1
|
Gebreegziabher Amare M, Westrick NM, Keller NP, Kabbage M. The conservation of IAP-like proteins in fungi, and their potential role in fungal programmed cell death. Fungal Genet Biol 2022; 162:103730. [PMID: 35998750 DOI: 10.1016/j.fgb.2022.103730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
Programmed cell death (PCD) is a tightly regulated process which is required for survival and proper development of all cellular life. Despite this ubiquity, the precise molecular underpinnings of PCD have been primarily characterized in animals. Attempts to expand our understanding of this process in fungi have proven difficult as core regulators of animal PCD are apparently absent in fungal genomes, with the notable exception of a class of proteins referred to as inhibitors of apoptosis proteins (IAPs). These proteins are characterized by the conservation of a distinct Baculovirus IAP Repeat (BIR) domain and animal IAPs are known to regulate a number of processes, including cellular death, development, organogenesis, immune system maturation, host-pathogen interactions and more. IAP homologs are broadly conserved throughout the fungal kingdom, but our understanding of both their mechanism and role in fungal development/virulence is still unclear. In this review, we provide a broad and comparative overview of IAP function across taxa, with a particular focus on fungal processes regulated by IAPs. Furthermore, their putative modes of action in the absence of canonical interactors will be discussed.
Collapse
Affiliation(s)
| | - Nathaniel M Westrick
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA
| | - Nancy P Keller
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
2
|
Tuan VP, Yahara K, Dung HDQ, Binh TT, Huu Tung P, Tri TD, Thuan NPM, Khien VV, Trang TTH, Phuc BH, Tshibangu-Kabamba E, Matsumoto T, Akada J, Suzuki R, Okimoto T, Kodama M, Murakami K, Yano H, Fukuyo M, Takahashi N, Kato M, Nishiumi S, Azuma T, Ogura Y, Hayashi T, Toyoda A, Kobayashi I, Yamaoka Y. Genome-wide association study of gastric cancer- and duodenal ulcer-derived Helicobacter pylori strains reveals discriminatory genetic variations and novel oncoprotein candidates. Microb Genom 2021; 7. [PMID: 34846284 PMCID: PMC8743543 DOI: 10.1099/mgen.0.000680] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genome-wide association studies (GWASs) can reveal genetic variations associated with a phenotype in the absence of any hypothesis of candidate genes. The problem of false-positive sites linked with the responsible site might be bypassed in bacteria with a high homologous recombination rate, such as Helicobacter pylori, which causes gastric cancer. We conducted a small-sample GWAS (125 gastric cancer cases and 115 controls) followed by prediction of gastric cancer and control (duodenal ulcer) H. pylori strains. We identified 11 single nucleotide polymorphisms (eight amino acid changes) and three DNA motifs that, combined, allowed effective disease discrimination. They were often informative of the underlying molecular mechanisms, such as electric charge alteration at the ligand-binding pocket, alteration in subunit interaction, and mode-switching of DNA methylation. We also identified three novel virulence factors/oncoprotein candidates. These results provide both defined targets for further informatic and experimental analyses to gain insights into gastric cancer pathogenesis and a basis for identifying a set of biomarkers for distinguishing these H. pylori-related diseases.
Collapse
Affiliation(s)
- Vo Phuoc Tuan
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh, Vietnam
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Koji Yahara
- Antimicrobial Resistance ResearchCenter, National Institute of Infectious Diseases, Tokyo, Japan
- *Correspondence: Koji Yahara,
| | | | - Tran Thanh Binh
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh, Vietnam
| | - Pham Huu Tung
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh, Vietnam
| | - Tran Dinh Tri
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh, Vietnam
| | | | - Vu Van Khien
- Department of GI Endoscopy, 108 Central Hospital, Hanoi, Vietnam
| | | | - Bui Hoang Phuc
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
- Department of Microbiology, Cho Ray Hospital, Ho Chi Minh, Vietnam
| | | | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Junko Akada
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Rumiko Suzuki
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Tadayoshi Okimoto
- Department of Gastroenterology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Masaaki Kodama
- Department of Gastroenterology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Hirokazu Yano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Masaki Fukuyo
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Department of Molecular Oncology, Chiba University, Chiba, Japan
| | - Noriko Takahashi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan
| | - Mototsugu Kato
- Division of Endoscopy, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
- Department of Gastroenterology, National Hospital Organization Hakodate Hospital, Hakodate, Hokkaido, Japan
| | - Shin Nishiumi
- Department of Gastroenterology, Graduate School of Medicine, Kobe University, Chuou-ku, Kobe, Hyogo, Japan
- Department of Omics Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Takashi Azuma
- Department of Gastroenterology, Graduate School of Medicine, Kobe University, Chuou-ku, Kobe, Hyogo, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Atsushi Toyoda
- Advanced GenomicsCenter, National Institute of Genetics, Shizuoka, Japan
| | - Ichizo Kobayashi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan
- Research Center for Micro-Nano Technology, Hosei University, Tokyo, Japan
- *Correspondence: Ichizo Kobayashi, ;
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
- Department of Medicine, gastroenterology section, Baylor College of Medicine, Houston TX, USA
- *Correspondence: Yoshio Yamaoka,
| |
Collapse
|
3
|
Tušar L, Usenik A, Turk B, Turk D. Mechanisms Applied by Protein Inhibitors to Inhibit Cysteine Proteases. Int J Mol Sci 2021; 22:997. [PMID: 33498210 PMCID: PMC7863939 DOI: 10.3390/ijms22030997] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023] Open
Abstract
Protein inhibitors of proteases are an important tool of nature to regulate and control proteolysis in living organisms under physiological and pathological conditions. In this review, we analyzed the mechanisms of inhibition of cysteine proteases on the basis of structural information and compiled kinetic data. The gathered structural data indicate that the protein fold is not a major obstacle for the evolution of a protease inhibitor. It appears that nature can convert almost any starting fold into an inhibitor of a protease. In addition, there appears to be no general rule governing the inhibitory mechanism. The structural data make it clear that the "lock and key" mechanism is a historical concept with limited validity. However, the analysis suggests that the shape of the active site cleft of proteases imposes some restraints. When the S1 binding site is shaped as a pocket buried in the structure of protease, inhibitors can apply substrate-like binding mechanisms. In contrast, when the S1 binding site is in part exposed to solvent, the substrate-like inhibition cannot be employed. It appears that all proteases, with the exception of papain-like proteases, belong to the first group of proteases. Finally, we show a number of examples and provide hints on how to engineer protein inhibitors.
Collapse
Affiliation(s)
- Livija Tušar
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Aleksandra Usenik
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Faculty of Chemistry, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
- Institute of Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Bol’shaya Pirogovskaya Ulitsa, 19c1, 119146 Moscow, Russia
| | - Dušan Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Kulkarni M, Stolp ZD, Hardwick JM. Targeting intrinsic cell death pathways to control fungal pathogens. Biochem Pharmacol 2019; 162:71-78. [PMID: 30660496 DOI: 10.1016/j.bcp.2019.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023]
Abstract
Fungal pathogens pose an increasing threat to public health. Limited clinical drug regimens and emerging drug-resistant isolates challenge infection control. The global burden of human fungal pathogens is estimated at 1 billion infections and 1.5 million deaths annually. In addition, plant fungal pathogens increasingly threaten global food resources. Novel strategies are needed to combat emerging fungal diseases and pan-resistant fungi. An untapped mechanistically novel approach is to pharmacologically activate the intrinsic cell death pathways encoded by pathogenic fungi. This strategy is analogous to new anti-cancer therapeutics now entering the clinic. Here we summarize the best understood examples of cell death mechanisms encoded by pathogenic fungi, contrast these to mammalian cell death pathways, and highlight the gaps in knowledge towards identifying potential death effectors as druggable targets.
Collapse
Affiliation(s)
- Madhura Kulkarni
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, USA
| | - Zachary D Stolp
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, USA
| | - J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, USA.
| |
Collapse
|
5
|
Tang HM, Fung MC, Tang HL. Detecting Anastasis In Vivo by CaspaseTracker Biosensor. J Vis Exp 2018. [PMID: 29443051 DOI: 10.3791/54107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Anastasis (Greek for "rising to life") is a recently discovered cell recovery phenomenon whereby dying cells can reverse late-stage cell death processes that are generally assumed to be intrinsically irreversible. Promoting anastasis could in principle rescue or preserve injured cells that are difficult to replace such as cardiomyocytes or neurons, thereby facilitating tissue recovery. Conversely, suppressing anastasis in cancer cells, undergoing apoptosis after anti-cancer therapies, may ensure cancer cell death and reduce the chances of recurrence. However, these studies have been hampered by the lack of tools for tracking the fate of cells that undergo anastasis in live animals. The challenge is to identify the cells that have reversed the cell death process despite their morphologically normal appearance after recovery. To overcome this difficulty, we have developed Drosophila and mammalian CaspaseTracker biosensor systems that can identify and permanently track the anastatic cells in vitro or in vivo. Here, we present in vivo protocols for the generation and use of the CaspaseTracker dual biosensor system to detect and track anastasis in Drosophila melanogaster after transient exposure to cell death stimuli. While conventional biosensors and protocols can label cells actively undergoing apoptotic cell death, the CaspaseTracker biosensor can permanently label cells that have recovered after caspase activation - a hallmark of late-stage apoptosis, and simultaneously identify active apoptotic processes. This biosensor can also track the recovery of the cells that attempted other forms of cell death that directly or indirectly involved caspase activity. Therefore, this protocol enables us to continuously track the fate of these cells and their progeny, facilitating future studies of the biological functions, molecular mechanisms, physiological and pathological consequences, and therapeutic implications of anastasis. We also discuss the appropriate controls to distinguish cells that undergo anastasis from those that display non-apoptotic caspase activity in vivo.
Collapse
Affiliation(s)
- Ho Man Tang
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine; School of Life Sciences, Chinese University of Hong Kong;
| | - Ming Chiu Fung
- School of Life Sciences, Chinese University of Hong Kong;
| | - Ho Lam Tang
- Department of Neurosurgery, Johns Hopkins University School of Medicine;
| |
Collapse
|
6
|
Ma L, Wang Q, Yuan M, Zou T, Yin P, Wang S. Xanthomonas TAL effectors hijack host basal transcription factor IIA α and γ subunits for invasion. Biochem Biophys Res Commun 2018; 496:608-613. [PMID: 29331375 DOI: 10.1016/j.bbrc.2018.01.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 12/20/2022]
Abstract
The Xanthomonas genus includes Gram-negative plant-pathogenic bacteria, which infect a broad range of crops and wild plant species, cause symptoms with leaf blights, streaks, spots, stripes, necrosis, wilt, cankers and gummosis on leaves, stems and fruits in a wide variety of plants via injecting their effector proteins into the host cell during infection. Among these virulent effectors, transcription activator-like effectors (TALEs) interact with the γ subunit of host transcription factor IIA (TFIIAγ) to activate the transcription of host disease susceptibility genes. Functional TFIIA is a ternary complex comprising α, β and γ subunits. However, whether TALEs recruit TFIIAα, TFIIAβ, or both remains unknown. The underlying molecular mechanisms by which TALEs mediate host susceptibility gene activation require full elucidation. Here, we show that TALEs interact with the α+γ binary subcomplex but not the α+β+γ ternary complex of rice TFIIA (holo-OsTFIIA). The transcription factor binding (TFB) regions of TALEs, which are highly conserved in Xanthomonas species, have a dominant role in these interactions. Furthermore, the interaction between TALEs and the α+γ complex exhibits robust DNA binding activity in vitro. These results collectively demonstrate that TALE-carrying pathogens hijack the host basal transcription factors TFIIAα and TFIIAγ, but not TFIIAβ, to enhance host susceptibility during pathogen infection. The uncovered mechanism widens new insights on host-microbe interaction and provide an applicable strategy to breed high-resistance crop varieties.
Collapse
Affiliation(s)
- Ling Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Tingting Zou
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Wang Z, Xia X, Yang X, Zhang X, Liu Y, Wu D, Fang Y, Liu Y, Xu J, Qiu Y, Zhou X. A picorna-like virus suppresses the N-end rule pathway to inhibit apoptosis. eLife 2017; 6:30590. [PMID: 29231806 PMCID: PMC5739542 DOI: 10.7554/elife.30590] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/11/2017] [Indexed: 12/21/2022] Open
Abstract
The N-end rule pathway is an evolutionarily conserved proteolytic system that degrades proteins containing N-terminal degradation signals called N-degrons, and has emerged as a key regulator of various processes. Viruses manipulate diverse host pathways to facilitate viral replication and evade antiviral defenses. However, it remains unclear if viral infection has any impact on the N-end rule pathway. Here, using a picorna-like virus as a model, we found that viral infection promoted the accumulation of caspase-cleaved Drosophila inhibitor of apoptosis 1 (DIAP1) by inducing the degradation of N-terminal amidohydrolase 1 (NTAN1), a key N-end rule component that identifies N-degron to initiate the process. The virus-induced NTAN1 degradation is independent of polyubiquitylation but dependent on proteasome. Furthermore, the virus-induced N-end rule pathway suppression inhibits apoptosis and benefits viral replication. Thus, our findings demonstrate that a virus can suppress the N-end rule pathway, and uncover a new mechanism for virus to evade apoptosis.
Collapse
Affiliation(s)
- Zhaowei Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoling Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xueli Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xueyi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yongxiang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Di Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yuan Fang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yujie Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jiuyue Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yang Qiu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xi Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
8
|
Hollville E, Deshmukh M. Physiological functions of non-apoptotic caspase activity in the nervous system. Semin Cell Dev Biol 2017; 82:127-136. [PMID: 29199140 DOI: 10.1016/j.semcdb.2017.11.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022]
Abstract
Caspases are cysteine proteases that play important and well-defined roles in apoptosis and inflammation. Increasing evidence point to alternative functions of caspases where restricted and localized caspase activation within neurons allows for a variety of non-apoptotic and non-inflammatory processes required for brain development and function. In this review, we highlight sublethal caspase functions in axon and dendrite pruning, neurite outgrowth and dendrite branches formation, as well as in long-term depression and synaptic plasticity. Importantly, as non-apoptotic activity of caspases is often confined in space and time in neurons, we also discuss the mechanisms that restrict caspase activity in order to maintain the neuronal networks in a healthy and functional state.
Collapse
Affiliation(s)
| | - Mohanish Deshmukh
- Neuroscience Center, UNC Chapel Hill, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, UNC Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
Transcriptome analysis of Spodoptera frugiperda Sf9 cells reveals putative apoptosis-related genes and a preliminary apoptosis mechanism induced by azadirachtin. Sci Rep 2017; 7:13231. [PMID: 29038528 PMCID: PMC5643380 DOI: 10.1038/s41598-017-12713-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/18/2017] [Indexed: 12/20/2022] Open
Abstract
As an important botanical pesticide, azadirachtin demonstrates broad insecticidal activity against many agricultural pests. The results of a previous study indicated the toxicity and apoptosis induction of azadirachtin in Spodoptera frugiperda Sf9 cells. However, the lack of genomic data has hindered a deeper investigation of apoptosis in Sf9 cells at a molecular level. In the present study, the complete transcriptome data for Sf9 cell line was accomplished using Illumina sequencing technology, and 97 putative apoptosis-related genes were identified through BLAST and KEGG orthologue annotations. Fragments of potential candidate apoptosis-related genes were cloned, and the mRNA expression patterns of ten identified genes regulated by azadirachtin were examined using qRT-PCR. Furthermore, Western blot analysis showed that six putative apoptosis-related proteins were upregulated after being treated with azadirachtin while the protein Bcl-2 were downregulated. These data suggested that both intrinsic and extrinsic apoptotic signal pathways comprising the identified potential apoptosis-related genes were potentially active in S. frugiperda. In addition, the preliminary results revealed that caspase-dependent or caspase-independent apoptotic pathways could function in azadirachtin-induced apoptosis in Sf9 cells.
Collapse
|
10
|
Tang HL, Tang HM, Fung MC, Hardwick JM. In Vivo Biosensor Tracks Non-apoptotic Caspase Activity in Drosophila. J Vis Exp 2016. [PMID: 27929458 DOI: 10.3791/53992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Caspases are the key mediators of apoptotic cell death via their proteolytic activity. When caspases are activated in cells to levels detectable by available technologies, apoptosis is generally assumed to occur shortly thereafter. Caspases can cleave many functional and structural components to cause rapid and complete cell destruction within a few minutes. However, accumulating evidence indicates that in normal healthy cells the same caspases have other functions, presumably at lower enzymatic levels. Studies of non-apoptotic caspase activity have been hampered by difficulties with detecting low levels of caspase activity and with tracking ultimate cell fate in vivo. Here, we illustrate the use of an ultrasensitive caspase reporter, CaspaseTracker, which permanently labels cells that have experienced caspase activity in whole animals. This in vivo dual color CaspaseTracker biosensor for Drosophila melanogaster transiently expresses red fluorescent protein (RFP) to indicate recent or on-going caspase activity, and permanently expresses green fluorescent protein (GFP) in cells that have experienced caspase activity at any time in the past yet did not die. Importantly, this caspase-dependent in vivo biosensor readily reveals the presence of non-apoptotic caspase activity in the tissues of organ systems throughout the adult fly. This is demonstrated using whole mount dissections of individual flies to detect biosensor activity in healthy cells throughout the brain, gut, malpighian tubules, cardia, ovary ducts and other tissues. CaspaseTracker detects non-apoptotic caspase activity in long-lived cells, as biosensor activity is detected in adult neurons and in other tissues at least 10 days after caspase activation. This biosensor serves as an important tool to uncover the roles and molecular mechanisms of non-apoptotic caspase activity in live animals.
Collapse
Affiliation(s)
- Ho Lam Tang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health
| | - Ho Man Tang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health
| | - Ming Chiu Fung
- School of Life Sciences, Chinese University of Hong Kong
| | - J Marie Hardwick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health;
| |
Collapse
|
11
|
Abstract
A new bioinformatics tool predicts natively disordered protein control elements that function in cis, opening the door to more systematic studies of this biomedically important class of protein modules.
Collapse
Affiliation(s)
- Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | - Manjeet Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
12
|
Wu Y, Lindblad JL, Garnett J, Kamber Kaya HE, Xu D, Zhao Y, Flores ER, Hardy J, Bergmann A. Genetic characterization of two gain-of-function alleles of the effector caspase DrICE in Drosophila. Cell Death Differ 2015; 23:723-32. [PMID: 26542461 DOI: 10.1038/cdd.2015.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 09/14/2015] [Accepted: 09/29/2015] [Indexed: 12/25/2022] Open
Abstract
Caspases are the executioners of apoptosis. Although much is known about their physiological roles and structures, detailed analyses of missense mutations of caspases are lacking. As mutations within caspases are identified in various human diseases, the study of caspase mutants will help to elucidate how caspases interact with other components of the apoptosis pathway and how they may contribute to disease. DrICE is the major effector caspase in Drosophila required for developmental and stress-induced cell death. Here, we report the isolation and characterization of six de novo drICE mutants, all of which carry point mutations affecting amino acids conserved among caspases in various species. These six mutants behave as recessive loss-of-function mutants in a homozygous condition. Surprisingly, however, two of the newly isolated drICE alleles are gain-of-function mutants in a heterozygous condition, although they are loss-of-function mutants homozygously. Interestingly, they only behave as gain-of-function mutants in the presence of an apoptotic signal. These two alleles carry missense mutations affecting conserved amino acids in close proximity to the catalytic cysteine residue. This is the first time that viable gain-of-function alleles of caspases are described in any intact organism and provides a significant exception to the expectation that mutations of conserved amino acids always abolish the pro-apoptotic activity of caspases. We discuss models about how these mutations cause the gain-of-function character of these alleles.
Collapse
Affiliation(s)
- Y Wu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J L Lindblad
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - J Garnett
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H E Kamber Kaya
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - D Xu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Y Zhao
- University of Massachusetts Amherst, Amherst, MA, USA
| | - E R Flores
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Hardy
- University of Massachusetts Amherst, Amherst, MA, USA
| | - A Bergmann
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
13
|
Baculovirus Inhibitor-of-Apoptosis Op-IAP3 Blocks Apoptosis by Interaction with and Stabilization of a Host Insect Cellular IAP. J Virol 2015; 90:533-44. [PMID: 26491164 DOI: 10.1128/jvi.02320-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/14/2015] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Baculovirus-encoded inhibitor of apoptosis (IAP) proteins likely evolved from their host cell IAP homologs, which function as critical regulators of cell death. Despite their striking relatedness to cellular IAPs, including the conservation of two baculovirus IAP repeat (BIR) domains and a C-terminal RING, viral IAPs use an unresolved mechanism to suppress apoptosis in insects. To define this mechanism, we investigated Op-IAP3, the prototypical IAP from baculovirus OpMNPV. We found that Op-IAP3 forms a stable complex with SfIAP, the native, short-lived IAP of host insect Spodoptera frugiperda. Long-lived Op-IAP3 prevented virus-induced SfIAP degradation, which normally causes caspase activation and apoptosis. In uninfected cells, Op-IAP3 also increased SfIAP steady-state levels and extended SfIAP's half-life. Conversely, SfIAP stabilization was lost or reversed in the presence of mutated Op-IAP3 that was engineered for reduced stability. Thus, Op-IAP3 stabilizes SfIAP and preserves its antiapoptotic function. In contrast to SfIAP, Op-IAP3 failed to bind or inhibit native Spodoptera caspases. Furthermore, BIR mutations that abrogate binding of well-conserved IAP antagonists did not affect Op-IAP3's capacity to prevent virus-induced apoptosis. Remarkably, Op-IAP3 also failed to prevent apoptosis when endogenous SfIAP was ablated by RNA silencing. Thus, Op-IAP3 requires SfIAP as a cofactor. Our findings suggest a new model wherein Op-IAP3 interacts directly with SfIAP to maintain its intracellular level, thereby suppressing virus-induced apoptosis indirectly. Consistent with this model, Op-IAP3 has evolved an intrinsic stability that may serve to repress signal-induced turnover and autoubiquitination when bound to its targeted cellular IAP. IMPORTANCE The IAPs were first discovered in baculoviruses because of their potency for preventing apoptosis. However, the antiapoptotic mechanism of viral IAPs in host insects has been elusive. We show here that the prototypical viral IAP, Op-IAP3, blocks apoptosis indirectly by associating with unstable, autoubiquitinating host IAP in such a way that cellular IAP levels and antiapoptotic activities are maintained. This mechanism explains Op-IAP3's requirement for native cellular IAP as a cofactor and the dispensability of caspase inhibition. Viral IAP-mediated preservation of the host IAP homolog capitalizes on normal IAP-IAP interactions and is likely the result of viral IAP evolution in which degron-mediated destabilization and ubiquitination potential have been reduced. This mechanism illustrates another novel means by which DNA viruses incorporate host death regulators that are modified for resistance to host regulatory controls for the purpose of suppressing host cell apoptosis and acquiring replication advantages.
Collapse
|
14
|
Abstract
Inhibitors of apoptosis (IAPs) family of genes encode baculovirus IAP-repeat domain-containing proteins with antiapoptotic function. These proteins also contain RING or UBC domains and act by binding to major proapoptotic factors and ubiquitylating them. High levels of IAPs inhibit caspase-mediated apoptosis. For these cells to undergo apoptosis, IAP function must be neutralized by IAP-antagonists. Mammalian IAP knockouts do not exhibit obvious developmental phenotypes, but the cells are more sensitized to apoptosis in response to injury. Loss of the mammalian IAP-antagonist ARTS results in reduced stem cell apoptosis. In addition to the antiapoptotic properties, IAPs regulate the innate immune response, and the loss of IAP function in humans is associated with immunodeficiency. The roles of IAPs in Drosophila apoptosis regulation are more apparent, where the loss of IAP1, or the expression of IAP-antagonists in Drosophila cells, is sufficient to trigger apoptosis. In this organism, apoptosis as a fate is conferred by the transcriptional induction of the IAP-antagonists. Many signaling pathways often converge on shared enhancer regions of IAP-antagonists. Cell death sensitivity is further regulated by posttranscriptional mechanisms, including those regulated by kinases, miRs, and ubiquitin ligases. These mechanisms are employed to eliminate damaged or virus-infected cells, limit neuroblast (neural stem cell) numbers, generate neuronal diversity, and sculpt tissue morphogenesis.
Collapse
Affiliation(s)
- Deepika Vasudevan
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA.
| |
Collapse
|
15
|
Abstract
Apoptosis is an evolutionarily-conserved process of autonomous cell death. The molecular switch mechanism underlying the fate decision of apoptosis in mammalian cells has been intensively studied by mathematical modeling. In contrast, the apoptotic switch in invertebrates, with highly conserved signaling proteins and pathway, remains poorly understood mechanistically and calls for theoretical elucidation. In this study, we develop a mathematical model of the apoptosis pathway in Drosophila and compare the switch mechanism to that in mammals. Enumeration of the elementary reactions for the model demonstrates that the molecular interactions among the signaling components are considerably different from their mammalian counterparts. A notable distinction in network organization is that the direct positive feedback from the effector caspase (EC) to the initiator caspase in mammalian pathway is replaced by a double-negative regulation in Drosophila. The model is calibrated by experimental input-output relationship and the simulated trajectories exhibit all-or-none bimodal behavior. Bifurcation diagrams confirm that the model of Drosophila apoptotic switch possesses bistability, a well-recognized feature for an apoptosis system. Since the apoptotic protease activating factor-1 (APAF1) induced irreversible activation of caspase is an essential and beneficial property for the mammalian apoptotic switch, we perform analysis of the bistable caspase activation with respect to the input of DARK protein, the Drosophila homolog of APAF1. Interestingly, this bistable behavior in Drosophila is predicted to be reversible. Further analysis suggests that the mechanism underlying the systems property of reversibility is the double-negative feedback from the EC to the initiator caspase. Using theoretical modeling, our study proposes plausible evolution of the switch mechanism for apoptosis between organisms.
Collapse
Affiliation(s)
- Riccardo Ziraldo
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | | |
Collapse
|
16
|
In vivo CaspaseTracker biosensor system for detecting anastasis and non-apoptotic caspase activity. Sci Rep 2015; 5:9015. [PMID: 25757939 PMCID: PMC4355673 DOI: 10.1038/srep09015] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/16/2015] [Indexed: 11/17/2022] Open
Abstract
The discovery that mammalian cells can survive late-stage apoptosis challenges the general assumption that active caspases are markers of impending death. However, tools have not been available to track healthy cells that have experienced caspase activity at any time in the past. Therefore, to determine if cells in whole animals can undergo reversal of apoptosis, known as anastasis, we developed a dual color CaspaseTracker system for Drosophila to identify cells with ongoing or past caspase activity. Transient exposure of healthy females to environmental stresses such as cold shock or starvation activated the CaspaseTracker coincident with caspase activity and apoptotic morphologies in multiple cell types of developing egg chambers. Importantly, when stressed flies were returned to normal conditions, morphologically healthy egg chambers and new progeny flies were labeled by the biosensor, suggesting functional recovery from apoptotic caspase activation. In striking contrast to developing egg chambers, which lack basal caspase biosensor activation under normal conditions, many adult tissues of normal healthy flies exhibit robust caspase biosensor activity in a portion of cells, including neurons. The widespread persistence of CaspaseTracker-positivity implies that healthy cells utilize active caspases for non-apoptotic physiological functions during and after normal development.
Collapse
|
17
|
Zhang B, Xu Z, Zhang Y, Shao X, Xu X, Cheng J, Li Z. Fipronil induces apoptosis through caspase-dependent mitochondrial pathways in Drosophila S2 cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 119:81-89. [PMID: 25868821 DOI: 10.1016/j.pestbp.2015.01.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 06/04/2023]
Abstract
Fipronil is the first phenylpyrazole insecticide widely used in controlling pests, including pyrethroid, organophosphate and carbamate insecticides. It is generally accepted that fipronil elicits neurotoxicity via interactions with GABA and glutamate receptors, although alternative mechanisms have recently been proposed. This study evaluates the genotoxicity of fipronil and its likely mode of action in Drosophila S2 cells, as an in vitro model. Fipronil administrated the concentration- and time-dependent S2 cell proliferation. Intracellular biochemical assays showed that fipronil-induced S2 cell apoptosis coincided with a decrease in the mitochondrial membrane potential and an increase reactive oxygen species generation, a significant decrease of Bcl-2 and DIAP1, and a marked augmentation of Cyt c and caspase-3. Because caspase-3 is the major executioner caspase downstream of caspase-9 in Drosophila, enzyme activity assays were used to determine the activities of caspase-3 and caspase-9. Our results indicated that fipronil effectively induced apoptosis in Drosophila S2 cells through caspase-dependent mitochondrial pathways.
Collapse
Affiliation(s)
- Baoyan Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Yixi Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaogao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
18
|
Multiple mechanisms modulate distinct cellular susceptibilities toward apoptosis in the developing Drosophila eye. Dev Cell 2014; 30:48-60. [PMID: 24981611 DOI: 10.1016/j.devcel.2014.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/09/2014] [Accepted: 05/10/2014] [Indexed: 02/06/2023]
Abstract
Although apoptosis is mechanistically well understood, a comprehensive understanding of how cells modulate their susceptibility toward apoptosis in a developing tissue is lacking. Here, we reveal striking dynamics in the apoptotic susceptibilities of different cell types in the Drosophila retina over a period of only 24 hr. Mitotic cells are extremely susceptible to apoptotic signals, while postmitotic cells have developed several strategies to promote survival. For example, photoreceptor neurons accumulate the inhibitor of apoptosis, Diap1. In unspecified cells, Cullin-3-mediated degradation keeps Diap1 levels low. These cells depend on EGFR signaling for survival. As development proceeds, developmentally older photoreceptors degrade Diap1, resulting in increased apoptosis susceptibility. Finally, R8 photoreceptors have very efficient survival mechanisms independent of EGFR or Diap1. These examples illustrate how complex cellular susceptibility toward apoptosis is regulated in a developing organ. Similar complexities may regulate apoptosis susceptibilities in mammalian development, and tumor cells may take advantage of it.
Collapse
|
19
|
Denton D, Aung-Htut MT, Kumar S. Developmentally programmed cell death in Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3499-3506. [DOI: 10.1016/j.bbamcr.2013.06.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/16/2013] [Indexed: 12/24/2022]
|
20
|
Gray FLV, Murai MJ, Grembecka J, Cierpicki T. Detection of disordered regions in globular proteins using ¹³C-detected NMR. Protein Sci 2013; 21:1954-60. [PMID: 23047544 DOI: 10.1002/pro.2174] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 09/26/2012] [Accepted: 10/01/2012] [Indexed: 12/29/2022]
Abstract
Characterization of disordered regions in globular proteins constitutes a significant challenge. Here, we report an approach based on ¹³C-detected nuclear magnetic resonance experiments for the identification and assignment of disordered regions in large proteins. Using this method, we demonstrate that disordered fragments can be accurately identified in two homologs of menin, a globular protein with a molecular weight over 50 kDa. Our work provides an efficient way to characterize disordered fragments in globular proteins for structural biology applications.
Collapse
Affiliation(s)
- Felicia L V Gray
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
21
|
Berthelet J, Dubrez L. Regulation of Apoptosis by Inhibitors of Apoptosis (IAPs). Cells 2013; 2:163-87. [PMID: 24709650 PMCID: PMC3972657 DOI: 10.3390/cells2010163] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/04/2013] [Accepted: 03/05/2013] [Indexed: 01/05/2023] Open
Abstract
Abstract Inhibitors of Apoptosis (IAPs) are a family of proteins with various biological functions including regulation of innate immunity and inflammation, cell proliferation, cell migration and apoptosis. They are characterized by the presence of at least one N-terminal baculoviral IAP repeat (BIR) domain involved in protein-protein interaction. Most of them also contain a C-terminal RING domain conferring an E3-ubiquitin ligase activity. In drosophila, IAPs are essential to ensure cell survival, preventing the uncontrolled activation of the apoptotic protease caspases. In mammals, IAPs can also regulate apoptosis through controlling caspase activity and caspase-activating platform formation. Mammalian IAPs, mainly X-linked IAP (XIAP) and cellular IAPs (cIAPs) appeared to be important determinants of the response of cells to endogenous or exogenous cellular injuries, able to convert the survival signal into a cell death-inducing signal. This review highlights the role of IAP in regulating apoptosis in Drosophila and Mammals.
Collapse
Affiliation(s)
- Jean Berthelet
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR866, Dijon F-21079, France.
| | - Laurence Dubrez
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR866, Dijon F-21079, France.
| |
Collapse
|
22
|
Abstract
Yca1, the only metacaspase in Saccharomyces cerevisiae, is thought to be a clan CD cysteine protease that includes the caspase subfamily. Although yeast is a single cell eukaryote, it can undergo a cell death process reminiscent of apoptosis. Yca1 has been reported to play an important role in the regulation of such apoptotic process. However, the structure and functional mechanism of Yca1 remain largely enigmatic. In this study, we report the crystal structure of the Yca1 metacaspase at 1.7 Å resolution, confirming a caspase-like fold. In sharp contrast to canonical caspases, however, Yca1 exists as a monomer both in solution and in the crystals. Canonical caspase contains six β-strands, with strand β6 pairing up with β6 of another caspase molecule to form a homodimerization interface. In Yca1, an extra pair of antiparallel β-strands forms a continuous β-sheet with the six caspase-common β-strands, blocking potential dimerization. Yca1 was reported to undergo autocatalytic processing in yeast; overexpression in bacteria also led to autoprocessing of Yca1 into two fragments. Unexpectedly, we found that both the autocatalytic processing and the proteolytic activity of Yca1 are greatly facilitated by the presence of calcium (Ca(2+)), but not other divalent cations. Our structural and biochemical characterization identifies Yca1 as a Ca(2+)-activated cysteine protease that may cleave specific substrates during stress response in yeast.
Collapse
Affiliation(s)
- Ada Hang-Heng Wong
- Ministry of Education Protein Science Laboratory, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | | | | |
Collapse
|