1
|
Zhang L, Qi N, Li Y, Wang X, Zhang L. Immiscible metamorphic water and methane fluids preserved in carbonated eclogite. Commun Chem 2024; 7:267. [PMID: 39548260 PMCID: PMC11568306 DOI: 10.1038/s42004-024-01355-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Subduction zones metamorphic fluids are pivotal in geological events such as volcanic eruptions, seismic activity, mineralization, and the deep carbon cycle. However, the mechanisms governing carbon mobility in subduction zones remain largely unresolved. Here we present the first observations of immiscible H2O-CH4 fluids coexisting in retrograde carbonated eclogite from the Western Tianshan subduction zone, China. We identified two types of fluid inclusions in host ankerite and amphibole, as well as in garnet and omphacite. Type-1 inclusions are water-rich with CH4 vapor, whereas Type-2 are CH4-rich, with minimal or no H2O. The coexistence of these fluid types indicates the presence of immiscible fluid phases under high-pressure conditions (P = 1.3-2.1 GPa). Carbonates in subduction zones can effectively decompose through reactions with silicates, leading to the generation of abiotic CH4. Our findings suggest that substantial amounts of carbon could be transferred from the slab to mantle wedge as immiscible CH4 fluids. This process significantly enhances decarbonation efficiency and may contribute to the formation of natural gas deposits.
Collapse
Affiliation(s)
- Lijuan Zhang
- Key Laboratory of Deep Petroleum Intelligent Exploration and Development, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, School of Earth and Space Sciences, Peking University, Beijing, China
| | - Ning Qi
- Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, School of Earth and Space Sciences, Peking University, Beijing, China
| | - Yuan Li
- Bayerisches Geoinstitut, Universität Bayreuth, Bayreuth, Germany
| | - Xiao Wang
- Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, School of Earth and Space Sciences, Peking University, Beijing, China
| | - Lifei Zhang
- Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, School of Earth and Space Sciences, Peking University, Beijing, China.
| |
Collapse
|
2
|
Giuntoli F, Menegon L, Siron G, Cognigni F, Leroux H, Compagnoni R, Rossi M, Vitale Brovarone A. Methane-hydrogen-rich fluid migration may trigger seismic failure in subduction zones at forearc depths. Nat Commun 2024; 15:480. [PMID: 38212306 PMCID: PMC10784519 DOI: 10.1038/s41467-023-44641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024] Open
Abstract
Metamorphic fluids, faults, and shear zones are carriers of carbon from the deep Earth to shallower reservoirs. Some of these fluids are reduced and transport energy sources, like H2 and light hydrocarbons. Mechanisms and pathways capable of transporting these deep energy sources towards shallower reservoirs remain unidentified. Here we present geological evidence of failure of mechanically strong rocks due to the accumulation of CH4-H2-rich fluids at deep forearc depths, which ultimately reached supralithostatic pore fluid pressure. These fluids originated from adjacent reduction of carbonates by H2-rich fluids during serpentinization at eclogite-to-blueschist-facies conditions. Thermodynamic modeling predicts that the production and accumulation of CH4-H2-rich aqueous fluids can produce fluid overpressure more easily than carbon-poor and CO2-rich aqueous fluids. This study provides evidence for the migration of deep Earth energy sources along tectonic discontinuities, and suggests causal relationships with brittle failure of hard rock types that may trigger seismic activity at forearc depths.
Collapse
Affiliation(s)
- Francesco Giuntoli
- Department of Biological, Geological, and Environmental Sciences, Università degli Studi di Bologna, Bologna, Italy.
| | - Luca Menegon
- The Njord Centre, Department of Geosciences, University of Oslo, Oslo, Norway
| | - Guillaume Siron
- Department of Biological, Geological, and Environmental Sciences, Università degli Studi di Bologna, Bologna, Italy
| | - Flavio Cognigni
- Department of Basic and Applied Sciences for Engineering (SBAI), Università degli Studi di Roma La Sapienza, Rome, Italy
| | - Hugues Leroux
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207, UMET, Unité Matériaux et Transformations, Lille, France
| | - Roberto Compagnoni
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, Torino, Italy
| | - Marco Rossi
- Department of Basic and Applied Sciences for Engineering (SBAI), Università degli Studi di Roma La Sapienza, Rome, Italy
| | - Alberto Vitale Brovarone
- Department of Biological, Geological, and Environmental Sciences, Università degli Studi di Bologna, Bologna, Italy.
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France.
- Institute of Geosciences and Earth Resources, National Research Council of Italy, Pisa, Italy.
| |
Collapse
|
3
|
Wang X, Xiao Y, Schertl HP, Sobolev NV, Wang YY, Sun H, Jin D, Tan DB. Deep carbon cycling during subduction revealed by coexisting diamond-methane-magnesite in peridotite. Natl Sci Rev 2023; 10:nwad203. [PMID: 37671326 PMCID: PMC10476885 DOI: 10.1093/nsr/nwad203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/10/2023] [Indexed: 09/07/2023] Open
Abstract
Identification of multiphase inclusions in peridotite suggests that released carbon from a subducting slab can be stored as diamond+methane+magnesite in the overlying mantle wedge, achieving deep carbon cycling.
Collapse
Affiliation(s)
- Xiaoxia Wang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, China
| | - Yilin Xiao
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, China
- CAS Center for Excellence in Comparative Planetology, China
| | - Hans-Peter Schertl
- Ruhr-University Bochum, Faculty of Geosciences, Institute of Geology, Mineralogy and Geophysics, Germany
| | - Nikolay V Sobolev
- V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Russia
| | - Yang-Yang Wang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, China
| | - He Sun
- School of Resources and Environmental Engineering, Hefei University of Technology, China
| | - Deshi Jin
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, China
| | - Dong-Bo Tan
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, China
| |
Collapse
|
4
|
Andreani M, Montagnac G, Fellah C, Hao J, Vandier F, Daniel I, Pisapia C, Galipaud J, Lilley MD, Früh Green GL, Borensztajn S, Ménez B. The rocky road to organics needs drying. Nat Commun 2023; 14:347. [PMID: 36681679 PMCID: PMC9867705 DOI: 10.1038/s41467-023-36038-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
How simple abiotic organic compounds evolve toward more complex molecules of potentially prebiotic importance remains a missing key to establish where life possibly emerged. The limited variety of abiotic organics, their low concentrations and the possible pathways identified so far in hydrothermal fluids have long hampered a unifying theory of a hydrothermal origin for the emergence of life on Earth. Here we present an alternative road to abiotic organic synthesis and diversification in hydrothermal environments, which involves magmatic degassing and water-consuming mineral reactions occurring in mineral microcavities. This combination gathers key gases (N2, H2, CH4, CH3SH) and various polyaromatic materials associated with nanodiamonds and mineral products of olivine hydration (serpentinization). This endogenous assemblage results from re-speciation and drying of cooling C-O-S-H-N fluids entrapped below 600 °C-2 kbars in rocks forming the present-day oceanic lithosphere. Serpentinization dries out the system toward macromolecular carbon condensation, while olivine pods keep ingredients trapped until they are remobilized for further reactions at shallower levels. Results greatly extend our understanding of the forms of abiotic organic carbon available in hydrothermal environments and open new pathways for organic synthesis encompassing the role of minerals and drying. Such processes are expected in other planetary bodies wherever olivine-rich magmatic systems get cooled down and hydrated.
Collapse
Affiliation(s)
- Muriel Andreani
- Université de Lyon, Univ Lyon 1, CNRS UMR5276, ENS de Lyon, LGL-TPE, Villeurbanne Cedex, France.
- Institut Universitaire de France, Paris, France.
| | - Gilles Montagnac
- Université de Lyon, Univ Lyon 1, CNRS UMR5276, ENS de Lyon, LGL-TPE, Villeurbanne Cedex, France
| | - Clémentine Fellah
- Université de Lyon, Univ Lyon 1, CNRS UMR5276, ENS de Lyon, LGL-TPE, Villeurbanne Cedex, France
| | - Jihua Hao
- Deep Space Exploration Laboratory/CAS Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, Anhui, China
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | - Flore Vandier
- Université de Lyon, Univ Lyon 1, CNRS UMR5276, ENS de Lyon, LGL-TPE, Villeurbanne Cedex, France
| | - Isabelle Daniel
- Université de Lyon, Univ Lyon 1, CNRS UMR5276, ENS de Lyon, LGL-TPE, Villeurbanne Cedex, France
| | - Céline Pisapia
- Université Paris Cité, Institut de physique du globe de Paris, CNRS UMR 7154, Paris, France
| | - Jules Galipaud
- Université de Lyon, Ecole Centrale de Lyon, LTDS, CNRS UMR 5513, 36, Ecully, France
- Université de Lyon INSA-Lyon, MATEIS, CNRS UMR 5510, Villeurbanne, France
| | - Marvin D Lilley
- School of Oceanography, University of Washington, Seattle, WA, USA
| | | | - Stéphane Borensztajn
- Université Paris Cité, Institut de physique du globe de Paris, CNRS UMR 7154, Paris, France
| | - Bénédicte Ménez
- Université Paris Cité, Institut de physique du globe de Paris, CNRS UMR 7154, Paris, France
| |
Collapse
|
5
|
Zhang L, Zhang L, Tang M, Wang X, Tao R, Xu C, Bader T. Massive abiotic methane production in eclogite during cold subduction. Natl Sci Rev 2022; 10:nwac207. [PMID: 36654916 PMCID: PMC9840456 DOI: 10.1093/nsr/nwac207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 01/21/2023] Open
Abstract
Methane (CH4) is a critical but overlooked component in the study of the deep carbon cycle. Abiotic CH4 produced by serpentinization of ultramafic rocks has received extensive attention, but its formation and flux in mafic rocks during subduction remain poorly understood. Here, we report massive CH4-rich fluid inclusions in well-zoned garnet from eclogites in Western Tianshan, China. Petrological characteristics and carbon-hydrogen isotopic compositions confirm the abiotic origin of this CH4. Reconstructed P-T-fO2-fluid trajectories and Deep Earth Water modeling imply that massive abiotic CH4 was generated during cold subduction at depths of 50-120 km, whereas CO2 was produced during exhumation. The massive production of abiotic CH4 in eclogites may result from multiple mechanisms during prograde high pressure-ultrahigh pressure metamorphism. Our flux calculation proposes that abiotic CH4 that has been formed in HP-UHP eclogites in cold subduction zones may represent one of the largest, yet overlooked, sources of abiotic CH4 on Earth.
Collapse
Affiliation(s)
- Lijuan Zhang
- Ministry of Education Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | | | - Ming Tang
- Ministry of Education Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Xiao Wang
- Ministry of Education Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Renbiao Tao
- Ministry of Education Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Cheng Xu
- Ministry of Education Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Thomas Bader
- Ministry of Education Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Debret B, Ménez B, Walter B, Bouquerel H, Bouilhol P, Mattielli N, Pisapia C, Rigaudier T, Williams HM. High-pressure synthesis and storage of solid organic compounds in active subduction zones. SCIENCE ADVANCES 2022; 8:eabo2397. [PMID: 36112687 PMCID: PMC9481122 DOI: 10.1126/sciadv.abo2397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Recent thermodynamic and experimental studies have suggested that volatile organic compounds (e.g., methane, formate, and acetate) can be produced and stabilized in subduction zones, potentially playing an important role in the deep carbon cycle. However, field evidence for the high-pressure production and storage of solid organic compounds is missing. Here, we examine forearc serpentinite clasts recovered by drilling mud volcanoes above the Mariana subduction zone. Notable correlations between carbon and iron stable-isotope signatures and fluid-mobile element (B, As and Sb) concentrations provide evidence for the percolation of slab-derived CO2-rich aqueous fluids through the forearc mantle. The presence of carbonaceous matter rich in aliphatic moieties within high-temperature clasts (>350°C) demonstrates that molecular hydrogen production associated with forearc serpentinization is an efficient mechanism for the reduction and conversion of slab-derived CO2-rich fluids into solid organic compounds. These findings emphasize the need to consider the forearc mantle as an important reservoir of organic carbon on Earth.
Collapse
Affiliation(s)
- Baptiste Debret
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris, France
| | - Bénédicte Ménez
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris, France
| | - Bastien Walter
- Université de Lorraine, CNRS, GeoRessources, Vandoeuvre-lès-Nancy, France
| | - Hélène Bouquerel
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris, France
| | | | - Nadine Mattielli
- Laboratoire G-Time, DGES, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Céline Pisapia
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris, France
| | | | | |
Collapse
|
7
|
Chen Y, Chou IM. Determination of H 2 Densities Over a Wide Range of Temperatures and Pressures Based on the Spectroscopic Characterization of Raman Vibrational Bands. APPLIED SPECTROSCOPY 2022; 76:841-850. [PMID: 35255721 DOI: 10.1177/00037028221080489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Raman spectroscopy is a powerful method for determining the densities of gas species in fluid inclusions, especially for H2-bearing inclusions in which the microthermometry approach is difficult to apply. The relationships between Raman peak position and H2 density have been recorded in several previous studies. However, systematic discrepancies exist among these studies. In this study, the Raman spectral parameters (peak position, width, and intensity) of the vibrational bands of H2 (Q1(0), Q1(1), Q1(2), and Q1(3)) were systematically measured at temperatures from 25 to 400 °C and pressures up to 150 MPa using a high-pressure optical cell. The variation in each parameter as a function of H2 density was discussed. Several calibration polynomials derived from the measured peak positions and peak widths of these vibrational bands and the peak intensity ratios of Q1(1) to Q1(n = 0, 2, 3) were established to determine H2 densities up to 0.062 g/cm3 at 25 °C. For natural fluid inclusions, the peak position of the Q1(1) band is the best choice for density determination mainly because (i) Raman spectra derived from fluid inclusions are not always of applicable qualities and the strongest intensity Q1(1) band could be obtained easier than others, and (ii) the peak position is insensitive to instrumental factors. The relationship between the peak position of Q1(1) band and density can be represented by ΔQ1(1) = 90,246.070 × ρ4 - 5471.203 × ρ3 + 770.944 × ρ2- 41.038 × ρ (r2 = 0.999), where ρ is the density of H2 in g/cm3; ΔQ1(1) (cm-1) is the difference between the obtained peak position of Q1(1) band of H2 and the known peak position of Q1(1) band of H2 at near-zero density. This polynomial is independent of instrumental factors and can be applied in any laboratory, as long as the peak position of H2 with a near-zero density is known. The effects of temperature on the relationship between these spectral parameters and H2 density were also examined.
Collapse
Affiliation(s)
- Ying Chen
- CAS Key Laboratory of Mineralogy and Metallogeny, and Guangdong Provincial Key Laboratory of Mineral Physics and Materials, 74556Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Experimental Study under Deep-sea Extreme Conditions, 383875Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - I-Ming Chou
- CAS Key Laboratory of Experimental Study under Deep-sea Extreme Conditions, 383875Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
8
|
Thompson MA, Krissansen-Totton J, Wogan N, Telus M, Fortney JJ. The case and context for atmospheric methane as an exoplanet biosignature. Proc Natl Acad Sci U S A 2022; 119:e2117933119. [PMID: 35353627 PMCID: PMC9168929 DOI: 10.1073/pnas.2117933119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Methane has been proposed as an exoplanet biosignature. Imminent observations with the James Webb Space Telescope may enable methane detections on potentially habitable exoplanets, so it is essential to assess in what planetary contexts methane is a compelling biosignature. Methane’s short photochemical lifetime in terrestrial planet atmospheres implies that abundant methane requires large replenishment fluxes. While methane can be produced by a variety of abiotic mechanisms such as outgassing, serpentinizing reactions, and impacts, we argue that—in contrast to an Earth-like biosphere—known abiotic processes cannot easily generate atmospheres rich in CH4 and CO2 with limited CO due to the strong redox disequilibrium between CH4 and CO2. Methane is thus more likely to be biogenic for planets with 1) a terrestrial bulk density, high mean-molecular-weight and anoxic atmosphere, and an old host star; 2) an abundance of CH4 that implies surface fluxes exceeding what could be supplied by abiotic processes; and 3) atmospheric CO2 with comparatively little CO.
Collapse
Affiliation(s)
- Maggie A. Thompson
- Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064
| | | | - Nicholas Wogan
- Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195
| | - Myriam Telus
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064
| | - Jonathan J. Fortney
- Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064
| |
Collapse
|
9
|
In-situ abiogenic methane synthesis from diamond and graphite under geologically relevant conditions. Nat Commun 2021; 12:6387. [PMID: 34737292 PMCID: PMC8569197 DOI: 10.1038/s41467-021-26664-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/08/2021] [Indexed: 11/08/2022] Open
Abstract
Diamond and graphite are fundamental sources of carbon in the upper mantle, and their reactivity with H2-rich fluids present at these depths may represent the key to unravelling deep abiotic hydrocarbon formation. We demonstrate an unexpected high reactivity between carbons' most common allotropes, diamond and graphite, with hydrogen at conditions comparable with those in the Earth's upper mantle along subduction zone thermal gradients. Between 0.5-3 GPa and at temperatures as low as 300 °C, carbon reacts readily with H2 yielding methane (CH4), whilst at higher temperatures (500 °C and above), additional light hydrocarbons such as ethane (C2H6) emerge. These results suggest that the interaction between deep H2-rich fluids and reduced carbon minerals may be an efficient mechanism for producing abiotic hydrocarbons at the upper mantle.
Collapse
|
10
|
Farsang S, Louvel M, Zhao C, Mezouar M, Rosa AD, Widmer RN, Feng X, Liu J, Redfern SAT. Deep carbon cycle constrained by carbonate solubility. Nat Commun 2021; 12:4311. [PMID: 34262043 PMCID: PMC8280166 DOI: 10.1038/s41467-021-24533-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Earth's deep carbon cycle affects atmospheric CO2, climate, and habitability. Owing to the extreme solubility of CaCO3, aqueous fluids released from the subducting slab could extract all carbon from the slab. However, recycling efficiency is estimated at only around 40%. Data from carbonate inclusions, petrology, and Mg isotope systematics indicate Ca2+ in carbonates is replaced by Mg2+ and other cations during subduction. Here we determined the solubility of dolomite [CaMg(CO3)2] and rhodochrosite (MnCO3), and put an upper limit on that of magnesite (MgCO3) under subduction zone conditions. Solubility decreases at least two orders of magnitude as carbonates become Mg-rich. This decreased solubility, coupled with heterogeneity of carbon and water subduction, may explain discrepancies in carbon recycling estimates. Over a range of slab settings, we find aqueous dissolution responsible for mobilizing 10 to 92% of slab carbon. Globally, aqueous fluids mobilise [Formula: see text]% ([Formula: see text] Mt/yr) of subducted carbon from subducting slabs.
Collapse
Affiliation(s)
- Stefan Farsang
- grid.5335.00000000121885934Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ UK
| | - Marion Louvel
- grid.5949.10000 0001 2172 9288Institut für Mineralogie, WWU Münster, Münster, 48149 Germany
| | - Chaoshuai Zhao
- grid.503238.f0000 0004 7423 8214Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing, 100094 China
| | - Mohamed Mezouar
- grid.5398.70000 0004 0641 6373European Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble, 38000 France
| | - Angelika D. Rosa
- grid.5398.70000 0004 0641 6373European Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble, 38000 France
| | - Remo N. Widmer
- grid.7354.50000 0001 2331 3059Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, Thun, 3602 Switzerland
| | - Xiaolei Feng
- grid.5335.00000000121885934Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ UK ,grid.503238.f0000 0004 7423 8214Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing, 100094 China
| | - Jin Liu
- grid.503238.f0000 0004 7423 8214Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing, 100094 China
| | - Simon A. T. Redfern
- grid.59025.3b0000 0001 2224 0361Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
| |
Collapse
|
11
|
Natural Background Levels of Potentially Toxic Elements in Groundwater from a Former Asbestos Mine in Serpentinite (Balangero, North Italy). WATER 2021. [DOI: 10.3390/w13050735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The definition of natural background levels (NBLs) for potentially toxic elements (PTEs) in groundwater from mining environments is a real challenge, as anthropogenic activities boost water–rock interactions, further increasing the naturally high concentrations. This study illustrates the procedure followed to derive PTE concentration values that can be adopted as NBLs for the former Balangero asbestos mine, a “Contaminated Site of National Interest”. A full hydrogeochemical characterisation allowed for defining the dominant Mg-HCO3 facies, tending towards the Mg-SO4 facies with increasing mineralisation. PTE concentrations are high, and often exceed the groundwater quality thresholds for Cr VI, Ni, Mn and Fe (5, 20, 50 and 200 µg/L, respectively). The Italian guidelines for NBL assessment recommend using the median as a representative concentration for each monitoring station. However, this involves discarding half of the measurements and in particular the higher concentrations, thus resulting in too conservative estimates. Using instead all the available measurements and the recommended statistical evaluation, the derived NBLs were: Cr = 39.3, Cr VI = 38.1, Ni = 84, Mn = 71.36, Fe = 58.4, Zn = 232.2 µg/L. These values are compared to literature data from similar hydrogeochemical settings, to support the conclusion on their natural origin. Results highlight the need for a partial rethink of the guidelines for the assessment of NBLs in naturally enriched environmental settings.
Collapse
|
12
|
Insights on the deep carbon cycle from the electrical conductivity of carbon-bearing aqueous fluids. Sci Rep 2021; 11:3745. [PMID: 33580092 PMCID: PMC7881151 DOI: 10.1038/s41598-021-82174-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/15/2021] [Indexed: 01/30/2023] Open
Abstract
The dehydration and decarbonation in the subducting slab are intricately related and the knowledge of the physical properties of the resulting C-H-O fluid is crucial to interpret the petrological, geochemical, and geophysical processes associated with subduction zones. In this study, we investigate the C-H-O fluid released during the progressive devolatilization of carbonate-bearing serpentine-polymorph chrysotile, with in situ electrical conductivity measurements at high pressures and temperatures. The C-H-O fluid produced by carbonated chrysotile exhibits high electrical conductivity compared to carbon-free aqueous fluids and can be an excellent indicator of the migration of carbon in subduction zones. The crystallization of diamond and graphite indicates that the oxidized C-H-O fluids are responsible for the recycling of carbon in the wedge mantle. The carbonate and chrysotile bearing assemblages stabilize dolomite during the devolatilization process. This unique dolomite forming mechanism in chrysotile in subduction slabs may facilitate the transport of carbon into the deep mantle.
Collapse
|
13
|
Huang JX, Xiong Q, Gain SEM, Griffin WL, Murphy TD, Shiryaev AA, Li L, Toledo V, Tomshin MD, O'Reilly SY. Immiscible metallic melts in the deep Earth: clues from moissanite (SiC) in volcanic rocks. Sci Bull (Beijing) 2020; 65:1479-1488. [PMID: 36747405 DOI: 10.1016/j.scib.2020.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
Abstract
The occurrence of moissanite (SiC), as xenocrysts in mantle-derived basaltic and kimberlitic rocks sheds light on the interplay between carbon, hydrogen and oxygen in the lithospheric and sublithospheric mantle. SiC is stable only at ƒO2 < ΔIW-6, while the lithospheric mantle and related melts commonly are considered to be much more oxidized. SiC grains from both basaltic volcanoclastic rocks and kimberlites contain metallic inclusions whose shapes suggest they were entrapped as melts. The inclusions consist of Si0 + Fe3Si7 ± FeSi2Ti ± CaSi2Al2 ± FeSi2Al3 ± CaSi2, and some of the phases show euhedral shapes toward Si0. Crystallographically-oriented cavities are common in SiC, suggesting the former presence of volatile phase(s), and the volatiles extracted from crushed SiC grains contain H2 + CH4 ± CO2 ± CO. Our observations suggest that SiC crystalized from metallic melts (Si-Fe-Ti-C ± Al ± Ca), with dissolved H2 + CH4 ± CO2 ± CO derived from the sublithospheric mantle and concentrated around interfaces such as the lithosphere-asthenosphere and crust-mantle boundaries. When mafic/ultramafic magmas are continuously fluxed with H2 + CH4 they can be progressively reduced, to a point where silicide melts become immiscible, and crystallize phases such as SiC. The occurrence of SiC in explosive volcanic rocks from different tectonic settings indicates that the delivery of H2 + CH4 from depth may commonly accompany explosive volcanism and modify the redox condition of some lithospheric mantle volumes. The heterogeneity of redox states further influences geochemical reactions such as melting and geophysical properties such as seismic velocity and the viscosity of mantle rocks.
Collapse
Affiliation(s)
- Jin-Xiang Huang
- ARC Centre of Excellence for Core to Crust Fluid Systems and GEMOC, Department of Earth and Planetary Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
| | - Qing Xiong
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| | - Sarah E M Gain
- ARC Centre of Excellence for Core to Crust Fluid Systems and GEMOC, Department of Earth and Planetary Sciences, Macquarie University, North Ryde, NSW 2109, Australia; Center for Microscopy, Characterisation and Analysis, the University of Western Australia, Perth 6009, Australia
| | - William L Griffin
- ARC Centre of Excellence for Core to Crust Fluid Systems and GEMOC, Department of Earth and Planetary Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Timothy D Murphy
- ARC Centre of Excellence for Core to Crust Fluid Systems and GEMOC, Department of Earth and Planetary Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Andrei A Shiryaev
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Moscow 119071, Russia
| | - Liwu Li
- Key Laboratory of Gas Geochemistry, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | | | - Mikhail D Tomshin
- Diamond and Precious Metal Geology Institute, SB RAS, Yakutsk 677007, Russia
| | - Suzanne Y O'Reilly
- ARC Centre of Excellence for Core to Crust Fluid Systems and GEMOC, Department of Earth and Planetary Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|
14
|
Subduction hides high-pressure sources of energy that may feed the deep subsurface biosphere. Nat Commun 2020; 11:3880. [PMID: 32759942 PMCID: PMC7406650 DOI: 10.1038/s41467-020-17342-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/25/2020] [Indexed: 11/10/2022] Open
Abstract
Geological sources of H2 and abiotic CH4 have had a critical role in the evolution of our planet and the development of life and sustainability of the deep subsurface biosphere. Yet the origins of these sources are largely unconstrained. Hydration of mantle rocks, or serpentinization, is widely recognized to produce H2 and favour the abiotic genesis of CH4 in shallow settings. However, deeper sources of H2 and abiotic CH4 are missing from current models, which mainly invoke more oxidized fluids at convergent margins. Here we combine data from exhumed subduction zone high-pressure rocks and thermodynamic modelling to show that deep serpentinization (40–80 km) generates significant amounts of H2 and abiotic CH4, as well as H2S and NH3. Our results suggest that subduction, worldwide, hosts large sources of deep H2 and abiotic CH4, potentially providing energy to the overlying subsurface biosphere in the forearc regions of convergent margins. Geological sources of H2 and abiotic CH4 have had a critical role in the evolution of life and sustainability of the deep subsurface biosphere, yet the origins of these sources remain largely unconstrained. Here the authors show that deep serpentinization (40–80 km) during subduction generates significant amounts of H2 and abiotic CH4, potentially providing energy to the overlying subsurface biosphere.
Collapse
|
15
|
Feedback between high-pressure genesis of abiotic methane and strain localization in subducted carbonate rocks. Sci Rep 2020; 10:9848. [PMID: 32555339 PMCID: PMC7300122 DOI: 10.1038/s41598-020-66640-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/08/2020] [Indexed: 11/08/2022] Open
Abstract
Fluid-rock interactions exert key control over rock rheology and strain localization. Redox may significantly affect the reaction pathways and, thereby, the mechanical properties of the rock. This effect may become critical in volatile-rich, redox sensitive rocks such as carbonate-rich lithologies, the breakdown of which can significantly modify the net volume change of fluid-mediated reactions. Subduction focus the largest recycling of crustal carbonates and the most intense seismic activity on Earth. Nevertheless, the feedbacks between deep carbon mobilization and deformation remain poorly investigated. We present quantitative microstructural results from natural samples and thermodynamic modeling indicating that percolation of reducing fluids exerts strong control on the mobilization of carbon and on strain localization in subducted carbonate rocks. Fluid-mediated carbonate reduction progressed from discrete domains unaffected by ductile deformation into localized shear zones deforming via diffusion creep, dissolution-precipitation creep and grain boundary sliding. Grain-size reduction and creep cavitation along localized shear zones enhanced fluid-carbonate interactions and fluid channelization. These results indicate that reduction of carbonate rocks can exert an important positive feedback on strain localization and fluid channelization, with potential implications on seismic activity and transport of deep hydrocarbon-bearing fluids.
Collapse
|
16
|
Matjuschkin V, Woodland AB, Frost DJ, Yaxley GM. Reduced methane-bearing fluids as a source for diamond. Sci Rep 2020; 10:6961. [PMID: 32332772 PMCID: PMC7181848 DOI: 10.1038/s41598-020-63518-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/31/2020] [Indexed: 11/09/2022] Open
Abstract
Diamond formation in the Earth has been extensively discussed in recent years on the basis of geochemical analysis of natural materials, high-pressure experimental studies, or theoretical aspects. Here, we demonstrate experimentally for the first time, the spontaneous crystallization of diamond from CH4-rich fluids at pressure, temperature and redox conditions approximating those of the deeper parts of the cratonic lithospheric mantle (5–7 GPa) without using diamond seed crystals or carbides. In these experiments the fluid phase is nearly pure methane, even though the oxygen fugacity was significantly above metal saturation. We propose several previously unidentified mechanisms that may promote diamond formation under such conditions and which may also have implications for the origin of sublithospheric diamonds. These include the hydroxylation of silicate minerals like olivine and pyroxene, H2 incorporation into these phases and the “etching” of graphite by H2 and CH4 and reprecipitation as diamond. This study also serves as a demonstration of our new high-pressure experimental technique for obtaining reduced fluids, which is not only relevant for diamond synthesis, but also for investigating the metasomatic origins of diamond in the upper mantle, which has further implications for the deep carbon cycle.
Collapse
Affiliation(s)
- Vladimir Matjuschkin
- Institut für Geowissenschaften, Goethe-Universität Frankfurt am Main, Altenhöferallee 1, 60438, Frankfurt am Main, Germany.
| | - Alan B Woodland
- Institut für Geowissenschaften, Goethe-Universität Frankfurt am Main, Altenhöferallee 1, 60438, Frankfurt am Main, Germany
| | - Daniel J Frost
- Bayerisches Geoinstitut, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Gregory M Yaxley
- Research School of Earth Sciences, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
17
|
Sverjensky D, Daniel I, Brovarone AV. The Changing Character of Carbon in Fluids with Pressure. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/9781119508229.ch22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Occurrence Forms, Composition, Distribution, Origin and Potential Hazard of Natural Hydrogen–Hydrocarbon Gases in Ore Deposits of the Khibiny and Lovozero Massifs: A Review. MINERALS 2019. [DOI: 10.3390/min9090535] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Khibiny and Lovozero massifs—the world’s largest alkaline massifs—contain deposits with unique reserves of phosphorus and rare metals, respectively. The reduced gas content in the rocks and, especially, the ore deposits of these massifs is unusually high for igneous complexes, thus representing both geochemical and practical interests. There are three morphological types (or occurrence forms) of the gas phase in these deposits: occluded (predominantly in vacuoles of micro-inclusions in minerals), diffusely dispersed, and free. All three morphological types have the same qualitative chemical gas composition. Methane is the main component, and molecular hydrogen (which sometimes dominates) and ethane are the subordinate constituents. Heavier methane homologs (up to and including pentanes), alkenes, helium, and rarely carbon oxide and dioxide are present in minor or trace amounts. All three morphological types of gases are irregularly distributed in space to various degrees. Free gases also show a release intensity that varies in time. The majority of researchers recognize that the origin of these gases is abiogenic and mostly related to the formation of the massifs and deposits. However, the relative time and mechanism of their generation are still debated. Emissions of combustible and explosive hydrogen–hydrocarbon gases pose hazards during the underground mining of ore deposits. Therefore, the distinctive features of gas-bearing capacity are an essential part of the mining and geological characterization of such deposits because they provide a basis for establishing and implementing special measures of the gas regime during mining operations.
Collapse
|
19
|
Occurrence of Graphite-Like Carbon in Podiform Chromitites of Greece and Its Genetic Significance. MINERALS 2019. [DOI: 10.3390/min9030152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of post-magmatic processes in the composition of chromitites hosted in ophiolite complexes, the origin of super-reduced phases, and factors controlling the carbon recycling in a supra-subduction zone environment are still unclear. The present contribution compiles the first scanning electron microscope/energy-dispersive (SEM/EDS) data on graphite-like amorphous carbon, with geochemical and mineral chemistry data, from chromitites of the Skyros, Othrys, Pindos, and Veria ophiolites (Greece). The aim of this study was the delineation of potential relationships between the modified composition of chromite and the role of redox conditions, during the long-term evolution of chromitites in a supra-subduction zone environment. Chromitites are characterized by a strong brittle (cataclastic) texture and the presence of phases indicative of super-reducing phases, such as Fe–Ni–Cr-alloys, awaruite (Ni3Fe), and heazlewoodite (Ni3S2). Carbon-bearing assemblages are better revealed on Au-coated unpolished sections. Graphite occurs in association with hydrous silicates (chlorite, serpentine) and Fe2+-chromite, as inclusions in chromite, filling cracks within chromite, or as nodule-like graphite aggregates. X-ray spectra of graphite–silicate aggregates showed the presence of C, Si, Mg, Al, O in variable proportions, and occasionally K and Ca. The extremely low fO2 during serpentinization facilitated the occurrence of methane in microfractures of chromitites, the precipitation of super-reducing phases (metal alloys, awaruite, heazlewoodite), and graphite. In addition, although the origin of Fe–Cu–Ni-sulfides in ultramafic parts of ophiolite complexes is still unclear, in the case of the Othrys chromitites, potential reduction-induced sulfide and/or carbon saturation may drive formation of sulfide ores and graphite-bearing chromitites. The presented data on chromitites covering a wide range in platinum-group element (PGE) content, from less than 100 ppb in the Othrys to 25 ppm ΣPGE in the Veria ores, showed similarity in the abundance of graphite-like carbon. The lack of any relationship between graphite (and probably methane) and the PGE content may be related to the occurrence of the (Ru–Os–Ir) minerals in chromitites, which occur mostly as oxides/hydroxides, and to lesser amounts of laurite, with pure Ru instead activating the stable CO2 molecule and reducing it to methane (experimental data from literature).
Collapse
|
20
|
Silicate dissolution boosts the CO 2 concentrations in subduction fluids. Nat Commun 2017; 8:616. [PMID: 28931819 PMCID: PMC5606994 DOI: 10.1038/s41467-017-00562-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 07/05/2017] [Indexed: 11/08/2022] Open
Abstract
Estimates of dissolved CO2 in subduction-zone fluids are based on thermodynamic models, relying on a very sparse experimental data base. Here, we present experimental data at 1-3 GPa, 800 °C, and ∆FMQ ≈ -0.5 for the volatiles and solute contents of graphite-saturated fluids in the systems COH, SiO2-COH ( + quartz/coesite) and MgO-SiO2-COH ( + forsterite and enstatite). The CO2 content of fluids interacting with silicates exceeds the amounts measured in the pure COH system by up to 30 mol%, as a consequence of a decrease in water activity probably associated with the formation of organic complexes containing Si-O-C and Si-O-Mg bonds. The interaction of deep aqueous fluids with silicates is a novel mechanism for controlling the composition of subduction COH fluids, promoting the deep CO2 transfer from the slab-mantle interface to the overlying mantle wedge, in particular where fluids are stable over melts.Current estimates of dissolved CO2 in subduction-zone fluids based on thermodynamic models rely on a very sparse experimental data base. Here, the authors show that experimental graphite-saturated COH fluids interacting with silicates at 1-3 GPa and 800 °C display unpredictably high CO2 contents.
Collapse
|
21
|
Immiscible hydrocarbon fluids in the deep carbon cycle. Nat Commun 2017; 8:15798. [PMID: 28604740 PMCID: PMC5472781 DOI: 10.1038/ncomms15798] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 05/08/2017] [Indexed: 02/06/2023] Open
Abstract
The cycling of carbon between Earth's surface and interior governs the long-term habitability of the planet. But how carbon migrates in the deep Earth is not well understood. In particular, the potential role of hydrocarbon fluids in the deep carbon cycle has long been controversial. Here we show that immiscible isobutane forms in situ from partial transformation of aqueous sodium acetate at 300 °C and 2.4–3.5 GPa and that over a broader range of pressures and temperatures theoretical predictions indicate that high pressure strongly opposes decomposition of isobutane, which may possibly coexist in equilibrium with silicate mineral assemblages. These results complement recent experimental evidence for immiscible methane-rich fluids at 600–700 °C and 1.5–2.5 GPa and the discovery of methane-rich fluid inclusions in metasomatized ophicarbonates at peak metamorphic conditions. Consequently, a variety of immiscible hydrocarbon fluids might facilitate carbon transfer in the deep carbon cycle. Carbon migration in the deep Earth is still not fully understood. Here, the authors show that immiscible isobutane forms in situ from transformation of aqueous sodium acetate at 300 °C and 2.4–3.5 GPa, indicating that hydrocarbon fluids may play a major role in carbon transfer in the deep carbon cycle.
Collapse
|