1
|
Midavaine É, Moraes BC, Benitez J, Rodriguez SR, Braz JM, Kochhar NP, Eckalbar WL, Domingos AI, Pintar JE, Basbaum AI, Kashem SW. Regulatory T cell-derived enkephalin imparts pregnancy-induced analgesia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593442. [PMID: 38798460 PMCID: PMC11118376 DOI: 10.1101/2024.05.11.593442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
T cells have emerged as sex-dependent orchestrators of pain chronification but the sexually dimorphic mechanisms by which T cells control pain sensitivity is not resolved. Here, we demonstrate an influence of regulatory T cells (Tregs) on pain processing that is distinct from their canonical functions of immune regulation and tissue repair. Specifically, meningeal Tregs (mTregs) express the endogenous opioid, enkephalin, and mTreg-derived enkephalin exerts an antinociceptive action through a presynaptic opioid receptor signaling mechanism that is dispensable for immunosuppression. mTregs are both necessary and sufficient for suppressing mechanical pain sensitivity in female but not male mice. Notably, the mTreg modulation of pain thresholds depends on sex-hormones and expansion of enkephalinergic mTregs during gestation imparts a remarkable pregnancy-induced analgesia in a pre-existing, chronic, unremitting neuropathic pain model. These results uncover a fundamental sex-specific, pregnancy-pronounced, and immunologically-derived endogenous opioid circuit for nociceptive regulation with critical implications for pain biology and maternal health.
Collapse
Affiliation(s)
- Élora Midavaine
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Beatriz C. Moraes
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Jorge Benitez
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Sian R. Rodriguez
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Joao M. Braz
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Nathan P. Kochhar
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Walter L. Eckalbar
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Ana I. Domingos
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - John E. Pintar
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Allan I. Basbaum
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Sakeen W. Kashem
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Dermatology, Veterans Affairs Medical Center, San Francisco, California, USA
| |
Collapse
|
2
|
He L, Li H, Zhang L, Zhang J, Zhang G, Tong X, Zhang T, Wu Y, Li M, Jin L. Transcriptome analysis of norepinephrine-induced lipolysis in differentiated adipocytes of Bama pig. Gene 2023; 888:147753. [PMID: 37659599 DOI: 10.1016/j.gene.2023.147753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Sympathetic innervation of white adipose tissue (WAT) plays a key role in the regulation of lipid metabolism. Sympathetic activation promotes release of norepinephrine (NE), which binds to adrenergic receptors on adipocytes, promoting adipocyte lipolysis and enhanced oxidative metabolism. However, the mechanism by which sympathetic nerves regulate lipid metabolism in pig adipose tissue remains unclear. We used NE to simulate the process of sympathetic driving in pig adipocytes. RNA sequencing (RNA-seq) was used to determine the gene expression profile of pig adipocytes responding to NE stimulation. Our data suggests that the lipolytic signaling pathway is activated in pig adipocytes upon acute stimulation of NE, resulting in enhanced lipid metabolism and lipolysis, consistent with the phenomena found in humans and mice. Specifically, differentially expressed protein coding genes (PCGs) (SIRT4, SLC27A1) are mainly associated with functions that inhibit fatty acid oxidation and promote lipid synthesis. Similarly, we investigated the changes in regulatory transcripts such as long non-coding RNAs (lncRNAs) and transcripts of uncertain coding potential (TUCP) in response to NE and found that differentially expressed lncRNAs (lncG47338, lncG30660, lncG29516, lncG3790) and TUCP (TUCP_G38001) were co-expressed with target genes related to the promotion of fatty acid β-oxidation, lipolysis and oxidative metabolism, thus acting as regulators. These results indicate a broad suite of gene expression alterations in response to NE stimulation and promote the understanding of the molecular mechanisms by which NE regulates lipid metabolism in pigs.
Collapse
Affiliation(s)
- Li He
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Hong Li
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Linzhen Zhang
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaman Zhang
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Geng Zhang
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Xingyan Tong
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Tingting Zhang
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Yifan Wu
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingzhou Li
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China.
| | - Long Jin
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
3
|
Schneider KM, Blank N, Alvarez Y, Thum K, Lundgren P, Litichevskiy L, Sleeman M, Bahnsen K, Kim J, Kardo S, Patel S, Dohnalová L, Uhr GT, Descamps HC, Kircher S, McSween AM, Ardabili AR, Nemec KM, Jimenez MT, Glotfelty LG, Eisenberg JD, Furth EE, Henao-Mejia J, Bennett FC, Pierik MJ, Romberg-Camps M, Mujagic Z, Prinz M, Schneider CV, Wherry EJ, Bewtra M, Heuckeroth RO, Levy M, Thaiss CA. The enteric nervous system relays psychological stress to intestinal inflammation. Cell 2023; 186:2823-2838.e20. [PMID: 37236193 PMCID: PMC10330875 DOI: 10.1016/j.cell.2023.05.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Mental health profoundly impacts inflammatory responses in the body. This is particularly apparent in inflammatory bowel disease (IBD), in which psychological stress is associated with exacerbated disease flares. Here, we discover a critical role for the enteric nervous system (ENS) in mediating the aggravating effect of chronic stress on intestinal inflammation. We find that chronically elevated levels of glucocorticoids drive the generation of an inflammatory subset of enteric glia that promotes monocyte- and TNF-mediated inflammation via CSF1. Additionally, glucocorticoids cause transcriptional immaturity in enteric neurons, acetylcholine deficiency, and dysmotility via TGF-β2. We verify the connection between the psychological state, intestinal inflammation, and dysmotility in three cohorts of IBD patients. Together, these findings offer a mechanistic explanation for the impact of the brain on peripheral inflammation, define the ENS as a relay between psychological stress and gut inflammation, and suggest that stress management could serve as a valuable component of IBD care.
Collapse
Affiliation(s)
- Kai Markus Schneider
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Niklas Blank
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Yelina Alvarez
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katharina Thum
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrick Lundgren
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lev Litichevskiy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Madeleine Sleeman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Klaas Bahnsen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jihee Kim
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simon Kardo
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shaan Patel
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lenka Dohnalová
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Giulia T Uhr
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hélène C Descamps
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Susanna Kircher
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alana M McSween
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ashkan Rezazadeh Ardabili
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, the Netherlands; School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Kelsey M Nemec
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Monica T Jimenez
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lila G Glotfelty
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua D Eisenberg
- Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emma E Furth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Pennsylvania, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - F Chris Bennett
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Marie J Pierik
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, the Netherlands; School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Mariëlle Romberg-Camps
- Department of Gastroenterology, Geriatrics, Internal and Intensive Care Medicine (Co-MIK), Zuyderland Medical Centre, Sittard-Geleen, the Netherlands
| | - Zlatan Mujagic
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, the Netherlands; School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Marco Prinz
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany; Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Carolin V Schneider
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E John Wherry
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Meenakshi Bewtra
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert O Heuckeroth
- Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maayan Levy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
O'Brien CJO, Haberman ER, Domingos AI. A Tale of Three Systems: Toward a Neuroimmunoendocrine Model of Obesity. Annu Rev Cell Dev Biol 2021; 37:549-573. [PMID: 34613819 PMCID: PMC7614880 DOI: 10.1146/annurev-cellbio-120319-114106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The prevalence of obesity is on the rise. What was once considered a simple disease of energy imbalance is now recognized as a complex condition perpetuated by neuro- and immunopathologies. In this review, we summarize the current knowledge of the neuroimmunoendocrine mechanisms underlying obesity. We examine the pleiotropic effects of leptin action in addition to its established role in the modulation of appetite, and we discuss the neural circuitry mediating leptin action and how this is altered with obesity, both centrally (leptin resistance) and in adipose tissues (sympathetic neuropathy). Finally, we dissect the numerous causal and consequential roles of adipose tissue macrophages in obesity and highlight recent key studies demonstrating their direct role in organismal energy homeostasis.
Collapse
Affiliation(s)
- Conan J O O'Brien
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom;
| | - Emma R Haberman
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom;
| | - Ana I Domingos
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom;
| |
Collapse
|
5
|
Cardoso F, Klein Wolterink RGJ, Godinho-Silva C, Domingues RG, Ribeiro H, da Silva JA, Mahú I, Domingos AI, Veiga-Fernandes H. Neuro-mesenchymal units control ILC2 and obesity via a brain-adipose circuit. Nature 2021; 597:410-414. [PMID: 34408322 PMCID: PMC7614847 DOI: 10.1038/s41586-021-03830-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
Signals from sympathetic neurons and immune cells regulate adipocytes and thereby contribute to fat tissue biology. Interactions between the nervous and immune systems have recently emerged as important regulators of host defence and inflammation1-4. Nevertheless, it is unclear whether neuronal and immune cells co-operate in brain-body axes to orchestrate metabolism and obesity. Here we describe a neuro-mesenchymal unit that controls group 2 innate lymphoid cells (ILC2s), adipose tissue physiology, metabolism and obesity via a brain-adipose circuit. We found that sympathetic nerve terminals act on neighbouring adipose mesenchymal cells via the β2-adrenergic receptor to control the expression of glial-derived neurotrophic factor (GDNF) and the activity of ILC2s in gonadal fat. Accordingly, ILC2-autonomous manipulation of the GDNF receptor machinery led to alterations in ILC2 function, energy expenditure, insulin resistance and propensity to obesity. Retrograde tracing and chemical, surgical and chemogenetic manipulations identified a sympathetic aorticorenal circuit that modulates ILC2s in gonadal fat and connects to higher-order brain areas, including the paraventricular nucleus of the hypothalamus. Our results identify a neuro-mesenchymal unit that translates cues from long-range neuronal circuitry into adipose-resident ILC2 function, thereby shaping host metabolism and obesity.
Collapse
Affiliation(s)
- Filipa Cardoso
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | | | | | - Rita G Domingues
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research (MCCIR), Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hélder Ribeiro
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - Inês Mahú
- Max Planck Institute for Metabolism Research, Köln, Germany
| | - Ana I Domingos
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, UK
| | | |
Collapse
|
6
|
Valek L, Tegeder I. Failure of Diphtheria Toxin Model to Induce Parkinson-Like Behavior in Mice. Int J Mol Sci 2021; 22:ijms22179496. [PMID: 34502404 PMCID: PMC8430633 DOI: 10.3390/ijms22179496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/29/2021] [Indexed: 12/21/2022] Open
Abstract
Rodent models of Parkinson’s disease are based on transgenic expression of mutant synuclein, deletion of PD genes, injections of MPTP or rotenone, or seeding of synuclein fibrils. The models show histopathologic features of PD such as Lewi bodies but mostly only subtle in vivo manifestations or systemic toxicity. The models only partly mimic a predominant loss of dopaminergic neurons in the substantia nigra. We therefore generated mice that express the transgenic diphtheria toxin receptor (DTR) specifically in DA neurons by crossing DAT-Cre mice with Rosa26 loxP-STOP-loxP DTR mice. After defining a well-tolerated DTx dose, DAT-DTR and DTR-flfl controls were subjected to non-toxic DTx treatment (5 × 100 pg/g) and subsequent histology and behavioral tests. DAT protein levels were reduced in the midbrain, and tyrosine hydroxylase-positive neurons were reduced in the substantia nigra, whereas the pan-neuronal marker NeuN was not affected. Despite the promising histologic results, there was no difference in motor function tests or open field behavior. These are tests in which double mutant Pink1−/−SNCAA53T Parkinson mice show behavioral abnormalities. Higher doses of DTx were toxic in both groups. The data suggest that DTx treatment in mice with Cre/loxP-driven DAT-DTR expression leads to partial ablation of DA-neurons but without PD-reminiscent behavioral correlates.
Collapse
|
7
|
Guilherme A, Yenilmez B, Bedard AH, Henriques F, Liu D, Lee A, Goldstein L, Kelly M, Nicoloro SM, Chen M, Weinstein L, Collins S, Czech MP. Control of Adipocyte Thermogenesis and Lipogenesis through β3-Adrenergic and Thyroid Hormone Signal Integration. Cell Rep 2021; 31:107598. [PMID: 32375048 PMCID: PMC7676427 DOI: 10.1016/j.celrep.2020.107598] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/24/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022] Open
Abstract
Here, we show that β adrenergic signaling coordinately upregulates de novo lipogenesis (DNL) and thermogenesis in subcutaneous white adipose tissue (sWAT), and both effects are blocked in mice lacking the cAMP-generating G protein-coupled receptor Gs (Adipo-GsαKO) in adipocytes. However, UCP1 expression but not DNL activation requires rapamycin-sensitive mTORC1. Furthermore, β3-adrenergic agonist CL316243 readily upregulates thermogenic but not lipogenic genes in cultured adipocytes, indicating that additional regulators must operate on DNL in sWAT in vivo. We identify one such factor as thyroid hormone T3, which is elevated locally by adrenergic signaling. T3 administration to wild-type mice enhances both thermogenesis and DNL in sWAT. Mechanistically, T3 action on UCP1 expression in sWAT depends upon cAMP and is blocked in Adipo-GsαKO mice even as elevated DNL persists. Thus, T3 enhances sWAT thermogenesis by amplifying cAMP signaling, while its control of adipocyte DNL can be mediated independently of both cAMP and rapamycin-sensitive mTORC1.
Collapse
Affiliation(s)
- Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Batuhan Yenilmez
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Alexander H Bedard
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Felipe Henriques
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Dianxin Liu
- Departments of Medicine, Cardiovascular Medicine, and Molecular Physiology & Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alexandra Lee
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lauren Goldstein
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Mark Kelly
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sarah M Nicoloro
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Min Chen
- Metabolic Diseases Branch, NIDDK, NIH, Bethesda, MD 20892-1752, USA
| | - Lee Weinstein
- Metabolic Diseases Branch, NIDDK, NIH, Bethesda, MD 20892-1752, USA
| | - Sheila Collins
- Departments of Medicine, Cardiovascular Medicine, and Molecular Physiology & Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
8
|
Huesing C, Qualls‐Creekmore E, Lee N, François M, Torres H, Zhang R, Burk DH, Yu S, Morrison CD, Berthoud H, Neuhuber W, Münzberg H. Sympathetic innervation of inguinal white adipose tissue in the mouse. J Comp Neurol 2021; 529:1465-1485. [PMID: 32935348 PMCID: PMC7960575 DOI: 10.1002/cne.25031] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022]
Abstract
Adipose tissue plays an important role in metabolic homeostasis and its prominent role as endocrine organ is now well recognized. Adipose tissue is controlled via the sympathetic nervous system (SNS). New viral, molecular-genetic tools will soon allow a more detailed study of adipose tissue innervation in metabolic function, yet, the precise anatomical extent of preganglionic and postganglionic inputs to the inguinal white adipose tissue (iWAT) is limited. Furthermore, several viral, molecular-genetic tools will require the use of cre/loxP mouse models, while the available studies on sympathetic iWAT innervation were established in larger species. In this study, we generated a detailed map for the sympathetic innervation of iWAT in male and female mice. We adapted iDISCO tissue clearing to process large, whole-body specimens for an unprecedented view of the natural abdominal SNS. Combined with pseudorabies virus retrograde tracing from the iWAT, we defined the preganglionic and postganglionic sympathetic input to iWAT. We used fluorescence-guided anatomical dissections of sympathetic nerves in reporter mice to further clarify that postganglionic axons connect to iWAT via lateral cutaneous rami (dorsolumbar iWAT portion) and the lumbar plexus (inguinal iWAT portion). Importantly, these rami carry axons that branch to iWAT, as well as axons that travel further to innervate the skin and vasculature, and their functional impact will require consideration in denervation studies. Our study may serve as a comprehensive map for future experiments that employ virally driven neuromodulation techniques to predict anatomy-based viral labeling.
Collapse
Affiliation(s)
- Clara Huesing
- Neurobiology of Nutrition and Metabolism DepartmentPennington Biomedical Research Center, Louisiana State University SystemBaton RougeLouisianaUSA
| | - Emily Qualls‐Creekmore
- Neurobiology of Nutrition and Metabolism DepartmentPennington Biomedical Research Center, Louisiana State University SystemBaton RougeLouisianaUSA
| | - Nathan Lee
- Neurobiology of Nutrition and Metabolism DepartmentPennington Biomedical Research Center, Louisiana State University SystemBaton RougeLouisianaUSA
| | - Marie François
- Neurobiology of Nutrition and Metabolism DepartmentPennington Biomedical Research Center, Louisiana State University SystemBaton RougeLouisianaUSA
| | - Hayden Torres
- Neurobiology of Nutrition and Metabolism DepartmentPennington Biomedical Research Center, Louisiana State University SystemBaton RougeLouisianaUSA
| | - Rui Zhang
- Neurobiology of Nutrition and Metabolism DepartmentPennington Biomedical Research Center, Louisiana State University SystemBaton RougeLouisianaUSA
| | - David H. Burk
- Neurobiology of Nutrition and Metabolism DepartmentPennington Biomedical Research Center, Louisiana State University SystemBaton RougeLouisianaUSA
| | - Sangho Yu
- Neurobiology of Nutrition and Metabolism DepartmentPennington Biomedical Research Center, Louisiana State University SystemBaton RougeLouisianaUSA
| | - Christopher D. Morrison
- Neurobiology of Nutrition and Metabolism DepartmentPennington Biomedical Research Center, Louisiana State University SystemBaton RougeLouisianaUSA
| | - Hans‐Rudolf Berthoud
- Neurobiology of Nutrition and Metabolism DepartmentPennington Biomedical Research Center, Louisiana State University SystemBaton RougeLouisianaUSA
| | - Winfried Neuhuber
- Institute for Anatomy and Cell Biology, Friedrich‐Alexander UniversityErlangenGermany
| | - Heike Münzberg
- Neurobiology of Nutrition and Metabolism DepartmentPennington Biomedical Research Center, Louisiana State University SystemBaton RougeLouisianaUSA
| |
Collapse
|
9
|
Vily-Petit J, Soty-Roca M, Silva M, Raffin M, Gautier-Stein A, Rajas F, Mithieux G. Intestinal gluconeogenesis prevents obesity-linked liver steatosis and non-alcoholic fatty liver disease. Gut 2020; 69:2193-2202. [PMID: 32205419 DOI: 10.1136/gutjnl-2019-319745] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/14/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Hepatic steatosis accompanying obesity is a major health concern, since it may initiate non-alcoholic fatty liver disease (NAFLD) and associated complications like cirrhosis or cancer. Intestinal gluconeogenesis (IGN) is a recently described function that contributes to the metabolic benefits of specific macronutrients as protein or soluble fibre, via the initiation of a gut-brain nervous signal triggering brain-dependent regulations of peripheral metabolism. Here, we investigate the effects of IGN on liver metabolism, independently of its induction by the aforementioned macronutrients. DESIGN To study the specific effects of IGN on hepatic metabolism, we used two transgenic mouse lines: one is knocked down for and the other overexpresses glucose-6-phosphatase, the key enzyme of endogenous glucose production, specifically in the intestine. RESULTS We report that mice with a genetic overexpression of IGN are notably protected from the development of hepatic steatosis and the initiation of NAFLD on a hypercaloric diet. The protection relates to a diminution of de novo lipogenesis and lipid import, associated with benefits at the level of inflammation and fibrosis and linked to autonomous nervous system. Conversely, mice with genetic suppression of IGN spontaneously exhibit increased hepatic triglyceride storage associated with activated lipogenesis pathway, in the context of standard starch-enriched diet. The latter is corrected by portal glucose infusion mimicking IGN. CONCLUSION We conclude that IGN per se has the capacity of preventing hepatic steatosis and its eventual evolution toward NAFLD.
Collapse
Affiliation(s)
- Justine Vily-Petit
- U1213 Nutrition, Diabetes and the Brain, Institut national de la santé et de la recherche médicale, Lyon, France.,U1213 Nutrition, Diabetes and the Brain, Université Lyon 1 Faculté de Médecine Lyon-Est, Lyon, France
| | - Maud Soty-Roca
- U1213 Nutrition, Diabetes and the Brain, Institut national de la santé et de la recherche médicale, Lyon, France.,U1213 Nutrition, Diabetes and the Brain, Université Lyon 1 Faculté de Médecine Lyon-Est, Lyon, France
| | - Marine Silva
- U1213 Nutrition, Diabetes and the Brain, Institut national de la santé et de la recherche médicale, Lyon, France.,U1213 Nutrition, Diabetes and the Brain, Université Lyon 1 Faculté de Médecine Lyon-Est, Lyon, France
| | - Margaux Raffin
- U1213 Nutrition, Diabetes and the Brain, Institut national de la santé et de la recherche médicale, Lyon, France.,U1213 Nutrition, Diabetes and the Brain, Université Lyon 1 Faculté de Médecine Lyon-Est, Lyon, France
| | - Amandine Gautier-Stein
- U1213 Nutrition, Diabetes and the Brain, Institut national de la santé et de la recherche médicale, Lyon, France.,U1213 Nutrition, Diabetes and the Brain, Université Lyon 1 Faculté de Médecine Lyon-Est, Lyon, France
| | - Fabienne Rajas
- U1213 Nutrition, Diabetes and the Brain, Institut national de la santé et de la recherche médicale, Lyon, France.,U1213 Nutrition, Diabetes and the Brain, Université Lyon 1 Faculté de Médecine Lyon-Est, Lyon, France
| | - Gilles Mithieux
- U1213 Nutrition, Diabetes and the Brain, Institut national de la santé et de la recherche médicale, Lyon, France .,U1213 Nutrition, Diabetes and the Brain, Université Lyon 1 Faculté de Médecine Lyon-Est, Lyon, France
| |
Collapse
|
10
|
Liu S, Wang ZF, Su YS, Ray RS, Jing XH, Wang YQ, Ma Q. Somatotopic Organization and Intensity Dependence in Driving Distinct NPY-Expressing Sympathetic Pathways by Electroacupuncture. Neuron 2020; 108:436-450.e7. [PMID: 32791039 PMCID: PMC7666081 DOI: 10.1016/j.neuron.2020.07.015] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/22/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022]
Abstract
The neuroanatomical basis behind acupuncture practice is still poorly understood. Here, we used intersectional genetic strategy to ablate NPY+ noradrenergic neurons and/or adrenal chromaffin cells. Using endotoxin-induced systemic inflammation as a model, we found that electroacupuncture stimulation (ES) drives sympathetic pathways in somatotopy- and intensity-dependent manners. Low-intensity ES at hindlimb regions drives the vagal-adrenal axis, producing anti-inflammatory effects that depend on NPY+ adrenal chromaffin cells. High-intensity ES at the abdomen activates NPY+ splenic noradrenergic neurons via the spinal-sympathetic axis; these neurons engage incoherent feedforward regulatory loops via activation of distinct adrenergic receptors (ARs), and their ES-evoked activation produces either anti- or pro-inflammatory effects due to disease-state-dependent changes in AR profiles. The revelation of somatotopic organization and intensity dependency in driving distinct autonomic pathways could form a road map for optimizing stimulation parameters to improve both efficacy and safety in using acupuncture as a therapeutic modality.
Collapse
Affiliation(s)
- Shenbin Liu
- Dana-Farber Cancer Institute and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China; Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhi-Fu Wang
- Dana-Farber Cancer Institute and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yang-Shuai Su
- Dana-Farber Cancer Institute and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Research Center of Meridians, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Russell S Ray
- Memory Brain Research Center and Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; McNair Medical Institute, Houston, TX, USA
| | - Xiang-Hong Jing
- Research Center of Meridians, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan-Qing Wang
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China; Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Qiufu Ma
- Dana-Farber Cancer Institute and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Hanes J, Dobakova E, Majerova P. Brain Drug Delivery: Overcoming the Blood-brain Barrier to Treat Tauopathies. Curr Pharm Des 2020; 26:1448-1465. [PMID: 32178609 DOI: 10.2174/1381612826666200316130128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/10/2020] [Indexed: 02/06/2023]
Abstract
Tauopathies are neurodegenerative disorders characterized by the deposition of abnormal tau protein in the brain. The application of potentially effective therapeutics for their successful treatment is hampered by the presence of a naturally occurring brain protection layer called the blood-brain barrier (BBB). BBB represents one of the biggest challenges in the development of therapeutics for central nervous system (CNS) disorders, where sufficient BBB penetration is inevitable. BBB is a heavily restricting barrier regulating the movement of molecules, ions, and cells between the blood and the CNS to secure proper neuronal function and protect the CNS from dangerous substances and processes. Yet, these natural functions possessed by BBB represent a great hurdle for brain drug delivery. This review is concentrated on summarizing the available methods and approaches for effective therapeutics' delivery through the BBB to treat neurodegenerative disorders with a focus on tauopathies. It describes the traditional approaches but also new nanotechnology strategies emerging with advanced medical techniques. Their limitations and benefits are discussed.
Collapse
Affiliation(s)
- Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska cesta 9, 845 10 Bratislava, Slovakia
| | - Eva Dobakova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska cesta 9, 845 10 Bratislava, Slovakia
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska cesta 9, 845 10 Bratislava, Slovakia
| |
Collapse
|
12
|
Azarmi M, Maleki H, Nikkam N, Malekinejad H. Transcellular brain drug delivery: A review on recent advancements. Int J Pharm 2020; 586:119582. [DOI: 10.1016/j.ijpharm.2020.119582] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/08/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
|
13
|
Kim JD, Diano S. A Sympathetic Treatment for Obesity. Cell Metab 2020; 31:1043-1045. [PMID: 32492388 PMCID: PMC8142296 DOI: 10.1016/j.cmet.2020.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Amphetamine (AMPH), mainly used in the treatment of attention deficit hyperactivity disorder and narcolepsy, has weight loss properties, although with detrimental cardiovascular effects. In this issue, Mahú et al. (2020) describe the effect of a new derivative of AMPH, "PEGyAMPH," a brain-spared anti-obesity drug that alters sympathetic activity without cardiovascular side effects.
Collapse
Affiliation(s)
- Jung Dae Kim
- Program in Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA; Departments of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sabrina Diano
- Program in Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA; Departments of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
14
|
Mahú I, Barateiro A, Rial-Pensado E, Martinéz-Sánchez N, Vaz SH, Cal PMSD, Jenkins B, Rodrigues T, Cordeiro C, Costa MF, Mendes R, Seixas E, Pereira MMA, Kubasova N, Gres V, Morris I, Temporão C, Olivares M, Sanz Y, Koulman A, Corzana F, Sebastião AM, López M, Bernardes GJL, Domingos AI. Brain-Sparing Sympathofacilitators Mitigate Obesity without Adverse Cardiovascular Effects. Cell Metab 2020; 31:1120-1135.e7. [PMID: 32402266 PMCID: PMC7671941 DOI: 10.1016/j.cmet.2020.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 03/03/2020] [Accepted: 04/14/2020] [Indexed: 02/02/2023]
Abstract
Anti-obesity drugs in the amphetamine (AMPH) class act in the brain to reduce appetite and increase locomotion. They are also characterized by adverse cardiovascular effects with origin that, despite absence of any in vivo evidence, is attributed to a direct sympathomimetic action in the heart. Here, we show that the cardiac side effects of AMPH originate from the brain and can be circumvented by PEGylation (PEGyAMPH) to exclude its central action. PEGyAMPH does not enter the brain and facilitates SNS activity via theβ2-adrenoceptor, protecting mice against obesity by increasing lipolysis and thermogenesis, coupled to higher heat dissipation, which acts as an energy sink to increase energy expenditure without altering food intake or locomotor activity. Thus, we provide proof-of-principle for a novel class of exclusively peripheral anti-obesity sympathofacilitators that are devoid of any cardiovascular and brain-related side effects.
Collapse
Affiliation(s)
- Inês Mahú
- Obesity Laboratory, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
| | - Andreia Barateiro
- Obesity Laboratory, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal; Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Eva Rial-Pensado
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, A Coruña 15782, Spain
| | - Noelia Martinéz-Sánchez
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Sandra H Vaz
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof., Egas Moniz, Lisbon 1649-028, Portugal; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisboa 1649-028, Portugal
| | - Pedro M S D Cal
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof., Egas Moniz, Lisbon 1649-028, Portugal
| | - Benjamin Jenkins
- NIHR BRC Core Metabolomics and Lipidomics Laboratory, Wellcome Trust, MRL Institute of Metabolic Science, University of Cambridge, Pathology building Level 4, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Tiago Rodrigues
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof., Egas Moniz, Lisbon 1649-028, Portugal
| | - Carlos Cordeiro
- Laboratório de FT-ICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Lisbon 1749-016, Portugal
| | - Miguel F Costa
- Obesity Laboratory, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal; Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal
| | - Raquel Mendes
- Obesity Laboratory, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
| | - Elsa Seixas
- Obesity Laboratory, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
| | - Mafalda M A Pereira
- Obesity Laboratory, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
| | - Nadiya Kubasova
- Obesity Laboratory, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
| | - Vitka Gres
- Obesity Laboratory, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
| | - Imogen Morris
- Obesity Laboratory, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
| | - Carolina Temporão
- Obesity Laboratory, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
| | - Marta Olivares
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council, Valencia (IATA-CSIC), Catedratico Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - Yolanda Sanz
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council, Valencia (IATA-CSIC), Catedratico Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - Albert Koulman
- NIHR BRC Core Metabolomics and Lipidomics Laboratory, Wellcome Trust, MRL Institute of Metabolic Science, University of Cambridge, Pathology building Level 4, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño, Spain
| | - Ana M Sebastião
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof., Egas Moniz, Lisbon 1649-028, Portugal; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisboa 1649-028, Portugal
| | - Miguel López
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, A Coruña 15782, Spain
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof., Egas Moniz, Lisbon 1649-028, Portugal; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Ana I Domingos
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK; Obesity Laboratory, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal; Howard Hughes Medical Institute, IGC, Oeiras, Portugal.
| |
Collapse
|
15
|
Affiliation(s)
- Kristy L Townsend
- School of Biology and Ecology, University of Maine, Orono, ME, USA.
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA.
| |
Collapse
|
16
|
Abstract
Neuroimmunology and immunometabolism are burgeoning topics of study, but the intersection of these two fields is scarcely considered. This interplay is particularly prevalent within adipose tissue, where immune cells and the sympathetic nervous system (SNS) have an important role in metabolic homeostasis and pathology, namely in obesity. In the present Review, we first outline the established reciprocal adipose-SNS relationship comprising the neuroendocrine loop facilitated primarily by adipose tissue-derived leptin and SNS-derived noradrenaline. Next, we review the extensive crosstalk between adipocytes and resident innate immune cells as well as the changes that occur in these secretory and signalling pathways in obesity. Finally, we discuss the effect of SNS adrenergic signalling in immune cells and conclude with exciting new research demonstrating an immutable role for SNS-resident macrophages in modulating SNS-adipose crosstalk. We posit that the latter point constitutes the existence of a new field - neuroimmunometabolism.
Collapse
Affiliation(s)
- Chelsea M Larabee
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, UK
| | - Oliver C Neely
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, UK
| | - Ana I Domingos
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, UK.
- The Howard Hughes Medical Institute (HHMI), New York, NY, USA.
| |
Collapse
|
17
|
Berger JM, Singh P, Khrimian L, Morgan DA, Chowdhury S, Arteaga-Solis E, Horvath TL, Domingos AI, Marsland AL, Yadav VK, Rahmouni K, Gao XB, Karsenty G. Mediation of the Acute Stress Response by the Skeleton. Cell Metab 2019; 30:890-902.e8. [PMID: 31523009 PMCID: PMC6834912 DOI: 10.1016/j.cmet.2019.08.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/26/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022]
Abstract
We hypothesized that bone evolved, in part, to enhance the ability of bony vertebrates to escape danger in the wild. In support of this notion, we show here that a bone-derived signal is necessary to develop an acute stress response (ASR). Indeed, exposure to various types of stressors in mice, rats (rodents), and humans leads to a rapid and selective surge of circulating bioactive osteocalcin because stressors favor the uptake by osteoblasts of glutamate, which prevents inactivation of osteocalcin prior to its secretion. Osteocalcin permits manifestations of the ASR to unfold by signaling in post-synaptic parasympathetic neurons to inhibit their activity, thereby leaving the sympathetic tone unopposed. Like wild-type animals, adrenalectomized rodents and adrenal-insufficient patients can develop an ASR, and genetic studies suggest that this is due to their high circulating osteocalcin levels. We propose that osteocalcin defines a bony-vertebrate-specific endocrine mediation of the ASR.
Collapse
Affiliation(s)
- Julian Meyer Berger
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Program in Microbiology, Immunology and Infection, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Parminder Singh
- Metabolic Research Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Lori Khrimian
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Donald A Morgan
- Department of Pharmacology, University of Iowa and Veteran Health Care System, Iowa City, IA 52242, USA
| | - Subrata Chowdhury
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Emilio Arteaga-Solis
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Pediatric Pulmonary, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Ana I Domingos
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Anna L Marsland
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Vijay Kumar Yadav
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Metabolic Research Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa and Veteran Health Care System, Iowa City, IA 52242, USA
| | - Xiao-Bing Gao
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Gerard Karsenty
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
18
|
Central nicotine induces browning through hypothalamic κ opioid receptor. Nat Commun 2019; 10:4037. [PMID: 31492869 PMCID: PMC6731305 DOI: 10.1038/s41467-019-12004-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 08/15/2019] [Indexed: 12/15/2022] Open
Abstract
Increased body weight is a major factor that interferes with smoking cessation. Nicotine, the main bioactive compound in tobacco, has been demonstrated to have an impact on energy balance, since it affects both feeding and energy expenditure at the central level. Among the central actions of nicotine on body weight, much attention has been focused on its effect on brown adipose tissue (BAT) thermogenesis, though its effect on browning of white adipose tissue (WAT) is unclear. Here, we show that nicotine induces the browning of WAT through a central mechanism and that this effect is dependent on the κ opioid receptor (KOR), specifically in the lateral hypothalamic area (LHA). Consistent with these findings, smokers show higher levels of uncoupling protein 1 (UCP1) expression in WAT, which correlates with smoking status. These data demonstrate that central nicotine-induced modulation of WAT browning may be a target against human obesity. Nicotine reduces food intake and increases energy expenditure in brown adipose tissue. Here the authors show that nicotine also induces white adipose tissue browning via central kappa opioid receptor action.
Collapse
|
19
|
Konkel JE, O'Boyle C, Krishnan S. Distal Consequences of Oral Inflammation. Front Immunol 2019; 10:1403. [PMID: 31293577 PMCID: PMC6603141 DOI: 10.3389/fimmu.2019.01403] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
Periodontitis is an incredibly prevalent chronic inflammatory disease, which results in the destruction of tooth supporting structures. However, in addition to causing tooth and alveolar bone loss, this oral inflammatory disease has been shown to contribute to disease states and inflammatory pathology at sites distant from the oral cavity. Epidemiological and experimental studies have linked periodontitis to the development and/or exacerbation of a plethora of other chronic diseases ranging from rheumatoid arthritis to Alzheimer's disease. Such studies highlight how the inflammatory status of the oral cavity can have a profound impact on systemic health. In this review we discuss the disease states impacted by periodontitis and explore potential mechanisms whereby oral inflammation could promote loss of homeostasis at distant sites.
Collapse
Affiliation(s)
- Joanne E. Konkel
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
- Manchester Collaborative Centre for Inflammation Research (MCCIR), University of Manchester, Manchester, United Kingdom
| | - Conor O'Boyle
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Siddharth Krishnan
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
- Manchester Collaborative Centre for Inflammation Research (MCCIR), University of Manchester, Manchester, United Kingdom
| |
Collapse
|
20
|
Guilherme A, Henriques F, Bedard AH, Czech MP. Molecular pathways linking adipose innervation to insulin action in obesity and diabetes mellitus. Nat Rev Endocrinol 2019; 15:207-225. [PMID: 30733616 PMCID: PMC7073451 DOI: 10.1038/s41574-019-0165-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adipose tissue comprises adipocytes and many other cell types that engage in dynamic crosstalk in a highly innervated and vascularized tissue matrix. Although adipose tissue has been studied for decades, it has been appreciated only in the past 5 years that extensive arborization of nerve fibres has a dominant role in regulating the function of adipose tissue. This Review summarizes the latest literature, which suggests that adipocytes signal to local sensory nerve fibres in response to perturbations in lipolysis and lipogenesis. Such adipocyte signalling to the central nervous system causes sympathetic output to distant adipose depots and potentially other metabolic tissues to regulate systemic glucose homeostasis. Paracrine factors identified in the past few years that mediate such adipocyte-neuron crosstalk are also reviewed. Similarly, immune cells and endothelial cells within adipose tissue communicate with local nerve fibres to modulate neurotransmitter tone, blood flow, adipocyte differentiation and energy expenditure, including adipose browning to produce heat. This understudied field of neurometabolism related to adipose tissue biology has great potential to reveal new mechanistic insights and potential therapeutic strategies for obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Felipe Henriques
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alexander H Bedard
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
21
|
Ruedl C, Jung S. DTR-mediated conditional cell ablation-Progress and challenges. Eur J Immunol 2019; 48:1114-1119. [PMID: 29974950 DOI: 10.1002/eji.201847527] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/28/2018] [Indexed: 12/14/2022]
Abstract
Cell ablation is a valuable complement to mutagenesis for experimentally defining specific cell functions in physiology and pathophysiology in small animal models. One of the most popular ablation strategies involves transgenic expression of a primate diphtheria toxin receptor (DTR) on murine cells that are otherwise resistant to the bacterial exotoxin. The efforts of many laboratories using the DTR approach over the years have yielded numerous valuable insights into specific cell functions. Here, we will discuss the technical aspects of the DTR approach, including the strengths, pitfalls, and future strategies to overcome the shortcomings, highlighting a recent paper published in the European Journal of Immunology [El Hachem et al. Eur. J. Immunol. 2018 https://doi.org/10.1002/eji.201747351]. A particular focus will be given to the application of DTR approach to decipher in vivo functions of the murine myeloid cell compartment.
Collapse
Affiliation(s)
- Christiane Ruedl
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
22
|
Affiliation(s)
- Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4103, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, 4072, Australia.
| |
Collapse
|
23
|
Egerod KL, Petersen N, Timshel PN, Rekling JC, Wang Y, Liu Q, Schwartz TW, Gautron L. Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms. Mol Metab 2018; 12:62-75. [PMID: 29673577 PMCID: PMC6001940 DOI: 10.1016/j.molmet.2018.03.016] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/24/2018] [Accepted: 03/29/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES G protein-coupled receptors (GPCRs) act as transmembrane molecular sensors of neurotransmitters, hormones, nutrients, and metabolites. Because unmyelinated vagal afferents richly innervate the gastrointestinal mucosa, gut-derived molecules may directly modulate the activity of vagal afferents through GPCRs. However, the types of GPCRs expressed in vagal afferents are largely unknown. Here, we determined the expression profile of all GPCRs expressed in vagal afferents of the mouse, with a special emphasis on those innervating the gastrointestinal tract. METHODS Using a combination of high-throughput quantitative PCR, RNA sequencing, and in situ hybridization, we systematically quantified GPCRs expressed in vagal unmyelinated Nav1.8-expressing afferents. RESULTS GPCRs for gut hormones that were the most enriched in Nav1.8-expressing vagal unmyelinated afferents included NTSR1, NPY2R, CCK1R, and to a lesser extent, GLP1R, but not GHSR and GIPR. Interestingly, both GLP1R and NPY2R were coexpressed with CCK1R. In contrast, NTSR1 was coexpressed with GPR65, a marker preferentially enriched in intestinal mucosal afferents. Only few microbiome-derived metabolite sensors such as GPR35 and, to a lesser extent, GPR119 and CaSR were identified in the Nav1.8-expressing vagal afferents. GPCRs involved in lipid sensing and inflammation (e.g. CB1R, CYSLTR2, PTGER4), and neurotransmitters signaling (CHRM4, DRD2, CRHR2) were also highly enriched in Nav1.8-expressing neurons. Finally, we identified 21 orphan GPCRs with unknown functions in vagal afferents. CONCLUSION Overall, this study provides a comprehensive description of GPCR-dependent sensing mechanisms in vagal afferents, including novel coexpression patterns, and conceivably coaction of key receptors for gut-derived molecules involved in gut-brain communication.
Collapse
Affiliation(s)
- Kristoffer L Egerod
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, and Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen, Denmark.
| | - Natalia Petersen
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, and Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen, Denmark
| | - Pascal N Timshel
- Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genomics, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen, Denmark
| | - Jens C Rekling
- Department of Neuroscience, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen, Denmark
| | - Yibing Wang
- Department of Biochemistry, UT Southwestern Medical Center at Dallas, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Qinghua Liu
- Department of Biochemistry, UT Southwestern Medical Center at Dallas, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Thue W Schwartz
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, and Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen, Denmark
| | - Laurent Gautron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| |
Collapse
|
24
|
Abstract
Interactions between the brain and distinct adipose depots have a key role in maintaining energy balance, thereby promoting survival in response to metabolic challenges such as cold exposure and starvation. Recently, there has been renewed interest in the specific central neuronal circuits that regulate adipose depots. Here, we review anatomical, genetic and pharmacological studies on the neural regulation of adipose function, including lipolysis, non-shivering thermogenesis, browning and leptin secretion. In particular, we emphasize the role of leptin-sensitive neurons and the sympathetic nervous system in modulating the activity of brown, white and beige adipose tissues. We provide an overview of advances in the understanding of the heterogeneity of the brain regulation of adipose tissues and offer a perspective on the challenges and paradoxes that the community is facing regarding the actions of leptin on this system.
Collapse
Affiliation(s)
- Alexandre Caron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Syann Lee
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joel K. Elmquist
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Laurent Gautron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
25
|
Vetter I. WITHDRAWN: Toxins in Neurobiology: new tools from old molecules. Neurosci Lett 2017:S0304-3940(17)30900-X. [PMID: 29113827 DOI: 10.1016/j.neulet.2017.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 11/20/2022]
Affiliation(s)
- Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4103, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4072, Australia.
| |
Collapse
|