1
|
Ren M, Wang Y, Zheng X, Yang W, Liu M, Xie S, Yao Y, Yan J, He W. Hydrogelation of peptides and carnosic acid as regulators of adaptive immunity against postoperative recurrence of cutaneous melanoma. J Control Release 2024; 375:654-666. [PMID: 39306045 DOI: 10.1016/j.jconrel.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
The in-situ activation of adaptive immunity at the surgical site has demonstrated remarkable efficacy in inhibiting various forms of tumour recurrence and even holds the promise of a potential cure. However, extensive research and bioinformatic analysis conducted in this study have unveiled the formidable challenge posed by melanoma-intrinsic β-catenin signaling, which hinders the infiltration of cytotoxic T-lymphocytes (CTLs) and their subsequent anti-tumour action. To overcome this obstacle, a β-catenin antagonist called carnosic acid (CA) was co-assembled with a RADA-rich peptide to create a nanonet-derived hydrogel known as Supra-gelδCA. This injectable hydrogel is designed to be retained at the surgical site while simultaneously promoting hemostasis. Importantly, Supra-gelδCA directly releases CA to the site of residual tumour lesions, thereby enhancing infiltration of CTLs and subsequently activating adaptive immunity. Consequently, it effectively suppresses postoperative recurrence of skin cutaneous melanoma (SKCM) in vivo. Collectively, the presented Supra-gelδCA not only provides an efficacious immunotherapy strategy for regulating adaptive immunity by overcoming the obstacle posed by melanoma-intrinsic β-catenin signaling-induced absence of CTLs but also offers a clinically translatable hydrogel that revolutionizes post-surgical management of SKCM.
Collapse
Affiliation(s)
- Mengdi Ren
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yang Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China; Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Xiaoqiang Zheng
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Wenguang Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Mutian Liu
- Department of mathematics and statistics, Xi'an Jiaotong University, Xi'an 710004, China
| | - Siyun Xie
- School of Information Science and Technology, Northwest University, Xi'an 710127, China
| | - Yu Yao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Yan
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Wangxiao He
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.; Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, China..
| |
Collapse
|
2
|
Zong S, Zhang Y, Xiao J, Cong Y, Bi Z, Sun C, Wang H, Wei Y, Rong X, Zhou J, Li D, Zhu M. Talauromides A-G, Nitrogen-Containing Heptacyclic Oligophenalenone Dimers from the Soil Fungus Talaromyces stipitatus BMC-16. JOURNAL OF NATURAL PRODUCTS 2024; 87:2450-2458. [PMID: 39412829 DOI: 10.1021/acs.jnatprod.4c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Seven new nitrogen-containing heptacyclic oligophenalenone dimers, talauromides A-G (1-7), together with known compounds bacillisporins A and B (8 and 9), talaromycesones C and B (10 and 11), duclauxin (12) and lamellicolic anhydride (13), were isolated from the soil derived-fungus Talaromyces stipitatus BMC-16. Their chemical structures were determined based on spectroscopic analysis data. The absolute configurations were elucidated by chemical approaches and the comparison of CD spectra with related compounds. Compounds 3, 8 and 11 exhibited inhibitory activity on the Wnt/β-catenin signaling pathway in zebrafish embryos at a concentration of 20 μM.
Collapse
Affiliation(s)
- Shikun Zong
- School of Pharmacy, Bengbu Medical University, 2600 Donghai Road, Bengbu 233030, People's Republic of China
- Research Center of Anhui Biochemical Drug Engineering Technology, 2600 Donghai Road, Bengbu 233030, People's Republic of China
| | - Yixuan Zhang
- School of Pharmacy, Bengbu Medical University, 2600 Donghai Road, Bengbu 233030, People's Republic of China
- Research Center of Anhui Biochemical Drug Engineering Technology, 2600 Donghai Road, Bengbu 233030, People's Republic of China
| | - Jun Xiao
- School of Pharmacy, Bengbu Medical University, 2600 Donghai Road, Bengbu 233030, People's Republic of China
- Research Center of Anhui Biochemical Drug Engineering Technology, 2600 Donghai Road, Bengbu 233030, People's Republic of China
| | - Yajuan Cong
- School of Pharmacy, Bengbu Medical University, 2600 Donghai Road, Bengbu 233030, People's Republic of China
- Research Center of Anhui Biochemical Drug Engineering Technology, 2600 Donghai Road, Bengbu 233030, People's Republic of China
| | - Zhuoling Bi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Chunxiao Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Haotian Wang
- School of Pharmacy, Bengbu Medical University, 2600 Donghai Road, Bengbu 233030, People's Republic of China
- Research Center of Anhui Biochemical Drug Engineering Technology, 2600 Donghai Road, Bengbu 233030, People's Republic of China
| | - Yimei Wei
- School of Pharmacy, Bengbu Medical University, 2600 Donghai Road, Bengbu 233030, People's Republic of China
| | - Xiaozhi Rong
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Jianfeng Zhou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Meilin Zhu
- School of Pharmacy, Bengbu Medical University, 2600 Donghai Road, Bengbu 233030, People's Republic of China
- Research Center of Anhui Biochemical Drug Engineering Technology, 2600 Donghai Road, Bengbu 233030, People's Republic of China
| |
Collapse
|
3
|
Li F, Wang J, Liu T, Yang W, Li Y, Sun Q, Yan J, He W. Rebooting the Adaptive Immune Response in Immunotherapy-Resistant Lung Adenocarcinoma Using a Supramolecular Albumin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404892. [PMID: 39431325 DOI: 10.1002/smll.202404892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/26/2024] [Indexed: 10/22/2024]
Abstract
Despite the availability of immune checkpoint inhibitors (ICBs) significantly prolonging the life expectancy of some lung adenocarcinoma (LUAD) patients, their implementation and long-term effectiveness are hampered by the growing issue of acquired resistance. Herein, the bioinformatics analysis of immunotherapy-resistant LUAD patients and the system analysis of Anti-PD1-resistant mice models once again validate that the resistance-associated Wnt/β-catenin pathway offers a promising avenue for ICB sensitization. Consequently, a mild and convenient self-assembly between albumin and carnosic acid (CA), a Wnt inhibitor is employed, to develop a supramolecular albumin known as ABCA, serving as a reactivator for ICB. As anticipated, ABCA effectively suppress the Wnt/β-catenin cascade in vitro and leads to significant inhibition of cell proliferation while promoting apoptosis. Most notably, ABCA restores the anticancer efficacy of Anti-PD1 in immunotherapy-resistant LUAD orthotopic allografting mice models by reinvigorating the adaptive immune response mediated by T lymphocytes. Furthermore, ABCA exhibits minimal adverse effects during treatment and high-dose toxicity tests, underscoring its excellent potential for clinical translation. Collectively, the present work possesses the potential to provide innovative perspectives on the advancement of optimized immunotherapies targeting drug resistance, while also presenting a promising avenue for translating Wnt inhibitors into immunotherapeutic drugs for their clinical application.
Collapse
Affiliation(s)
- Fanni Li
- Department of Medical Oncology and Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Jingmei Wang
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Tianya Liu
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wenguang Yang
- Department of Medical Oncology and Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yong Li
- Department of infectious Diseases and Department of Tumor and Immunology in precision medical institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, P. R. China
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Qi Sun
- Department of general surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Jin Yan
- Department of Medical Oncology and Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Department of infectious Diseases and Department of Tumor and Immunology in precision medical institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, P. R. China
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Wangxiao He
- Department of Medical Oncology and Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
4
|
Zhao X, Ma Y, Luo J, Xu K, Tian P, Lu C, Song J. Blocking the WNT/β-catenin pathway in cancer treatment:pharmacological targets and drug therapeutic potential. Heliyon 2024; 10:e35989. [PMID: 39253139 PMCID: PMC11381626 DOI: 10.1016/j.heliyon.2024.e35989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
The WNT/β-catenin signaling pathway plays crucial roles in tumorigenesis and relapse, metastasis, drug resistance, and tumor stemness maintenance. In most tumors, the WNT/β-catenin signaling pathway is often aberrantly activated. The therapeutic usefulness of inhibition of WNT/β-catenin signaling has been reported to improve the efficiency of different cancer treatments and this inhibition of signaling has been carried out using different methods including pharmacological agents, short interfering RNA (siRNA), and antibodies. Here, we review the WNT-inhibitory effects of some FDA-approved drugs and natural products in cancer treatment and focus on recent progress of the WNT signaling inhibitors in improving the efficiency of chemotherapy, immunotherapy, gene therapy, and physical therapy. We also classified these FDA-approved drugs and natural products according to their structure and physicochemical properties, and introduced briefly their potential mechanisms of inhibiting the WNT signaling pathway. The review provides a comprehensive understanding of inhibitors of WNT/β-catenin pathway in various cancer therapeutics. This will benefit novel WNT inhibitor development and optimal clinical use of WNT signaling-related drugs in synergistic cancer therapy.
Collapse
Affiliation(s)
- Xi Zhao
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
- China Medical College of Guangxi University, Guangxi University, Nanning, 530004, China
| | - Yunong Ma
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
- China Medical College of Guangxi University, Guangxi University, Nanning, 530004, China
| | - Jiayang Luo
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Kexin Xu
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Peilin Tian
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Cuixia Lu
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Jiaxing Song
- China Medical College of Guangxi University, Guangxi University, Nanning, 530004, China
| |
Collapse
|
5
|
Zhu W, Liu C, Xi K, Li A, Shen LA, Li Y, Jia M, He Y, Chen G, Liu C, Chen Y, Chen K, Sun F, Zhang D, Duan C, Wang H, Wang D, Zhao Y, Meng X, Zhu D. Discovery of Novel 1-Phenylpiperidine Urea-Containing Derivatives Inhibiting β-Catenin/BCL9 Interaction and Exerting Antitumor Efficacy through the Activation of Antigen Presentation of cDC1 Cells. J Med Chem 2024; 67:12485-12520. [PMID: 38912577 DOI: 10.1021/acs.jmedchem.3c02079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Aberrant activation of the Wnt/β-catenin signaling is associated with tumor development, and blocking β-catenin/BCL9 is a novel strategy for oncogenic Wnt/β-catenin signaling. Herein, we presented two novel β-catenin variations and exposed conformational dynamics in several β-catenin crystal structures at the BCL9 binding site. Furthermore, we identified a class of novel urea-containing compounds targeting β-catenin/BCL9 interaction. Notably, the binding modalities of inhibitors were greatly affected by the conformational dynamics of β-catenin. Among them, 28 had a strong affinity for β-catenin (Kd = 82 nM), the most potent inhibitor reported. In addition, 13 and 35 not only activate T cells but also promote the antigen presentation of cDC1, showing robust antitumor efficacy in the CT26 model. Collectively, our study demonstrated a series of potent small-molecule inhibitors targeting β-catenin/BCL9, which can enhance antigen presentation and activate cDC1 cells, delivering a potential strategy for boosting innate and adaptive immunity to overcome immunotherapy resistance.
Collapse
Affiliation(s)
- Wenhua Zhu
- Anhui University of Chinese Medicine, Hefei 230012, China
- Yangtze Delta Drug Advanced Research Institute and Yangtze Delta Pharmaceutical College, Nantong 226133, China
| | - Cuiting Liu
- Anhui University of Chinese Medicine, Hefei 230012, China
- Yangtze Delta Drug Advanced Research Institute and Yangtze Delta Pharmaceutical College, Nantong 226133, China
| | - Kang Xi
- Anhui University of Chinese Medicine, Hefei 230012, China
- Yangtze Delta Drug Advanced Research Institute and Yangtze Delta Pharmaceutical College, Nantong 226133, China
| | - Anqi Li
- School of Basic Medical Sciences, Fudan University, Shanghai 201210, China
| | - Li-An Shen
- School of Basic Medical Sciences, Fudan University, Shanghai 201210, China
| | - Yana Li
- Anhui University of Chinese Medicine, Hefei 230012, China
- Yangtze Delta Drug Advanced Research Institute and Yangtze Delta Pharmaceutical College, Nantong 226133, China
| | - Miaomiao Jia
- Anhui University of Chinese Medicine, Hefei 230012, China
- Yangtze Delta Drug Advanced Research Institute and Yangtze Delta Pharmaceutical College, Nantong 226133, China
| | - Yangbo He
- Anhui University of Chinese Medicine, Hefei 230012, China
- Yangtze Delta Drug Advanced Research Institute and Yangtze Delta Pharmaceutical College, Nantong 226133, China
| | - Gang Chen
- Anhui University of Chinese Medicine, Hefei 230012, China
- Yangtze Delta Drug Advanced Research Institute and Yangtze Delta Pharmaceutical College, Nantong 226133, China
| | - Chenglong Liu
- School of Basic Medical Sciences, Fudan University, Shanghai 201210, China
| | - Yangqiang Chen
- Anhui University of Chinese Medicine, Hefei 230012, China
- Yangtze Delta Drug Advanced Research Institute and Yangtze Delta Pharmaceutical College, Nantong 226133, China
| | - Kai Chen
- Shanghai Jiao Tong University, Shanghai 201210, China
| | - Fan Sun
- Shanghai Jiao Tong University, Shanghai 201210, China
| | - Daizhou Zhang
- Shandong Academy of Pharmaceutical Science, Jinan 250101, China
| | - Chonggang Duan
- Shandong Academy of Pharmaceutical Science, Jinan 250101, China
| | - Heng Wang
- School of Basic Medical Sciences, Fudan University, Shanghai 201210, China
| | | | - Yujun Zhao
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd., Shanghai 201203, China
| | - Xiangjing Meng
- Shandong Academy of Pharmaceutical Science, Jinan 250101, China
| | - Di Zhu
- School of Basic Medical Sciences, Fudan University, Shanghai 201210, China
| |
Collapse
|
6
|
Chen X, Wei C, Zhao J, Zhou D, Wang Y, Zhang S, Zuo H, Dong J, Zhao Z, Hao M, He X, Bian Y. Carnosic acid: an effective phenolic diterpenoid for prevention and management of cancers via targeting multiple signaling pathways. Pharmacol Res 2024; 206:107288. [PMID: 38977208 DOI: 10.1016/j.phrs.2024.107288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Cancer is a serious global public health issue, and a great deal of research has been made to treat cancer. Of these, discovery of promising compounds that effectively fight cancer always has been the main point of interest in pharmaceutical research. Carnosic acid (CA) is a phenolic diterpenoid compound widely present in Lamiaceae plants such as Rosemary (Rosmarinus officinalis L.). In recent years, there has been increasing evidence that CA has significant anti-cancer activity, such as leukaemia, colorectal cancer, breast cancer, lung cancer, liver cancer, pancreatic cancer, stomach cancer, lymphoma, prostate cancer, oral cancer, etc. The potential mechanisms involved by CA, including inhibiting cell proliferation, inhibiting metastasis, inducing cell apoptosis, stimulating autophagy, regulating the immune system, reducing inflammation, regulating the gut microbiota, and enhancing the effects of other anti-cancer drugs. This article reviews the biosynthesis, pharmacokinetics and metabolism, safety and toxicity, as well as the molecular mechanisms and signaling pathways of the anticancer activity of CA. This will contribute to the development of CA or CA-containing functional foods for the prevention and treatment of cancer, providing important advances in the advancement of cancer treatment strategies.
Collapse
Affiliation(s)
- Xufei Chen
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Cuntao Wei
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Juanjuan Zhao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Dandan Zhou
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yue Wang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Shengxiang Zhang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Haiyue Zuo
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jianhui Dong
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Zeyuan Zhao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Man Hao
- Clinical Medical College of Acuupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Department of Ortho and MSK Science, University College London, London WC1E 6BT, UK.
| | - Xirui He
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, Guangdong 519041, China; UCL School of Pharmacy, Pharmacognosy & Phytotherapy, University College London, London WC1E 6BT, UK.
| | - Yangyang Bian
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
7
|
Wu M, Dong H, Xu C, Sun M, Gao H, Bu F, Chen J. The Wnt-dependent and Wnt-independent functions of BCL9 in development, tumorigenesis, and immunity: Implications in therapeutic opportunities. Genes Dis 2024; 11:701-710. [PMID: 37692512 PMCID: PMC10491870 DOI: 10.1016/j.gendis.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/27/2023] [Accepted: 03/05/2023] [Indexed: 09/12/2023] Open
Abstract
B-cell CLL/lymphoma 9 (BCL9) is considered a key developmental regulator and a well-established oncogenic driver in multiple cancer types, mainly through potentiating the Wnt/β-catenin signaling. However, increasing evidences indicate that BCL9 also plays multiple Wnt-independent roles. Herein, we summarized the updates of the canonical and non-canonical functions of BCL9 in cellular, physiological, or pathological processes. Moreover, we also concluded that the targeted inhibitors disrupt the interaction of β-catenin with BCL9 reported recently.
Collapse
Affiliation(s)
- Minjie Wu
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Heng Dong
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chao Xu
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Mengqing Sun
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Haojin Gao
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Fangtian Bu
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jianxiang Chen
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
8
|
Peng X, Shen LA, Bao Y, Liu C, Chen Q, Zhang H, Li J, Zhang Q. Design, synthesis, and biological evaluation of novel 8-substituted quercetin derivatives targeting the β‑catenin/B-cell lymphoma 9 interaction. Bioorg Med Chem Lett 2024; 98:129591. [PMID: 38097141 DOI: 10.1016/j.bmcl.2023.129591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023]
Abstract
The β-catenin/B-cell lymphoma 9 (BCL9) protein-protein interaction (PPI) is a potential target for aberrantly active Wnt/β-catenin signaling which actively participates in initiating and progressing of many cancers. Herein, we discovered novel 8-substituted quercetin derivatives with potential inhibitory activities targeting β-catenin/BCL9 PPI. Among all the derivatives, compound B4 displayed the most promising PPI inhibitory activity with an IC50 value of 2.25 μM in a competitive fluorescence polarization assay and a KD value of 1.44 μM for the β-catenin protein. Furthermore, B4 selectively inhibited the growth of colorectal cancer (CRC) cells, suppressed the transactivation of Wnt signaling, and downregulated the expression of oncogenic Wnt target gene. Especially, B4 showed potent anti-CRC activity in vivo with the tumor growth inhibition (TGI) of 75.99 % and regulated the tumor immune microenvironment.
Collapse
Affiliation(s)
- Xinyan Peng
- Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, China; Shanghai Institute of Pharmaceutical Industry Co., Ltd, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Li-An Shen
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ya Bao
- Shanghai Institute of Pharmaceutical Industry Co., Ltd, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Chenglong Liu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qiushi Chen
- Shanghai Institute of Pharmaceutical Industry Co., Ltd, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Hao Zhang
- Shanghai Institute of Pharmaceutical Industry Co., Ltd, China State Institute of Pharmaceutical Industry, Shanghai 201203, China; School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiayi Li
- Shanghai Institute of Pharmaceutical Industry Co., Ltd, China State Institute of Pharmaceutical Industry, Shanghai 201203, China; School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Qingwei Zhang
- Shanghai Institute of Pharmaceutical Industry Co., Ltd, China State Institute of Pharmaceutical Industry, Shanghai 201203, China; National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co. Ltd. Shanghai 201203, China.
| |
Collapse
|
9
|
Dev A, Vachher M, Prasad CP. β-catenin inhibitors in cancer therapeutics: intricacies and way forward. Bioengineered 2023; 14:2251696. [PMID: 37655825 PMCID: PMC10478749 DOI: 10.1080/21655979.2023.2251696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
β-catenin is an evolutionary conserved, quintessential, multifaceted protein that plays vital roles in cellular homeostasis, embryonic development, organogenesis, stem cell maintenance, cell proliferation, migration, differentiation, apoptosis, and pathogenesis of various human diseases including cancer. β-catenin manifests both signaling and adhesive features. It acts as a pivotal player in intracellular signaling as a component of versatile WNT signaling cascade involved in embryonic development, homeostasis as well as in carcinogenesis. It is also involved in Ca2+ dependent cell adhesion via interaction with E-cadherin at the adherens junctions. Aberrant β-catenin expression and its nuclear accumulation promote the transcription of various oncogenes including c-Myc and cyclinD1, thereby contributing to tumor initiation, development, and progression. β-catenin's expression is closely regulated at various levels including its stability, sub-cellular localization, as well as transcriptional activity. Understanding the molecular mechanisms of regulation of β-catenin and its atypical expression will provide researchers not only the novel insights into the pathogenesis and progression of cancer but also will help in deciphering new therapeutic avenues. In the present review, we have summarized the dual functions of β-catenin, its role in signaling, associated mutations as well as its role in carcinogenesis and tumor progression of various cancers. Additionally, we have discussed the challenges associated with targeting β-catenin molecule with the presently available drugs and suggested the possible way forward in designing new therapeutic alternatives against this oncogene.
Collapse
Affiliation(s)
- Arundhathi Dev
- Department of Medical Oncology (Laboratory), DR BRAIRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Meenakshi Vachher
- Department of Biochemistry, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Chandra Prakash Prasad
- Department of Medical Oncology (Laboratory), DR BRAIRCH, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
10
|
Talukdar PD, Chatterji U. Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:427. [PMID: 37953273 PMCID: PMC10641101 DOI: 10.1038/s41392-023-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 11/14/2023] Open
Abstract
Specific cell states in metazoans are established by the symphony of gene expression programs that necessitate intricate synergic interactions between transcription factors and the co-activators. Deregulation of these regulatory molecules is associated with cell state transitions, which in turn is accountable for diverse maladies, including developmental disorders, metabolic disorders, and most significantly, cancer. A decade back most transcription factors, the key enablers of disease development, were historically viewed as 'undruggable'; however, in the intervening years, a wealth of literature validated that they can be targeted indirectly through transcriptional co-activators, their confederates in various physiological and molecular processes. These co-activators, along with transcription factors, have the ability to initiate and modulate transcription of diverse genes necessary for normal physiological functions, whereby, deregulation of such interactions may foster tissue-specific disease phenotype. Hence, it is essential to analyze how these co-activators modulate specific multilateral processes in coordination with other factors. The proposed review attempts to elaborate an in-depth account of the transcription co-activators, their involvement in transcription regulation, and context-specific contributions to pathophysiological conditions. This review also addresses an issue that has not been dealt with in a comprehensive manner and hopes to direct attention towards future research that will encompass patient-friendly therapeutic strategies, where drugs targeting co-activators will have enhanced benefits and reduced side effects. Additional insights into currently available therapeutic interventions and the associated constraints will eventually reveal multitudes of advanced therapeutic targets aiming for disease amelioration and good patient prognosis.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
11
|
Gao R, Zheng X, Jiang A, He W, Liu T. Modulating β-catenin/BCL9 interaction with cell-membrane-camouflaged carnosic acid to inhibit Wnt pathway and enhance tumor immune response. Front Immunol 2023; 14:1274223. [PMID: 37881428 PMCID: PMC10594212 DOI: 10.3389/fimmu.2023.1274223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023] Open
Abstract
Introduction Lung adenocarcinoma (LUAD) therapies are plagued by insufficient immune infiltration and suboptimal immune responses in patients, which are closely associated with the hyperactive Wnt/β-catenin pathway. Suppressing this signaling holds considerable promise as a potential tumor therapy for LUAD, but Wnt suppressor development is hindered by concerns regarding toxicity and adverse effects due to insufficient targeting of tumors. Methods We have synthesized a tumor-specific biomimetic Wnt pathway suppressor, namely CM-CA, by encapsulating carnosic acid within Lewis lung carcinoma (LLC) cell membranes. It possesses nano-size, allowing for a straightforward preparation process, and exhibits the ability to selectively target the Wnt/β-catenin pathway in lung adenocarcinoma cells. To evaluate its in vivo efficacy, we utilized the LLC Lewis homograft model, and further validated its mechanism of action through immunohistochemistry staining and transcriptome sequencing analyses. Results The findings from the animal experiments demonstrated that CM-CA effectively suppressed the Wnt/β-catenin signaling pathway and impeded cellular proliferation, leading to notable tumor growth inhibition in a biologically benign manner. Transcriptome sequencing analyses revealed that CM-CA promoted T cell infiltration and bolstered the immune response within tumor tissues. Conclusion The utilization of CM-CA presents a novel and auspicious approach to achieve tumor suppression and augment the therapeutic response rate in LUAD, while also offering a strategy for the development of Wnt/β-catenin inhibitors with biosafety profile.
Collapse
Affiliation(s)
- Ruqing Gao
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- School of Medicine, Nanchang University, Nanchang, China
| | - Xiaoqiang Zheng
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Aimin Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wangxiao He
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Talent Highland, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tianya Liu
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
12
|
Reisenauer KN, Aroujo J, Tao Y, Ranganathan S, Romo D, Taube JH. Therapeutic vulnerabilities of cancer stem cells and effects of natural products. Nat Prod Rep 2023; 40:1432-1456. [PMID: 37103550 PMCID: PMC10524555 DOI: 10.1039/d3np00002h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Covering: 1995 to 2022Tumors possess both genetic and phenotypic heterogeneity leading to the survival of subpopulations post-treatment. The term cancer stem cells (CSCs) describes a subpopulation that is resistant to many types of chemotherapy and which also possess enhanced migratory and anchorage-independent growth capabilities. These cells are enriched in residual tumor material post-treatment and can serve as the seed for future tumor re-growth, at both primary and metastatic sites. Elimination of CSCs is a key goal in enhancing cancer treatment and may be aided by application of natural products in conjunction with conventional treatments. In this review, we highlight molecular features of CSCs and discuss synthesis, structure-activity relationships, derivatization, and effects of six natural products with anti-CSC activity.
Collapse
Affiliation(s)
| | - Jaquelin Aroujo
- Department of Chemistry and Biochemistry, Baylor Univesrity, Waco, TX, USA
| | - Yongfeng Tao
- Department of Chemistry and Biochemistry, Baylor Univesrity, Waco, TX, USA
| | | | - Daniel Romo
- Department of Chemistry and Biochemistry, Baylor Univesrity, Waco, TX, USA
| | - Joseph H Taube
- Department of Biology, Baylor University, Waco, TX, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
13
|
Shree Harini K, Ezhilarasan D. Wnt/beta-catenin signaling and its modulators in nonalcoholic fatty liver diseases. Hepatobiliary Pancreat Dis Int 2023; 22:333-345. [PMID: 36448560 DOI: 10.1016/j.hbpd.2022.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/13/2022] [Indexed: 11/04/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global health concern associated with significant morbidity and mortality. NAFLD is a spectrum of diseases originating from simple steatosis, progressing through nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis that may lead to hepatocellular carcinoma (HCC). The pathogenesis of NAFLD is mediated by the triglyceride accumulation followed by proinflammatory cytokines expression leading to inflammation, oxidative stress, and mitochondrial dysfunction denoted as "two-hit hypothesis", advancing with a "third hit" of insufficient hepatocyte proliferation, leading to the increase in hepatic progenitor cells contributing to fibrosis and HCC. Wnt/β-catenin signaling is responsible for normal liver development, regeneration, hepatic metabolic zonation, ammonia and drug detoxification, hepatobiliary development, etc., maintaining the overall liver homeostasis. The key regulators of canonical Wnt signaling such as LRP6, Wnt1, Wnt3a, β-catenin, GSK-3β, and APC are abnormally regulated in NAFLD. Many experimental studies have shown the aberrated Wnt/β-catenin signaling during the NAFLD progression and NASH to hepatic fibrosis and HCC. Therefore, in this review, we have emphasized the role of Wnt/β-catenin signaling and its modulators that can potentially aid in the inhibition of NAFLD.
Collapse
Affiliation(s)
- Karthik Shree Harini
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 600 077, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 600 077, India.
| |
Collapse
|
14
|
Wang J, Zheng X, Fu X, Jiang A, Yao Y, He W. A de novo dual-targeting supramolecular self-assembly peptide against pulmonary metastasis of melanoma. Theranostics 2023; 13:3844-3855. [PMID: 37441586 PMCID: PMC10334834 DOI: 10.7150/thno.83819] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
Despite recent advances in treatment, overall survival rates for metastatic melanoma, especially those that invade the lungs, continue to be low, with 5-year survival rates of only 3% to 5%. It was recently discovered that Wnt/β-catenin signaling pathways and MAPK/ERK signaling pathways are involved in melanoma metastasis. Methods: Herein, a bifunctional supramolecular peptide termed HBBplus@CA was constructed by a self-assembling RGD-modified MAPK/ERK peptide inhibitor (HBBplus) and a small molecule catenin inhibitor (carnosic acid (CA)). Results: Expectedly, the HBBplus@CA could internalize melanoma cells, accumulate in the tumor-bearing lung, and be biosafe. As designed, HBBplus@CA simultaneously suppressed both Wnt/β-catenin and MAPK/ERK signaling pathways and suppressed melanoma cell proliferation, migration, and invasion in more action than CA or HBBplus monotherapy. More importantly, HBBplus@CA demonstrated potent inhibition of lung metastasis in mice bearing metastatic melanoma of B16F10 and significantly prolonged their survival. Conclusion: In summary, a supramolecular peptide-based strategy was not only developed to suppress pulmonary metastasis of melanoma, but it also renewed efforts to identify cocktail drugs that act on intracellular targets in various human diseases, including cancer.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoqiang Zheng
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xiao Fu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Aimin Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yu Yao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wangxiao He
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, China
| |
Collapse
|
15
|
Park WJ, Kim MJ. A New Wave of Targeting 'Undruggable' Wnt Signaling for Cancer Therapy: Challenges and Opportunities. Cells 2023; 12:cells12081110. [PMID: 37190019 DOI: 10.3390/cells12081110] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Aberrant Wnt signaling activation is frequently observed in many cancers. The mutation acquisition of Wnt signaling leads to tumorigenesis, whereas the inhibition of Wnt signaling robustly suppresses tumor development in various in vivo models. Based on the excellent preclinical effect of targeting Wnt signaling, over the past 40 years, numerous Wnt-targeted therapies have been investigated for cancer treatment. However, Wnt signaling-targeting drugs are still not clinically available. A major obstacle to Wnt targeting is the concomitant side effects during treatment due to the pleiotropic role of Wnt signaling in development, tissue homeostasis, and stem cells. Additionally, the complexity of the Wnt signaling cascades across different cancer contexts hinders the development of optimized targeted therapies. Although the therapeutic targeting of Wnt signaling remains challenging, alternative strategies have been continuously developed alongside technological advances. In this review, we give an overview of current Wnt targeting strategies and discuss recent promising trials that have the potential to be clinically realized based on their mechanism of action. Furthermore, we highlight new waves of Wnt targeting that combine recently developed technologies such as PROTAC/molecular glue, antibody-drug conjugates (ADC), and anti-sense oligonucleotides (ASO), which may provide us with new opportunities to target 'undruggable' Wnt signaling.
Collapse
Affiliation(s)
- Woo-Jung Park
- Department of Life Science, Gachon University, Seongnam 13120, Republic of Korea
| | - Moon Jong Kim
- Department of Life Science, Gachon University, Seongnam 13120, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Incheon 21999, Republic of Korea
| |
Collapse
|
16
|
Lin G, Li N, Li D, Chen L, Deng H, Wang S, Tang J, Ouyang W. Carnosic acid inhibits NLRP3 inflammasome activation by targeting both priming and assembly steps. Int Immunopharmacol 2023; 116:109819. [PMID: 36738671 DOI: 10.1016/j.intimp.2023.109819] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/16/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Carnosic acid (CA) is a polyphenolic diterpene from rosemary extract with anti-tumor and anti-inflammatory activities. Numerous reports have focused on its anti-tumor ability, while the exact mechanisms underlying its anti-inflammation remains unclear. Here, we have identified that CA is a potent inhibitor of NLRP3 inflammasome in vitro and in vivo. CA not only reduces NLRP3 expression by blocking NF-κB activation, but also inhibits NLRP3 inflammasome assembly and activation by suppressing mitochondrial ROS production and interrupting NLRP3-NEK7 interaction. Furthermore, in mouse models, CA alleviates lipopolysaccharide-induced acute systemic inflammation and MSU-induced peritonitis via NLRP3. Taken together, our data demonstrated the inhibitory effect of CA on NLRP3 inflammasome and pointed out the potential application of CA in the treatment of NLRP3-driven diseases.
Collapse
Affiliation(s)
- Guoxin Lin
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China
| | - Nannan Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China
| | - Dan Li
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China
| | - Lu Chen
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China
| | - Huiyin Deng
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China
| | - Saiying Wang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China
| | - Juan Tang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China
| | - Wen Ouyang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China.
| |
Collapse
|
17
|
Shen LA, Peng X, Bao Y, Liu C, Zhang H, Li J, Zhu D, Zhang Q. Design, synthesis and biological evaluation of quercetin derivatives as novel β-catenin/B-cell lymphoma 9 protein-protein interaction inhibitors. Eur J Med Chem 2023; 247:115075. [PMID: 36599228 DOI: 10.1016/j.ejmech.2022.115075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/08/2022] [Accepted: 12/29/2022] [Indexed: 01/02/2023]
Abstract
The β-catenin/B-cell lymphoma 9 (BCL9) protein-protein interaction (PPI) is a potential target for the suppression of hyperactive Wnt/β-catenin signaling that is vigorously involved in cancer initiation and development. Herein, we first described quercetin and its derivatives had potential inhibitory effects on β-catenin/BCL9 PPI. The most potent compound, quercetin-3'-O-(4-methylpiperazine-1-yl) propyl (C1), directly binded with β-catenin and disrupted the β-catenin/BCL9 interaction in both the protein level and the cellular context. C1 also effectively inhibited colorectal cancer in vitro and showed better selectivity in inhibiting hyperactive Wnt/β-catenin signaling cells like CT26 and HCT116. And we further confirmed that C1 could inhibit CT26 tumor growth in vivo and regulate the tumor immune microenvironment. This study provides a good chemical probe to explore β-catenin-related biology and a drug-like quercetin derivative as novel β-catenin/BCL9 PPI inhibitors for further drug development.
Collapse
Affiliation(s)
- Li-An Shen
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xinyan Peng
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Ya Bao
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Chenglong Liu
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Hao Zhang
- School of Pharmacy, Fudan University, Shanghai, 201203, China; Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Jianqi Li
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Di Zhu
- School of Pharmacy, Fudan University, Shanghai, 201203, China; Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai, 201100, China.
| | - Qingwei Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China.
| |
Collapse
|
18
|
Zhang H, Liu C, Chen Q, Shen LA, Xiao W, Li J, Wang Y, Zhu D, Zhang Q, Li J. Discovery of Novel 3-Phenylpiperidine Derivatives Targeting the β-Catenin/B-Cell Lymphoma 9 Interaction as a Single Agent and in Combination with the Anti-PD-1 Antibody for the Treatment of Colorectal Cancer. J Med Chem 2023; 66:1349-1379. [PMID: 36630177 DOI: 10.1021/acs.jmedchem.2c01568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Direct disruption of the β-catenin/B-cell lymphoma 9 (BCL9) protein-protein interaction (PPI) is a potential strategy for colorectal cancer (CRC) treatment through inhibiting oncogenic Wnt activity. Herein, a series of 3-phenylpiperidine derivatives were synthesized and evaluated as β-catenin/BCL9 PPI inhibitors. Among them, compound 41 showed the best IC50 (0.72 μM) in a competitive fluorescence polarization assay and a KD value of 0.26 μM for the β-catenin protein. This compound selectively inhibited the growth of CRC cells, suppressed Wnt signaling transactivation, and downregulated oncogenic Wnt target gene expression. In vivo, 41 showed potent anti-CRC activity and promoted the infiltration and function of cytotoxic T lymphocytes while decreasing the infiltration of regulatory T-cells (Tregs). Furthermore, the combination of 41 and the anti-PD-1 antibody (Ab) efficiently enhanced anti-CRC efficacy, first verifying the in vivo efficacy of the small-molecule β-catenin/BCL9 PPI inhibitor and anti-PD-1 Ab in combination.
Collapse
Affiliation(s)
- Hao Zhang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.,Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, 285 Gebai Ni Road, Shanghai 201203, China
| | - Chenglong Liu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Qiushi Chen
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, 285 Gebai Ni Road, Shanghai 201203, China.,School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Li-An Shen
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Wenting Xiao
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.,Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, 285 Gebai Ni Road, Shanghai 201203, China
| | - Jiayi Li
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, 285 Gebai Ni Road, Shanghai 201203, China.,School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Yonghui Wang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Di Zhu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.,Department of Pharmacology, School of Basic Medical Science, Fudan University, 138 Yixue Yuan Road, Shanghai 201100, China
| | - Qingwei Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, 285 Gebai Ni Road, Shanghai 201203, China
| | - Jianqi Li
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, 285 Gebai Ni Road, Shanghai 201203, China
| |
Collapse
|
19
|
Zhang H, Liu C, Zhu D, Zhang Q, Li J. Medicinal Chemistry Strategies for the Development of Inhibitors Disrupting β-Catenin's Interactions with Its Nuclear Partners. J Med Chem 2023; 66:1-31. [PMID: 36583662 DOI: 10.1021/acs.jmedchem.2c01016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dysregulation of the Wnt/β-catenin signaling pathway is strongly associated with various aspects of cancer, including tumor initiation, proliferation, and metastasis as well as antitumor immunity, and presents a promising opportunity for cancer therapy. Wnt/β-catenin signaling activation increases nuclear dephosphorylated β-catenin levels, resulting in β-catenin binding to TCF and additional cotranscription factors, such as BCL9, CBP, and p300. Therefore, directly disrupting β-catenin's interactions with these nuclear partners holds promise for the effective and selective suppression of the aberrant activation of Wnt/β-catenin signaling. Herein, we summarize recent advances in biochemical techniques and medicinal chemistry strategies used to identify potent peptide-based and small-molecule inhibitors that directly disrupt β-catenin's interactions with its nuclear binding partners. We discuss the challenges involved in developing drug-like inhibitors that target the interactions of β-catenin and its nuclear binding partner into therapeutic agents.
Collapse
Affiliation(s)
- Hao Zhang
- School of Pharmacy, Fudan University, Shanghai 201203, China.,Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Chenglong Liu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Di Zhu
- School of Pharmacy, Fudan University, Shanghai 201203, China.,Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai 201100, China
| | - Qingwei Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Jianqi Li
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| |
Collapse
|
20
|
Yang P, Zhu Y, Zheng Q, Meng S, Wu Y, Shuai W, Sun Q, Wang G. Recent advances of β-catenin small molecule inhibitors for cancer therapy: Current development and future perspectives. Eur J Med Chem 2022; 243:114789. [DOI: 10.1016/j.ejmech.2022.114789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 11/28/2022]
|
21
|
Nalli M, Masci D, Urbani A, La Regina G, Silvestri R. Emerging Direct Targeting β-Catenin Agents. Molecules 2022; 27:molecules27227735. [PMID: 36431838 PMCID: PMC9698307 DOI: 10.3390/molecules27227735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Aberrant accumulation of β-catenin in the cell nucleus as a result of deregulation of the Wnt/β-catenin pathway is found in various types of cancer. Direct β-catenin targeting agents are being researched despite obstacles; however, specific β-catenin drugs for clinical treatments have not been approved so far. We focused on direct β-catenin targeting of potential therapeutic value as anticancer agents. This review provides recent advances on small molecule β-catenin agents. Structure-activity relationships and biological activities of reported inhibitors are discussed. This work provides useful knowledge in the discovery of β-catenin agents.
Collapse
Affiliation(s)
- Marianna Nalli
- Laboratory Affiliated with the Institute Pasteur Italy—Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Andrea Urbani
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Giuseppe La Regina
- Laboratory Affiliated with the Institute Pasteur Italy—Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Romano Silvestri
- Laboratory Affiliated with the Institute Pasteur Italy—Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
22
|
Dong Y, Liu M, Mao Y, Wu S, Wen J, Lu J, Yang Y, Ruan S, Li L, Liu X, Zhang J, Liao S, Dong L. Discovery of 2-(isoxazol-5-yl)phenyl 3,4-dihydroxybenzoate as a potential inhibitor for the Wnt/β-catenin pathway. Bioorg Chem 2022; 128:106116. [DOI: 10.1016/j.bioorg.2022.106116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
|
23
|
Zhao H, Ming T, Tang S, Ren S, Yang H, Liu M, Tao Q, Xu H. Wnt signaling in colorectal cancer: pathogenic role and therapeutic target. Mol Cancer 2022; 21:144. [PMID: 35836256 PMCID: PMC9281132 DOI: 10.1186/s12943-022-01616-7] [Citation(s) in RCA: 284] [Impact Index Per Article: 142.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/01/2022] [Indexed: 02/08/2023] Open
Abstract
Background The Wnt signaling pathway is a complex network of protein interactions that functions most commonly in embryonic development and cancer, but is also involved in normal physiological processes in adults. The canonical Wnt signaling pathway regulates cell pluripotency and determines the differentiation fate of cells during development. The canonical Wnt signaling pathway (also known as the Wnt/β-catenin signaling pathway) is a recognized driver of colon cancer and one of the most representative signaling pathways. As a functional effector molecule of Wnt signaling, the modification and degradation of β-catenin are key events in the Wnt signaling pathway and the development and progression of colon cancer. Therefore, the Wnt signaling pathway plays an important role in the pathogenesis of diseases, especially the pathogenesis of colorectal cancer (CRC). Objective Inhibit the Wnt signaling pathway to explore the therapeutic targets of colorectal cancer. Methods Based on studying the Wnt pathway, master the biochemical processes related to the Wnt pathway, and analyze the relevant targets when drugs or inhibitors act on the Wnt pathway, to clarify the medication ideas of drugs or inhibitors for the treatment of diseases, especially colorectal cancer. Results Wnt signaling pathways include: Wnt/β-catenin or canonical Wnt signaling pathway, planar cell polarity (Wnt-PCP) pathway and Wnt-Ca2+ signaling pathway. The Wnt signaling pathway is closely related to cancer cell proliferation, stemness, apoptosis, autophagy, metabolism, inflammation and immunization, microenvironment, resistance, ion channel, heterogeneity, EMT/migration/invasion/metastasis. Drugs/phytochemicals and molecular preparations for the Wnt pathway of CRC treatment have now been developed. Wnt inhibitors are also commonly used clinically for the treatment of CRC. Conclusion The development of drugs/phytochemicals and molecular inhibitors targeting the Wnt pathway can effectively treat colorectal cancer clinically.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiu Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
24
|
Sang P, Shi Y, Wei L, Cai J. Helical sulfono-γ-AApeptides with predictable functions in protein recognition. RSC Chem Biol 2022; 3:805-814. [PMID: 35866163 PMCID: PMC9257604 DOI: 10.1039/d2cb00049k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/21/2022] [Indexed: 12/01/2022] Open
Abstract
Sulfono-γ-AApeptides are a subset of possible sequence-specific foldamers that might be considered for the design of biomimetic drug molecular structures. Although they have been studied for a relatively short period of time, a number of structures and functions have been designed or discovered within this class of unnatural peptides. Examples of utilizing these sulfono-γ-AApeptides have demonstrated the potential that sulfono-γ-AApeptides can offer, however, to date, their application in biomedical sciences yet remains unexplored. This review mainly summarizes the helical folding conformations of sulfono-γ-AApeptides and their biological application as helical mimetics in medicinally relevant protein-protein interactions (PPIs) and assesses their potential for the mimicry of other α-helices for protein recognition in the future.
Collapse
Affiliation(s)
- Peng Sang
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave. Tampa FL 33620 USA
| | - Yan Shi
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave. Tampa FL 33620 USA
| | - Lulu Wei
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave. Tampa FL 33620 USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave. Tampa FL 33620 USA
| |
Collapse
|
25
|
Sun C, Liu Q, Shah M, Che Q, Zhang G, Zhu T, Zhou J, Rong X, Li D. Talaverrucin A, Heterodimeric Oxaphenalenone from Antarctica Sponge-Derived Fungus Talaromyces sp. HDN151403, Inhibits Wnt/β-Catenin Signaling Pathway. Org Lett 2022; 24:3993-3997. [PMID: 35616425 DOI: 10.1021/acs.orglett.2c01394] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Wnt/β-catenin signaling pathway is an evolutionarily conserved signaling cascade involved in a broad range of biological roles. Dysregulation of the Wnt/β-catenin pathway is implicated in congenital malformations and various kinds of cancers. We discovered a novel Wnt/β-catenin inhibitor, talaverrucin A (1), featuring an unprecedented 6/6/6/5/5/5/6 fused ring system, from an Antarctica sponge-derived fungus Talaromyces sp. HDN151403. Talaverrucin A exhibits inhibitory activity on the Wnt/β-catenin pathway in both zebrafish embryos in vivo and cultured mammalian cells in vitro, providing a naturally inspired small molecule therapeutic lead to target the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Chunxiao Sun
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Qianwen Liu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Mudassir Shah
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Qian Che
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Guojian Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China.,Marine Biomedical Research Institute of Qingdao, Qingdao 266101, China
| | - Tianjiao Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Jianfeng Zhou
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xiaozhi Rong
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Dehai Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
26
|
McCoy MA, Spicer D, Wells N, Hoogewijs K, Fiedler M, Baud MGJ. Biophysical Survey of Small-Molecule β-Catenin Inhibitors: A Cautionary Tale. J Med Chem 2022; 65:7246-7261. [PMID: 35581674 PMCID: PMC9150122 DOI: 10.1021/acs.jmedchem.2c00228] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The canonical Wingless-related
integration site signaling pathway
plays a critical role in human physiology, and its dysregulation can
lead to an array of diseases. β-Catenin is a multifunctional
protein within this pathway and an attractive yet challenging therapeutic
target, most notably in oncology. This has stimulated the search for
potent small-molecule inhibitors binding directly to the β-catenin
surface to inhibit its protein–protein interactions and downstream
signaling. Here, we provide an account of the claimed (and some putative)
small-molecule ligands of β-catenin from the literature. Through
in silico analysis, we show that most of these molecules contain promiscuous
chemical substructures notorious for interfering with screening assays.
Finally, and in line with this analysis, we demonstrate using orthogonal
biophysical techniques that none of the examined small molecules bind
at the surface of β-catenin. While shedding doubts on their
reported mode of action, this study also reaffirms β-catenin
as a prominent target in drug discovery.
Collapse
Affiliation(s)
- Michael A McCoy
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Dominique Spicer
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Neil Wells
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Kurt Hoogewijs
- National University of Ireland, University Road, Galway H91 TK33, Ireland
| | - Marc Fiedler
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Matthias G J Baud
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| |
Collapse
|
27
|
Wang Z, Zhang M, Thompson HM, Ji H. New ZW4864 Derivatives as Small-Molecule Inhibitors for the β-Catenin/BCL9 Protein-Protein Interaction. ACS Med Chem Lett 2022; 13:865-870. [PMID: 35586435 PMCID: PMC9109161 DOI: 10.1021/acsmedchemlett.2c00068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022] Open
Abstract
A series of 1-(3-(2-amino-2-oxoethoxy)phenyl)piperidine-3-carboxamide derivatives was reported as new small-molecule β-catenin/B-cell lymphoma 9 (BCL9) protein-protein interaction (PPI) inhibitors. Compounds 17-21 were discovered to inhibit the β-catenin/BCL9 PPI with K i = 0.85-2.7 μM. The effects of 21 on the β-catenin/BCL9 PPI in cellular context were demonstrated by β-catenin/BCL9 pull-down inhibition and dose-dependent suppression of Wnt/β-catenin signal transactivation. Notably, compound 21 is more potent than ZW4864, a previously reported analogue, in modulating transcription and expression of β-catenin target genes and suppressing survival of β-catenin-dependent cancer cells. The cellular on-target efficacy of 21 was demonstrated by β-catenin rescue experiments. Compound 21 represents a promising starting point for further optimization of β-catenin/BCL9 PPI inhibitors.
Collapse
Affiliation(s)
- Zhen Wang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Min Zhang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Harriet M. Thompson
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Haitao Ji
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
- Department of Chemistry, University of South Florida, Tampa, Florida 33620-9497, United States
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida 33620-9497, United States
| |
Collapse
|
28
|
Tanton H, Sewastianik T, Seo HS, Remillard D, Pierre RS, Bala P, Aitymbayev D, Dennis P, Adler K, Geffken E, Yeoh Z, Vangos N, Garbicz F, Scott D, Sethi N, Bradner J, Dhe-Paganon S, Carrasco RD. A novel β-catenin/BCL9 complex inhibitor blocks oncogenic Wnt signaling and disrupts cholesterol homeostasis in colorectal cancer. SCIENCE ADVANCES 2022; 8:eabm3108. [PMID: 35486727 PMCID: PMC9054024 DOI: 10.1126/sciadv.abm3108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Dysregulated Wnt/β-catenin signaling is implicated in the pathogenesis of many human cancers, including colorectal cancer (CRC), making it an attractive clinical target. With the aim of inhibiting oncogenic Wnt activity, we developed a high-throughput screening AlphaScreen assay to identify selective small-molecule inhibitors of the interaction between β-catenin and its coactivator BCL9. We identified a compound that consistently bound to β-catenin and specifically inhibited in vivo native β-catenin/BCL9 complex formation in CRC cell lines. This compound inhibited Wnt activity, down-regulated expression of the Wnt/β-catenin signature in gene expression studies, disrupted cholesterol homeostasis, and significantly reduced the proliferation of CRC cell lines and tumor growth in a xenograft mouse model of CRC. This study has therefore identified a specific small-molecule inhibitor of oncogenic Wnt signaling, which may have value as a probe for functional studies and has important implications for the development of novel therapies in patients with CRC.
Collapse
Affiliation(s)
- Helen Tanton
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tomasz Sewastianik
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine,, Warsaw, Poland
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - David Remillard
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Roodolph St. Pierre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Pratyusha Bala
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Daulet Aitymbayev
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Peter Dennis
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Keith Adler
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ezekiel Geffken
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Zoe Yeoh
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Nicholas Vangos
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Filip Garbicz
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine,, Warsaw, Poland
| | - David Scott
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Nilay Sethi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Gastrointestinal Cancer Center, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - James Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ruben D. Carrasco
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Cytotoxic Evaluation, Molecular Docking, and 2D-QSAR Studies of Dihydropyrimidinone Derivatives as Potential Anticancer Agents. JOURNAL OF ONCOLOGY 2022; 2022:7715689. [PMID: 35509846 PMCID: PMC9061032 DOI: 10.1155/2022/7715689] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 12/21/2022]
Abstract
The diverse pharmacological role of dihydropyrimidinone scaffold has made it to be an interesting drug target. Because of the high incidence and mortality rate of breast cancer, there is a dire need of discovering new pharmacotherapeutic agents in managing this disease. A series of twenty-two derivatives of 6-(chloromethyl)-4-(4-hydroxyphenyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (3a-3k) and ethyl 6-(chloromethyl)-4-(2-hydroxyphenyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (4a-4k) synthesized in a previous study were evaluated for their anticancer potential against breast cancer cell line. Molecular docking studies were performed to analyze the binding mode and interaction pattern of these compounds against nine breast cancer target proteins. The in vitro cell proliferation assay was performed against the breast cancer cell line MCF-7. The structure activity relationship of these compounds was further studied using QSARINS. Among nine proteins, the docking analysis revealed efficient binding of compounds 4f, 4e, 3e, 4g, and 4h against all target proteins. The in vitro cytotoxic assay revealed significant anticancer activity of compound 4f having
of 2.15 μM. The compounds 4e, 3e, 4g, and 4h also showed anticancer activities with
of 2.401, 2.41, 2.47 and 2.33 μM, respectively. The standard tamoxifen showed
1.88 μM. The 2D qualitative structure-activity relationship (QSAR) analysis was also carried out to identify potential breast cancer targets through QSARINS. The final QSAR equation revealed good predictivity and statistical validation
and
values for the model obtained from QSARINS was 0.98 and 0.97, respectively. The active compounds showed very good anticancer activities, and the binding analysis has revealed stable hydrogen bonding of these compounds with the target proteins. Moreover, the QSAR analysis has predicted useful information on the structural requirement of these compounds as anticancer agents with the importance of topological and autocorrelated descriptors in effecting the cancer activities.
Collapse
|
30
|
Oliveira LFS, Predes D, Borges HL, Abreu JG. Therapeutic Potential of Naturally Occurring Small Molecules to Target the Wnt/β-Catenin Signaling Pathway in Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14020403. [PMID: 35053565 PMCID: PMC8774030 DOI: 10.3390/cancers14020403] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is an emerging public health problem and the second leading cause of death worldwide, with a significant socioeconomic impact in several countries. The 5-year survival rate is only 12% due to the lack of early diagnosis and resistance to available treatments, and the canonical Wnt signaling pathway is involved in this process. This review underlines the importance of understanding the fundamental roles of this pathway in physiological and pathological contexts and analyzes the use of naturally occurring small molecules that inhibits the Wnt/β-catenin pathway in experimental models of CRC. We also discuss the progress and challenges of moving these small molecules off the laboratory bench into the clinical platform. Abstract Colorectal cancer (CRC) ranks second in the number of cancer deaths worldwide, mainly due to late diagnoses, which restrict treatment in the potentially curable stages and decrease patient survival. The treatment of CRC involves surgery to remove the tumor tissue, in addition to radiotherapy and systemic chemotherapy sessions. However, almost half of patients are resistant to these treatments, especially in metastatic cases, where the 5-year survival rate is only 12%. This factor may be related to the intratumoral heterogeneity, tumor microenvironment (TME), and the presence of cancer stem cells (CSCs), which is impossible to resolve with the standard approaches currently available in clinical practice. CSCs are APC-deficient, and the search for alternative therapeutic agents such as small molecules from natural sources is a promising strategy, as these substances have several antitumor properties. Many of those interfere with the regulation of signaling pathways at the central core of CRC development, such as the Wnt/β-catenin, which plays a crucial role in the cell proliferation and stemness in the tumor. This review will discuss the use of naturally occurring small molecules inhibiting the Wnt/β-catenin pathway in experimental CRC models over the past decade, highlighting the molecular targets in the Wnt/β-catenin pathway and the mechanisms through which these molecules perform their antitumor activities.
Collapse
|
31
|
Liu T, Yan J, He C, You W, Ma F, Chang Z, Li Y, Han S, He W, Liu W. A Tumor-Targeting Metal-Organic Nanoparticle Constructed by Dynamic Combinatorial Chemistry toward Accurately Redressing Carcinogenic Wnt Cascade. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104849. [PMID: 34741406 DOI: 10.1002/smll.202104849] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Targeted and immunological therapy have revolutionized the malignancy treatment, but is suffering from the dose-limiting side effects and inadequate responsiveness. The emerging nanoscale infinite coordination polymers provide a feasible strategy for tumor targeting and immune sensitization. Herein, a "one-pot" self-assembled strategy based on dynamic combinatorial chemistry (DCC) principle is designed to construct a tumor-targeting metal-organic nanoparticle (MOICP) through a spontaneous co-assembling among three metal-organic coordination polymers tuned by a Wnt-inhibitor carnosic acid (CA). Responding to the tumor microenvironment, MOICP presents an optimized tumor-preferential accumulation and the satisfactory biosafety. MOICP is more active in vitro and in vivo than CA in suppressing of Wnt signaling pathway, and potently inhibits tumor growth in a patient-derived xenograft model of Wnt-activated pancreatic carcinoma. Moreover, MOICP reverses the lack of intratumoral infiltration of T lymphocytes, and hence augments the action of Anti-PD1 (programmed cell death protein 1) immunotherapy in B16F10 melanoma allograft mice model. This clinically viable MOICP can not only be applied to Wnt inhibition for cancer targeted therapy and immunotherapeutic sensitization, but also provides a de novo pattern for nanomedicine architecture with cargo-initiated co-self-assembly guided by DCC, thereby bringing new inspiration in general for disease intervention.
Collapse
Affiliation(s)
- Tianya Liu
- Institute for Stem Cell and Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jin Yan
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Chenchen He
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Weiming You
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Fang Ma
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Zhuo Chang
- School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Yong Li
- Xijing 986 Hospital Department, Fourth Military Medical University, Xi'an, 710032, China
| | - Suxia Han
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wangxiao He
- Institute for Stem Cell and Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
- Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Wenjia Liu
- Institute for Stem Cell and Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
32
|
Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, Wu C, Wang C, Ye L. Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther 2021; 6:307. [PMID: 34456337 PMCID: PMC8403677 DOI: 10.1038/s41392-021-00701-5] [Citation(s) in RCA: 265] [Impact Index Per Article: 88.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/19/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Wnt/β-catenin signaling has been broadly implicated in human cancers and experimental cancer models of animals. Aberrant activation of Wnt/β-catenin signaling is tightly linked with the increment of prevalence, advancement of malignant progression, development of poor prognostics, and even ascendence of the cancer-associated mortality. Early experimental investigations have proposed the theoretical potential that efficient repression of this signaling might provide promising therapeutic choices in managing various types of cancers. Up to date, many therapies targeting Wnt/β-catenin signaling in cancers have been developed, which is assumed to endow clinicians with new opportunities of developing more satisfactory and precise remedies for cancer patients with aberrant Wnt/β-catenin signaling. However, current facts indicate that the clinical translations of Wnt/β-catenin signaling-dependent targeted therapies have faced un-neglectable crises and challenges. Therefore, in this study, we systematically reviewed the most updated knowledge of Wnt/β-catenin signaling in cancers and relatively targeted therapies to generate a clearer and more accurate awareness of both the developmental stage and underlying limitations of Wnt/β-catenin-targeted therapies in cancers. Insights of this study will help readers better understand the roles of Wnt/β-catenin signaling in cancers and provide insights to acknowledge the current opportunities and challenges of targeting this signaling in cancers.
Collapse
Affiliation(s)
- Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Changhao Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Feifei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanqin Zuo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Yitian Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Yao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
33
|
Wang Z, Zhang M, Quereda V, Frydman SM, Ming Q, Luca VC, Duckett DR, Ji H. Discovery of an Orally Bioavailable Small-Molecule Inhibitor for the β-Catenin/B-Cell Lymphoma 9 Protein-Protein Interaction. J Med Chem 2021; 64:12109-12131. [PMID: 34382808 PMCID: PMC8817233 DOI: 10.1021/acs.jmedchem.1c00742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aberrant activation of Wnt/β-catenin signaling is strongly associated with many diseases including cancer invasion and metastasis. Small-molecule targeting of the central signaling node of this pathway, β-catenin, is a biologically rational approach to abolish hyperactivation of β-catenin signaling but has been demonstrated to be a difficult task. Herein, we report a drug-like small molecule, ZW4864, that binds with β-catenin and selectively disrupts the protein-protein interaction (PPI) between B-cell lymphoma 9 (BCL9) and β-catenin while sparing the β-catenin/E-cadherin PPI. ZW4864 dose-dependently suppresses β-catenin signaling activation, downregulates oncogenic β-catenin target genes, and abrogates invasiveness of β-catenin-dependent cancer cells. More importantly, ZW4864 shows good pharmacokinetic properties and effectively suppresses β-catenin target gene expression in the patient-derived xenograft mouse model. This study offers a selective chemical probe to explore β-catenin-related biology and a drug-like small-molecule β-catenin/BCL9 disruptor for future drug development.
Collapse
Affiliation(s)
- Zhen Wang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Min Zhang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Victor Quereda
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Sylvia M Frydman
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Qianqian Ming
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Vincent C Luca
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Derek R Duckett
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Haitao Ji
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| |
Collapse
|
34
|
Li Z, Zhang M, Teuscher KB, Ji H. Discovery of 1-Benzoyl 4-Phenoxypiperidines as Small-Molecule Inhibitors of the β-Catenin/B-Cell Lymphoma 9 Protein-Protein Interaction. J Med Chem 2021; 64:11195-11218. [PMID: 34270257 DOI: 10.1021/acs.jmedchem.1c00596] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Structure-based design and optimization were performed to develop small-molecule β-catenin/B-cell lymphoma 9 (BCL9) inhibitors and improve their inhibitory activities. Compound ZL3138 with a novel 1-benzoyl 4-phenoxypiperidine scaffold was discovered to disrupt the β-catenin/BCL9 protein-protein interaction (PPI) with a Ki of 0.96 μM in AlphaScreen competitive inhibition assays and displayed good selectivity for β-catenin/BCL9 over β-catenin/E-cadherin PPIs. The binding mode of new inhibitors was characterized by structure-activity relationship and site-directed mutagenesis studies. Protein pull-down assays indicate that this series of compounds directly binds with β-catenin. Cellular target engagement and co-immunoprecipitation experiments demonstrate that ZL3138 binds with β-catenin and disrupts the β-catenin/BCL9 interaction without affecting the β-catenin/E-cadherin interaction in living cells. Further cell-based studies show that ZL3138 selectively suppresses transactivation of Wnt/β-catenin signaling, regulates transcription and expression of Wnt target genes, and inhibits the growth of Wnt/β-catenin-dependent cancer cells.
Collapse
Affiliation(s)
- Zilu Li
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States.,Departments of Oncologic Sciences and Chemistry, University of South Florida, Tampa, Florida 33612-9497, United States
| | - Min Zhang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Kevin B Teuscher
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States.,Department of Chemistry, Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Haitao Ji
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States.,Departments of Oncologic Sciences and Chemistry, University of South Florida, Tampa, Florida 33612-9497, United States
| |
Collapse
|
35
|
Bourgeois B, Gui T, Hoogeboom D, Hocking HG, Richter G, Spreitzer E, Viertler M, Richter K, Madl T, Burgering BMT. Multiple regulatory intrinsically disordered motifs control FOXO4 transcription factor binding and function. Cell Rep 2021; 36:109446. [PMID: 34320339 DOI: 10.1016/j.celrep.2021.109446] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 04/15/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Transcription factors harbor defined regulatory intrinsically disordered regions (IDRs), which raises the question of how they mediate binding to structured co-regulators and modulate their activity. Here, we present a detailed molecular regulatory mechanism of Forkhead box O4 (FOXO4) by the structured transcriptional co-regulator β-catenin. We find that the disordered FOXO4 C-terminal region, which contains its transactivation domain, binds β-catenin through two defined interaction sites, and this is regulated by combined PKB/AKT- and CK1-mediated phosphorylation. Binding of β-catenin competes with the autoinhibitory interaction of the FOXO4 disordered region with its DNA-binding Forkhead domain, and thereby enhances FOXO4 transcriptional activity. Furthermore, we show that binding of the β-catenin inhibitor protein ICAT is compatible with FOXO4 binding to β-catenin, suggesting that ICAT acts as a molecular switch between anti-proliferative FOXO and pro-proliferative Wnt/TCF/LEF signaling. These data illustrate how the interplay of IDRs, post-translational modifications, and co-factor binding contribute to transcription factor function.
Collapse
Affiliation(s)
- Benjamin Bourgeois
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Tianshu Gui
- Oncode Institute and Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Diana Hoogeboom
- Oncode Institute and Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Henry G Hocking
- Department Chemie, Technische Universität München, 85747 Garching, Germany
| | - Gesa Richter
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Emil Spreitzer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Martin Viertler
- Department Chemie, Technische Universität München, 85747 Garching, Germany
| | - Klaus Richter
- Department Chemie, Technische Universität München, 85747 Garching, Germany
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| | - Boudewijn M T Burgering
- Oncode Institute and Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands.
| |
Collapse
|
36
|
The structural biology of canonical Wnt signalling. Biochem Soc Trans 2021; 48:1765-1780. [PMID: 32725184 PMCID: PMC7458405 DOI: 10.1042/bst20200243] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022]
Abstract
The Wnt signalling pathways are of great importance in embryonic development and oncogenesis. Canonical and non-canonical Wnt signalling pathways are known, with the canonical (or β-catenin dependent) pathway being perhaps the best studied of these. While structural knowledge of proteins and interactions involved in canonical Wnt signalling has accumulated over the past 20 years, the pace of discovery has increased in recent years, with the structures of several key proteins and assemblies in the pathway being released. In this review, we provide a brief overview of canonical Wnt signalling, followed by a comprehensive overview of currently available X-ray, NMR and cryoEM data elaborating the structures of proteins and interactions involved in canonical Wnt signalling. While the volume of structures available is considerable, numerous gaps in knowledge remain, particularly a comprehensive understanding of the assembly of large multiprotein complexes mediating key aspects of pathway, as well as understanding the structure and activation of membrane receptors in the pathway. Nonetheless, the presently available data affords considerable opportunities for structure-based drug design efforts targeting canonical Wnt signalling.
Collapse
|
37
|
Kessler D, Mayer M, Zahn SK, Zeeb M, Wöhrle S, Bergner A, Bruchhaus J, Ciftci T, Dahmann G, Dettling M, Döbel S, Fuchs JE, Geist L, Hela W, Kofink C, Kousek R, Moser F, Puchner T, Rumpel K, Scharnweber M, Werni P, Wolkerstorfer B, Breitsprecher D, Baaske P, Pearson M, McConnell DB, Böttcher J. Getting a Grip on the Undrugged: Targeting β-Catenin with Fragment-Based Methods. ChemMedChem 2021; 16:1420-1424. [PMID: 33275320 PMCID: PMC8247886 DOI: 10.1002/cmdc.202000839] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Indexed: 12/20/2022]
Abstract
Aberrant WNT pathway activation, leading to nuclear accumulation of β-catenin, is a key oncogenic driver event. Mutations in the tumor suppressor gene APC lead to impaired proteasomal degradation of β-catenin and subsequent nuclear translocation. Restoring cellular degradation of β-catenin represents a potential therapeutic strategy. Here, we report the fragment-based discovery of a small molecule binder to β-catenin, including the structural elucidation of the binding mode by X-ray crystallography. The difficulty in drugging β-catenin was confirmed as the primary screening campaigns identified only few and very weak hits. Iterative virtual and NMR screening techniques were required to discover a compound with sufficient potency to be able to obtain an X-ray co-crystal structure. The binding site is located between armadillo repeats two and three, adjacent to the BCL9 and TCF4 binding sites. Genetic studies show that it is unlikely to be useful for the development of protein-protein interaction inhibitors but structural information and established assays provide a solid basis for a prospective optimization towards β-catenin proteolysis targeting chimeras (PROTACs) as alternative modality.
Collapse
Affiliation(s)
- Dirk Kessler
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | - Moriz Mayer
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | - Stephan K. Zahn
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | - Markus Zeeb
- Boehringer Ingelheim Pharma GmbH & Co KGBirkendorfer Straße 6588397BiberachGermany
| | - Simon Wöhrle
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | - Andreas Bergner
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | - Jens Bruchhaus
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | - Tuncay Ciftci
- Boehringer Ingelheim Pharma GmbH & Co KGBirkendorfer Straße 6588397BiberachGermany
| | - Georg Dahmann
- Boehringer Ingelheim Pharma GmbH & Co KGBirkendorfer Straße 6588397BiberachGermany
| | - Maike Dettling
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | - Sandra Döbel
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | - Julian E. Fuchs
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | - Leonhard Geist
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | - Wolfgang Hela
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | - Christiane Kofink
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | - Roland Kousek
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | - Franziska Moser
- Boehringer Ingelheim Pharma GmbH & Co KGBirkendorfer Straße 6588397BiberachGermany
| | - Teresa Puchner
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | - Klaus Rumpel
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | | | - Patrick Werni
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | | | - Dennis Breitsprecher
- NanoTemper Technologies GmbHFloessergasse 481369MuenchenGermany
- Leica Microsystems AGMax Schmidheiny-Strasse 2019435HeerbruggSwitzerland
| | - Philipp Baaske
- NanoTemper Technologies GmbHFloessergasse 481369MuenchenGermany
| | - Mark Pearson
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | - Darryl B. McConnell
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | - Jark Böttcher
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| |
Collapse
|
38
|
Wang Z, Zhang M, Luo W, Zhang Y, Ji H. Discovery of 2-(3-(3-Carbamoylpiperidin-1-yl)phenoxy)acetic Acid Derivatives as Novel Small-Molecule Inhibitors of the β-Catenin/B-Cell Lymphoma 9 Protein-Protein Interaction. J Med Chem 2021; 64:5886-5904. [PMID: 33902288 DOI: 10.1021/acs.jmedchem.1c00046] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The β-catenin/B-cell lymphoma 9 (BCL9) protein-protein interaction (PPI) is a potential target for the suppression of hyperactive Wnt/β-catenin signaling that is vigorously involved in cancer initiation and development. Herein, we describe the medicinal chemistry optimization of a screening hit to yield novel small-molecule inhibitors of the β-catenin/BCL9 interaction. The best compound 30 can disrupt the β-catenin/BCL9 interaction with a Ki of 3.6 μM in AlphaScreen competitive inhibition assays. Cell-based experiments revealed that 30 selectively disrupted the β-catenin/BCL9 PPI, while leaving the β-catenin/E-cadherin PPI unaffected, dose-dependently suppressed Wnt signaling transactivation, downregulated oncogenic Wnt target gene expression, and on-target selectively inhibited the growth of cancer cells harboring aberrant Wnt signaling. This compound with a new chemotype can serve as a lead compound for further optimization of inhibitors for β-catenin/BCL9 PPI.
Collapse
Affiliation(s)
- Zhen Wang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Min Zhang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Wen Luo
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Yongqiang Zhang
- Department of Chemistry, Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Haitao Ji
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States.,Departments of Oncologic Sciences and Chemistry, University of South Florida, Tampa, Florida 33620-9497, United States
| |
Collapse
|
39
|
Abstract
Wnt/β-catenin signaling is crucial both in normal embryonic development and throughout the life of an organism. Moreover, aberrant Wnt signaling has been associated with various diseases, especially cancer and fibrosis. Recent research suggests that direct targeting of the β-catenin/BCL9 protein-protein interaction (PPI) is a promising strategy to block the Wnt pathway. Progress in understanding the cocrystalline complex and mechanism of action of the β-catenin/BCL9 interaction facilitates the discovery process of its inhibitors, but only a few inhibitors have been reported. In this review, the discovery and development of β-catenin/BCL9 PPI inhibitors in the areas of drug design, structure-activity relationships and biological and biochemical properties are summarized. In addition, perspectives for the future development of β-catenin/BCL9 PPI inhibitors are explored.
Collapse
|
40
|
Li Z, Liu Y, Fang X, Shu Z. Nanomaterials Enhance the Immunomodulatory Effect of Molecular Targeted Therapy. Int J Nanomedicine 2021; 16:1631-1661. [PMID: 33688183 PMCID: PMC7935456 DOI: 10.2147/ijn.s290346] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/23/2021] [Indexed: 01/22/2023] Open
Abstract
Molecular targeted therapy, a tumor therapy strategy that inhibits specific oncogenic targets, has been shown to modulate the immune response. In addition to directly inhibiting the proliferation and metastasis of tumor cells, molecular targeted drugs can activate the immune system through a variety of mechanisms, including by promoting tumor antigen processing and presentation, increasing intratumoral T cell infiltration, enhancing T cell activation and function, and attenuating the immunosuppressive effect of the tumor microenvironment. However, poor water solubility, insufficient accumulation at the tumor site, and nonspecific targeting of immune cells limit their application. To this end, a variety of nanomaterials have been developed to overcome these obstacles and amplify the immunomodulatory effects of molecular targeted drugs. In this review, we summarize the impact of molecular targeted drugs on the antitumor immune response according to their mechanisms, highlight the advantages of nanomaterials in enhancing the immunomodulatory effect of molecular targeted therapy, and discuss the current challenges and future prospects.
Collapse
Affiliation(s)
- Zhongmin Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Yilun Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Xuedong Fang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Zhenbo Shu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| |
Collapse
|
41
|
Wang Z, Li Z, Ji H. Direct targeting of β-catenin in the Wnt signaling pathway: Current progress and perspectives. Med Res Rev 2021; 41:2109-2129. [PMID: 33475177 DOI: 10.1002/med.21787] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/30/2020] [Accepted: 01/05/2021] [Indexed: 12/28/2022]
Abstract
Aberrant activation of the Wnt/β-catenin signaling circuit is associated with cancer recurrence and relapse, cancer invasion and metastasis, and cancer immune evasion. Direct targeting of β-catenin, the central hub in this signaling pathway, is a promising strategy to suppress the hyperactive β-catenin signaling but has proven to be highly challenging. Substantial efforts have been made to discover compounds that bind with β-catenin, block β-catenin-mediated protein-protein interactions, and suppress β-catenin signaling. Herein, we characterize potential small-molecule binding sites in β-catenin, summarize bioactive small molecules that directly target β-catenin, and review structure-based inhibitor optimization, structure-activity relationship, and biological activities of reported inhibitors. This knowledge will benefit future inhibitor development and β-catenin-related drug discovery.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Zilu Li
- Department of Chemistry, University of South Florida, Tampa, Florida, USA
| | - Haitao Ji
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Department of Chemistry, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
42
|
Development of structure-based pharmacophore to target the β-catenin-TCF protein–protein interaction. Med Chem Res 2021. [DOI: 10.1007/s00044-020-02693-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
43
|
Kim MJ, Huang Y, Park JI. Targeting Wnt Signaling for Gastrointestinal Cancer Therapy: Present and Evolving Views. Cancers (Basel) 2020; 12:E3638. [PMID: 33291655 PMCID: PMC7761926 DOI: 10.3390/cancers12123638] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
Wnt signaling governs tissue development, homeostasis, and regeneration. However, aberrant activation of Wnt promotes tumorigenesis. Despite the ongoing efforts to manipulate Wnt signaling, therapeutic targeting of Wnt signaling remains challenging. In this review, we provide an overview of current clinical trials to target Wnt signaling, with a major focus on gastrointestinal cancers. In addition, we discuss the caveats and alternative strategies for therapeutically targeting Wnt signaling for cancer treatment.
Collapse
Affiliation(s)
- Moon Jong Kim
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.J.K.); (Y.H.)
| | - Yuanjian Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.J.K.); (Y.H.)
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.J.K.); (Y.H.)
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center and Health Science Center, Houston, TX 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
44
|
|
45
|
Söderholm S, Cantù C. The WNT/β‐catenin dependent transcription: A tissue‐specific business. WIREs Mech Dis 2020; 13:e1511. [PMID: 33085215 PMCID: PMC9285942 DOI: 10.1002/wsbm.1511] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
β‐catenin‐mediated Wnt signaling is an ancient cell‐communication pathway in which β‐catenin drives the expression of certain genes as a consequence of the trigger given by extracellular WNT molecules. The events occurring from signal to transcription are evolutionarily conserved, and their final output orchestrates countless processes during embryonic development and tissue homeostasis. Importantly, a dysfunctional Wnt/β‐catenin pathway causes developmental malformations, and its aberrant activation is the root of several types of cancer. A rich literature describes the multitude of nuclear players that cooperate with β‐catenin to generate a transcriptional program. However, a unified theory of how β‐catenin drives target gene expression is still missing. We will discuss two types of β‐catenin interactors: transcription factors that allow β‐catenin to localize at target regions on the DNA, and transcriptional co‐factors that ultimately activate gene expression. In contrast to the presumed universality of β‐catenin's action, the ensemble of available evidence suggests a view in which β‐catenin drives a complex system of responses in different cells and tissues. A malleable armamentarium of players might interact with β‐catenin in order to activate the right “canonical” targets in each tissue, developmental stage, or disease context. Discovering the mechanism by which each tissue‐specific β‐catenin response is executed will be crucial to comprehend how a seemingly universal pathway fosters a wide spectrum of processes during development and homeostasis. Perhaps more importantly, this could ultimately inform us about which are the tumor‐specific components that need to be targeted to dampen the activity of oncogenic β‐catenin. This article is categorized under:Cancer > Molecular and Cellular Physiology Cancer > Genetics/Genomics/Epigenetics Cancer > Stem Cells and Development
Collapse
Affiliation(s)
- Simon Söderholm
- Wallenberg Centre for Molecular Medicine Linköping University Linköping Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Health Science Linköping University Linköping Sweden
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine Linköping University Linköping Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Health Science Linköping University Linköping Sweden
| |
Collapse
|
46
|
Sang P, Shi Y, Huang B, Xue S, Odom T, Cai J. Sulfono-γ-AApeptides as Helical Mimetics: Crystal Structures and Applications. Acc Chem Res 2020; 53:2425-2442. [PMID: 32940995 DOI: 10.1021/acs.accounts.0c00482] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Foldamers have defined and predictable structures, improved resistance to proteolytic degradation, enhanced chemical diversity, and are versatile in their mimicry of biological molecules, making them promising candidates in biomedical and material applications. However, as natural macromolecules exhibit endless folding structures and functions, the exploration of the applications of foldamers remains crucial. As such, it is imperative to continue to discover unnatural foldameric architectures with new frameworks and molecular scaffolds. To this end, we recently developed a new class of peptidomimetics termed ″γ-AApeptides", oligomers of γ-substituted-N-acylated-N-aminoethyl amino acids, which are inspired by the chiral peptide nucleic acid backbone. To date γ-AApeptides have been shown to be resistant to proteolytic degradation and possess limitless potential to introduce chemically diverse functional groups, demonstrating promise in biomedical and material sciences. However, the structures of γ-AApeptides were initially unknown, rendering their rational design for the mimicry of a protein helical domain impossible in the beginning, which limited their potential development. To our delight, in the past few years, we have obtained a series of crystal structures of helical sulfono-γ-AApeptides, a subclass of γ-AApeptides. The single-crystal X-ray crystallography indicates that sulfono-γ-AApeptides fold into unprecedented and well-defined helices with unique helical parameters. On the basis of the well-established size, shape, and folding conformation, the design of sulfono-γ-AApeptide-based foldamers opens a new avenue for the development of alternative unnatural peptidomimetics for their potential applications in chemistry, biology, medicine, materials science, and so on.In this Account, we will outline our journey on sulfono-γ-AApeptides and their application as helical mimetics. We will first briefly introduce the design and synthetic strategy of sulfono-γ-AApeptides and then describe the crystal structures of helical sulfono-γ-AApeptides, including left-handed homogeneous sulfono-γ-AApeptides, right-handed 1:1 α/sulfono-γ-AA peptide hybrids, and right-handed 2:1 α/sulfono-γ-AA peptide hybrids. After that, we will illustrate the potential of helical sulfono-γ-AApeptides for biological applications such as the disruption of medicinally relevant protein-protein interactions (PPIs) of BCL9-β-catenin and p53-MDM2/MDMX as well as the mimicry of glucagon-like peptide 1 (GLP-1). In addition, we also exemplify their potential application in material science. We expect that this Account will shed light on the structure-based design and function of helical sulfono-γ-AApeptides, which can provide a new and alternative way to explore and generate novel foldamers with distinctive structural and functional properties.
Collapse
Affiliation(s)
- Peng Sang
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Yan Shi
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Bo Huang
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Songyi Xue
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Timothy Odom
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| |
Collapse
|
47
|
Targeting the β-catenin signaling for cancer therapy. Pharmacol Res 2020; 160:104794. [DOI: 10.1016/j.phrs.2020.104794] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
|
48
|
Dual Role of WISP1 in maintaining glioma stem cells and tumor-supportive macrophages in glioblastoma. Nat Commun 2020; 11:3015. [PMID: 32541784 PMCID: PMC7295765 DOI: 10.1038/s41467-020-16827-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
The interplay between glioma stem cells (GSCs) and the tumor microenvironment plays crucial roles in promoting malignant growth of glioblastoma (GBM), the most lethal brain tumor. However, the molecular mechanisms underlying this crosstalk are incompletely understood. Here, we show that GSCs secrete the Wnt‐induced signaling protein 1 (WISP1) to facilitate a pro-tumor microenvironment by promoting the survival of both GSCs and tumor-associated macrophages (TAMs). WISP1 is preferentially expressed and secreted by GSCs. Silencing WISP1 markedly disrupts GSC maintenance, reduces tumor-supportive TAMs (M2), and potently inhibits GBM growth. WISP1 signals through Integrin α6β1-Akt to maintain GSCs by an autocrine mechanism and M2 TAMs through a paracrine manner. Importantly, inhibition of Wnt/β-catenin-WISP1 signaling by carnosic acid (CA) suppresses GBM tumor growth. Collectively, these data demonstrate that WISP1 plays critical roles in maintaining GSCs and tumor-supportive TAMs in GBM, indicating that targeting Wnt/β-catenin-WISP1 signaling may effectively improve GBM treatment and the patient survival. The tumour microenvironment plays an important role in promoting glioblastoma. Here, the authors show that glioma stem cells secrete WISP1, which promotes both the survival of the stem cells and tumour-associated macrophages.
Collapse
|
49
|
Elsarraj HS, Hong Y, Limback D, Zhao R, Berger J, Bishop SC, Sabbagh A, Oppenheimer L, Harper HE, Tsimelzon A, Huang S, Hilsenbeck SG, Edwards DP, Fontes J, Fan F, Madan R, Fangman B, Ellis A, Tawfik O, Persons DL, Fields T, Godwin AK, Hagan CR, Swenson-Fields K, Coarfa C, Thompson J, Behbod F. BCL9/STAT3 regulation of transcriptional enhancer networks promote DCIS progression. NPJ Breast Cancer 2020; 6:12. [PMID: 32352029 PMCID: PMC7181646 DOI: 10.1038/s41523-020-0157-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/04/2020] [Indexed: 12/21/2022] Open
Abstract
The molecular processes by which some human ductal carcinoma in situ (DCIS) lesions advance to the more aggressive form, while others remain indolent, are largely unknown. Experiments utilizing a patient-derived (PDX) DCIS Mouse INtraDuctal (MIND) animal model combined with ChIP-exo and RNA sequencing revealed that the formation of protein complexes between B Cell Lymphoma-9 (BCL9), phosphoserine 727 STAT3 (PS-727-STAT3) and non-STAT3 transcription factors on chromatin enhancers lead to subsequent transcription of key drivers of DCIS malignancy. Downregulation of two such targets, integrin β3 and its associated metalloproteinase, MMP16, resulted in a significant inhibition of DCIS invasive progression. Finally, in vivo targeting of BCL9, using rosemary extract, resulted in significant inhibition of DCIS malignancy in both cell line and PDX DCIS MIND animal models. As such, our studies provide compelling evidence for future testing of rosemary extract as a chemopreventive agent in breast cancer.
Collapse
Affiliation(s)
- Hanan S. Elsarraj
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Yan Hong
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Darlene Limback
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Ruonan Zhao
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Jenna Berger
- Warren Alpert Medical School of Brown University, Providence, RI 02912 USA
| | - Stephanie C. Bishop
- Department of Pharmaceutical Sciences, South University, 709 Mall Blvd, Savannah, GA 31406 USA
| | - Aria Sabbagh
- McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030 USA
| | - Linzi Oppenheimer
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Haleigh E. Harper
- University of Kansas School of Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Anna Tsimelzon
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Shixia Huang
- Dan L. Duncan Cancer Center and Department of Molecular & Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Susan G. Hilsenbeck
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX C30 USA
| | - Dean P. Edwards
- Dan L. Duncan Cancer Center and Department of Molecular & Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Joseph Fontes
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Fang Fan
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Rashna Madan
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Ben Fangman
- University of Kansas School of Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Ashley Ellis
- University of Kansas School of Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Ossama Tawfik
- MAWD Pathology Group, St Luke’s Health System of Kansas City, 2750 Clay Edwards Dr, Kansas City, MO 64116 USA
| | - Diane L. Persons
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Timothy Fields
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Christy R. Hagan
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Katherine Swenson-Fields
- Department of Anatomy and Cell Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Cristian Coarfa
- Dan L. Duncan Cancer Center and Department of Molecular & Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Jeffrey Thompson
- Department of Biostatistics, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Fariba Behbod
- Department of Pathology and Laboratory Medicine, MS 3045, The University of Kansas Medical Center, Kansas City, KS 66160 USA
| |
Collapse
|
50
|
Yamaguchi K, Nagatoishi S, Tsumoto K, Furukawa Y. Discovery of chemical probes that suppress Wnt/β-catenin signaling through high-throughput screening. Cancer Sci 2020; 111:783-794. [PMID: 31912579 PMCID: PMC7060471 DOI: 10.1111/cas.14297] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023] Open
Abstract
Aberrant activation of the Wnt/β‐catenin signaling pathway has been observed in a wide range of human tumors. Deregulation of the pathway is closely linked to various aspects of human carcinogenesis such as cell viability, regulation of cell cycle, epithelial‐mesenchymal transition, and maintenance of stemness. In addition, recent studies have disclosed the involvement of Wnt signaling in immune evasion of tumor cells. The accumulation of β‐catenin in the nucleus is a common feature of cancer cells carrying defects in the pathway, which leads to the continuous activation of T‐cell factor (TCF)/LEF transcription factors. Consequently, a genetic program is switched on, leading to the uncontrolled growth, prolonged survival, and acquisition of mesenchymal phenotype. As β‐catenin/TCF serves as a signaling hub for the pathway, β‐catenin/TCF‐dependent transcriptional activity is a relevant readout of the pathway. To date, a wide variety of synthetic TCF/LEF reporters has been developed, and high‐throughput screening (HTS) using these reporters has made significant contributions to the discovery of Wnt inhibitors. Indeed, HTS led to the identification of chemical probes targeting porcupine, a membrane bound O‐acyltransferase, and CREB‐binding protein, a transcriptional coactivator. This review focuses on various screening strategies for the discovery of Wnt inhibitors and their mode of action to help the creation of new concepts for assay/screening methods.
Collapse
Affiliation(s)
- Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoru Nagatoishi
- Project Division of Advanced Biopharmaceutical Science, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kouhei Tsumoto
- Project Division of Advanced Biopharmaceutical Science, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|