1
|
Wang C, Mirzaei A, Wang Y, Chaker M, Zhang Q, Ma D. Construction of Ultrathin BiVO 4-Au-Cu 2O Nanosheets with Multiple Charge Transfer Paths for Effective Visible-Light-Driven Photocatalytic Degradation of Tetracycline. SMALL METHODS 2025; 9:e2301804. [PMID: 38859633 PMCID: PMC11843413 DOI: 10.1002/smtd.202301804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/14/2024] [Indexed: 06/12/2024]
Abstract
In this study, unique BiVO4-Au-Cu2O nanosheets (NSs) are well designed and multiple charge transfer paths are consequently constructed. The X-ray photoelectron spectroscopy measurement during a light off-on-off cycle and redox capability tests of the photo-generated charge carriers confirmed the formation of Z-scheme heterojunction, which can facilitate the charge carrier separation and transfer and maintain the original strong redox potentials of the respective component in the heterojunction. The ultrathin 2D structure of the BiVO4 NSs provided sufficient surface area for the photocatalytic reaction. The local surface plasmon resonance (LSPR) effect of the electron mediator, Au NPs, enhanced the light absorption and promoted the excitation of hot electrons. The multiple charge transfer paths effectively promoted the separation and transfer of the charge carrier. The synergism of the abovementioned properties endowed the BiVO4-Au-Cu2O NSs with satisfactory photocatalytic activity in the degradation of tetracycline (Tc) with a removal rate of ≈80% within 30 min under visible light irradiation. The degradation products during the photocatalysis are confirmed by using ultra-high performance liquid chromatography-mass spectrometry and the plausible degradation pathways of Tc are consequently proposed. This work paves a strategy for developing highly efficient visible-light-driven photocatalysts with multiple charge transfer paths for removing organic contaminants in water.
Collapse
Affiliation(s)
- Chen Wang
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Materiaux et Télécommunications1650 Boulevard Lionel‐BouletVarennesQuébecJ3X1P7Canada
| | - Amir Mirzaei
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Materiaux et Télécommunications1650 Boulevard Lionel‐BouletVarennesQuébecJ3X1P7Canada
| | - Yong Wang
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Materiaux et Télécommunications1650 Boulevard Lionel‐BouletVarennesQuébecJ3X1P7Canada
| | - Mohamed Chaker
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Materiaux et Télécommunications1650 Boulevard Lionel‐BouletVarennesQuébecJ3X1P7Canada
| | - Qingzhe Zhang
- Shandong Key Laboratory of Environmental Processes and HealthSchool of Environmental Science and EngineeringShandong UniversityQingdao266237China
- Shenzhen Research Institute of Shandong UniversityShenzhen518057China
| | - Dongling Ma
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Materiaux et Télécommunications1650 Boulevard Lionel‐BouletVarennesQuébecJ3X1P7Canada
| |
Collapse
|
2
|
Liu Y, Yu H, Zeng Q, Wang B, Peng Q. Thickness-dependent optical properties of low-loss transdimensional plasmonic Sr 0.82NbO 3 thin films. OPTICS LETTERS 2024; 49:5591-5594. [PMID: 39353013 DOI: 10.1364/ol.538013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
To develop alternative plasmonic materials for nanophotonic applications, the thickness-dependent optical properties of ultrathin plasmonic Sr0.82NbO3 (SNO) films deposited on MgO are investigated. As the thickness decreases from 10 to 2 nm, the film exhibits less metallic, epsilon-near-zero (ENZ) wavelength redshift and higher optical loss due to increased scattering. Nevertheless, the thinnest film still has a high carrier concentration of 1022 cm-3, and the real part of the dielectric functions of all films is less than zero in the near-infrared (NIR) wavelength region, indicating that the samples possess relatively high metallicity and plasmonic characteristics in the NIR. It is found that the carrier concentration dominates the electron effective mass and Drude plasma frequency. Although Au is a commonly used plasmonic material, at a wavelength of 1550 nm, the loss of SNO is 85.8% lower than that of Au, and its plasmonic performance metrics is significantly higher than TiN, Al:ZnO and Sn:In2O3, demonstrating the great potential of SNO in NIR plasmonic device applications.
Collapse
|
3
|
Cheikh A, El Khaloufi O, Rath M, Lüders U, Fouchet A, Cardin J, Labbé C, Prellier W, David A. Tuning the Transparency Window of SrVO 3 Transparent Conducting Oxide. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47854-47865. [PMID: 39223079 DOI: 10.1021/acsami.4c07225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Correlated transparent conducting oxides (TCOs) have gained great attention, because of their unique combination of transparency and metallic character. SrVO3 (SVO) was identified as a high-performance TCO in the visible range. Few studies have investigated band structure engineering through chemical doping to enhance the optical properties of SVO. Here, we use two different strategies by exploiting the band-filling and width of the bands derived from Vanadium to tune the screened plasma frequency ωp* and the interband transition Ep-d energy, corresponding to the optical transparency window edges. For control of the band-filling strategy, it is found that Titanium doped SVO has a wide transparency window, but such a composition does not maintain the high electrical conductivity required for TCO applications. Concerning the bandwidth strategy, the doping of SrVO3 by Calcium shows that ωp* remains located in the IR range (1.12 eV), while Ep-d is blue-shifted into the UV region (3.43 eV) due to reinforced electronic correlations. By an appropriate choice of dopant, we successfully increased the size of the transparency window by around 11% from 1.94 eV (SVO) to 2.30 eV (Calcium-doped SVO), while retaining high conductivity of around 2.30 × 104 (S·cm-1) and high charge carrier density of 2.93 × 1022 cm-3.
Collapse
Affiliation(s)
- Aïmane Cheikh
- CRISMAT NORMANDIE Université, ENSICAEN, UNICAEN, UMR CNRS 6508, 6 Boulevard Maréchal Juin, 14000 Caen, France
| | - Oualyd El Khaloufi
- CRISMAT NORMANDIE Université, ENSICAEN, UNICAEN, UMR CNRS 6508, 6 Boulevard Maréchal Juin, 14000 Caen, France
| | - Martando Rath
- CIMAP Normandie Université, ENSICAEN, UNICAEN, CEA, UMR CNRS 6252, 6 Boulevard Maréchal Juin, 14050 Cedex 4 Caen, France
| | - Ulrike Lüders
- CRISMAT NORMANDIE Université, ENSICAEN, UNICAEN, UMR CNRS 6508, 6 Boulevard Maréchal Juin, 14000 Caen, France
| | - Arnaud Fouchet
- CRISMAT NORMANDIE Université, ENSICAEN, UNICAEN, UMR CNRS 6508, 6 Boulevard Maréchal Juin, 14000 Caen, France
| | - Julien Cardin
- CIMAP Normandie Université, ENSICAEN, UNICAEN, CEA, UMR CNRS 6252, 6 Boulevard Maréchal Juin, 14050 Cedex 4 Caen, France
| | - Christophe Labbé
- CIMAP Normandie Université, ENSICAEN, UNICAEN, CEA, UMR CNRS 6252, 6 Boulevard Maréchal Juin, 14050 Cedex 4 Caen, France
| | - Wilfrid Prellier
- CRISMAT NORMANDIE Université, ENSICAEN, UNICAEN, UMR CNRS 6508, 6 Boulevard Maréchal Juin, 14000 Caen, France
| | - Adrian David
- CRISMAT NORMANDIE Université, ENSICAEN, UNICAEN, UMR CNRS 6508, 6 Boulevard Maréchal Juin, 14000 Caen, France
| |
Collapse
|
4
|
Lin B, Duan R, Li Y, Hua W, Zhou Y, Zhou J, Di J, Luo X, Li H, Zhao W, Yang G, Liu Z, Liu F. Black Ultrathin Single-Crystalline Flakes of CuVP 2S 6 and CuCrP 2S 6 for Near-Infrared-Driven Photocatalytic Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404833. [PMID: 38847439 DOI: 10.1002/adma.202404833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/03/2024] [Indexed: 06/18/2024]
Abstract
The development of new near-infrared-responsive photocatalysts is a fascinating and challenging approach to acquire high photocatalytic hydrogen evolution (PHE) performance. Herein, near-infrared-responsive black CuVP2S6 and CuCrP2S6 flakes, as well as CuInP2S6 flakes, are designed and constructed for PHE. Atom-resolved scanning transmission electron microscopy images and X-ray absorption fine structure evidence the formation of ultrathin single-crystalline sheet-like structure of CuVP2S6 and CuCrP2S6. The synthetic CuVP2S6 and CuCrP2S6, with a narrow bandgap of ≈1.0 eV, shows the high light-absorption edge exceeding 1100 nm. Moreover, through the femtosecond-resolved transient absorption spectroscopy, CuCrP2S6 displays the efficient charge transfer and long charge lifetime (18318.1 ps), which is nearly 3 and 29 times longer than that of CuVP2S6 and CuInP2S6, respectively. In addition, CuCrP2S6, with the appropriate d-band and p-band, is thermodynamically favorable for the H+ adsorption and H2 desorption by contrast with CuVP2S6 and CuInP2S6. As a result, CuCrP2S6 exhibits high PHE rates of 9.12 and 0.66 mmol h-1 g-1 under simulated sunlight and near-infrared light irradiation, respectively, far exceeding other layered metal phospho-sulfides. This work offers a distinctive perspective for the development of new near-infrared-responsive photocatalysts.
Collapse
Affiliation(s)
- Bo Lin
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ruihuan Duan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yonghui Li
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Weibo Hua
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yao Zhou
- Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiadong Zhou
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Jun Di
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiao Luo
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - He Li
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wenting Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Guidong Yang
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Fucai Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
5
|
Tian D, Liu X, Li J, Wang Z, Cai X, Chen J, Jin H, Li B, Lou Z. Constructing High-Active Surface of Plasmonic Tungsten Oxide for Photocatalytic Alcohol Dehydration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404738. [PMID: 38695468 DOI: 10.1002/adma.202404738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Indexed: 07/26/2024]
Abstract
Plasmonic semiconductors with broad spectral response hold significant promise for sustainable solar energy utilization. However, the surface inertness limits the photocatalytic activity. Herein, a novel approach is proposed to improve the body crystallinity and increase the surface oxygen vacancies of plasmonic tungsten oxide by the combination of hydrochloric acid (HCl) regulation and light irradiation, which can promote the adsorption of tert-butyl alcohol (TBA) on plasmonic tungsten oxide and overcome the hindrance of the surface depletion layer in photocatalytic alcohol dehydration. Additionally, this process can concentrate electrons for strong plasmonic electron oscillation on the near surface, facilitating rapid electron transfer within the adsorbed TBA molecules for C-O bond cleavage. As a result, the activation barrier for TBA dehydration is significantly reduced by 93% to 6.0 kJ mol-1, much lower than that of thermocatalysis (91 kJ mol-1). Therefore, an optimal isobutylene generation rate of 1.8 mol g-1 h-1 (selectivity of 99.9%) is achieved. A small flow reaction system is further constructed, which shows an isobutylene generation rate of 12 mmol h-1 under natural sunlight irradiation. This work highlights the potential of plasmonic semiconductors for efficient photocatalytic alcohol dehydration, thereby promoting the sustainable utilization of solar energy.
Collapse
Affiliation(s)
- Dehua Tian
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Xiaolei Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Juan Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Xiaoyan Cai
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, P. R. China
| | - Jiangyi Chen
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Hao Jin
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Zaizhu Lou
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
6
|
Mohammadi M, Xie R, Hadaeghi N, Radetinac A, Arzumanov A, Komissinskiy P, Zhang H, Alff L. Tailoring Optical Properties in Transparent Highly Conducting Perovskites by Cationic Substitution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206605. [PMID: 36416798 DOI: 10.1002/adma.202206605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/04/2022] [Indexed: 06/16/2023]
Abstract
SrMoO3 , SrNbO3 , and SrVO3 are remarkable highly conducting d1 (V, Nb) or d2 (Mo) perovskite metals with an intrinsically high transparency in the visible. A key scientific question is how the optical properties of these materials can be manipulated to make them suitable for applications as transparent electrodes and in plasmonics. Here, it is shown how 3d/4d cationic substitution in perovskites tailors the relevant materials parameters, i.e., optical transition energy and plasma frequency. With the example of the solid-state solution SrV1- x Mox O3 , it is shown that the absorption and reflection edges can be shifted to the edges of the visible light spectrum, resulting in a material that has the potential to outperform indium tin oxide (ITO) due to its extremely low sheet resistance. An optimum for x = 0.5, where a resistivity of 32 µΩ cm (≈12 Ω sq-1 ) is paired with a transmittance above 84% in the whole visible spectrum is found. Quantitative comparison between experiments and electronic structure calculations show that the shift of the plasma frequency is governed by the interplay of d-band filling and electronic correlations. This study advances the knowledge about the peculiar class of highly conducting perovskites toward sustainable transparent conductors and emergent plasmonics.
Collapse
Affiliation(s)
- Mahdad Mohammadi
- Advanced Thin Film Technology Division, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287, Darmstadt, Germany
| | - Ruiwen Xie
- Theory of Magnetic Materials Division, Institute of Materials Science, Technische Universität Darmstadt, Otto-Berndt-Straße 3, 64287, Darmstadt, Germany
| | - Niloofar Hadaeghi
- Theory of Magnetic Materials Division, Institute of Materials Science, Technische Universität Darmstadt, Otto-Berndt-Straße 3, 64287, Darmstadt, Germany
| | - Aldin Radetinac
- Advanced Thin Film Technology Division, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287, Darmstadt, Germany
| | - Alexey Arzumanov
- Advanced Thin Film Technology Division, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287, Darmstadt, Germany
| | - Philipp Komissinskiy
- Advanced Thin Film Technology Division, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287, Darmstadt, Germany
| | - Hongbin Zhang
- Theory of Magnetic Materials Division, Institute of Materials Science, Technische Universität Darmstadt, Otto-Berndt-Straße 3, 64287, Darmstadt, Germany
| | - Lambert Alff
- Advanced Thin Film Technology Division, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287, Darmstadt, Germany
| |
Collapse
|
7
|
Local surface plasmon resonance promotion of photogenerated electrons to hot electrons for enhancing photothermal CO2 hydrogenation over Ni(OH)2/Ti3C2 catalysts. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Zhang G, Wang F, Tubul T, Baranov M, Leffler N, Neyman A, Poblet JM, Weinstock IA. Complexed Semiconductor Cores Activate Hexaniobate Ligands as Nucleophilic Sites for Solar‐Light Reduction of CO
2
by Water. Angew Chem Int Ed Engl 2022; 61:e202213162. [PMID: 36200676 PMCID: PMC10098893 DOI: 10.1002/anie.202213162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 11/06/2022]
Abstract
Although pure and functionalized solid-state polyniobates such as layered perovskites and niobate nanosheets are photocatalysts for renewable-energy processes, analogous reactions by molecular polyoxoniobate cluster-anions are nearly absent from the literature. We now report that under simulated solar light, hexaniobate cluster-anion encapsulated 30-NiII -ion "fragments" of surface-protonated cubic-phase-like NiO cores activate the hexaniobate ligands towards CO2 reduction by water. Photoexcitation of the NiO cores promotes charge-transfer reduction of NbV to NbIV , increasing electron density at bridging oxo atoms of Nb-μ-O-Nb linkages that bind and convert CO2 to CO. Photogenerated NiO "holes" simultaneously oxidize water to dioxygen. The findings point to molecular complexation of suitable semiconductor "fragments" as a general method for utilizing electron-dense polyoxoniobate anions as nucleophilic photocatalysts for solar-light driven activation and reduction of small molecules.
Collapse
Affiliation(s)
- Guanyun Zhang
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & TechnologyBen-Gurion University of the NegevBeer Sheva84105Israel
- Key Lab for Colloid and Interface Science of Ministry of EducationSchool of Chemistry and Chemical EngineeringShandong UniversityJinan250100China
| | - Fei Wang
- Departament de Química Física i InorgànicaUniversitat Rovira i Virgili43007TarragonaSpain
| | - Tal Tubul
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & TechnologyBen-Gurion University of the NegevBeer Sheva84105Israel
| | - Mark Baranov
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & TechnologyBen-Gurion University of the NegevBeer Sheva84105Israel
| | - Nitai Leffler
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & TechnologyBen-Gurion University of the NegevBeer Sheva84105Israel
| | - Alevtina Neyman
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & TechnologyBen-Gurion University of the NegevBeer Sheva84105Israel
| | - Josep M. Poblet
- Departament de Química Física i InorgànicaUniversitat Rovira i Virgili43007TarragonaSpain
| | - Ira A. Weinstock
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & TechnologyBen-Gurion University of the NegevBeer Sheva84105Israel
| |
Collapse
|
9
|
Amaechi IC, Hadj Youssef A, Dörfler A, González Y, Katoch R, Ruediger A. Catalytic Applications of Non‐Centrosymmetric Oxide Nanomaterials. Angew Chem Int Ed Engl 2022; 61:e202207975. [DOI: 10.1002/anie.202207975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Ifeanyichukwu C. Amaechi
- Institut National de la Recherche Scientifique Énergie Matériaux et Télécommunications Research Centre 1650, Boul. Lionel-Boulet Varennes J3X 1P7 Québec Canada
| | - Azza Hadj Youssef
- Institut National de la Recherche Scientifique Énergie Matériaux et Télécommunications Research Centre 1650, Boul. Lionel-Boulet Varennes J3X 1P7 Québec Canada
| | - Andreas Dörfler
- Institut National de la Recherche Scientifique Énergie Matériaux et Télécommunications Research Centre 1650, Boul. Lionel-Boulet Varennes J3X 1P7 Québec Canada
| | - Yoandris González
- Institut National de la Recherche Scientifique Énergie Matériaux et Télécommunications Research Centre 1650, Boul. Lionel-Boulet Varennes J3X 1P7 Québec Canada
| | - Rajesh Katoch
- Institut National de la Recherche Scientifique Énergie Matériaux et Télécommunications Research Centre 1650, Boul. Lionel-Boulet Varennes J3X 1P7 Québec Canada
| | - Andreas Ruediger
- Institut National de la Recherche Scientifique Énergie Matériaux et Télécommunications Research Centre 1650, Boul. Lionel-Boulet Varennes J3X 1P7 Québec Canada
| |
Collapse
|
10
|
Amaechi I, Hadj Youssef A, Dörfler A, Gonzalez Y, Katoch R, Ruediger A. Catalytic Applications of Non‐Centrosymmetric Oxide Nanomaterials. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ifeanyichukwu Amaechi
- Institut national de la recherche scientifique 1650, Boul. Lionel Boulet Varennes (Québec) J3X 1S2 CANADA
| | - Azza Hadj Youssef
- Institut national de la recherche scientifique Center for Energy, Materials & Telecommunication 1650 Boul. Lionel-BouletVarennes J3X1P7 Montreal CANADA
| | - Andreas Dörfler
- Institut national de la recherche scientifique Center for Energy, Materials & Telecommunication 1650 Boul. Lionel-BouletVarennes J3X1P7 Montreal CANADA
| | - Yoandris Gonzalez
- Institut national de la recherche scientifique Center for Energy, Materials & Telecommunication 1650 Boul. Lionel-BouletVarennes J3X1P7 Montreal CANADA
| | - Rajesh Katoch
- Institut national de la recherche scientifique Center for Energy, Materials & Telecommunication 1650 Boul. Lionel-BouletVarennes J3X1P7 Montreal CANADA
| | - Andreas Ruediger
- Institut national de la recherche scientifique Center for Energy, Materials & Telecommunication 1650 Boul. Lionel-BouletVarennes J3X1P7 Montreal CANADA
| |
Collapse
|
11
|
Zhang Y, Qu W, Peng G, Zhang C, Liu Z, Liu J, Li S, Wu H, Meng L, Gao L. Seeing Structural Mechanisms of Optimized Piezoelectric and Thermoelectric Bulk Materials through Structural Defect Engineering. MATERIALS 2022; 15:ma15020487. [PMID: 35057205 PMCID: PMC8780573 DOI: 10.3390/ma15020487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023]
Abstract
Aberration-corrected scanning transmission electron microscopy (AC-STEM) has evolved into the most powerful characterization and manufacturing platform for all materials, especially functional materials with complex structural characteristics that respond dynamically to external fields. It has become possible to directly observe and tune all kinds of defects, including those at the crucial atomic scale. In-depth understanding and technically tailoring structural defects will be of great significance for revealing the structure-performance relation of existing high-property materials, as well as for foreseeing paths to the design of high-performance materials. Insights would be gained from piezoelectrics and thermoelectrics, two representative functional materials. A general strategy is highlighted for optimizing these functional materials’ properties, namely defect engineering at the atomic scale.
Collapse
Affiliation(s)
- Yang Zhang
- Instrumental Analysis Center of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an 710049, China; (L.M.); (L.G.)
- Correspondence:
| | - Wanbo Qu
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China; (W.Q.); (G.P.); (C.Z.); (Z.L.); (J.L.); (S.L.); (H.W.)
| | - Guyang Peng
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China; (W.Q.); (G.P.); (C.Z.); (Z.L.); (J.L.); (S.L.); (H.W.)
| | - Chenglong Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China; (W.Q.); (G.P.); (C.Z.); (Z.L.); (J.L.); (S.L.); (H.W.)
| | - Ziyu Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China; (W.Q.); (G.P.); (C.Z.); (Z.L.); (J.L.); (S.L.); (H.W.)
| | - Juncheng Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China; (W.Q.); (G.P.); (C.Z.); (Z.L.); (J.L.); (S.L.); (H.W.)
| | - Shurong Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China; (W.Q.); (G.P.); (C.Z.); (Z.L.); (J.L.); (S.L.); (H.W.)
| | - Haijun Wu
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China; (W.Q.); (G.P.); (C.Z.); (Z.L.); (J.L.); (S.L.); (H.W.)
| | - Lingjie Meng
- Instrumental Analysis Center of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an 710049, China; (L.M.); (L.G.)
| | - Lumei Gao
- Instrumental Analysis Center of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an 710049, China; (L.M.); (L.G.)
| |
Collapse
|
12
|
McDonald C, Ni C, Švrček V, Macias-Montero M, Velusamy T, Connor PA, Maguire P, Irvine JTS, Mariotti D. Carrier extraction from metallic perovskite oxide nanoparticles. NANOSCALE 2021; 13:12271-12278. [PMID: 34241608 DOI: 10.1039/d1nr02890a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We observe the extraction of carriers excited between two types of bands in the perovskite oxide, Sr-deficient strontium niobate (Sr0.9NbO3). Sr0.9NbO3 exhibits metallic behaviour and high conductivity, whilst also displaying broad absorption across the ultraviolet, visible, and near-infrared spectral regions, making it an attractive material for solar energy conversion. Furthermore, the optoelectronic properties of strontium niobate can easily be tuned by varying the Sr fraction or through doping. Sr-deficient strontium niobate exhibits a split conduction band, which enables two types of optical transitions: intraband and interband. However, whether such carriers can be extracted from an unusual material as such remains unproven. In this report, we have overcome the immense challenge of photocarrier extraction by fabricating an extremely thin absorber layer of Sr0.9NbO3 nanoparticles. These findings open up great opportunities to harvest a very broad solar spectral absorption range with reduced recombination losses.
Collapse
Affiliation(s)
- Calum McDonald
- Nanotechnology & Integrated Bio-Engineering Centre (NIBEC), Ulster University, BT37 0QB, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ofoegbuna T, Peterson B, da Silva Moura N, Nepal R, Kizilkaya O, Smith C, Jin R, Plaisance C, Flake JC, Dorman JA. Modifying Metastable Sr 1-xBO 3-δ (B = Nb, Ta, and Mo) Perovskites for Electrode Materials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29788-29797. [PMID: 34133135 PMCID: PMC8289236 DOI: 10.1021/acsami.1c05743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
The presence of surface/deep defects in 4d- and 5d-perovskite oxide (ABO3, B = Nb, Ta, Mo, etc.) nanoparticles (NPs), originating from multivalent B-site cations, contributes to suppressing their metallic properties. These defect states can be removed using a H2/Ar thermal treatment, enabling the recovery of their electronic properties (i.e., low electrical resistivity, high carrier concentration, etc.) as expected from their electronic structure. Therefore, to engineer the electronic properties of these metastable perovskites, an oxygen-controlled crystallization approach coupled with a subsequent H2/Ar treatment was utilized. A comprehensive study of the effect of the post-treatment time on the electronic properties of these perovskite NPs was performed using a combination of scattering, spectroscopic, and computational techniques. These measurements revealed that a metallic-like state is stabilized in these oxygen-reduced NPs due to the suppression of deep rather than surface defects. Ultimately, this synthetic approach can be employed to synthesize ABO3 perovskite NPs with tunable electronic properties for application into electrochemical devices.
Collapse
Affiliation(s)
- Tochukwu Ofoegbuna
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Benjamin Peterson
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Natalia da Silva Moura
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Roshan Nepal
- Department
of Physics and Astronomy, Louisiana State
University, Baton Rouge, Louisiana 70803, United States
| | - Orhan Kizilkaya
- Center
for Advanced Microstructure Devices, Louisiana
State University, Baton Rouge, Louisiana 70803, United States
| | - Carsyn Smith
- St.
Joseph’s Academy, Baton
Rouge, Louisiana 70803, United States
| | - Rongying Jin
- Department
of Physics and Astronomy, Louisiana State
University, Baton Rouge, Louisiana 70803, United States
| | - Craig Plaisance
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - John C. Flake
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - James A. Dorman
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
14
|
Gopi PK, Mutharani B, Chen SM, Chen TW, Eldesoky GE, Ali MA, Wabaidur SM, Shaik F, Tzu CY. Electrochemical sensing base for hazardous herbicide aclonifen using gadolinium niobate (GdNbO 4) nanoparticles-actual river water and soil sample analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111285. [PMID: 32931964 DOI: 10.1016/j.ecoenv.2020.111285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
The present work scrutinized the voltammetric analysis of hazardous herbicide aclonifen (ACF) in actual soil and river water samples utilizing the electrochemical method. The electrochemical sensing device was fabricated for the determination of ACF using gadolinium niobate (GdNbO4) nanoparticles modified glassy carbon electrode (GCE). The novel GdNbO4 sensing material was prepared via a simple co-precipitation method. Several characterization techniques (TEM, EDS, XRD, XPS, and BET) were utilized to analyze the structural features of the GdNbO4. The enhanced electrochemical behavior of GdNbO4 modified GCE towards ACF was observed compared to bare GCE. The cyclic voltammetry response revealed that the prepared sensor shows the lower negative potential with a dramatic increase in the peak current of ACF compared to bare GCE. In the differential pulse voltammetry, the limit of detection (1.15 nM) and sensitivity (23 μA μM-1 cm-2) of the ACF on the GdNbO4 modified GCE was comparatively superior to the formerly proposed ACF based sensor. This sensor reveals good selectivity, repeatability, reproducibility, and long-term stability. The reliability of the sensor exhibits satisfactory recovery results for ACF detection in river water and soil samples.
Collapse
Affiliation(s)
- Praveen Kumar Gopi
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Bhuvanenthiran Mutharani
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan.
| | - Tse-Wei Chen
- Research and Development Center for Smart Textile Technology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan; Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Gaber E Eldesoky
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saikh M Wabaidur
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Firdoz Shaik
- Department of Chemistry, Guangdong Technion-Israel Institute of Technology, Shantou, China
| | - Chang Yen Tzu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| |
Collapse
|
15
|
Quesada-Cabrera R, Parkin IP. Qualitative Approaches Towards Useful Photocatalytic Materials. Front Chem 2020; 8:817. [PMID: 33024744 PMCID: PMC7516336 DOI: 10.3389/fchem.2020.00817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/04/2020] [Indexed: 11/13/2022] Open
Abstract
The long-standing crusade searching for efficient photocatalytic materials has resulted in a vast landscape of promising photocatalysts, as reflected by the number of reviews reported in the last decade. Virtually all of these reviews have focused on quantitative approaches aiming at developing an understanding of the underlying mechanisms behind photocatalytic behavior and the parameters that influence structure–function correlation. Less attention has been paid, however, to qualitative measures around the development and assessment of photocatalysts. These measures will contribute toward narrowing the range of potential photocatalytic materials for widespread applications. The current report provides a critical perspective over some of the main factors affecting the assessment of photocatalytic materials as a code of good practice. A case of study is also provided, where this qualitative analysis is applied to one of the most prolific materials of the last-decade, disorder-engineered, black titanium dioxide (TiO2).
Collapse
Affiliation(s)
- Raul Quesada-Cabrera
- Christopher-Ingold Laboratories, Materials Chemistry Center, Department of Chemistry, UCL (University College London), London, United Kingdom
| | - Ivan P Parkin
- Christopher-Ingold Laboratories, Materials Chemistry Center, Department of Chemistry, UCL (University College London), London, United Kingdom
| |
Collapse
|
16
|
Song D, Wan D, Wu HH, Xue D, Ning S, Wu M, Venkatesan T, Pennycook SJ. Electronic and plasmonic phenomena at nonstoichiometric grain boundaries in metallic SrNbO 3. NANOSCALE 2020; 12:6844-6851. [PMID: 32186322 DOI: 10.1039/c9nr10221c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Grain boundaries could exhibit exceptional electronic structure and exotic properties, which are determined by a local atomic configuration and stoichiometry that differs from the bulk. However, optical and plasmonic properties at the grain boundaries in metallic oxides have rarely been discussed before. Here, we show that non-stoichiometric grain boundaries in the newly discovered metallic SrNbO3 photocatalyst show exotic electronic, optical and plasmonic phenomena in comparison to bulk. Aberration-corrected scanning transmission electron microscopy and first-principles calculations reveal that a Nb-rich grain boundary exhibits an increased carrier concentration with quasi-1D metallic conductivity, and newly induced electronic states contributing to the broad energy range of optical absorption. More importantly, dielectric function calculations reveal extended and enhanced plasmonic excitations compared with bulk SrNbO3. Our results show that non-stoichiometric grain boundaries might be utilized to control the electronic and plasmonic properties in oxide photocatalysis.
Collapse
Affiliation(s)
- Dongsheng Song
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kahng S, Yoo H, Kim JH. Recent advances in earth-abundant photocatalyst materials for solar H2 production. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2019.08.035] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Kontoleta E, Askes SHC, Garnett EC. Self-Optimized Catalysts: Hot-Electron Driven Photosynthesis of Catalytic Photocathodes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35713-35719. [PMID: 31475816 PMCID: PMC6778899 DOI: 10.1021/acsami.9b10913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Photogenerated hot electrons from plasmonic nanostructures are very promising for photocatalysis, mostly due to their potential for enhanced chemical selectivity. Here, we present a self-optimized fabrication method of plasmonic photocathodes using hot-electron chemistry, for enhanced photocatalytic efficiencies. Plasmonic Au/TiO2 nanoislands are excited at their surface plasmon resonance to generate hot electrons in an aqueous bath containing a platinum (cocatalyst) precursor. Hot electrons drive the deposition of Pt cocatalyst nanoparticles, without any nanoparticle functionalization and negligible applied bias, close to the hotspots of the plasmonic nanoislands. The presence of TiO2 is crucial for achieving higher chemical reaction rates. The Au/TiO2/Pt photocathodes synthesized using hot-electron chemistry show a photocatalytic activity of up to 2 times higher than that of a control made with random electrodeposited Pt nanoparticles. This light-driven positioning of the cocatalyst close to the same positions where hot electrons are most efficiently generated and transferred represents a novel and simple method for synthesizing complex, self-optimized photocatalytic nanostructures with improved efficiency and selectivity.
Collapse
|
19
|
Ofoegbuna T, Darapaneni P, Sahu S, Plaisance C, Dorman JA. Stabilizing the B-site oxidation state in ABO 3 perovskite nanoparticles. NANOSCALE 2019; 11:14303-14311. [PMID: 31321389 DOI: 10.1039/c9nr04155a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The stabilization of the B-site oxidation state in ABO3 perovskites using wet-chemical methods is a synthetic challenge, which is of fundamental and practical interest for energy storage and conversion devices. In this work, defect-controlled (Sr-deficiency and oxygen vacancies) strontium niobium(iv) oxide (Sr1-xNbO3-δ, SNO) metal oxide nanoparticles (NPs) were synthesized for the first time using a low-pressure wet-chemistry synthesis. The experiments were performed under reduced oxygen partial pressure to prevent by-product formation and with varying Sr/Nb molar ratio to favor the formation of Nb4+ pervoskites. At a critical Sr to Nb ratio (Sr/Nb = 1.3), a phase transition is observed forming an oxygen-deficient SrNbO3 phase. Structural refinement on the resultant diffraction pattern shows that the SNO NPs consists of a near equal mixture of SrNbO3 and Sr0.7NbO3-δ crystal phases. A combination of Rietveld refinement and X-ray photoelectron spectroscopy (XPS) confirmed the stabilization of the +4 oxidation state and the formation of oxygen vacancies. The Nb local site symmetry was extracted through Raman spectroscopy and modeled using DFT. As further confirmation, the particles demonstrate the expected absorption highlighting their restored optoelectronic properties. This low-pressure wet-chemical approach for stabilizing the oxidation state of a transition metal has the potential to be extended to other oxygen sensitive, low dimensional perovskite oxides with unique properties.
Collapse
Affiliation(s)
- Tochukwu Ofoegbuna
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | | | | | | | |
Collapse
|
20
|
Lin Z, Du C, Yan B, Yang G. Two-dimensional amorphous CoO photocatalyst for efficient overall water splitting with high stability. J Catal 2019. [DOI: 10.1016/j.jcat.2019.03.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Kaneko M, Mishima K, Yamashita K. First-principles study on visible light absorption of defected SrNbO3. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Sakthivel T, Venugopal G, Durairaj A, Vasanthkumar S, Huang X. Utilization of the internal electric field in semiconductor photocatalysis: A short review. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.12.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Li C, Song D, Li M, Tang C, Xue D, Wan D, Pennycook SJ. Atomic scale characterization of point and extended defects in niobate thin films. Ultramicroscopy 2019; 203:82-87. [PMID: 30857652 DOI: 10.1016/j.ultramic.2019.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/22/2019] [Accepted: 03/03/2019] [Indexed: 11/29/2022]
Abstract
Niobium-based oxides have a wide range of applications owing to their rich crystal and electronic structures. Defects at the atomic scale are always unavoidable and will affect their functionalities, especially when in the form of thin films. Here, atomic resolution scanning transmission electron microscopy and electron energy loss spectroscopy have been performed on various defects (point, line, planar defects and segregated phases) in alkaline and alkaline-earth niobate thin films: CaZrO3 modified (K, Na)NbO3 and strontium niobate (SNO), respectively. In CaZrO3 modified (K,Na)NbO3 thin films, a tetragonal tungsten bronze phase was found, with a sharp boundary with the perovskite phase. In SNO thin films, several kinds of point defects and antiphase boundaries are commonly observed. In addition, a strongly Sr deficient phase, SrNb2O6, precipitates inside the SrNbO3 phase with a coherent interface. The different oxidation states of Nb in SrNbO3 and SrNb2O6 were revealed from the O K edge. Our characterization of the point defects and extended defects in niobate thin films offers practical guidelines for thin film deposition or discovery of defect-based novel functionalities.
Collapse
Affiliation(s)
- Changjian Li
- Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore
| | - Dongsheng Song
- Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore; NUSNNI-Nanocore, National University of Singapore, 117411 Singapore.
| | - Mengsha Li
- Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore
| | - Chunhua Tang
- Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore
| | - Deqing Xue
- Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore
| | - Dongyang Wan
- NUSNNI-Nanocore, National University of Singapore, 117411 Singapore
| | - Stephen J Pennycook
- Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore; NUSNNI-Nanocore, National University of Singapore, 117411 Singapore.
| |
Collapse
|
24
|
Metal Chalcogenides on Silicon Photocathodes for Efficient Water Splitting: A Mini Overview. Catalysts 2019. [DOI: 10.3390/catal9020149] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the photoelectrochemical (PEC) water splitting (WS) reactions, a photon is absorbed by a semiconductor, generating electron-hole pairs which are transferred across the semiconductor/electrolyte interface to reduce or oxidize water into oxygen or hydrogen. Catalytic junctions are commonly combined with semiconductor absorbers, providing electrochemically active sites for charge transfer across the interface and increasing the surface band bending to improve the PEC performance. In this review, we focus on transition metal (di)chalcogenide [TM(D)C] catalysts in conjunction with silicon photoelectrode as Earth-abundant materials systems. Surprisingly, there is a limited number of reports in Si/TM(D)C for PEC WS in the literature. We provide almost a complete survey on both layered TMDC and non-layered transition metal dichalcogenides (TMC) co-catalysts on Si photoelectrodes, mainly photocathodes. The mechanisms of the photovoltaic power conversion of silicon devices are summarized with emphasis on the exact role of catalysts. Diverse approaches to the improved PEC performance and the proposed synergetic functions of catalysts on the underlying Si are reviewed. Atomic layer deposition of TM(D)C materials as a new methodology for directly growing them and its implication for low-temperature growth on defect chemistry are featured. The multi-phase TM(D)C overlayers on Si and the operation principles are highlighted. Finally, challenges and directions regarding future research for achieving the theoretical PEC performance of Si-based photoelectrodes are provided.
Collapse
|
25
|
Synthesis of a plasmonic CuNi bimetal modified with carbon quantum dots as a non-semiconductor-driven photocatalyst for effective water splitting. J Catal 2019. [DOI: 10.1016/j.jcat.2018.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Wu H, Zhao X, Song D, Tian F, Wang J, Loh KP, Pennycook SJ. Progress and prospects of aberration-corrected STEM for functional materials. Ultramicroscopy 2018; 194:182-192. [DOI: 10.1016/j.ultramic.2018.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/14/2018] [Accepted: 08/07/2018] [Indexed: 11/16/2022]
|
27
|
Oka D, Hirose Y, Kaneko M, Nakao S, Fukumura T, Yamashita K, Hasegawa T. Anion-Substitution-Induced Nonrigid Variation of Band Structure in SrNbO 3- xN x (0 ≤ x ≤ 1) Epitaxial Thin Films. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35008-35015. [PMID: 30221926 DOI: 10.1021/acsami.8b08577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pervoskite oxynitrides exhibit rich functionalities such as colossal magnetoresistance and high photocatalytic activity. The wide tunability of physical properties by the N/O ratio makes perovskite oxynitrides promising as optical and electrical materials. However, composition-dependent variation of the band structure, especially under partially substituted composition, is not yet well understood. In this study, we quantitatively analyzed the composition-dependent variation of band structure of a series of SrNbO3- xN x (0 ≤ x ≤ 1.02) epitaxial thin films. Electrical conductivity decreased along with the increase of N content x as a result of an increase in Nb valence from 4+ to 5+. Optical measurements revealed that the N 2p band is formed at a critical composition between 0.07 < x < 0.38, which induces charge-transfer transition (CTT) in the visible-light region. These variations in the band structure were explained by first-principles calculations. However, the CTT energy slightly increased at higher N contents (i.e., lower carrier density) on contrary to the expectation based on the rigid-band-like shift of the Fermi level, which suggests a complex combination of the following band-shifting effects induced by N-substitution: whereas (1) reduction of the Burstein-Moss effect causes CTT energy reduction, (2) enhancement of hybridization between Nb 4d and N 2p orbitals and/or (3) suppression of many-body effects enlarge the band gap energy at larger N content. The band structure variation in perovskite oxynitride as presently elucidated would be a guidepost for future material design.
Collapse
Affiliation(s)
- Daichi Oka
- Department of Chemistry, Graduate School of Science , Tohoku University , 6-3 Aramaki Aza Aoba , Aoba, Sendai , Miyagi 980-8578 , Japan
| | - Yasushi Hirose
- Kanagawa Academy of Science and Technology (KAST) , 3-2-1 Sakado , Takatsu, Kawasaki 213-0012 , Japan
| | | | - Shoichiro Nakao
- Kanagawa Academy of Science and Technology (KAST) , 3-2-1 Sakado , Takatsu, Kawasaki 213-0012 , Japan
| | - Tomoteru Fukumura
- Department of Chemistry, Graduate School of Science , Tohoku University , 6-3 Aramaki Aza Aoba , Aoba, Sendai , Miyagi 980-8578 , Japan
- Kanagawa Academy of Science and Technology (KAST) , 3-2-1 Sakado , Takatsu, Kawasaki 213-0012 , Japan
- WPI Advanced Institute for Materials Research , Tohoku University , 2-1-1 Katahira , Sendai , Miyagi 980-8577 , Japan
| | | | - Tetsuya Hasegawa
- Kanagawa Academy of Science and Technology (KAST) , 3-2-1 Sakado , Takatsu, Kawasaki 213-0012 , Japan
| |
Collapse
|
28
|
Two-dimensional amorphous NiO as a plasmonic photocatalyst for solar H 2 evolution. Nat Commun 2018; 9:4036. [PMID: 30279416 PMCID: PMC6168506 DOI: 10.1038/s41467-018-06456-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/28/2018] [Indexed: 11/15/2022] Open
Abstract
Amorphous materials are usually evaluated as photocatalytically inactive due to the amorphous nature-induced self-trapping of tail states, in spite of their achievements in electrochemistry. NiO crystals fail to act as an individual reactor for photocatalytic H2 evolution because of the intrinsic hole doping, regardless of their impressive cocatalytic ability for proton/electron transfer. Here we demonstrate that two-dimensional amorphous NiO nanostructure can act as an efficient and robust photocatalyst for solar H2 evolution without any cocatalysts. Further, the antenna effect of surface plasmon resonance can be introduced to construct an incorporate antenna-reactor structure by increasing the electron doping. The solar H2 evolution rate is improved by a factor of 19.4 through the surface plasmon resonance-mediated charge releasing. These findings thus open a door to applications of two-dimensional amorphous NiO as an advanced photocatalyst. While photocatalysis offers a means to store solar energy as chemical fuels, photocatalysts typically require crystalline structures and expensive noble-metal cocatalysts. Here, authors prepare 2D amorphous nano-nickel oxide capable of plasmonic, photodriven H2 evolution without cocatalysts.
Collapse
|
29
|
Wells MP, Bower R, Kilmurray R, Zou B, Mihai AP, Gobalakrichenane G, Alford NM, Oulton RFM, Cohen LF, Maier SA, Zayats AV, Petrov PK. Temperature stability of thin film refractory plasmonic materials. OPTICS EXPRESS 2018; 26:15726-15744. [PMID: 30114830 DOI: 10.1364/oe.26.015726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
Materials such as W, TiN, and SrRuO3 (SRO) have been suggested as promising alternatives to Au and Ag in plasmonic applications owing to their stability at high operational temperatures. However, investigation of the reproducibility of the optical properties after thermal cycling between room and elevated temperatures is so far lacking. Here, thin films of W, Mo, Ti, TiN, TiON, Ag, Au, SrRuO3 and SrNbO3 are investigated to assess their viability for robust refractory plasmonic applications. These results are further compared to the performance of SrMoO3 reported in literature. Films ranging in thickness from 50 to 105 nm are deposited on MgO, SrTiO3 and Si substrates by e-beam evaporation, RF magnetron sputtering and pulsed laser deposition, prior to characterisation by means of AFM, XRD, spectroscopic ellipsometry, and DC resistivity. Measurements are conducted before and after annealing in air at temperatures ranging from 300 to 1000° C for one hour, to establish the maximum cycling temperature and potential longevity at elevated temperatures for each material. It is found that SrRuO3 retains metallic behaviour after annealing at 800° C, while SrNbO3 undergoes a phase transition resulting in a loss of metallic behaviour after annealing at 400° C. Importantly, the optical properties of TiN and TiON are degraded as a result of oxidation and show a loss of metallic behaviour after annealing at 500° C, while the same is not observed in Au until annealing at 600° C. Nevertheless, both TiN and TiON may be better suited than Au or SRO for high temperature applications operating under vacuum conditions.
Collapse
|
30
|
Effect of Nb concentration on the spin-orbit coupling strength in Nb-doped SrTiO 3 epitaxial thin films. Sci Rep 2018; 8:5739. [PMID: 29636543 PMCID: PMC5893625 DOI: 10.1038/s41598-018-23967-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/23/2018] [Indexed: 11/08/2022] Open
Abstract
Several oxide materials have attracted much interest for the application in spintronic devices due to unusual properties originating from the strongly correlated orbital and spin degrees of freedom. One missing part in oxide spintronics is a good spin channel featured by strong spin-orbit coupling (SOC) which enables an efficient control of the electron’s spin. We have systematically investigated the dependence of the SOC strength of Sr(NbxTi1−x)O3 thin films on Nb concentration (nNb = 2~20 at. %) as a deeper exploration of a recent finding of the strong SOC in a heavily Nb-doped SrTiO3 (Sr(Nb0.2Ti0.8)O3) epitaxial film. Apart from a finding of a proportionality of the SOC to nNb, we have observed an intriguing temperature dependence of the SOC strength and the anisotropic magnetoresistance (MR) in the intermediate nNb region. These phenomena are associated with the temperature dependence of Landé g-factor and the change of the band structure, which is consistent with the result of density functional theory (DFT) calculation.
Collapse
|
31
|
Saravanan R, Aviles J, Gracia F, Mosquera E, Gupta VK. Crystallinity and lowering band gap induced visible light photocatalytic activity of TiO 2/CS (Chitosan) nanocomposites. Int J Biol Macromol 2017; 109:1239-1245. [PMID: 29175525 DOI: 10.1016/j.ijbiomac.2017.11.125] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/14/2017] [Accepted: 11/19/2017] [Indexed: 12/11/2022]
Abstract
The inhibition of electrons-holes recombination and enhancement of visible light photocatalytic activity were accomplished by the synthesized TiO2/CS nanocomposites system. In this present work, the different weight ratio of TiO2 and chitosan (75:25, 50:50 and 25:75) nanocomposites were synthesized via two-step method. After that, the existing functional groups, size and structure of the nanocomposites system were characterized via FT-IR, TEM and XRD measurements. The band gap of the prepared materials and its excitation and emission spectra were elevated through UV-vis and PL analyses. Moreover, the MO and MB degradation capability of the synthesized TiO2/CS nanocomposites was optimized, and the outcomes are described in detail.
Collapse
Affiliation(s)
- R Saravanan
- Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851 6th floor, Santiago, Chile.
| | - J Aviles
- Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851 6th floor, Santiago, Chile
| | - F Gracia
- Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851 6th floor, Santiago, Chile.
| | - E Mosquera
- Departamento de Física, Universidad del Valle, A.A. 25360, Cali, Colombia
| | - Vinod Kumar Gupta
- Department of Applied Chemistry, University of Johannesburg, Johannesburg, South Africa; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
32
|
Gómez Rojas O, Song G, Hall SR. Fast and scalable synthesis of strontium niobates with controlled stoichiometry. CrystEngComm 2017. [DOI: 10.1039/c7ce01298e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An ionic liquid/dextran blend is used to synthesise strontium niobates with exceptional control over stoichiometry.
Collapse
Affiliation(s)
- Omar Gómez Rojas
- The Bristol Centre for Functional Nanomaterials
- University of Bristol
- UK
- Complex Functional Materials Group
- School of Chemistry
| | - Ge Song
- The Bristol Centre for Functional Nanomaterials
- University of Bristol
- UK
- Complex Functional Materials Group
- School of Chemistry
| | - Simon R. Hall
- The Bristol Centre for Functional Nanomaterials
- University of Bristol
- UK
- Complex Functional Materials Group
- School of Chemistry
| |
Collapse
|