through the use of theoretical calculations and is expected to be a general method for optimising the power factor of SAMs.
Collapse
Affiliation(s)
- Xintai Wang
- Physics Department, Lancaster University Lancaster LA1 4YB UK
- The Blackett Laboratory, Imperial College London, South Kensington Campus London SW7 2AZ UK
| | - Ali Ismael
- Physics Department, Lancaster University Lancaster LA1 4YB UK
- Department of Physics, College of Education for Pure Science, Tikrit University Tikrit Iraq
| | - Ahmad Almutlg
- Physics Department, Lancaster University Lancaster LA1 4YB UK
| | | | - Alaa Al-Jobory
- Physics Department, Lancaster University Lancaster LA1 4YB UK
- Department of Physics, College of Science, University of Anbar Anbar Iraq
| | | | - Troy L R Bennett
- Department of Chemistry, Imperial College London, MSRH White City London W12 0BZ UK
| | - Luke A Wilkinson
- Department of Chemistry, Imperial College London, MSRH White City London W12 0BZ UK
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Lesley F Cohen
- The Blackett Laboratory, Imperial College London, South Kensington Campus London SW7 2AZ UK
| | - Nicholas J Long
- Department of Chemistry, Imperial College London, MSRH White City London W12 0BZ UK
| | | | - Colin Lambert
- Physics Department, Lancaster University Lancaster LA1 4YB UK
| |
Collapse
|
17
|
Qiu X, Rousseva S, Ye G, Hummelen JC, Chiechi RC. In Operando Modulation of Rectification in Molecular Tunneling Junctions Comprising Reconfigurable Molecular Self-Assemblies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006109. [PMID: 33326147 PMCID: PMC11468418 DOI: 10.1002/adma.202006109] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/27/2020] [Indexed: 06/12/2023]
Abstract
The reconfiguration of molecular tunneling junctions during operation via the self-assembly of bilayers of glycol ethers is described. Well-established functional groups are used to modulate the magnitude and direction of rectification in assembled tunneling junctions by exposing them to solutions containing different glycol ethers. Variable-temperature measurements confirm that rectification occurs by the expected bias-dependent tunneling-hopping mechanism for these functional groups and that glycol ethers, besides being an unusually efficient tunneling medium, behave similarly to alkanes. Memory bits are fabricated from crossbar junctions prepared by injecting eutectic Ga-In (EGaIn) into microfluidic channels. The states of two 8-bit registers were set by trains of droplets such that they are able to perform logical AND operations on bit strings encoded into chemical packets that alter the composition of the crossbar junctions through self-assembly to effect memristor-like properties. This proof-of-concept work demonstrates the potential for fieldable devices based on molecular tunneling junctions comprising self-assembled monolayers and bilayers.
Collapse
Affiliation(s)
- Xinkai Qiu
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenNetherlands
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenNetherlands
| | - Sylvia Rousseva
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenNetherlands
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenNetherlands
| | - Gang Ye
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenNetherlands
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenNetherlands
| | - Jan C. Hummelen
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenNetherlands
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenNetherlands
| | - Ryan C. Chiechi
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenNetherlands
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenNetherlands
| |
Collapse
|
18
|
Lai Y, Zhu T, Geng T, Zheng S, Yang T, Zhao Z, Xiao G, Zou B, Yuan WZ. Effective Internal and External Modulation of Nontraditional Intrinsic Luminescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2005035. [PMID: 33169482 DOI: 10.1002/smll.202005035] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/09/2020] [Indexed: 06/11/2023]
Abstract
The rational modulation of the nontraditional intrinsic luminescence (NTIL) of nonconventional luminophores remains difficult, on account of the limited understanding on the structure-property relationships and emission mechanisms. Herein, the effective modulation of NTIL is demonstrated based on a group of nonaromatic anhydrides and imides. Mutual bridging of isolated subgroups effectively promotes intramolecular through-space conjugation (TSC), leading to red-shifted emission, enhanced efficiency, and prolonged persistent room-temperature phosphorescence (p-RTP). The substitution of heteroatoms from oxygen to nitrogen drastically changes the TSC and enhances intermolecular interactions, resulting in enhanced emission efficiency. In addition, upon freezing, compression, or embedding into polymer matrices, the emission intensity and color remain well regulated. These results shed new light on the rational modulation of the NTIL and p-RTP of nonconventional luminophores.
Collapse
Affiliation(s)
- Yueying Lai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianwen Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ting Geng
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, China
| | - Shuyuan Zheng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianjia Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zihao Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guanjun Xiao
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, China
| | - Wang Zhang Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
19
|
Tang Y, Zhou Y, Zhou D, Chen Y, Xiao Z, Shi J, Liu J, Hong W. Electric Field-Induced Assembly in Single-Stacking Terphenyl Junctions. J Am Chem Soc 2020; 142:19101-19109. [DOI: 10.1021/jacs.0c07348] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yongxiang Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, NEL, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yu Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, NEL, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Dahai Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, NEL, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yaorong Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, NEL, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zongyuan Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, NEL, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, NEL, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, NEL, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, NEL, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
20
|
Liu Y, Ornago L, Carlotti M, Ai Y, El Abbassi M, Soni S, Asyuda A, Zharnikov M, van der Zant HSJ, Chiechi RC. Intermolecular Effects on Tunneling through Acenes in Large-Area and Single-Molecule Junctions. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020; 124:22776-22783. [PMID: 33093933 PMCID: PMC7569675 DOI: 10.1021/acs.jpcc.0c05781] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/14/2020] [Indexed: 06/11/2023]
Abstract
This paper describes the conductance of single-molecules and self-assembled monolayers comprising an oligophenyleneethynylene core, functionalized with acenes of increasing length that extend conjugation perpendicular to the path of tunneling electrons. In the Mechanically Controlled Break Junction (MCBJ) experiment, multiple conductance plateaus were identified. The high conductance plateau, which we attribute to the single molecule conformation, shows an increase of conductance as a function of acene length, in good agreement with theoretical predictions. The lower plateau is attributed to multiple molecules bridging the junctions with intermolecular interactions playing a role. In junctions comprising a self-assembled monolayer with eutectic Ga-In top-contacts (EGaIn), the pentacene derivative exhibits unusually low conductance, which we ascribe to the inability of these molecules to pack in a monolayer without introducing significant intermolecular contacts. This hypothesis is supported by the MCBJ data and theoretical calculations showing suppressed conductance through the PC films. These results highlight the role of intermolecular effects and junction geometries in the observed fluctuations of conductance values between single-molecule and ensemble junctions, and the importance of studying molecules in both platforms.
Collapse
Affiliation(s)
- Yuru Liu
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Luca Ornago
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg 1, Delft, 2628 CJ The Netherlands
| | - Marco Carlotti
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Yong Ai
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Maria El Abbassi
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg 1, Delft, 2628 CJ The Netherlands
| | - Saurabh Soni
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Andika Asyuda
- Angewandte
Physikalische Chemie, Universität
Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| | - Michael Zharnikov
- Angewandte
Physikalische Chemie, Universität
Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| | - Herre S. J. van der Zant
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg 1, Delft, 2628 CJ The Netherlands
| | - Ryan C. Chiechi
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
21
|
Werner P, Wächter T, Asyuda A, Wiesner A, Kind M, Bolte M, Weinhardt L, Terfort A, Zharnikov M. Electron Transfer Dynamics and Structural Effects in Benzonitrile Monolayers with Tuned Dipole Moments by Differently Positioned Fluorine Atoms. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39859-39869. [PMID: 32805830 DOI: 10.1021/acsami.0c10513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To understand the influence of the molecular dipole moment on the electron transfer (ET) dynamics across the molecular framework, two series of differently fluorinated, benzonitrile-based self-assembled monolayers (SAMs) bound to Au(111) by either thiolate or selenolate anchoring groups were investigated. Within each series, the molecular structures were the same with the exception of the positions of two fluorine atoms affecting the dipole moment of the SAM-forming molecules. The SAMs exhibited a homogeneous anchoring to the substrate, nearly upright molecular orientations, and the outer interface comprised of the terminal nitrile groups. The ET dynamics was studied by resonant Auger electron spectroscopy in the framework of the core-hole clock method. Resonance excitation of the nitrile group unequivocally ensured an ET pathway from the tail group to the substrate. As only one of the π* orbitals of this group is hybridized with the π* system of the adjacent phenyl ring, two different ET times could be determined depending on the primary excited orbital being either localized at the nitrile group or delocalized over the entire benzonitrile moiety. The latter pathway turned out to be much more efficient, with the characteristic ET times being a factor 2.5-3 shorter than those for the localized orbital. The dynamic ET properties of the analogous thiolate- and selenolate-based adsorbates were found to be nearly identical. Finally and most importantly, these properties were found to be unaffected by the different patterns of the fluorine substitution used in the present study, thus showing no influence of the molecular dipole moment.
Collapse
Affiliation(s)
- Philipp Werner
- Institut für Anorganische und Analytische Chemie, Johann Wolfgang Goethe Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt am Main, Germany
| | - Tobias Wächter
- Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| | - Andika Asyuda
- Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| | - Adrian Wiesner
- Institut für Anorganische und Analytische Chemie, Johann Wolfgang Goethe Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt am Main, Germany
| | - Martin Kind
- Institut für Anorganische und Analytische Chemie, Johann Wolfgang Goethe Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt am Main, Germany
| | - Michael Bolte
- Institut für Anorganische und Analytische Chemie, Johann Wolfgang Goethe Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt am Main, Germany
| | - Lothar Weinhardt
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr. 18/20, 76128 Karlsruhe, Germany
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, Nevada 89154-4003, United States
| | - Andreas Terfort
- Institut für Anorganische und Analytische Chemie, Johann Wolfgang Goethe Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt am Main, Germany
| | - Michael Zharnikov
- Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| |
Collapse
|
22
|
Soni S, Ye G, Zheng J, Zhang Y, Asyuda A, Zharnikov M, Hong W, Chiechi RC. Understanding the Role of Parallel Pathways via In-Situ Switching of Quantum Interference in Molecular Tunneling Junctions. Angew Chem Int Ed Engl 2020; 59:14308-14312. [PMID: 32469444 PMCID: PMC7497014 DOI: 10.1002/anie.202005047] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Indexed: 11/05/2022]
Abstract
This study describes the modulation of tunneling probabilities in molecular junctions by switching one of two parallel intramolecular pathways. A linearly conjugated molecular wire provides a rigid framework that allows a second, cross-conjugated pathway to be effectively switched on and off by protonation, affecting the total conductance of the junction. This approach works because a traversing electron interacts with the entire quantum-mechanical circuit simultaneously; Kirchhoff's rules do not apply. We confirm this concept by comparing the conductances of a series of compounds with single or parallel pathways in large-area junctions using EGaIn contacts and single-molecule break junctions using gold contacts. We affect switching selectively in one of two parallel pathways by converting a cross-conjugated carbonyl carbon into a trivalent carbocation, which replaces destructive quantum interference with a symmetrical resonance, causing an increase in transmission in the bias window.
Collapse
Affiliation(s)
- Saurabh Soni
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Zernike Institute for Advanced MaterialsNijenborgh 49747 AGGroningenThe Netherlands
| | - Gang Ye
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Zernike Institute for Advanced MaterialsNijenborgh 49747 AGGroningenThe Netherlands
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic EngineeringKey Laboratory of Optoelectronic Devices and SystemsShenzhen UniversityShenzhen518060P. R. China
| | - Jueting Zheng
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Yanxi Zhang
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Zernike Institute for Advanced MaterialsNijenborgh 49747 AGGroningenThe Netherlands
- Present address: MicrosystemsDepartment of Mechanical Engineering and Institute for Complex Molecular SystemsEindhoven University of Technology5600 MBEindhovenThe Netherlands
| | - Andika Asyuda
- Applied Physical ChemistryHeidelberg UniversityIm Neuenheimer Feld 253D-69120HeidelbergGermany
| | - Michael Zharnikov
- Applied Physical ChemistryHeidelberg UniversityIm Neuenheimer Feld 253D-69120HeidelbergGermany
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Ryan C. Chiechi
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Zernike Institute for Advanced MaterialsNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
23
|
Soni S, Ye G, Zheng J, Zhang Y, Asyuda A, Zharnikov M, Hong W, Chiechi RC. Understanding the Role of Parallel Pathways via In‐Situ Switching of Quantum Interference in Molecular Tunneling Junctions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Saurabh Soni
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
- Zernike Institute for Advanced Materials Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Gang Ye
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
- Zernike Institute for Advanced Materials Nijenborgh 4 9747 AG Groningen The Netherlands
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering Key Laboratory of Optoelectronic Devices and Systems Shenzhen University Shenzhen 518060 P. R. China
| | - Jueting Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Yanxi Zhang
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
- Zernike Institute for Advanced Materials Nijenborgh 4 9747 AG Groningen The Netherlands
- Present address: Microsystems Department of Mechanical Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
| | - Andika Asyuda
- Applied Physical Chemistry Heidelberg University Im Neuenheimer Feld 253 D-69120 Heidelberg Germany
| | - Michael Zharnikov
- Applied Physical Chemistry Heidelberg University Im Neuenheimer Feld 253 D-69120 Heidelberg Germany
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ryan C. Chiechi
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
- Zernike Institute for Advanced Materials Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
24
|
Wang X, Bennett TLR, Ismael A, Wilkinson LA, Hamill J, White AJP, Grace IM, Kolosov OV, Albrecht T, Robinson BJ, Long NJ, Cohen LF, Lambert CJ. Scale-Up of Room-Temperature Constructive Quantum Interference from Single Molecules to Self-Assembled Molecular-Electronic Films. J Am Chem Soc 2020; 142:8555-8560. [PMID: 32343894 PMCID: PMC7588028 DOI: 10.1021/jacs.9b13578] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 01/25/2023]
Abstract
The realization of self-assembled molecular-electronic films, whose room-temperature transport properties are controlled by quantum interference (QI), is an essential step in the scale-up of QI effects from single molecules to parallel arrays of molecules. Recently, the effect of destructive QI (DQI) on the electrical conductance of self-assembled monolayers (SAMs) has been investigated. Here, through a combined experimental and theoretical investigation, we demonstrate chemical control of different forms of constructive QI (CQI) in cross-plane transport through SAMs and assess its influence on cross-plane thermoelectricity in SAMs. It is known that the electrical conductance of single molecules can be controlled in a deterministic manner, by chemically varying their connectivity to external electrodes. Here, by employing synthetic methodologies to vary the connectivity of terminal anchor groups around aromatic anthracene cores, and by forming SAMs of the resulting molecules, we clearly demonstrate that this signature of CQI can be translated into SAM-on-gold molecular films. We show that the conductance of vertical molecular junctions formed from anthracene-based molecules with two different connectivities differ by a factor of approximately 16, in agreement with theoretical predictions for their conductance ratio based on CQI effects within the core. We also demonstrate that for molecules with thioether anchor groups, the Seebeck coefficient of such films is connectivity dependent and with an appropriate choice of connectivity can be boosted by ∼50%. This demonstration of QI and its influence on thermoelectricity in SAMs represents a critical step toward functional ultra-thin-film devices for future thermoelectric and molecular-scale electronics applications.
Collapse
Affiliation(s)
- Xintai Wang
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
- The
Blackett Laboratory, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Troy L. R. Bennett
- Department
of Chemistry, Imperial College London, MSRH, White City, London W12 0BZ, U.K.
| | - Ali Ismael
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
- Department
of Physics, College of Education for Pure Science, Tikrit University, Tikrit, Iraq
| | - Luke A. Wilkinson
- Department
of Chemistry, Imperial College London, MSRH, White City, London W12 0BZ, U.K.
| | - Joseph Hamill
- Department
of Chemistry, Birmingham University, Edgbaston, Birmingham B15 2TT, U.K.
| | - Andrew J. P. White
- Department
of Chemistry, Imperial College London, MSRH, White City, London W12 0BZ, U.K.
| | - Iain M. Grace
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
| | - Oleg V. Kolosov
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
| | - Tim Albrecht
- Department
of Chemistry, Birmingham University, Edgbaston, Birmingham B15 2TT, U.K.
| | | | - Nicholas J. Long
- Department
of Chemistry, Imperial College London, MSRH, White City, London W12 0BZ, U.K.
| | - Lesley F. Cohen
- The
Blackett Laboratory, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Colin J. Lambert
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
| |
Collapse
|
25
|
Song H, Kim T, Kang S, Jin H, Lee K, Yoon HJ. Ga-Based Liquid Metal Micro/Nanoparticles: Recent Advances and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903391. [PMID: 31583849 DOI: 10.1002/smll.201903391] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/21/2019] [Indexed: 05/20/2023]
Abstract
Liquid metals are emerging as fluidic inorganic materials in various research fields. Micro- and nanoparticles of Ga and its alloys have received particular attention in the last decade due to their non toxicity and accessibility in ambient conditions as well as their interesting chemical, physical, mechanical, and electrical properties. Unique features such as a fluidic nature and self-passivating oxide skin make Ga-based liquid metal particles (LMPs) distinguishable from conventional inorganic particles in the context of synthesis and applications. Here, recent advances in the bottom-up and top-down synthetic methods of Ga-based LMPs, their physicochemical properties, and their applications are summarized. Finally, the current status of the LMPs is highlighted and perspectives on future directions are also provided.
Collapse
Affiliation(s)
- Hyunsun Song
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Taekyung Kim
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Seohyun Kang
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Haneul Jin
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Hyo Jae Yoon
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
26
|
Benneckendorf FS, Rohnacher V, Sauter E, Hillebrandt S, Münch M, Wang C, Casalini S, Ihrig K, Beck S, Jänsch D, Freudenberg J, Jaegermann W, Samorì P, Pucci A, Bunz UHF, Zharnikov M, Müllen K. Tetrapodal Diazatriptycene Enforces Orthogonal Orientation in Self-Assembled Monolayers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6565-6572. [PMID: 31825591 DOI: 10.1021/acsami.9b16062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Conformationally rigid multipodal molecules should control the orientation and packing density of functional head groups upon self-assembly on solid supports. Common tripods frequently fail in this regard because of inhomogeneous bonding configuration and stochastic orientation. These issues are circumvented by a suitable tetrapodal diazatriptycene moiety, bearing four thiol-anchoring groups, as demonstrated in the present study. Such molecules form well-defined self-assembled monolayers (SAMs) on Au(111) substrates, whereby the tetrapodal scaffold enforces a nearly upright orientation of the terminal head group with respect to the substrate, with at least three of the four anchoring groups providing thiolate-like covalent attachment to the surface. Functionalization by condensation chemistry allows a large variety of functional head groups to be introduced to the tetrapod, paving the path toward advanced surface engineering and sensor fabrication.
Collapse
Affiliation(s)
- Frank S Benneckendorf
- Organisch-Chemisches Institut , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270 , 69120 Heidelberg , Germany
- InnovationLab , Speyerer Straße 4 , 69115 Heidelberg , Germany
| | - Valentina Rohnacher
- InnovationLab , Speyerer Straße 4 , 69115 Heidelberg , Germany
- Kirchhoff-Institut für Physik , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 227 , 69120 Heidelberg , Germany
| | - Eric Sauter
- Angewandte Physikalische Chemie , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 253 , 69120 Heidelberg , Germany
| | - Sabina Hillebrandt
- InnovationLab , Speyerer Straße 4 , 69115 Heidelberg , Germany
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy , University of St Andrews , North Haugh , St Andrews KY16 9SS , United Kingdom
- Kirchhoff-Institut für Physik , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 227 , 69120 Heidelberg , Germany
| | - Maybritt Münch
- InnovationLab , Speyerer Straße 4 , 69115 Heidelberg , Germany
- Materials Science Department, Surface Science Division , TU Darmstadt , Otto-Berndt-Straße 3 , 64287 Darmstadt , Germany
| | - Can Wang
- University of Strasbourg , CNRS, ISIS, 8 allée Gaspard Monge , 67000 Strasbourg , France
| | - Stefano Casalini
- University of Strasbourg , CNRS, ISIS, 8 allée Gaspard Monge , 67000 Strasbourg , France
| | - Katharina Ihrig
- Organisch-Chemisches Institut , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270 , 69120 Heidelberg , Germany
| | - Sebastian Beck
- InnovationLab , Speyerer Straße 4 , 69115 Heidelberg , Germany
- Kirchhoff-Institut für Physik , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 227 , 69120 Heidelberg , Germany
| | - Daniel Jänsch
- Organisch-Chemisches Institut , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270 , 69120 Heidelberg , Germany
- InnovationLab , Speyerer Straße 4 , 69115 Heidelberg , Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270 , 69120 Heidelberg , Germany
- InnovationLab , Speyerer Straße 4 , 69115 Heidelberg , Germany
| | - Wolfram Jaegermann
- InnovationLab , Speyerer Straße 4 , 69115 Heidelberg , Germany
- Materials Science Department, Surface Science Division , TU Darmstadt , Otto-Berndt-Straße 3 , 64287 Darmstadt , Germany
| | - Paolo Samorì
- University of Strasbourg , CNRS, ISIS, 8 allée Gaspard Monge , 67000 Strasbourg , France
| | - Annemarie Pucci
- InnovationLab , Speyerer Straße 4 , 69115 Heidelberg , Germany
- Kirchhoff-Institut für Physik , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 227 , 69120 Heidelberg , Germany
- Centre for Advanced Materials , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 225 , 69120 Heidelberg , Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270 , 69120 Heidelberg , Germany
- Centre for Advanced Materials , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 225 , 69120 Heidelberg , Germany
| | - Michael Zharnikov
- Angewandte Physikalische Chemie , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 253 , 69120 Heidelberg , Germany
| | - Klaus Müllen
- InnovationLab , Speyerer Straße 4 , 69115 Heidelberg , Germany
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| |
Collapse
|
27
|
Li B, Tian L, He X, Ji X, Khalid H, Yue C, Liu Q, Yu X, Lei S, Hu W. Tunable oligo-histidine self-assembled monolayer junction and charge transport by a pH modulated assembly. Phys Chem Chem Phys 2019; 21:26058-26065. [PMID: 31746863 DOI: 10.1039/c9cp04695j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Histidine works as an important mediator in the charge transport process through proteins via its conjugate side group. It can also stabilize a peptide's secondary structure through hydrogen bonding of the imidazole group. In this study, the conformation of the self-assembled monolayer (SAM) and the charge transport of the tailor-made oligopeptide hepta-histidine derivative (7-His) were modulated through the pH control of the assembly environment. Histidine is found to be an efficient tunneling mediator in monolayer junctions with an attenuation factor of β = ∼0.5 Å-1. Successful theoretical model fitting indicates a linear increase in the number of tunneling sites as the 7-His SAM thickness increases, following the deprotonation of histidine. Combined with the ultraviolet photoelectron spectroscopy (UPS) measurements, a modulable charge transport pathway through 7-His with imidazole groups of histidine as tunneling foot stones is revealed. Histidine therefore possesses a large potential for modulable functional (bio)electronic devices.
Collapse
Affiliation(s)
- Baili Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Garner MH, Li H, Neupane M, Zou Q, Liu T, Su TA, Shangguan Z, Paley DW, Ng F, Xiao S, Nuckolls C, Venkataraman L, Solomon GC. Permethylation Introduces Destructive Quantum Interference in Saturated Silanes. J Am Chem Soc 2019; 141:15471-15476. [PMID: 31500410 DOI: 10.1021/jacs.9b06965] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The single-molecule conductance of silanes is suppressed due to destructive quantum interference in conformations with cisoid dihedral angles along the molecular backbone. Yet, despite the structural similarity, σ-interference effects have not been observed in alkanes. Here we report that the methyl substituents used in silanes are a prerequisite for σ-interference in these systems. Through density functional theory calculations, we find that the destructive interference is not evident to the same extent in nonmethylated silanes. We find the same is true in alkanes as the transmission is significantly suppressed in permethylated cyclic and bicyclic alkanes. Using scanning tunneling microscope break-junction method we determine the single-molecule conductance of functionalized cyclohexane and bicyclo[2.2.2]octane that are found to be higher than that of equivalent permethylated silanes. Rather than the difference between carbon and silicon atoms in the molecular backbones, our calculations reveal that it is primarily the difference between hydrogen and methyl substituents that result in the different electron transport properties of nonmethylated alkanes and permethylated silanes. Chemical substituents play an important role in determining the single-molecule conductance of saturated molecules, and this must be considered when we improve and expand the chemical design of insulating organic molecules.
Collapse
Affiliation(s)
- Marc H Garner
- Nano-Science Center and Department of Chemistry , University of Copenhagen , Universitetsparken 5, 2100 Copenhagen Ø , Denmark
| | - Haixing Li
- Department of Applied Physics and Applied Mathematics , Columbia University , New York , New York 10027 , United States
| | - Madhav Neupane
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Qi Zou
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Taifeng Liu
- Department of Chemistry , Columbia University , New York , New York 10027 , United States.,The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Optoelectronic Nano Materials and Devices Institute, Department of Chemistry , Shanghai Normal University , Shanghai 200234 , China
| | - Timothy A Su
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Zhichun Shangguan
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Optoelectronic Nano Materials and Devices Institute, Department of Chemistry , Shanghai Normal University , Shanghai 200234 , China
| | - Daniel W Paley
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Fay Ng
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Shengxiong Xiao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Optoelectronic Nano Materials and Devices Institute, Department of Chemistry , Shanghai Normal University , Shanghai 200234 , China
| | - Colin Nuckolls
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Latha Venkataraman
- Department of Applied Physics and Applied Mathematics , Columbia University , New York , New York 10027 , United States.,Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Gemma C Solomon
- Nano-Science Center and Department of Chemistry , University of Copenhagen , Universitetsparken 5, 2100 Copenhagen Ø , Denmark
| |
Collapse
|
29
|
Multicenter‐Bond‐Based Quantum Interference in Charge Transport Through Single‐Molecule Carborane Junctions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904521] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Tang C, Chen L, Zhang L, Chen Z, Li G, Yan Z, Lin L, Liu J, Huang L, Ye Y, Hua Y, Shi J, Xia H, Hong W. Multicenter-Bond-Based Quantum Interference in Charge Transport Through Single-Molecule Carborane Junctions. Angew Chem Int Ed Engl 2019; 58:10601-10605. [PMID: 31166071 DOI: 10.1002/anie.201904521] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/26/2019] [Indexed: 11/08/2022]
Abstract
Molecular components are vital to introduce and manipulate quantum interference (QI) in charge transport through molecular electronic devices. Up to now, the functional molecular units that show QI are mostly found in conventional π- and σ-bond-based systems; it is thus intriguing to study QI in multicenter bonding systems without both π- and σ-conjugations. Now the presence of QI in multicenter-bond-based systems is demonstrated for the first time, through the single-molecule conductance investigation of carborane junctions. We find that all the three connectivities in carborane frameworks show different levels of destructive QI, which leads to highly suppressed single-molecule conductance in para- and meta-connected carboranes. The investigation of QI into carboranes provides a promising platform to fabricate molecular electronic devices based on multicenter bonds.
Collapse
Affiliation(s)
- Chun Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen, 361005, China
| | - Lijue Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen, 361005, China
| | - Longyi Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen, 361005, China
| | - Zhixin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen, 361005, China
| | - Guopeng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen, 361005, China
| | - Zhewei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen, 361005, China
| | - Luchun Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen, 361005, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen, 361005, China
| | - Longfeng Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen, 361005, China
| | - Yiling Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen, 361005, China
| | - Yuhui Hua
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen, 361005, China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen, 361005, China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen, 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen, 361005, China
| |
Collapse
|
31
|
Carlotti M, Soni S, Qiu X, Sauter E, Zharnikov M, Chiechi RC. Systematic experimental study of quantum interference effects in anthraquinoid molecular wires. NANOSCALE ADVANCES 2019; 1:2018-2028. [PMID: 31304460 PMCID: PMC6592160 DOI: 10.1039/c8na00223a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/07/2019] [Indexed: 05/17/2023]
Abstract
In order to translate molecular properties in molecular-electronic devices, it is necessary to create design principles that can be used to achieve better structure-function control oriented toward device fabrication. In molecular tunneling junctions, cross-conjugation tends to give rise to destructive quantum interference effects that can be tuned by changing the electronic properties of the molecules. We performed a systematic study of the tunneling charge-transport properties of a series of compounds characterized by an identical cross-conjugated anthraquinoid molecular skeleton but bearing different substituents at the 9 and 10 positions that affect the energies and localization of their frontier orbitals. We compared the experimental results across three different experimental platforms in both single-molecule and large-area junctions and found a general agreement. Combined with theoretical models, these results separate the intrinsic properties of the molecules from platform-specific effects. This work is a step towards explicit synthetic control over tunneling charge transport targeted at specific functionality in (proto-)devices.
Collapse
Affiliation(s)
- Marco Carlotti
- Zernike Institute for Advanced Materials , Nijenborgh 4 , 9747 AG Groningen , The Netherlands .
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Saurabh Soni
- Zernike Institute for Advanced Materials , Nijenborgh 4 , 9747 AG Groningen , The Netherlands .
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Xinkai Qiu
- Zernike Institute for Advanced Materials , Nijenborgh 4 , 9747 AG Groningen , The Netherlands .
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Eric Sauter
- Applied Physical Chemistry , Heidelberg University , Im Neuenheier Feld 253 , Heidelberg 69120 , Germany
| | - Michael Zharnikov
- Applied Physical Chemistry , Heidelberg University , Im Neuenheier Feld 253 , Heidelberg 69120 , Germany
| | - Ryan C Chiechi
- Zernike Institute for Advanced Materials , Nijenborgh 4 , 9747 AG Groningen , The Netherlands .
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| |
Collapse
|
32
|
Liu J, Huang X, Wang F, Hong W. Quantum Interference Effects in Charge Transport through Single-Molecule Junctions: Detection, Manipulation, and Application. Acc Chem Res 2019; 52:151-160. [PMID: 30500161 DOI: 10.1021/acs.accounts.8b00429] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Quantum interference effects (QIEs), which offer unique opportunities for the fine-tuning of charge transport through molecular building blocks by constructive or destructive quantum interference, have become an emerging area in single-molecule electronics. Benefiting from the QIEs, charge transport through molecular systems can be controlled through minor structural and environmental variations, which cause various charge transport states to be significantly changed from conductive to insulative states and offer promising applications in future functional single-molecule devices. Although QIEs were predicted by theoreticians more than two decades ago, only since 2011 have the challenges in ultralow conductance detection originating from destructive quantum interference been overcome experimentally. Currently, a series of single-molecule conductance investigations have been carried out experimentally to detect constructive and destructive QIEs in charge transport through various types of molecular junctions by altering molecular patterns and connectivities. Furthermore, the use of QIEs to tune the properties of charge transport through single-molecule junctions using external gating shows vital potential in future molecular electronic devices. The experimental and theoretical investigations of QIEs offer new fundamental understanding of the structural-electronic relationships in molecular devices and materials at the nanoscale. In this Account, we discuss our progress toward the experimental detection, manipulation, and further application of QIEs in charge transport through single-molecule junctions. These experiments were carried out continuously in our previous group at the University of Bern and in our lab at Xiamen University. As a result of the development of mechanically controllable break junction (MCBJ) and scanning tunneling microscope break junction (STM-BJ) techniques, we could detect ultralow charge transport through the cross-conjugated anthraquinone center, which was one of the earliest experimental studies of QIEs. In close cooperation with organic chemists and theoretical physicists, we systematically investigated charge transport through single-molecule junctions originating from QIEs in conjugated centers ranging from simple single benzene to polycyclic aromatic hydrocarbons (PAHs), heteroaromatics, and even complicated metalla-aromatics at room temperature. Then we further investigated the quantitative correlation between molecular structure and quantum interference by altering different molecular patterns and connectivities in homologous series of PAHs and heteroatom systems. Additionally, external chemical and electrochemical gating of single-molecule devices can be used for direct QIE manipulation via not only tuning molecular conjugation but also shifting the electrode Fermi level. Our study further suggested that distinguishable differences in conductance resulting from QIEs offer opportunities to detect photothermal reaction kinetics and to recognize isomers at the single-molecule scale. These investigations demonstrate the universality of QIEs in charge transport through various molecular building blocks. Moreover, effective manipulation of QIEs leads to various novel phenomena and promising applications in molecular electronic devices.
Collapse
Affiliation(s)
- Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, NEL, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaoyan Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, NEL, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fei Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, NEL, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, NEL, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
33
|
Ai Y, Kovalchuk A, Qiu X, Zhang Y, Kumar S, Wang X, Kühnel M, Nørgaard K, Chiechi RC. In-Place Modulation of Rectification in Tunneling Junctions Comprising Self-Assembled Monolayers. NANO LETTERS 2018; 18:7552-7559. [PMID: 30398891 PMCID: PMC6295922 DOI: 10.1021/acs.nanolett.8b03042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/27/2018] [Indexed: 05/25/2023]
Abstract
This paper describes tunneling junctions comprising self-assembled monolayers that can be converted between resistor and diode functionality in-place. The rectification ratio is affected by the hydration of densely packed carboxylic acid groups at the interface between the top-contact and the monolayer. We studied this process by treatment with water and a water scavenger using three different top-contacts, eutectic Ga-In (EGaIn), conducting-probe atomic force microscopy (CP-AFM), and reduced graphene oxide (rGO), demonstrating that the phenomena is molecular in nature and is not platform-speciffc. We propose a mechanism in which the tunneling junctions convert to diode behavior through the lowering of the LUMO, which is suffcient to bring it close to resonance at positive bias, potentially assisted by a Stark shift. This shift in energy is supported by calculations and a change in polarization observed by X-ray photoelectron spectroscopy and Kelvin probe measurements. We demonstrate light-driven modulation using spiropyran as a photoacid, suggesting that any chemical process that is coupled to the release of small molecules that can tightly bind carboxylic acid groups can be used as an external stimulus to modulate rectification. The ability to convert a tunneling junction reversibly between a diode and a resistor via an effect that is intrinsic to the molecules in the junction extends the possible applications of Molecular Electronics to reconfigurable circuits and other new functionalities that do not have direct analogs in conventional semiconductor devices.
Collapse
Affiliation(s)
- Yong Ai
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Andrii Kovalchuk
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Xinkai Qiu
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Yanxi Zhang
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Sumit Kumar
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Xintai Wang
- Nano-Science
Center & Department of Chemistry, University
of Copenhagen, Universitetsparken
5, DK-2100 Copenhagen, Denmark
| | - Martin Kühnel
- Nano-Science
Center & Department of Chemistry, University
of Copenhagen, Universitetsparken
5, DK-2100 Copenhagen, Denmark
| | - Kasper Nørgaard
- Nano-Science
Center & Department of Chemistry, University
of Copenhagen, Universitetsparken
5, DK-2100 Copenhagen, Denmark
| | - Ryan C. Chiechi
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| |
Collapse
|
34
|
Carlotti M, Soni S, Kumar S, Ai Y, Sauter E, Zharnikov M, Chiechi RC. Two-Terminal Molecular Memory through Reversible Switching of Quantum Interference Features in Tunneling Junctions. Angew Chem Int Ed Engl 2018; 57:15681-15685. [PMID: 30260083 PMCID: PMC6283355 DOI: 10.1002/anie.201807879] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Indexed: 11/11/2022]
Abstract
Large-area molecular tunneling junctions comprising self-assembled monolayers of redox-active molecules are described that exhibit two-terminal bias switching. The as-prepared monolayers undergo partial charge transfer to the underlying metal substrate (Au, Pt, or Ag), which converts their cores from a quinoid to a hydroquinoid form. The resulting rearomatization converts the bond topology from a cross-conjugated to a linearly conjugated π system. The cross-conjugated form correlates to the appearance of an interference feature in the transmission spectrum that vanishes for the linearly conjugated form. Owing to the presence of electron-withdrawing nitrile groups, the reduction potential and the interference feature lie close to the work function and Fermi level of the metallic substrate. We exploited the relationship between conjugation patterns and quantum interference to create nonvolatile memory in proto-devices using eutectic Ga-In as the top contact.
Collapse
Affiliation(s)
- Marco Carlotti
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Zernike Institute for Advanced MaterialsNijenborgh 49747 AGGroningenThe Netherlands
| | - Saurabh Soni
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Zernike Institute for Advanced MaterialsNijenborgh 49747 AGGroningenThe Netherlands
| | - Sumit Kumar
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Zernike Institute for Advanced MaterialsNijenborgh 49747 AGGroningenThe Netherlands
| | - Yong Ai
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Zernike Institute for Advanced MaterialsNijenborgh 49747 AGGroningenThe Netherlands
| | - Eric Sauter
- Applied Physical ChemistryHeidelberg UniversityIm Neuenheimer Feld 253Heidelberg69120Germany
| | - Michael Zharnikov
- Applied Physical ChemistryHeidelberg UniversityIm Neuenheimer Feld 253Heidelberg69120Germany
| | - Ryan C. Chiechi
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Zernike Institute for Advanced MaterialsNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
35
|
Carlotti M, Soni S, Kumar S, Ai Y, Sauter E, Zharnikov M, Chiechi RC. Two-Terminal Molecular Memory through Reversible Switching of Quantum Interference Features in Tunneling Junctions. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Marco Carlotti
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Zernike Institute for Advanced Materials; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Saurabh Soni
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Zernike Institute for Advanced Materials; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Sumit Kumar
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Zernike Institute for Advanced Materials; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Yong Ai
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Zernike Institute for Advanced Materials; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Eric Sauter
- Applied Physical Chemistry; Heidelberg University; Im Neuenheimer Feld 253 Heidelberg 69120 Germany
| | - Michael Zharnikov
- Applied Physical Chemistry; Heidelberg University; Im Neuenheimer Feld 253 Heidelberg 69120 Germany
| | - Ryan C. Chiechi
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Zernike Institute for Advanced Materials; Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
36
|
Jia C, Famili M, Carlotti M, Liu Y, Wang P, Grace IM, Feng Z, Wang Y, Zhao Z, Ding M, Xu X, Wang C, Lee SJ, Huang Y, Chiechi RC, Lambert CJ, Duan X. Quantum interference mediated vertical molecular tunneling transistors. SCIENCE ADVANCES 2018; 4:eaat8237. [PMID: 30333991 PMCID: PMC6184693 DOI: 10.1126/sciadv.aat8237] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/04/2018] [Indexed: 05/21/2023]
Abstract
Molecular transistors operating in the quantum tunneling regime represent potential electronic building blocks for future integrated circuits. However, due to their complex fabrication processes and poor stability, traditional molecular transistors can only operate stably at cryogenic temperatures. Here, through a combined experimental and theoretical investigation, we demonstrate a new design of vertical molecular tunneling transistors, with stable switching operations up to room temperature, formed from cross-plane graphene/self-assembled monolayer (SAM)/gold heterostructures. We show that vertical molecular junctions formed from pseudo-p-bis((4-(acetylthio)phenyl)ethynyl)-p-[2,2]cyclophane (PCP) SAMs exhibit destructive quantum interference (QI) effects, which are absent in 1,4-bis(((4-acetylthio)phenyl)ethynyl)benzene (OPE3) SAMs. Consequently, the zero-bias differential conductance of the former is only about 2% of the latter, resulting in an enhanced on-off current ratio for (PCP) SAMs. Field-effect control is achieved using an ionic liquid gate, whose strong vertical electric field penetrates through the graphene layer and tunes the energy levels of the SAMs. The resulting on-off current ratio achieved in PCP SAMs can reach up to ~330, about one order of magnitude higher than that of OPE3 SAMs. The demonstration of molecular junctions with combined QI effect and gate tunability represents a critical step toward functional devices in future molecular-scale electronics.
Collapse
Affiliation(s)
- Chuancheng Jia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marjan Famili
- Physics Department, Lancaster University, Lancaster LA1 4YB, UK
| | - Marco Carlotti
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, Netherlands
| | - Yuan Liu
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Peiqi Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Iain M. Grace
- Physics Department, Lancaster University, Lancaster LA1 4YB, UK
| | - Ziying Feng
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yiliu Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zipeng Zhao
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mengning Ding
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiang Xu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chen Wang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sung-Joon Lee
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ryan C. Chiechi
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, Netherlands
| | | | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
37
|
Stefani D, Weiland KJ, Skripnik M, Hsu C, Perrin ML, Mayor M, Pauly F, van der Zant HSJ. Large Conductance Variations in a Mechanosensitive Single-Molecule Junction. NANO LETTERS 2018; 18:5981-5988. [PMID: 30134105 PMCID: PMC6143316 DOI: 10.1021/acs.nanolett.8b02810] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
An appealing feature of molecular electronics is the possibility of inducing changes in the orbital structure through external stimuli. This can provide functionality on the single-molecule level that can be employed for sensing or switching purposes if the associated conductance changes are sizable upon application of the stimuli. Here, we show that the room-temperature conductance of a spring-like molecule can be mechanically controlled up to an order of magnitude by compressing or elongating it. Quantum-chemistry calculations indicate that the large conductance variations are the result of destructive quantum interference effects between the frontier orbitals that can be lifted by applying either compressive or tensile strain to the molecule. When periodically modulating the electrode separation, a conductance modulation at double the driving frequency is observed, providing a direct proof for the presence of quantum interference. Furthermore, oscillations in the conductance occur when the stress built up in the molecule is high enough to allow the anchoring groups to move along the surface in a stick-slip-like fashion. The mechanical control of quantum interference effects results in the largest-gauge factor reported for single-molecule devices up to now, which may open the door for applications in, e.g., a nanoscale mechanosensitive sensing device that is functional at room temperature.
Collapse
Affiliation(s)
- Davide Stefani
- Kavli
Institute of Nanoscience, Delft University
of Technology, 2600 GA Delft, The Netherlands
| | - Kevin J. Weiland
- Department
of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Maxim Skripnik
- Okinawa
Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0395, Japan
- Department
of Physics, University of Konstanz, 78457 Konstanz, Germany
| | - Chunwei Hsu
- Kavli
Institute of Nanoscience, Delft University
of Technology, 2600 GA Delft, The Netherlands
| | - Mickael L. Perrin
- Kavli
Institute of Nanoscience, Delft University
of Technology, 2600 GA Delft, The Netherlands
- Transport
at Nanoscale Interfaces Laboratory, Empa,
Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Marcel Mayor
- Department
of Chemistry, University of Basel, 4056 Basel, Switzerland
- Karlsruhe
Institute of Technology (KIT), P.O. Box
3640, 76021 Karlsruhe, Germany
- Lehn
Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
- E-mail: (chemistry
matters)
| | - Fabian Pauly
- Okinawa
Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0395, Japan
- Department
of Physics, University of Konstanz, 78457 Konstanz, Germany
- E-mail: (theoretical calculations)
| | - Herre S. J. van der Zant
- Kavli
Institute of Nanoscience, Delft University
of Technology, 2600 GA Delft, The Netherlands
- E-mail: (experiments)
| |
Collapse
|
38
|
Schmitz S, Kovalchuk A, Martín-Rodríguez A, van Leusen J, Izarova NV, Bourone SDM, Ai Y, Ruiz E, Chiechi RC, Kögerler P, Monakhov KY. Element-Selective Molecular Charge Transport Characteristics of Binuclear Copper(II)-Lanthanide(III) Complexes. Inorg Chem 2018; 57:9274-9285. [DOI: 10.1021/acs.inorgchem.8b01279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sebastian Schmitz
- Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Andrew Kovalchuk
- Stratingh Institute for Chemistry & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, Netherlands
| | - Alejandro Martín-Rodríguez
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Jan van Leusen
- Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Natalya V. Izarova
- Jülich-Aachen Research Alliance (JARA-FIT) and Peter Grünberg Institute (PGI-6), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Svenja D. M. Bourone
- Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Yong Ai
- Stratingh Institute for Chemistry & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, Netherlands
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Ryan C. Chiechi
- Stratingh Institute for Chemistry & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, Netherlands
| | - Paul Kögerler
- Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
- Jülich-Aachen Research Alliance (JARA-FIT) and Peter Grünberg Institute (PGI-6), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Kirill Yu. Monakhov
- Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
39
|
Zhang Y, Ye G, Soni S, Qiu X, Krijger TL, Jonkman HT, Carlotti M, Sauter E, Zharnikov M, Chiechi RC. Controlling destructive quantum interference in tunneling junctions comprising self-assembled monolayers via bond topology and functional groups. Chem Sci 2018; 9:4414-4423. [PMID: 29896382 PMCID: PMC5961448 DOI: 10.1039/c8sc00165k] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/22/2018] [Indexed: 01/25/2023] Open
Abstract
Quantum interference effects (QI) are of interest in nano-scale devices based on molecular tunneling junctions because they can affect conductance exponentially through minor structural changes. However, their utilization requires the prediction and deterministic control over the position and magnitude of QI features, which remains a significant challenge. In this context, we designed and synthesized three benzodithiophenes based molecular wires; one linearly-conjugated, one cross-conjugated and one cross-conjugated quinone. Using eutectic Ga-In (EGaIn) and CP-AFM, we compared them to a well-known anthraquinone in molecular junctions comprising self-assembled monolayers (SAMs). By combining density functional theory and transition voltage spectroscopy, we show that the presence of an interference feature and its position can be controlled independently by manipulating bond topology and electronegativity. This is the first study to separate these two parameters experimentally, demonstrating that the conductance of a tunneling junction depends on the position and depth of a QI feature, both of which can be controlled synthetically.
Collapse
Affiliation(s)
- Yanxi Zhang
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands . .,Zernike Institute for Advanced Materials , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Gang Ye
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands . .,Zernike Institute for Advanced Materials , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Saurabh Soni
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands . .,Zernike Institute for Advanced Materials , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Xinkai Qiu
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands . .,Zernike Institute for Advanced Materials , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Theodorus L Krijger
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands . .,Zernike Institute for Advanced Materials , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Harry T Jonkman
- Zernike Institute for Advanced Materials , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Marco Carlotti
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands . .,Zernike Institute for Advanced Materials , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Eric Sauter
- Applied Physical Chemistry , Heidelberg University , Im Neuenheier Feld 253 , Heidelberg 69120 , Germany
| | - Michael Zharnikov
- Applied Physical Chemistry , Heidelberg University , Im Neuenheier Feld 253 , Heidelberg 69120 , Germany
| | - Ryan C Chiechi
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands . .,Zernike Institute for Advanced Materials , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| |
Collapse
|
40
|
Sangeeth CSS, Jiang L, Nijhuis CA. Bottom-electrode induced defects in self-assembled monolayer (SAM)-based tunnel junctions affect only the SAM resistance, not the contact resistance or SAM capacitance. RSC Adv 2018; 8:19939-19949. [PMID: 35541643 PMCID: PMC9080736 DOI: 10.1039/c8ra01513a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/14/2018] [Indexed: 12/22/2022] Open
Abstract
In large area molecular junctions, defects are always present and can be caused by impurities and/or defects in the electrode materials and/or SAMs, but how they affect the electrical characteristics of junctions has rarely been studied. Usually, junctions are characterized by two-terminal current–voltage measurements where only the total current across the junction is measured, but with these methods one cannot distinguish how the individual components of the junctions are altered by the defects. Here we show that the roughness of the bottom-electrode is a crucial factor in determining the electrical properties of self-assembled monolayer (SAM)-based junctions. We used potentiodynamic impedance spectroscopy to reveal which components of the junctions are altered by defective bottom electrodes because this method allows for direct determination of all components that impede charge transport in the equivalent circuit of the junctions. We intentionally introduced defects via the roughness of the bottom electrode and found that these defects lower the SAM resistance but they do not alter the capacitance of the SAM or the contact resistance of the junction. In other words, defective junctions can be seen as “leaky capacitors” resulting in an underestimation of the SAM resistance of two orders of magnitude. These results help to improve the interpretation of data generated by SAM-based junctions and explain in part the observed large spread of reported tunneling rates for the same molecules measured across different platforms. In large area molecular junctions, defects are always present and can be caused by impurities and/or defects in the electrode materials and/or SAMs, but how they affect the electrical characteristics of junctions has rarely been studied.![]()
Collapse
Affiliation(s)
| | - Li Jiang
- Department of Chemistry
- National University of Singapore
- Singapore 117543
- Singapore
| | - Christian A. Nijhuis
- Department of Chemistry
- National University of Singapore
- Singapore 117543
- Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre
| |
Collapse
|
41
|
Gan L, Suchand Sangeeth C, Yuan L, Jańczewski D, Song J, Nijhuis CA. Tuning charge transport across junctions of ferrocene-containing polymer brushes on ITO by controlling the brush thickness and the tether lengths. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Luo W, Nie H, He B, Zhao Z, Peng Q, Tang BZ. Spectroscopic and Theoretical Characterization of Through-Space Conjugation of Foldamers with a Tetraphenylethene Hinge. Chemistry 2017; 23:18041-18048. [DOI: 10.1002/chem.201704182] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Wenwen Luo
- Center for Aggregation-Induced Emission; State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 P.R. China
| | - Han Nie
- Center for Aggregation-Induced Emission; State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 P.R. China
| | - Bairong He
- Center for Aggregation-Induced Emission; State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 P.R. China
| | - Zujin Zhao
- Center for Aggregation-Induced Emission; State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 P.R. China
| | - Qian Peng
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Science, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Ben Zhong Tang
- Center for Aggregation-Induced Emission; State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 P.R. China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction; The Hong Kong University of Science & Technology, Kowloon; Hong Kong P.R. China
| |
Collapse
|
43
|
Zhang Y, Qiu X, Gordiichuk P, Soni S, Krijger TL, Herrmann A, Chiechi RC. Mechanically and Electrically Robust Self-Assembled Monolayers for Large-Area Tunneling Junctions. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:14920-14928. [PMID: 28729893 PMCID: PMC5512119 DOI: 10.1021/acs.jpcc.7b03853] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/12/2017] [Indexed: 05/28/2023]
Abstract
This paper examines the relationship between mechanical deformation and the electronic properties of self-assembled monolayers (SAMs) of the oligothiophene 4-([2,2':5',2″:5″,2‴-quaterthiophen]-5-yl)butane-1-thiol (T4C4) in tunneling junctions using conductive probe atomic force microscopy (CP-AFM) and eutectic Ga-In (EGaIn). We compared shifts in conductivity, transition voltages of T4C4 with increasing AFM tip loading force to alkanethiolates. While these shifts result from an increasing tilt angle from penetration of the SAM by the AFM tip for the latter, we ascribe them to distortions of the π system present in T4C4, which is more mechanically robust than alkanethiolates of comparable length; SAMs comprising T4C4 shows about five times higher Young's modulus than alkanethiolates. Density functional theory calculations confirm that mechanical deformations shift the barrier height due to changes in the frontier orbitals caused by small rearrangements to the conformation of the quaterthiophene moiety. The mechanical robustness of T4C4 manifests as an increased tolerance to high bias in large-area EGaIn junctions suggesting that electrostatic pressure plays a significant role in the shorting of molecular junctions at high bias.
Collapse
Affiliation(s)
- Yanxi Zhang
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Xinkai Qiu
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Pavlo Gordiichuk
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Saurabh Soni
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Theodorus L. Krijger
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Andreas Herrmann
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ryan C. Chiechi
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
44
|
Borges A, Xia J, Liu SH, Venkataraman L, Solomon GC. The Role of Through-Space Interactions in Modulating Constructive and Destructive Interference Effects in Benzene. NANO LETTERS 2017; 17:4436-4442. [PMID: 28650176 DOI: 10.1021/acs.nanolett.7b01592] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Quantum interference effects, whether constructive or destructive, are key to predicting and understanding the electrical conductance of single molecules. Here, through theory and experiment, we investigate a family of benzene-like molecules that exhibit both constructive and destructive interference effects arising due to more than one contact between the molecule and each electrode. In particular, we demonstrate that the π-system of meta-coupled benzene can exhibit constructive interference and its para-coupled analog can exhibit destructive interference, and vice versa, depending on the specific through-space interactions. As a peculiarity, this allows a meta-coupled benzene molecule to exhibit higher conductance than a para-coupled benzene. Our results provide design principles for molecular electronic components with high sensitivity to through-space interactions and demonstrate that increasing the number of contacts between the molecule and electrodes can both increase and decrease the conductance.
Collapse
Affiliation(s)
- Anders Borges
- Department of Applied Physics, Columbia University , New York 10027, United States
- Nano-Science Center and Department of Chemistry, University of Copenhagen , 1017 Copenhagen Ø, Denmark
| | - Jianlong Xia
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology , Wuhan 430070, China
| | - Sheng Hua Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University , Wuhan, 430079, China
| | - Latha Venkataraman
- Department of Applied Physics and Department of Chemistry, Columbia University , New York 10027, United States
| | - Gemma C Solomon
- Nano-Science Center and Department of Chemistry, University of Copenhagen , 1017 Copenhagen Ø, Denmark
| |
Collapse
|