1
|
Zhong C, Jiang WJ, Yao Y, Li Z, Li Y, Wang S, Wang X, Zhu W, Wu S, Wang J, Fan S, Ma S, Liu Y, Zhang H, Zhao W, Zhao L, Feng Y, Li Z, Guo R, Yu L, Pei F, Hu J, Feng X, Yang Z, Yang Z, Yang X, Hou Y, Zhang D, Xu D, Sheng R, Li Y, Liu L, Wu HJ, Huang J, Fei T. CRISPR screens reveal convergent targeting strategies against evolutionarily distinct chemoresistance in cancer. Nat Commun 2024; 15:5502. [PMID: 38951519 PMCID: PMC11217446 DOI: 10.1038/s41467-024-49673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
Resistance to chemotherapy has been a major hurdle that limits therapeutic benefits for many types of cancer. Here we systematically identify genetic drivers underlying chemoresistance by performing 30 genome-scale CRISPR knockout screens for seven chemotherapeutic agents in multiple cancer cells. Chemoresistance genes vary between conditions primarily due to distinct genetic background and mechanism of action of drugs, manifesting heterogeneous and multiplexed routes towards chemoresistance. By focusing on oxaliplatin and irinotecan resistance in colorectal cancer, we unravel that evolutionarily distinct chemoresistance can share consensus vulnerabilities identified by 26 second-round CRISPR screens with druggable gene library. We further pinpoint PLK4 as a therapeutic target to overcome oxaliplatin resistance in various models via genetic ablation or pharmacological inhibition, highlighting a single-agent strategy to antagonize evolutionarily distinct chemoresistance. Our study not only provides resources and insights into the molecular basis of chemoresistance, but also proposes potential biomarkers and therapeutic strategies against such resistance.
Collapse
Affiliation(s)
- Chunge Zhong
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
- Foshan Graduate School of Innovation, Northeastern University, Foshan, 528311, China
| | - Wen-Jie Jiang
- Peking University Third Hospital, Beijing, 100191, China
| | - Yingjia Yao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Zexu Li
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - You Li
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Shengnan Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Xiaofeng Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Wenjuan Zhu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Siqi Wu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Jing Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Shuangshuang Fan
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Shixin Ma
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Yeshu Liu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Han Zhang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Wenchang Zhao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Lu Zhao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Yi Feng
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Zihan Li
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Ruifang Guo
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Li Yu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Fengyun Pei
- Department of Colorectal Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Hu
- Clinical Research Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
| | - Xingzhi Feng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
| | - Zihuan Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
| | - Zhengjia Yang
- Department of Cardiothoracic Surgery, Jinqiu Hospital of Liaoning Province, Shenyang, China
| | - Xueying Yang
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Danni Zhang
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, China
| | - Dake Xu
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, China
| | - Ren Sheng
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Yihao Li
- BeiGene Institute, BeiGene (Shanghai) Research & Development Co., Ltd, 200131, Shanghai, China
| | - Lijun Liu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Hua-Jun Wu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Center for Precision Medicine Multi-Omics Research, Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China.
| | - Jun Huang
- Department of Colorectal Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Clinical Research Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Institute of Gastroenterology, Guangzhou, China.
| | - Teng Fei
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China.
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China.
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China.
- Foshan Graduate School of Innovation, Northeastern University, Foshan, 528311, China.
| |
Collapse
|
2
|
Wang B, Zhang X, Li ZS, Wei C, Yu RZ, Du XZ, He YJ, Ren Y, Zhen YW, Han L. Polo-like kinase 4 promotes tumorigenesis and glucose metabolism in glioma by activating AKT1 signaling. Cancer Lett 2024; 585:216665. [PMID: 38290657 DOI: 10.1016/j.canlet.2024.216665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
Glioblastoma (GBM) is an extremely aggressive tumor associated with a poor prognosis that impacts the central nervous system. Increasing evidence suggests an inherent association between glucose metabolism dysregulation and the aggression of GBM. Polo-like kinase 4 (PLK4), a highly conserved serine/threonine protein kinase, was found to relate to glioma progression and unfavorable prognosis. As revealed by the integration of proteomics and phosphoproteomics, PLK4 was found to be involved in governing metabolic processes and the PI3K/AKT/mTOR pathway. For the first time, this study supports evidence demonstrating that PLK4 activated PI3K/AKT/mTOR signaling through direct binding to AKT1 and subsequent phosphorylating AKT1 at S124, T308, and S473 to promote tumorigenesis and glucose metabolism in glioma. In addition, PLK4-mediated phosphorylation of AKT1 S124 significantly augmented the phosphorylation of AKT1 S473. Therefore, PLK4 exerted an influence on glucose metabolism by stimulating PI3K/AKT/mTOR signaling. Additionally, the expression of PLK4 protein exhibited a positive correlation with AKT1 phosphorylation in glioma patient tissues. These findings highlight the pivotal role of PLK4-mediated phosphorylation of AKT1 in glioma tumorigenesis and dysregulation of glucose metabolism.
Collapse
Affiliation(s)
- Bo Wang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiaoyang Zhang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ze-Sheng Li
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Cheng Wei
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Run-Ze Yu
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xue-Zhi Du
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ying-Jie He
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yu Ren
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Ying-Wei Zhen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
3
|
Lei Q, Yu Q, Yang N, Xiao Z, Song C, Zhang R, Yang S, Liu Z, Deng H. Therapeutic potential of targeting polo-like kinase 4. Eur J Med Chem 2024; 265:116115. [PMID: 38199166 DOI: 10.1016/j.ejmech.2023.116115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Polo-like kinase 4 (PLK4), a highly conserved serine/threonine kinase, masterfully regulates centriole duplication in a spatiotemporal manner to ensure the fidelity of centrosome duplication and proper mitosis. Abnormal expression of PLK4 contributes to genomic instability and associates with a poor prognosis in cancer. Inhibition of PLK4 is demonstrated to exhibit significant efficacy against various types of human cancers, further highlighting its potential as a promising therapeutic target for cancer treatment. As such, numerous small-molecule inhibitors with distinct chemical scaffolds targeting PLK4 have been extensively investigated for the treatment of different human cancers, with several undergoing clinical evaluation (e.g., CFI-400945). Here, we review the structure, distribution, and biological functions of PLK4, encapsulate its intricate regulatory mechanisms of expression, and highlighting its multifaceted roles in cancer development and metastasis. Moreover, the recent advancements of PLK4 inhibitors in patent or literature are summarized, and their therapeutic potential as monotherapies or combination therapies with other anticancer agents are also discussed.
Collapse
Affiliation(s)
- Qian Lei
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Quanwei Yu
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Na Yang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhaolin Xiao
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chao Song
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rui Zhang
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guizhou, Guiyang, 550002, China
| | - Shuxin Yang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhihao Liu
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Hui Deng
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
4
|
Bloomfield M, Cimini D. The fate of extra centrosomes in newly formed tetraploid cells: should I stay, or should I go? Front Cell Dev Biol 2023; 11:1210983. [PMID: 37576603 PMCID: PMC10413984 DOI: 10.3389/fcell.2023.1210983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
An increase in centrosome number is commonly observed in cancer cells, but the role centrosome amplification plays along with how and when it occurs during cancer development is unclear. One mechanism for generating cancer cells with extra centrosomes is whole genome doubling (WGD), an event that occurs in over 30% of human cancers and is associated with poor survival. Newly formed tetraploid cells can acquire extra centrosomes during WGD, and a generally accepted model proposes that centrosome amplification in tetraploid cells promotes cancer progression by generating aneuploidy and chromosomal instability. Recent findings, however, indicate that newly formed tetraploid cells in vitro lose their extra centrosomes to prevent multipolar cell divisions. Rather than persistent centrosome amplification, this evidence raises the possibility that it may be advantageous for tetraploid cells to initially restore centrosome number homeostasis and for a fraction of the population to reacquire additional centrosomes in the later stages of cancer evolution. In this review, we explore the different evolutionary paths available to newly formed tetraploid cells, their effects on centrosome and chromosome number distribution in daughter cells, and their probabilities of long-term survival. We then discuss the mechanisms that may alter centrosome and chromosome numbers in tetraploid cells and their relevance to cancer progression following WGD.
Collapse
Affiliation(s)
- Mathew Bloomfield
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Daniela Cimini
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
5
|
Puri S, Sawant S, Juvale K. A comprehensive review on the indazole based derivatives as targeted anticancer agents. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
6
|
Sun Y, Xue Y, Liu H, Mu S, Sun P, Sun Y, Wang L, Wang H, Wang J, Wu T, Yin W, Qin Q, Sun Y, Yang H, Zhao D, Cheng M. Discovery of CZS-241: A Potent, Selective, and Orally Available Polo-Like Kinase 4 Inhibitor for the Treatment of Chronic Myeloid Leukemia. J Med Chem 2023; 66:2396-2421. [PMID: 36734825 DOI: 10.1021/acs.jmedchem.2c02124] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent studies demonstrate that PLK4 has emerged as a therapeutic target for the treatment of multiple cancers owing to its indispensable role in cell division. Herein, starting from previously identified effective compound CZS-034, based on rational drug design strategies, tyrosine kinase receptor A (TRKA) selectivity- and metabolic stability-guided structure-activity relationship (SAR) exploration were carried out to discover a highly potent (IC50 = 2.6 nM) and selective (SF = 1054.4 over TRKA) PLK4 inhibitor B43 (CZS-241) with acceptable human liver microsome stability (t1/2 = 31.5 min). Moreover, compound B43 effectively inhibited leukemia cells in 29 tested cell lines, especially chronic myeloid leukemia (CML) cell lines K562 and KU-812. Pharmacokinetic characteristics revealed that compound B43 possessed over 4 h of half-life and 70.8% bioavailability in mice. In the K562 cells xenograft mouse model, a 20 mg/kg/day dosage treatment obviously suppressed tumor progression. As a potential and novel PLK4-targeted candidate drug for CML, compound B43 is undergoing extensive preclinical safety evaluation.
Collapse
Affiliation(s)
- Yin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, P. R. China
| | - Yanli Xue
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, P. R. China
| | - Hongbing Liu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, P. R. China
| | - Shuyi Mu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, P. R. China
| | - Pengkun Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, P. R. China
| | - Yu Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, P. R. China
| | - Lin Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, P. R. China
| | - Hanxun Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, P. R. China
| | - Jingkai Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, P. R. China
| | - Tianxiao Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, P. R. China
| | - Wenbo Yin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, P. R. China
| | - Qiaohua Qin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, P. R. China
| | - Yixiang Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, P. R. China
| | - Huali Yang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, P. R. China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, P. R. China
| |
Collapse
|
7
|
Fonseca I, Horta C, Ribeiro AS, Sousa B, Marteil G, Bettencourt-Dias M, Paredes J. Polo-like kinase 4 (Plk4) potentiates anoikis-resistance of p53KO mammary epithelial cells by inducing a hybrid EMT phenotype. Cell Death Dis 2023; 14:133. [PMID: 36797240 PMCID: PMC9935921 DOI: 10.1038/s41419-023-05618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/18/2023]
Abstract
Polo-like kinase 4 (Plk4), the major regulator of centriole biogenesis, has emerged as a putative therapeutic target in cancer due to its abnormal expression in human carcinomas, leading to centrosome number deregulation, mitotic defects and chromosomal instability. Moreover, Plk4 deregulation promotes tumor growth and metastasis in mouse models and is significantly associated with poor patient prognosis. Here, we further investigate the role of Plk4 in carcinogenesis and show that its overexpression significantly potentiates resistance to cell death by anoikis of nontumorigenic p53 knock-out (p53KO) mammary epithelial cells. Importantly, this effect is independent of Plk4's role in centrosome biogenesis, suggesting that this kinase has additional cellular functions. Interestingly, the Plk4-induced anoikis resistance is associated with the induction of a stable hybrid epithelial-mesenchymal phenotype and is partially dependent on P-cadherin upregulation. Furthermore, we found that the conditioned media of Plk4-induced p53KO mammary epithelial cells also induces anoikis resistance of breast cancer cells in a paracrine way, being also partially dependent on soluble P-cadherin secretion. Our work shows, for the first time, that high expression levels of Plk4 induce anoikis resistance of both mammary epithelial cells with p53KO background, as well as of breast cancer cells exposed to their secretome, which is partially mediated through P-cadherin upregulation. These results reinforce the idea that Plk4, independently of its role in centrosome biogenesis, functions as an oncogene, by impacting the tumor microenvironment to promote malignancy.
Collapse
Affiliation(s)
- Irina Fonseca
- Instituto Gulbenkian de Ciência (IGC), Oeiras, 2780-156, Portugal.
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, 4200-135, Portugal.
- Cancel Stem, Portuguese Consortium on Cancer Stem Cells, Porto, Portugal.
| | - Cíntia Horta
- Instituto Gulbenkian de Ciência (IGC), Oeiras, 2780-156, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, 4200-135, Portugal
- Cancel Stem, Portuguese Consortium on Cancer Stem Cells, Porto, Portugal
| | - Ana Sofia Ribeiro
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, 4200-135, Portugal
- Cancel Stem, Portuguese Consortium on Cancer Stem Cells, Porto, Portugal
| | - Barbara Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, 4200-135, Portugal
| | | | - Mónica Bettencourt-Dias
- Instituto Gulbenkian de Ciência (IGC), Oeiras, 2780-156, Portugal.
- Cancel Stem, Portuguese Consortium on Cancer Stem Cells, Porto, Portugal.
| | - Joana Paredes
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, 4200-135, Portugal.
- Cancel Stem, Portuguese Consortium on Cancer Stem Cells, Porto, Portugal.
| |
Collapse
|
8
|
Huang RL, Liu C, Fu R, Yan Y, Yang J, Wang X, Li Q. Downregulation of PLK4 expression induces apoptosis and G0/G1-phase cell cycle arrest in keloid fibroblasts. Cell Prolif 2022; 55:e13271. [PMID: 35670224 PMCID: PMC9251049 DOI: 10.1111/cpr.13271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
Objectives Keloids are benign fibroproliferative tumors that display many cancer‐like characteristics, such as progressive uncontrolled growth, lack of spontaneous regression, and extremely high rates of recurrence. Polo‐like kinase 4 (PLK4) was recently identified as a master regulator of centriole replication, and its aberrant expression is closely associated with tumorigenesis. This study aimed to investigate the expression and biological role of PLK4 in the pathogenesis of keloids. Materials and Methods We evaluated the expression of PLK4 in keloids and adjacent normal skin tissue samples. Then, we established PLK4 knockdown and overexpression cell lines in keloid fibroblasts (KFs) and normal skin fibroblasts (NFs), respectively, to investigate the roles of PLK4 in the regulation of proliferation, migration, invasion, apoptosis, and cell cycle in KFs. Centrinone B (Cen‐B), a highly selective PLK4 inhibitor, was used to inhibit PLK4 activity in KFs to evaluate the therapeutic effect on KFs. Results We discovered that PLK4 was overexpressed in keloid dermal samples and KFs compared with adjacent normal skin samples and NFs derived from the same patients. High PLK4 expression was positively associated with the proliferation, migration, and invasion of KFs. Furthermore, knockdown of PLK4 expression or inhibition of PLK4 activity by Cen‐B suppressed KF growth, induced KF apoptosis via the caspase‐9/3 pathway, and induced cell cycle arrest at the G0/G1 phase in vitro. Conclusions These findings demonstrate that PLK4 is a critical regulator of KF proliferation, migration, and invasion, and thus, Cen‐B is a promising candidate drug for keloid treatment.
Collapse
Affiliation(s)
- Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanqi Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Rao Fu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxin Yan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinggang Wang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Mittal K, Kaur J, Sharma S, Sharma N, Wei G, Choudhary I, Imhansi-Jacob P, Maganti N, Pawar S, Rida P, Toss MS, Aleskandarany M, Janssen EA, Søiland H, Gupta MV, Reid MD, Rakha EA, Aneja R. Hypoxia Drives Centrosome Amplification in Cancer Cells via HIF1α-dependent Induction of Polo-Like Kinase 4. Mol Cancer Res 2022; 20:596-606. [PMID: 34933912 PMCID: PMC8983505 DOI: 10.1158/1541-7786.mcr-20-0798] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/20/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Abstract
Centrosome amplification (CA) has been implicated in the progression of various cancer types. Although studies have shown that overexpression of PLK4 promotes CA, the effect of tumor microenvironment on polo-like kinase 4 (PLK4) regulation is understudied. The aim of this study was to examine the role of hypoxia in promoting CA via PLK4. We found that hypoxia induced CA via hypoxia-inducible factor-1α (HIF1α). We quantified the prevalence of CA in tumor cell lines and tissue sections from breast cancer, pancreatic ductal adenocarcinoma (PDAC), colorectal cancer, and prostate cancer and found that CA was prevalent in cells with increased HIF1α levels under normoxic conditions. HIF1α levels were correlated with the extent of CA and PLK4 expression in clinical samples. We analyzed the correlation between PLK4 and HIF1A mRNA levels in The Cancer Genome Atlas (TCGA) datasets to evaluate the role of PLK4 and HIF1α in breast cancer and PDAC prognosis. High HIF1A and PLK4 levels in patients with breast cancer and PDAC were associated with poor overall survival. We confirmed PLK4 as a transcriptional target of HIF1α and demonstrated that in PLK4 knockdown cells, hypoxia-mimicking agents did not affect CA and expression of CA-associated proteins, underscoring the necessity of PLK4 in HIF1α-related CA. To further dissect the HIF1α-PLK4 interplay, we used HIF1α-deficient cells overexpressing PLK4 and showed a significant increase in CA compared with HIF1α-deficient cells harboring wild-type PLK4. These findings suggest that HIF1α induces CA by directly upregulating PLK4 and could help us risk-stratify patients and design new therapies for CA-rich cancers. IMPLICATIONS Hypoxia drives CA in cancer cells by regulating expression of PLK4, uncovering a novel HIF1α/PLK4 axis.
Collapse
Affiliation(s)
- Karuna Mittal
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Jaspreet Kaur
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Shaligram Sharma
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Nivya Sharma
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Guanhao Wei
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Ishita Choudhary
- Department of Biology, Georgia State University, Atlanta, Georgia
| | | | - Nagini Maganti
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Shrikant Pawar
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Padmashree Rida
- Novazoi Theranostics, Inc., Rolling Hills Estates, California
| | - Michael S. Toss
- University of Nottingham and Nottingham University Hospitals, Nottingham, United Kingdom
| | - Mohammed Aleskandarany
- University of Nottingham and Nottingham University Hospitals, Nottingham, United Kingdom
| | | | - Håvard Søiland
- Department of Breast and Endocrine Surgery, Stavanger University Hospital, Stavanger, Norway
| | | | | | - Emad A. Rakha
- University of Nottingham and Nottingham University Hospitals, Nottingham, United Kingdom
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, Georgia
| |
Collapse
|
10
|
Hoffmann I. Role of Polo-like Kinases Plk1 and Plk4 in the Initiation of Centriole Duplication-Impact on Cancer. Cells 2022; 11:786. [PMID: 35269408 PMCID: PMC8908989 DOI: 10.3390/cells11050786] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Centrosomes nucleate and anchor microtubules and therefore play major roles in spindle formation and chromosome segregation during mitosis. Duplication of the centrosome occurs, similar to DNA, only once during the cell cycle. Aberration of the centrosome number is common in human tumors. At the core of centriole duplication is the conserved polo-like kinase 4, Plk4, and two structural proteins, STIL and Sas-6. In this review, I summarize and discuss developments in our understanding of the first steps of centriole duplication and their regulation.
Collapse
Affiliation(s)
- Ingrid Hoffmann
- F045, Cell Cycle Control and Carcinogenesis, Im Neuenheimer Feld 242, 69115 Heidelberg, Germany
| |
Collapse
|
11
|
Estrogens—Origin of Centrosome Defects in Human Cancer? Cells 2022; 11:cells11030432. [PMID: 35159242 PMCID: PMC8833882 DOI: 10.3390/cells11030432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/22/2022] Open
Abstract
Estrogens are associated with a variety of diseases and play important roles in tumor development and progression. Centrosome defects are hallmarks of human cancers and contribute to ongoing chromosome missegragation and aneuploidy that manifest in genomic instability and tumor progression. Although several mechanisms underlie the etiology of centrosome aberrations in human cancer, upstream regulators are hardly known. Accumulating experimental and clinical evidence points to an important role of estrogens in deregulating centrosome homeostasis and promoting karyotype instability. Here, we will summarize existing literature of how natural and synthetic estrogens might contribute to structural and numerical centrosome defects, genomic instability and human carcinogenesis.
Collapse
|
12
|
TEC kinase stabilizes PLK4 to promote liver cancer metastasis. Cancer Lett 2022; 524:70-81. [PMID: 34637843 DOI: 10.1016/j.canlet.2021.08.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/12/2021] [Accepted: 08/27/2021] [Indexed: 01/09/2023]
Abstract
Aberrated PLK4 expression has been reported in different malignancies and causes centrosome amplification, aneuploidy, and genomic instability. However, the mechanism by which PLK4 is regulated in carcinogenesis remains not fully characterised. Here, we showed that PLK4 was overexpressed in human HCC and overexpression of PLK4 predicted poorer patient prognosis. Unexpectedly, we found that induced expression of PLK4 promotes, but knockdown of PLK4 inhibits, HCC cell migration and invasion. Mechanistically, we found that TEC tyrosine kinase, which also promotes HCC cell migration, stabilizes PLK4 by phosphorylation. TEC directly phosphorylates PLK4 at tyrosine 86 residue, which not only stabilizes the protein but also enhances PLK4-mediated HCC cell invasion. Further investigation by transcriptome sequencing indicated that PLK4 promotes the phosphorylation of focal adhesion kinase to regulate the focal adhesion pathway in HCC cell migration. Taken together, our results demonstrated that PLK4 plays an important role in HCC metastasis and revealed for the first time the mechanism by which PLK4 promotes HCC metastasis via TEC phosphorylation.
Collapse
|
13
|
Caliz AD, Vertii A, Fisch V, Yoon S, Yoo HJ, Keaney JF, Kant S. Mitogen-activated protein kinase kinase 7 in inflammatory, cancer, and neurological diseases. Front Cell Dev Biol 2022; 10:979673. [PMID: 36340039 PMCID: PMC9630596 DOI: 10.3389/fcell.2022.979673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Stress-activated mitogen-activated protein kinase kinase 7 (MKK7) is a member of the dual-specificity mitogen-activated protein kinase family. In the human body, MKK7 controls essential physiological processes, including but not limited to proliferation and differentiation in multiple tissues and organs. MKK7, along with the MKK4 pathway, has been implicated in stress-activated activities and biological events that are mediated by c-Jun N-terminal kinase (JNK) signaling. Although numerous studies have been performed to identify the role of JNK in multiple biological processes, there are limited publications that focus on dissecting the independent role of MKK7. Recent research findings have spurred testing via in vivo genetically deficient models, uncovering previously undocumented JNK-independent functions of MKK7. Here we discuss both JNK-dependent and-independent functions of MKK7 in vivo. This review summarizes the role of MKK7 in inflammation, cytokine production, cancer, and neurological diseases.
Collapse
Affiliation(s)
- Amada D Caliz
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Anastassiia Vertii
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Vijay Fisch
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Soonsang Yoon
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Hyung-Jin Yoo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - John F Keaney
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Shashi Kant
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
14
|
Li J, Urabe G, Huang Y, Zhang M, Wang B, Marcho L, Shen H, Kent KC, Guo LW. A Role for Polo-Like Kinase 4 in Vascular Fibroblast Cell-Type Transition. JACC Basic Transl Sci 2021; 6:257-283. [PMID: 33778212 PMCID: PMC7987547 DOI: 10.1016/j.jacbts.2020.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 11/08/2022]
Abstract
PLK4, previously known as a centriole-associated factor, regulates the transcription factor activity of serum response factor. PLK4 inhibition blocks the profibrogenic cell state transition of vascular fibroblasts. PLK4’s activation and gene expression are regulated by PDGF receptor and epigenetic reader BRD4, respectively. Periadventitial administration of a PLK4 inhibitor mitigates vascular fibrosis.
Polo-like kinase 4 (PLK4) is canonically known for its cytoplasmic function in centriole duplication. Here we show a noncanonical PLK4 function of regulating the transcription factor SRF’s nuclear activity and associated myofibroblast-like cell-type transition. In this context, we have further found that PLK4’s phosphorylation and transcription are respectively regulated by PDGF receptor and epigenetic factor BRD4. Furthermore, in vivo experiments suggest PLK4 inhibition as a potential approach to mitigating vascular fibrosis.
Collapse
Key Words
- AA, PDGF-AA
- BET, bromo/extraterminal domain–containing protein
- BRD4
- BRD4, bromodomain protein 4
- CenB, centrinone-B
- EEL, external elastic lamina
- JQ1, a BET family–selective epigenetic modulator drug
- MRTF-A, myocardin-related transcription factor A
- PDGF receptor
- PDGF, platelet-derived growth factor
- PDGFR, PDGF receptor
- PLK, polo-like kinase
- PLK4
- SRF
- SRF, serum response factor
- fibroblast cell-type transition
- αSMA, α-smooth muscle actin
Collapse
Affiliation(s)
- Jing Li
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Go Urabe
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Yitao Huang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Mengxue Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia, USA.,Cellular and Molecular Pathology Graduate Program, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Lynn Marcho
- Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| | - Hongtao Shen
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - K Craig Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
15
|
Raab CA, Raab M, Becker S, Strebhardt K. Non-mitotic functions of polo-like kinases in cancer cells. Biochim Biophys Acta Rev Cancer 2021; 1875:188467. [PMID: 33171265 DOI: 10.1016/j.bbcan.2020.188467] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Inhibitors of mitotic protein kinases are currently being developed as non-neurotoxic alternatives of microtubule-targeting agents (taxanes, vinca alkaloids) which provide a substantial survival benefit for patients afflicted with different types of solid tumors. Among the mitotic kinases, the cyclin-dependent kinases, the Aurora kinases, the kinesin spindle protein and Polo-like kinases (PLKs) have emerged as attractive targets of cancer therapeutics. The functions of mammalian PLK1-5 are traditionally linked to the regulation of the cell cycle and to the stress response. Especially the key role of PLK1 and PLK4 in cellular growth and proliferation, their overexpression in multiple types of human cancer and their druggability, make them appealing targets for cancer therapy. Inhibitors for PLK1 and PLK4 are currently being tested in multiple cancer trials. The clinical success of microtubule-targeting agents is attributed not solely to the induction of a mitotic arrest in cancer cells, but also to non-mitotic effects like targeting intracellular trafficking on microtubules. This raises the question whether new cancer targets like PLK1 and PLK4 regulate critical non-mitotic functions in tumor cells. In this article we summarize the important roles of PLK1-5 for the regulation of non-mitotic signaling. Due to these functions it is conceivable that inhibitors for PLK1 or PLK4 can target interphase cells, which underscores their attractive potential as cancer drug targets. Moreover, we also describe the contribution of the tumor-suppressors PLK2, PLK3 and PLK5 to cancer cell signaling outside of mitosis. These observations highlight the urgent need to develop highly specific ATP-competitive inhibitors for PLK4 and for PLK1 like the 3rd generation PLK-inhibitor Onvansertib to prevent the inhibition of tumor-suppressor PLKs in- and outside of mitosis. The remarkable feature of PLKs to encompass a unique druggable domain, the polo-box-domain (PBD) that can be found only in PLKs offers the opportunity for the development of inhibitors that target PLKs exclusively. Beyond the development of mono-specific ATP-competitive PLK inhibitors, the PBD as drug target will support the design of new drugs that eradicate cancer cells based on the mitotic and non-mitotic function of PLK1 and PLK4.
Collapse
Affiliation(s)
| | - Monika Raab
- Department of Gynecology, Goethe-University, Frankfurt, Germany
| | - Sven Becker
- Department of Gynecology, Goethe-University, Frankfurt, Germany
| | - Klaus Strebhardt
- Department of Gynecology, Goethe-University, Frankfurt, Germany; German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Frankfurt am Main, Frankfurt, Germany.
| |
Collapse
|
16
|
Sala R, Farrell KC, Stearns T. Growth disadvantage associated with centrosome amplification drives population-level centriole number homeostasis. Mol Biol Cell 2020; 31:2646-2656. [PMID: 32966175 PMCID: PMC7927180 DOI: 10.1091/mbc.e19-04-0195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The centriole duplication cycle normally ensures that centriole number is maintained at two centrioles per G1 cell. However, some circumstances can result in an aberrant increase in centriole number—a phenotype that is particularly prevalent in several types of cancer. Following an artificial increase in centriole number without tetraploidization due to transient overexpression of the kinase PLK4, human cells return to a normal centriole number during the proliferation of the population. We examine the mechanisms responsible for this return to normal centriole number at the population level in human retinal pigment epithelial cells. We find that the return to normal centriole number in the population of induced cells cannot be explained by limited duplication of centrioles, instability of extra centrioles, or by grossly asymmetric segregation of extra centrioles in mitosis. However, cells with extra centrioles display heterogenous phenotypes including extended cell cycle arrest, longer interphase durations, and death, which overall results in a proliferative disadvantage relative to normal cells in the population. Although about half of cells with extra centrioles in a population were able to divide, the extent of the disadvantages conferred by other fates is sufficient to account for the observed rate of return to normal centriole number. These results suggest that only under conditions of positive selection for cells with extra centrioles, continuous generation of such centrioles, or alleviation of the disadvantageous growth phenotypes would they be maintained in a population.
Collapse
Affiliation(s)
- Roberta Sala
- Department of Biology, Stanford University, Stanford, CA 94305
| | - K C Farrell
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA 94305.,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
17
|
Meng L, Zhou Y, Ju S, Han J, Song C, Kong J, Wu Y, Lu S, Xu J, Yuan W, Zhang E, Wang C, Hu Z, Gu Y, Luo R, Wang X. A cis-eQTL genetic variant in PLK4 confers high risk of hepatocellular carcinoma. Cancer Med 2019; 8:6476-6484. [PMID: 31489978 PMCID: PMC6797585 DOI: 10.1002/cam4.2487] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose The overexpression and knockdown of PLK4 were both reported to generate aneuploidy. Thus, we aimed to investigate whether genetic variants in PLK4 contribute to the development of hepatocellular carcinoma (HCC). Methods We evaluated associations of common variants in PLK4 and its promoter for the risk of HCC in our association study (1300 cases and 1344 controls). The genotype‐tissue expression (GTEx) and The cancer genome atlas (TCGA) databases were used to quantify the expression of PLK4. Cell proliferation and migration affected by PLK4 in HCC were assessed in vitro. Drug susceptibility testing (DST) model was used to assess the sensibility of PLK4‐activated HCC to CFI‐400945, a small molecule inhibitor of PLK4. Results Herein, we found a significant association between rs3811741, located in the PLK4 intron, and liver cancer risk (OR = 1.26, P = 9.81 × 10−5). Although PLK4 expressed at lower levels in somatic tissues compared to the testis, the risk allele A of rs3811741 was associated with increased PLK4 expression in liver cancer tissues. Additionally, PLK4 high expression was remarkably associated with shortened survival of HCC (HR = 1.97, P = .001). Furthermore, overexpression of PLK4 promoted, while knockdown of PLK4 suppressed cancer cell proliferation, migration, and invasion. DST model demonstrated that CFI‐400945 can effectively suppress rampant proliferation of HCC with highly expressed PLK4. Conclusion Taken together, our study demonstrated that PLK4 is a susceptibility gene and plays an oncogenic role in HCC. Furthermore, we identified that PLK4 sensitives HCC to CFI‐400945, which may be an ideal therapy target for HCC.
Collapse
Affiliation(s)
- Lijuan Meng
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yan Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Sihan Ju
- Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Jing Han
- Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Ci Song
- Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jing Kong
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yifei Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Shuai Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jiani Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Wenwen Yuan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Erbao Zhang
- Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Cheng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Bioinformatics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Rongcheng Luo
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xuehao Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Liver Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Zhao Y, Wang X. PLK4: a promising target for cancer therapy. J Cancer Res Clin Oncol 2019; 145:2413-2422. [PMID: 31492983 DOI: 10.1007/s00432-019-02994-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Polo-like kinase 4 (PLK4) is a serine/threonine protein kinase that regulates centriole duplication. PLK4 deregulation causes centrosome number abnormalities, mitotic defects, chromosomal instability and, consequently, tumorigenesis. Therefore, PLK4 has emerged as a therapeutic target for the treatment of multiple cancers. In this review, we summarize the critical role of centrosome amplification and PLK4 in cancer. We also highlight recent advances in the development of PLK4 inhibitors and discuss potential combination therapies for cancer. METHODS The relevant literature from PubMed is reviewed in this article. The ClinicalTrials.gov database was searched for clinical trials related to the specific topic. RESULTS PLK4 is aberrantly expressed in multiple cancers and has prognostic value. Targeting PLK4 with inhibitors suppresses tumor growth in vitro and in vivo. CONCLUSIONS PLK4 plays an important role in centrosome amplification and tumor progression. PLK4 inhibitors used alone or in combination with other drugs have shown significant anticancer efficacy, suggesting a potential therapeutic strategy for cancer. The results of relevant clinical trials await evaluation.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, People's Republic of China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, People's Republic of China. .,School of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,Key Laboratory for Kidney Regeneration of Shandong Province, Jinan, 250021, Shandong, China.
| |
Collapse
|
19
|
Luo Y, Barrios-Rodiles M, Gupta GD, Zhang YY, Ogunjimi AA, Bashkurov M, Tkach JM, Underhill AQ, Zhang L, Bourmoum M, Wrana JL, Pelletier L. Atypical function of a centrosomal module in WNT signalling drives contextual cancer cell motility. Nat Commun 2019; 10:2356. [PMID: 31142743 PMCID: PMC6541620 DOI: 10.1038/s41467-019-10241-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/29/2019] [Indexed: 02/06/2023] Open
Abstract
Centrosomes control cell motility, polarity and migration that is thought to be mediated by their microtubule-organizing capacity. Here we demonstrate that WNT signalling drives a distinct form of non-directional cell motility that requires a key centrosome module, but not microtubules or centrosomes. Upon exosome mobilization of PCP-proteins, we show that DVL2 orchestrates recruitment of a CEP192-PLK4/AURKB complex to the cell cortex where PLK4/AURKB act redundantly to drive protrusive activity and cell motility. This is mediated by coordination of formin-dependent actin remodelling through displacement of cortically localized DAAM1 for DAAM2. Furthermore, abnormal expression of PLK4, AURKB and DAAM1 is associated with poor outcomes in breast and bladder cancers. Thus, a centrosomal module plays an atypical function in WNT signalling and actin nucleation that is critical for cancer cell motility and is associated with more aggressive cancers. These studies have broad implications in how contextual signalling controls distinct modes of cell migration. Centrosomes function in cell migration by organizing microtubules. Here, Luo et al. surprisingly show that centrosome proteins also control migration after recruitment by Wnt-PCP proteins to the cell cortex, leading to actin remodelling and protrusive activity relevant to aggressive cancer motility.
Collapse
Affiliation(s)
- Yi Luo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Miriam Barrios-Rodiles
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Gagan D Gupta
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, M5B 2K3, Canada
| | - Ying Y Zhang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Abiodun A Ogunjimi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Mikhail Bashkurov
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Johnny M Tkach
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Ainsley Q Underhill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Liang Zhang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Mohamed Bourmoum
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Jeffrey L Wrana
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
20
|
Moyer TC, Holland AJ. PLK4 promotes centriole duplication by phosphorylating STIL to link the procentriole cartwheel to the microtubule wall. eLife 2019; 8:46054. [PMID: 31115335 PMCID: PMC6570480 DOI: 10.7554/elife.46054] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022] Open
Abstract
Centrioles play critical roles in organizing the assembly of the mitotic spindle and templating the formation of primary cilia. Centriole duplication occurs once per cell cycle and is regulated by Polo-like kinase 4 (PLK4). Although significant progress has been made in understanding centriole composition, we have limited knowledge of how PLK4 activity controls specific steps in centriole formation. Here, we show that PLK4 phosphorylates its centriole substrate STIL on a conserved site, S428, to promote STIL binding to CPAP. This phospho-dependent binding interaction is conserved in Drosophila and facilitates the stable incorporation of both STIL and CPAP into the centriole. We propose that procentriole assembly requires PLK4 to phosphorylate STIL in two different regions: phosphorylation of residues in the STAN motif allow STIL to bind SAS6 and initiate cartwheel assembly, while phosphorylation of S428 promotes the binding of STIL to CPAP, linking the cartwheel to microtubules of the centriole wall. A cell’s DNA is the chemical instruction manual for everything it does. Each cell in our bodies contains over two meters of DNA, which is divided into 46 packages of information called chromosomes. When the body needs to make more cells, for example during growth or repair, existing cells divide in two in order to replicate themselves. This means that they also need to copy all of their DNA and then deliver identical sets of chromosomes to each new cell. Animal cells use structures called centrioles to help them divide their sets of chromosomes accurately. When cells are about to divide, they make a new set of centrioles by assembling a variety of proteins. This assembly process must be carefully controlled; if too many or too few centrioles are built, cell division errors can occur that lead to the generation of new cells with abnormal numbers of chromosomes. The enzyme PLK4 helps to assemble centrioles, but its exact role in the construction process has remained largely unknown. For example, how it might modify different components of the centriole, and why this matters, is poorly understood. By performing cell biological and biochemical experiments using human cells, Moyer and Holland show that PLK4 interacts with a protein called STIL that is found in the central part of the centriole. The modification of STIL at a specific location by PLK4 was needed to link it to another protein in the outer wall of the centriole, and was also necessary for the cells to build new centrioles. Cells in which PLK4 was unable to modify STIL had too few centrioles when they were beginning to divide. Testing the activity of PLK4 in fruit flies revealed that it plays a similar role as in human cells. This suggests that the modification of STIL by PLK4 is important for normal cell division across different species. The results presented by Moyer and Holland help us to understand how dividing cells build the complex machinery that enables them to pass on their genetic material accurately. Future work that builds on these findings could provide insight into human diseases, such as brain development disorders and cancer, where centrioles are either defective or present in the wrong number.
Collapse
Affiliation(s)
- Tyler Chistopher Moyer
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Andrew Jon Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
21
|
Yuan L, Huang DS. A Network-guided Association Mapping Approach from DNA Methylation to Disease. Sci Rep 2019; 9:5601. [PMID: 30944378 PMCID: PMC6447594 DOI: 10.1038/s41598-019-42010-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/12/2019] [Indexed: 01/11/2023] Open
Abstract
Aberrant DNA methylation may contribute to development of cancer. However, understanding the associations between DNA methylation and cancer remains a challenge because of the complex mechanisms involved in the associations and insufficient sample sizes. The unprecedented wealth of DNA methylation, gene expression and disease status data give us a new opportunity to design machine learning methods to investigate the underlying associated mechanisms. In this paper, we propose a network-guided association mapping approach from DNA methylation to disease (NAMDD). Compared with existing methods, NAMDD finds methylation-disease path associations by integrating analysis of multiple data combined with a stability selection strategy, thereby mining more information in the datasets and improving the quality of resultant methylation sites. The experimental results on both synthetic and real ovarian cancer data show that NAMDD substantially outperforms former disease-related methylation site research methods (including NsRRR and PCLOGIT) under false positive control. Furthermore, we applied NAMDD to ovarian cancer data, identified significant path associations and provided hypothetical biological path associations to explain our findings.
Collapse
Affiliation(s)
- Lin Yuan
- Institute of Machine Learning and Systems Biology, College of Electronic and Information Engineering, Tongji University, Shanghai, 201804, P.R. China
| | - De-Shuang Huang
- Institute of Machine Learning and Systems Biology, College of Electronic and Information Engineering, Tongji University, Shanghai, 201804, P.R. China.
| |
Collapse
|
22
|
Wang J, Zuo J, Wang M, Ma X, Gao K, Bai X, Wang N, Xie W, Liu H. Polo‑like kinase 4 promotes tumorigenesis and induces resistance to radiotherapy in glioblastoma. Oncol Rep 2019; 41:2159-2167. [PMID: 30816483 PMCID: PMC6412581 DOI: 10.3892/or.2019.7012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 02/07/2019] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) is one of the most malignant tumors in adults, associated with severe outcomes (median survival, <2 years). Multiple mechanisms are known to be involved in tumor recurrence and treatment resistance in GBM, however, the key regulator for GBM tumorigenesis and therapy resistance remains unclear. To clarify a novel potential functional mechanism of GBM recurrence, a wide range of experiments including in vitro molecular biological experiments and in vivo intracranial xenograft tumor models were performed in the present study. With bioinformatics analysis, polo-like kinase 4 (PLK4) was initially identified as one of the most upregulated kinase encoding genes in GBM, which was functionally required for both in vitro cell proliferation and in vivo tumorigenesis in GBM. Clinically, an elevated PLK4 expression was observed in high grade glioma patients, which was associated with poor prognosis. In addition, PLK4 enhanced radioresistance in GBM, while PLK4 knockdown via lentivirus transfection significantly increased the radiosensitivity of GBM cells. Mechanically, PLK4 expression was markedly elevated by the exogenous overexpression of ATPase family AAA domain-containing protein 2 (ATAD2) in GBM cells. Collectively, the results suggested that the ATAD2-dependent transcriptional regulation of PLK4 promoted cell proliferation and tumorigenesis, as well as radioresistance in GBM, thus potentially inducing tumor recurrence. PLK4 could therefore serve as a potential therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Jia Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jie Zuo
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xudong Ma
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ke Gao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaobin Bai
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ning Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wanfu Xie
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hao Liu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
23
|
Liao Z, Zhang H, Fan P, Huang Q, Dong K, Qi Y, Song J, Chen L, Liang H, Chen X, Zhang Z, Zhang B. High PLK4 expression promotes tumor progression and induces epithelial‑mesenchymal transition by regulating the Wnt/β‑catenin signaling pathway in colorectal cancer. Int J Oncol 2018; 54:479-490. [PMID: 30570110 PMCID: PMC6317648 DOI: 10.3892/ijo.2018.4659] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 10/24/2018] [Indexed: 02/07/2023] Open
Abstract
Polo-like kinase 4 (PLK4) has been identified as an oncogene, which is overexpressed in various types of human cancer; however, its role in colorectal cancer (CRC) development remains unknown. The present study demonstrated that PLK4 protein expression was upregulated in CRC tissues compared with in normal tissues through western blotting. In addition, immunohistochemical analysis of 39 CRC specimens further demonstrated that PLK4 protein expression was upregulated in 64.1% (25/39) of samples. Increased PLK4 expression was closely associated with enhanced tumor size (P=0.031), lymph node metastasis (P=0.016) and TNM stage (P=0.001). Subsequently, cell viability, wound scratch, migration and invasion assays were conducted in vitro, and nude mice CRC xenograft models were generated. The results demonstrated that knockdown of PLK4 in CRC cells resulted in significant decreases in cell viability and proliferation, and decreased the protein expression levels of N-cadherin and snail, which are biomarkers of epithelial-mesenchymal transition. Furthermore, PLK4 knockdown inactivated the Wnt/β-catenin pathway in CRC cells in vitro and in vivo, and suppressed the growth of xenograft tumors in nude mice. In conclusion, these results suggested that PLK4 may promote the carcinogenesis and metastasis of CRC, thus indicating that PLK4 may be considered a molecular target for CRC treatment.
Collapse
Affiliation(s)
- Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hongwei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Pan Fan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qibo Huang
- Department of Clinical Medicine, Medical College of Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China
| | - Keshuai Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yongqiang Qi
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jia Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Lin Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
24
|
YLT-11, a novel PLK4 inhibitor, inhibits human breast cancer growth via inducing maladjusted centriole duplication and mitotic defect. Cell Death Dis 2018; 9:1066. [PMID: 30337519 PMCID: PMC6194023 DOI: 10.1038/s41419-018-1071-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 02/05/2023]
Abstract
Polo-like kinase 4 (PLK4) is indispensable for precise control of centriole duplication. Abnormal expression of PLK4 has been reported in many human cancers, and inhibition of PLK4 activity results in their mitotic arrest and apoptosis. Therefore, PLK4 may be a valid therapeutic target for antitumor therapy. However, clinically available small-molecule inhibitors targeting PLK4 are deficient and their underlying mechanisms still remain not fully clear. Herein, the effects of YLT-11 on breast cancer cells and the associated mechanism were investigated. In vitro, YLT-11 exhibited significant antiproliferation activities against breast cancer cells. Meanwhile, cells treated with YLT-11 exhibited effects consistent with PLK4 kinase inhibition, including dysregulated centriole duplication and mitotic defects, sequentially making tumor cells more vulnerable to chemotherapy. Furthermore, YLT-11 could strongly regulate downstream factors of PLK4, which was involved in cell cycle regulation, ultimately inducing apoptosis of breast cancer cell. In vivo, oral administration of YLT-11 significantly suppressed the tumor growth in human breast cancer xenograft models at doses that are well tolerated. In summary, the preclinical data show that YLT-11 could be a promising candidate drug for breast tumor therapy.
Collapse
|
25
|
Polo-like kinase 4 mediates epithelial-mesenchymal transition in neuroblastoma via PI3K/Akt signaling pathway. Cell Death Dis 2018; 9:54. [PMID: 29352113 PMCID: PMC5833556 DOI: 10.1038/s41419-017-0088-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/03/2017] [Accepted: 10/24/2017] [Indexed: 12/12/2022]
Abstract
Neuroblastoma (NB) is the most common malignant tumor in infancy and most common extracranial solid tumor in childhood. With the improvement of diagnosis and treatment, the survival rate of patients with low-risk and intermediate-risk NB can reach up to 90%. In contrast, for high-risk NBs, the long-term survival rate is still <40% because of heterogeneity of this tumor. The pathogenesis of NB is still not explicit, therefore it is of great significance to explore the mechanism of NB tumorigenesis and discover new therapeutic targets for NB. Polo-like kinase 4 (PLK4), one of the polo-like kinase family members, is an important regulator of centriole replication. The aberrant expression of PLK4 was found in several cancers and a recent study has unraveled a novel function of PLK4 as a mediator of invasion and metastasis in Hela and U2OS cells. However, the function of PLK4 in NB development and progression remains to be elucidated. The study showed the expression level of PLK4 in NB tissues was remarkably upregulated and high expression of PLK4 was negatively correlated with clinical features and survival, which suggested that PLK4 could be a potential tumor-promoting factor of NB. Functional studies indicated downregulation of PLK4 suppressed migration and invasion and promoted apoptosis in NB cells. Further experiments showed that downregulation of PLK4 in NB cells inhibited EMT through the PI3K/Akt signaling pathway. Animal experiments demonstrated that the downregulation of PLK4 in SK-N-BE(2) cells dramatically suppressed tumorigenesis and metastasis. PLK4 may be a promising therapeutic target for NB.
Collapse
|
26
|
Arbi M, Pefani DE, Taraviras S, Lygerou Z. Controlling centriole numbers: Geminin family members as master regulators of centriole amplification and multiciliogenesis. Chromosoma 2017; 127:151-174. [PMID: 29243212 DOI: 10.1007/s00412-017-0652-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 01/18/2023]
Abstract
To ensure that the genetic material is accurately passed down to daughter cells during mitosis, dividing cells must duplicate their chromosomes and centrosomes once and only once per cell cycle. The same key steps-licensing, duplication, and segregation-control both the chromosome and the centrosome cycle, which must occur in concert to safeguard genome integrity. Aberrations in genome content or centrosome numbers lead to genomic instability and are linked to tumorigenesis. Such aberrations, however, can also be part of the normal life cycle of specific cell types. Multiciliated cells best exemplify the deviation from a normal centrosome cycle. They are post-mitotic cells which massively amplify their centrioles, bypassing the rule for once-per-cell-cycle centriole duplication. Hundreds of centrioles dock to the apical cell surface and generate motile cilia, whose concerted movement ensures fluid flow across epithelia. The early steps that control the generation of multiciliated cells have lately started to be elucidated. Geminin and the vertebrate-specific GemC1 and McIdas are distantly related coiled-coil proteins, initially identified as cell cycle regulators associated with the chromosome cycle. Geminin is required to ensure once-per-cell-cycle genome replication, while McIdas and GemC1 bind to Geminin and are implicated in DNA replication control. Recent findings highlight Geminin family members as early regulators of multiciliogenesis. GemC1 and McIdas specify the multiciliate cell fate by forming complexes with the E2F4/5 transcription factors to switch on a gene expression program leading to centriole amplification and cilia formation. Positive and negative interactions among Geminin family members may link cell cycle control to centriole amplification and multiciliogenesis, acting close to the point of transition from proliferation to differentiation. We review key steps of centrosome duplication and amplification, present the role of Geminin family members in the centrosome and chromosome cycle, and discuss links with disease.
Collapse
Affiliation(s)
- Marina Arbi
- Laboratory of Biology, School of Medicine, University of Patras, 26504 Rio, Patras, Greece
| | - Dafni-Eleftheria Pefani
- Laboratory of Biology, School of Medicine, University of Patras, 26504 Rio, Patras, Greece.,CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Stavros Taraviras
- Laboratory of Physiology, School of Medicine, University of Patras, 26504 Rio, Patras, Greece
| | - Zoi Lygerou
- Laboratory of Biology, School of Medicine, University of Patras, 26504 Rio, Patras, Greece.
| |
Collapse
|
27
|
Maniswami RR, Prashanth S, Karanth AV, Koushik S, Govindaraj H, Mullangi R, Rajagopal S, Jegatheesan SK. PLK4: a link between centriole biogenesis and cancer. Expert Opin Ther Targets 2017; 22:59-73. [PMID: 29171762 DOI: 10.1080/14728222.2018.1410140] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Polo like kinase (PLK) is known to play a pivotal role in various cell cycle processes to perpetuate proper division and growth of the cells. Polo like kinase-4 (PLK4) is one such kinase that appears in low abundance and plays a well-characterized role in centriole duplication. PLK4 deregulation (i.e. both overexpression and depletion of PLK4), leads to altered mitotic fidelity and thereby triggers tumorigenesis. Hence, over the last few years PLK4 has emerged as a potential therapeutic target for the treatment of various advanced cancers. Areas covered: In this review, we discuss the basic structure, expression, localization and functions of PLK4 along with its regulation by various proteins. We also discuss the role of altered PLK4 activity in the onset of cancer and the current pre-clinical and clinical inhibitors to regulate PLK4. Expert opinion: PLK4 mediated centriole duplication has a crucial role in maintaining mitotic correctness in normal cells, while its deregulation has a greater impact on genesis of cancer. Henceforth, a deep knowledge of the PLK4 levels, its role and interactions with various proteins in cancer is required to design effective inhibitors for clinical use.
Collapse
Affiliation(s)
| | | | | | - Sindhu Koushik
- a Jubilant Biosys Ltd, Bioinformatics , Bangalore , India
| | | | | | | | | |
Collapse
|
28
|
The PLK4-STIL-SAS-6 module at the core of centriole duplication. Biochem Soc Trans 2017; 44:1253-1263. [PMID: 27911707 PMCID: PMC5095913 DOI: 10.1042/bst20160116] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/09/2016] [Accepted: 06/24/2016] [Indexed: 11/17/2022]
Abstract
Centrioles are microtubule-based core components of centrosomes and cilia. They are duplicated exactly once during S-phase progression. Central to formation of each new (daughter) centriole is the formation of a nine-fold symmetrical cartwheel structure onto which microtubule triplets are deposited. In recent years, a module comprising the protein kinase polo-like kinase 4 (PLK4) and the two proteins STIL and SAS-6 have been shown to stay at the core of centriole duplication. Depletion of any one of these three proteins blocks centriole duplication and, conversely, overexpression causes centriole amplification. In this short review article, we summarize recent insights into how PLK4, STIL and SAS-6 co-operate in space and time to form a new centriole. These advances begin to shed light on the very first steps of centriole biogenesis.
Collapse
|
29
|
Yim H, Shin SB, Woo SU, Lee PCW, Erikson RL. Plk1-mediated stabilization of 53BP1 through USP7 regulates centrosome positioning to maintain bipolarity. Oncogene 2017; 36:966-978. [PMID: 27477698 DOI: 10.1038/onc.2016.263] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 06/04/2016] [Accepted: 06/16/2016] [Indexed: 12/22/2022]
Abstract
Although 53BP1 has been established well as a mediator in DNA damage response, its function in mitosis is not clearly understood. We found that 53BP1 is a mitotic-binding partner of the kinases Plk1 and AuroraA, and that the binding with Plk1 increases the stability of 53BP1 by accelerating its interaction with the deubiquitinase USP7. Depletion of 53BP1 induces mitotic defects such as chromosomal missegregation, misorientation of spindle poles and the generation of extra centrosomes, which is similar phenotype to USP7-knockdown cells. In addition, 53BP1 depletion reduces the levels of p53 and centromere protein F (CENPF), interacting proteins of 53BP1. These phenotypes induced by 53BP1 depletion were rescued by expression of wild-type or phosphomimic mutant 53BP1 but not by expression of a dephosphomimic mutant. We propose that phosphorylation of 53BP1 at S380 accelerates complex formation with USP7 and CENPF to regulate their stability, thus having a crucial role in proper centrosome positioning, chromosomal alignment, and centrosome number.
Collapse
Affiliation(s)
- H Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Korea
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - S-B Shin
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Korea
| | - S U Woo
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Korea
| | - P C-W Lee
- Department of Biomedical Sciences, Cell Dysfunction Research Center (CDRC), University of Ulsan College of Medicine, Seoul, Korea
| | - R L Erikson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
30
|
Vertii A, Hehnly H, Doxsey S. The Centrosome, a Multitalented Renaissance Organelle. Cold Spring Harb Perspect Biol 2016; 8:8/12/a025049. [PMID: 27908937 DOI: 10.1101/cshperspect.a025049] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The centrosome acts as a microtubule-organizing center (MTOC) from the G1 to G2 phases of the cell cycle; it can mature into a spindle pole during mitosis and/or transition into a cilium by elongating microtubules (MTs) from the basal body on cell differentiation or cell cycle arrest. New studies hint that the centrosome functions in more than MT organization. For instance, it has recently been shown that a specific substructure of the centrosome-the mother centriole appendages-are required for the recycling of endosomes back to the plasma membrane. This alone could have important implications for a renaissance in our understanding of the development of primary cilia, endosome recycling, and the immune response. Here, we review newly identified roles for the centrosome in directing membrane traffic, the immunological synapse, and the stress response.
Collapse
Affiliation(s)
- Anastassiia Vertii
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Heidi Hehnly
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Stephen Doxsey
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
31
|
Sasai K, Treekitkarnmongkol W, Kai K, Katayama H, Sen S. Functional Significance of Aurora Kinases-p53 Protein Family Interactions in Cancer. Front Oncol 2016; 6:247. [PMID: 27933271 PMCID: PMC5122578 DOI: 10.3389/fonc.2016.00247] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022] Open
Abstract
Aurora kinases play critical roles in regulating spindle assembly, chromosome segregation, and cytokinesis to ensure faithful segregation of chromosomes during mitotic cell division cycle. Molecular and cell biological studies have revealed that Aurora kinases, at physiological levels, orchestrate complex sequential cellular processes at distinct subcellular locations through functional interactions with its various substrates. Aberrant expression of Aurora kinases, on the other hand, cause defects in mitotic spindle assembly, checkpoint response activation, and chromosome segregation leading to chromosomal instability. Elevated expression of Aurora kinases correlating with chromosomal instability is frequently detected in human cancers. Recent genomic profiling of about 3000 human cancer tissue specimens to identify various oncogenic signatures in The Cancer Genome Atlas project has reported that recurrent amplification and overexpression of Aurora kinase-A characterize distinct subsets of human tumors across multiple cancer types. Besides the well-characterized canonical pathway interactions of Aurora kinases in regulating assembly of the mitotic apparatus and chromosome segregation, growing evidence also supports the notion that deregulated expression of Aurora kinases in non-canonical pathways drive transformation and genomic instability by antagonizing tumor suppressor and exacerbating oncogenic signaling through direct interactions with critical proteins. Aberrant expression of the Aurora kinases–p53 protein family signaling axes appears to be critical in the abrogation of p53 protein family mediated tumor suppressor pathways frequently deregulated during oncogenic transformation process. Recent findings reveal the existence of feedback regulatory loops in mRNA expression and protein stability of these protein families and their consequences on downstream effectors involved in diverse physiological functions, such as mitotic progression, checkpoint response pathways, as well as self-renewal and pluripotency in embryonic stem cells. While these investigations have focused on the functional consequences of Aurora kinase protein family interactions with wild-type p53 family proteins, those involving Aurora kinases and mutant p53 remain to be elucidated. This article presents a comprehensive review of studies on Aurora kinases–p53 protein family interactions along with a prospective view on the possible functional consequences of Aurora kinase–mutant p53 signaling pathways in tumor cells. Additionally, we also discuss therapeutic implications of these findings in Aurora kinases overexpressing subsets of human tumors.
Collapse
Affiliation(s)
- Kaori Sasai
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Warapen Treekitkarnmongkol
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | - Kazuharu Kai
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | - Hiroshi Katayama
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Subrata Sen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| |
Collapse
|
32
|
McSkimming DI, Dastgheib S, Baffi TR, Byrne DP, Ferries S, Scott ST, Newton AC, Eyers CE, Kochut KJ, Eyers PA, Kannan N. KinView: a visual comparative sequence analysis tool for integrated kinome research. MOLECULAR BIOSYSTEMS 2016; 12:3651-3665. [PMID: 27731453 PMCID: PMC5508867 DOI: 10.1039/c6mb00466k] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Multiple sequence alignments (MSAs) are a fundamental analysis tool used throughout biology to investigate relationships between protein sequence, structure, function, evolutionary history, and patterns of disease-associated variants. However, their widespread application in systems biology research is currently hindered by the lack of user-friendly tools to simultaneously visualize, manipulate and query the information conceptualized in large sequence alignments, and the challenges in integrating MSAs with multiple orthogonal data such as cancer variants and post-translational modifications, which are often stored in heterogeneous data sources and formats. Here, we present the Multiple Sequence Alignment Ontology (MSAOnt), which represents a profile or consensus alignment in an ontological format. Subsets of the alignment are easily selected through the SPARQL Protocol and RDF Query Language for downstream statistical analysis or visualization. We have also created the Kinome Viewer (KinView), an interactive integrative visualization that places eukaryotic protein kinase cancer variants in the context of natural sequence variation and experimentally determined post-translational modifications, which play central roles in the regulation of cellular signaling pathways. Using KinView, we identified differential phosphorylation patterns between tyrosine and serine/threonine kinases in the activation segment, a major kinase regulatory region that is often mutated in proliferative diseases. We discuss cancer variants that disrupt phosphorylation sites in the activation segment, and show how KinView can be used as a comparative tool to identify differences and similarities in natural variation, cancer variants and post-translational modifications between kinase groups, families and subfamilies. Based on KinView comparisons, we identify and experimentally characterize a regulatory tyrosine (Y177PLK4) in the PLK4 C-terminal activation segment region termed the P+1 loop. To further demonstrate the application of KinView in hypothesis generation and testing, we formulate and validate a hypothesis explaining a novel predicted loss-of-function variant (D523NPKCβ) in the regulatory spine of PKCβ, a recently identified tumor suppressor kinase. KinView provides a novel, extensible interface for performing comparative analyses between subsets of kinases and for integrating multiple types of residue specific annotations in user friendly formats.
Collapse
Affiliation(s)
| | - Shima Dastgheib
- Department of Computer Science, University of Georgia, Athens, GA 30602, USA
| | - Timothy R Baffi
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Dominic P Byrne
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Samantha Ferries
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Steven Thomas Scott
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Alexandra C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Claire E Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Krzysztof J Kochut
- Department of Computer Science, University of Georgia, Athens, GA 30602, USA
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA. and Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
33
|
Cosenza MR, Krämer A. Centrosome amplification, chromosomal instability and cancer: mechanistic, clinical and therapeutic issues. Chromosome Res 2016; 24:105-26. [PMID: 26645976 DOI: 10.1007/s10577-015-9505-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Centrosomes, the main microtubule-organizing centers in most animal cells, are of crucial importance for the assembly of a bipolar mitotic spindle and subsequent faithful segregation of chromosomes into two daughter cells. Centrosome abnormalities can be found in virtually all cancer types and have been linked to chromosomal instability (CIN) and tumorigenesis. Although our knowledge on centrosome structure, replication, and amplification has greatly increased within recent years, still only very little is known on nature, causes, and consequences of centrosome aberrations in primary tumor tissues. In this review, we summarize our current insights into the mechanistic link between centrosome aberrations, aneuploidy, CIN and tumorigenesis. Mechanisms of induction and cellular consequences of aneuploidy, tetraploidization and CIN, as well as origin and effects of supernumerary centrosomes will be discussed. In addition, animal models for both CIN and centrosome amplification will be outlined. Finally, we describe approaches to exploit centrosome amplification, aneuploidy and CIN for novel and specific anticancer treatment strategies based on the modulation of chromosome missegregation rates.
Collapse
Affiliation(s)
- Marco Raffaele Cosenza
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
34
|
Li Z, Dai K, Wang C, Song Y, Gu F, Liu F, Fu L. Expression of Polo-Like Kinase 4(PLK4) in Breast Cancer and Its Response to Taxane-Based Neoadjuvant Chemotherapy. J Cancer 2016; 7:1125-32. [PMID: 27326256 PMCID: PMC4911880 DOI: 10.7150/jca.14307] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/22/2016] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Polo-like kinase 4(PLK4) is an important evolutionarily regulator involved in centrosome duplication. We here investigated the expression of PLK4 mRNA and PLK4 in breast cancer, and evaluated its predictive value for response to taxane-based neoadjuvant chemotherapy. METHOD The PLK4 mRNA expression was measured in breast cancer tissues and corresponding normal breast tissues from 30 breast cancer patients by quantitative real-time polymerase chain reaction (PCR).The association of the expression of PLK4 with clinicopathological parameters and prognostic significance was evaluated in 154 cases of invasive breast cancer. In addition, we immunohistochemically examined the changes of PLK4 expression in biopsy and postoperative tumor specimens of another 64 breast cancer patients who received taxane-based neoadjuvant chemotherapy. RESULTS The level of PLK4 mRNA expression in cancerous tissues had a significant difference compared to the corresponding normal breast tissues (P=0.021). There is a correlation of PLK4 expression with higher incidence of lymph node metastasis and distant metastasis or surrounding recurrence (P=0.043; P=0.006). High PLK4 expression was found to be a detrimental prognostic factor measured by overall survival (OS) (P=0.003) and progress-free survival (PFS) (P=0.003). Moreover, the results demonstrated that PLK4 expression was a negative predictor of response to taxane-based neoadjuvant chemotherapy (rs= - 0.253, P=0.044). CONCLUSION The findings of this current study indicated that PLK4 expression in breast cancer could be a potential prognostic factor and a negative predictor of response to taxane-based neoadjuvant chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Fangfang Liu
- Department of Breast Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tianjin 300060, China
| | - Li Fu
- Department of Breast Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tianjin 300060, China
| |
Collapse
|
35
|
Liang S, Zhao MH, Guo J, Choi JW, Kim NH, Cui XS. Polo-like kinase 4 regulates spindle and actin assembly in meiosis and influence of early embryonic development in bovine oocytes. Theriogenology 2015; 85:754-61.e1. [PMID: 26549124 DOI: 10.1016/j.theriogenology.2015.10.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/08/2015] [Accepted: 10/11/2015] [Indexed: 01/21/2023]
Abstract
PLK4, a polo-like kinase (PLK) family member that accumulates in the cytoplasm, has been identified as a crucial regulator of centriole formation. PLK4 also controls several essential cellular functions, including cytokinesis and gene expression. In this study, we investigated the expression and function of PLK4 during bovine oocyte meiotic maturation and subsequent embryo development. The PLK4 mRNA was detected in bovine oocytes at all developmental stages during meiotic maturation. Immunofluorescence staining showed that PLK4 protein exhibited a dynamic localization pattern in the oocyte cytoplasm during meiotic maturation, and fluorescence immunostaining markedly increased in metaphase II. When an interfering double-stranded RNA targeting PLK4 was injected into germinal vesicle-stage oocytes, PLK4 transcript levels decreased significantly in metaphase II oocytes (P < 0.05). The PLK4 knockdown caused spindle defects and chromosome misalignment and considerably reduced the amount of cortical and cytoplasmic actin. PLK4 was localized in the cytoplasm of early embryos, and PLK4 knockdown in germinal vesicle-stage oocytes led to failure in the early development of in vitro fertilized embryos (P < 0.05). Taken together, these results indicated that PLK4 plays crucial roles in bovine oocyte meiotic maturation and subsequent early embryo development.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ming-Hui Zhao
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jing Guo
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jeong-woo Choi
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
36
|
Fan G, Sun L, Shan P, Zhang X, Huan J, Zhang X, Li D, Wang T, Wei T, Zhang X, Gu X, Yao L, Xuan Y, Hou Z, Cui Y, Cao L, Li X, Zhang S, Wang C. Loss of KLF14 triggers centrosome amplification and tumorigenesis. Nat Commun 2015; 6:8450. [PMID: 26439168 PMCID: PMC4600754 DOI: 10.1038/ncomms9450] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/21/2015] [Indexed: 12/19/2022] Open
Abstract
Centrosome amplification is frequent in cancer, but the underlying mechanisms remain unclear. Here we report that disruption of the Kruppel-like factor 14 (KLF14) gene in mice causes centrosome amplification, aneuploidy and spontaneous tumorigenesis. Molecularly, KLF14 functions as a transcriptional repressor of Plk4, a polo-like kinase whose overexpression induces centrosome overduplication. Transient knockdown of KLF14 is sufficient to induce Plk4-directed centrosome amplification. Clinically, KLF14 transcription is significantly downregulated, whereas Plk4 transcription is upregulated in multiple types of cancers, and there exists an inverse correlation between KLF14 and Plk4 protein expression in human breast and colon cancers. Moreover, KLF14 depletion promotes AOM/DSS-induced colon tumorigenesis. Our findings reveal that KLF14 reduction serves as a mechanism leading to centrosome amplification and tumorigenesis. On the other hand, forced expression of KLF14 leads to mitotic catastrophe. Collectively, our findings identify KLF14 as a tumour suppressor and highlight its potential as biomarker and therapeutic target for cancer.
Collapse
Affiliation(s)
- Guangjian Fan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China.,Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai 201620, China
| | - Lianhui Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China.,Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai 201620, China
| | - Peipei Shan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China.,Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai 201620, China
| | - Xianying Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Jinliang Huan
- Department of General Surgery, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Xiaohong Zhang
- Department of Pathology and Cell Biology, USF Morsani College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, USA
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Tingting Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Tingting Wei
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaohong Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaoyang Gu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Liangfang Yao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Yang Xuan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Zhaoyuan Hou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yongping Cui
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Shanxi 030001, China
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, College of Translational Medicine, China Medical University, Shenyang 110000, China
| | - Xiaotao Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Shengping Zhang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai 201620, China
| | - Chuangui Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China.,Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai 201620, China.,Key Laboratory of Medical Cell Biology, College of Translational Medicine, China Medical University, Shenyang 110000, China
| |
Collapse
|
37
|
PLK4 trans-Autoactivation Controls Centriole Biogenesis in Space. Dev Cell 2015; 35:222-35. [DOI: 10.1016/j.devcel.2015.09.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 09/17/2015] [Accepted: 09/24/2015] [Indexed: 01/11/2023]
|
38
|
Moyer TC, Clutario KM, Lambrus BG, Daggubati V, Holland AJ. Binding of STIL to Plk4 activates kinase activity to promote centriole assembly. J Cell Biol 2015; 209:863-78. [PMID: 26101219 PMCID: PMC4477857 DOI: 10.1083/jcb.201502088] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Binding of STIL activates Plk4, and the subsequent phosphorylation of STIL by Plk4 primes the binding of STIL to SAS6 to promote centriole assembly. Centriole duplication occurs once per cell cycle in order to maintain control of centrosome number and ensure genome integrity. Polo-like kinase 4 (Plk4) is a master regulator of centriole biogenesis, but how its activity is regulated to control centriole assembly is unclear. Here we used gene editing in human cells to create a chemical genetic system in which endogenous Plk4 can be specifically inhibited using a cell-permeable ATP analogue. Using this system, we demonstrate that STIL localization to the centriole requires continued Plk4 activity. Most importantly, we show that direct binding of STIL activates Plk4 by promoting self-phosphorylation of the activation loop of the kinase. Plk4 subsequently phosphorylates STIL to promote centriole assembly in two steps. First, Plk4 activity promotes the recruitment of STIL to the centriole. Second, Plk4 primes the direct binding of STIL to the C terminus of SAS6. Our findings uncover a molecular basis for the timing of Plk4 activation through the cell cycle–regulated accumulation of STIL.
Collapse
Affiliation(s)
- Tyler C Moyer
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Kevin M Clutario
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Bramwell G Lambrus
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Vikas Daggubati
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
39
|
Yu F, Bracken CP, Pillman KA, Lawrence DM, Goodall GJ, Callen DF, Neilsen PM. p53 Represses the Oncogenic Sno-MiR-28 Derived from a SnoRNA. PLoS One 2015; 10:e0129190. [PMID: 26061048 PMCID: PMC4465335 DOI: 10.1371/journal.pone.0129190] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/07/2015] [Indexed: 12/19/2022] Open
Abstract
p53 is a master tumour repressor that participates in vast regulatory networks, including feedback loops involving microRNAs (miRNAs) that regulate p53 and that themselves are direct p53 transcriptional targets. We show here that a group of polycistronic miRNA-like non-coding RNAs derived from small nucleolar RNAs (sno-miRNAs) are transcriptionally repressed by p53 through their host gene, SNHG1. The most abundant of these, sno-miR-28, directly targets the p53-stabilizing gene, TAF9B. Collectively, p53, SNHG1, sno-miR-28 and TAF9B form a regulatory loop which affects p53 stability and downstream p53-regulated pathways. In addition, SNHG1, SNORD28 and sno-miR-28 are all significantly upregulated in breast tumours and the overexpression of sno-miR-28 promotes breast epithelial cell proliferation. This research has broadened our knowledge of the crosstalk between small non-coding RNA pathways and roles of sno-miRNAs in p53 regulation.
Collapse
Affiliation(s)
- Feng Yu
- Centre for Personalized Cancer Medicine, University of Adelaide, Adelaide, SA, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
| | - Cameron P. Bracken
- Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
- * E-mail:
| | - Katherine A. Pillman
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - David M. Lawrence
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Gregory J. Goodall
- Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
| | - David F. Callen
- Centre for Personalized Cancer Medicine, University of Adelaide, Adelaide, SA, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Paul M. Neilsen
- Centre for Personalized Cancer Medicine, University of Adelaide, Adelaide, SA, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
- Swinburne University of Technology, Kuching, Sarawak, Malaysia
| |
Collapse
|
40
|
TRIM28 Is an E3 Ligase for ARF-Mediated NPM1/B23 SUMOylation That Represses Centrosome Amplification. Mol Cell Biol 2015; 35:2851-63. [PMID: 26055329 DOI: 10.1128/mcb.01064-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 06/03/2015] [Indexed: 01/04/2023] Open
Abstract
The tumor suppressor ARF enhances the SUMOylation of target proteins; however, the physiological function of ARF-mediated SUMOylation has been unclear due to the lack of a known, associated E3 SUMO ligase. Here we uncover TRIM28/KAP1 as a novel ARF-binding protein and SUMO E3 ligase for NPM1/B23. ARF and TRIM28 cooperate to SUMOylate NPM1, a nucleolar protein that regulates centrosome duplication and genomic stability. ARF-mediated SUMOylation of NPM1 was attenuated by TRIM28 depletion and enhanced by TRIM28 overexpression. Coexpression of ARF and TRIM28 promoted NPM1 centrosomal localization by enhancing its SUMOylation and suppressed centrosome amplification; these functions required the E3 ligase activity of TRIM28. Conversely, depletion of ARF or TRIM28 increased centrosome amplification. ARF also counteracted oncogenic Ras-induced centrosome amplification. Centrosome amplification is often induced by oncogenic insults, leading to genomic instability. However, the mechanisms employed by tumor suppressors to protect the genome are poorly understood. Our findings suggest a novel role for ARF in maintaining genome integrity by facilitating TRIM28-mediated SUMOylation of NPM1, thus preventing centrosome amplification.
Collapse
|
41
|
Klebba JE, Galletta BJ, Nye J, Plevock KM, Buster DW, Hollingsworth NA, Slep KC, Rusan NM, Rogers GC. Two Polo-like kinase 4 binding domains in Asterless perform distinct roles in regulating kinase stability. ACTA ACUST UNITED AC 2015; 208:401-14. [PMID: 25688134 PMCID: PMC4332252 DOI: 10.1083/jcb.201410105] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The Asterless N terminus promotes Plk4 homodimerization and autophosphorylation during interphase, whereas its C terminus stabilizes Plk4 during mitosis. Plk4 (Polo-like kinase 4) and its binding partner Asterless (Asl) are essential, conserved centriole assembly factors that induce centriole amplification when overexpressed. Previous studies found that Asl acts as a scaffolding protein; its N terminus binds Plk4’s tandem Polo box cassette (PB1-PB2) and targets Plk4 to centrioles to initiate centriole duplication. However, how Asl overexpression drives centriole amplification is unknown. In this paper, we investigated the Asl–Plk4 interaction in Drosophila melanogaster cells. Surprisingly, the N-terminal region of Asl is not required for centriole duplication, but a previously unidentified Plk4-binding domain in the C terminus is required. Mechanistic analyses of the different Asl regions revealed that they act uniquely during the cell cycle: the Asl N terminus promotes Plk4 homodimerization and autophosphorylation during interphase, whereas the Asl C terminus stabilizes Plk4 during mitosis. Therefore, Asl affects Plk4 in multiple ways to regulate centriole duplication. Asl not only targets Plk4 to centrioles but also modulates Plk4 stability and activity, explaining the ability of overexpressed Asl to drive centriole amplification.
Collapse
Affiliation(s)
- Joseph E Klebba
- Department of Cellular and Molecular Medicine and University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724 Department of Cellular and Molecular Medicine and University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Brian J Galletta
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jonathan Nye
- Department of Cellular and Molecular Medicine and University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724 Department of Cellular and Molecular Medicine and University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Karen M Plevock
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892 Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Daniel W Buster
- Department of Cellular and Molecular Medicine and University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724 Department of Cellular and Molecular Medicine and University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Natalie A Hollingsworth
- Department of Cellular and Molecular Medicine and University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724 Department of Cellular and Molecular Medicine and University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Kevin C Slep
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Nasser M Rusan
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Gregory C Rogers
- Department of Cellular and Molecular Medicine and University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724 Department of Cellular and Molecular Medicine and University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| |
Collapse
|
42
|
Woo JK, Kang JH, Shin D, Park SH, Kang K, Nho CW, Seong JK, Lee SJ, Oh SH. Daurinol Enhances the Efficacy of Radiotherapy in Lung Cancer via Suppression of Aurora Kinase A/B Expression. Mol Cancer Ther 2015; 14:1693-704. [PMID: 25882311 DOI: 10.1158/1535-7163.mct-14-0960] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 04/06/2015] [Indexed: 11/16/2022]
Abstract
The aurora kinases constitute one family of serine/threonine kinases whose activity is essential for mitotic progression. The aurora kinases are frequently upregulated in human cancers and are associated with sensitivity to chemotherapy in certain ones. In the present study, we investigated whether aurora kinases could be a target to overcome radioresistance or enhance the radiosensitivity of lung cancer. For that purpose, we determined the therapeutic potential of daurinol, an investigational topoisomerase inhibitor, alone and in combination with radiation, by observing its effect on aurora kinases. Daurinol decreased cell viability and proliferation in human colon and lung cancer cells. Gene expression in daurinol-treated human colon cancer cells was evaluated using RNA microarray. The mRNA expression of 18 genes involved in the mitotic spindle check point, including aurora kinase A (AURKA) and aurora kinase B (AURKB), was decreased in daurinol-treated human colon cancer cells as compared with vehicle-treated cells. As expected, radiation increased expression levels of AURKA and AURKB. This increase was effectively attenuated by siRNAs against AURKA and AURKB, which suppressed cell growth and increased apoptosis under radiation. Furthermore, the expression of AURKA and AURKB was suppressed by daurinol in the presence or absence of radiation in colon and lung cancer cells. Daurinol alone or in combination with radiation decreased lung cancer growth in xenograft mouse models. Our data clearly confirm the antitumor and radiosensitizing activity of daurinol in human lung cancer cells through the inhibition of AURKA and AURKB.
Collapse
Affiliation(s)
- Jong Kyu Woo
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Ju-Hee Kang
- National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - DongYun Shin
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Seong-Hyeok Park
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Kyungsu Kang
- Korea Institute of Science and Technology (KIST), Gangneung Institute, Gangneung-si, Gangwon-do, Republic of Korea
| | - Chu Won Nho
- Korea Institute of Science and Technology (KIST), Gangneung Institute, Gangneung-si, Gangwon-do, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sang-Jin Lee
- National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Seung Hyun Oh
- College of Pharmacy, Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
43
|
Fırat-Karalar EN, Stearns T. The centriole duplication cycle. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0460. [PMID: 25047614 DOI: 10.1098/rstb.2013.0460] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Centrosomes are the main microtubule-organizing centre of animal cells and are important for many critical cellular and developmental processes from cell polarization to cell division. At the core of the centrosome are centrioles, which recruit pericentriolar material to form the centrosome and act as basal bodies to nucleate formation of cilia and flagella. Defects in centriole structure, function and number are associated with a variety of human diseases, including cancer, brain diseases and ciliopathies. In this review, we discuss recent advances in our understanding of how new centrioles are assembled and how centriole number is controlled. We propose a general model for centriole duplication control in which cooperative binding of duplication factors defines a centriole 'origin of duplication' that initiates duplication, and passage through mitosis effects changes that license the centriole for a new round of duplication in the next cell cycle. We also focus on variations on the general theme in which many centrioles are created in a single cell cycle, including the specialized structures associated with these variations, the deuterosome in animal cells and the blepharoplast in lower plant cells.
Collapse
Affiliation(s)
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA Department of Genetics, Stanford University Medical School, Stanford, CA 94305-5120, USA
| |
Collapse
|
44
|
Abstract
The centrosome was discovered in the late 19th century when mitosis was first described. Long recognized as a key organelle of the spindle pole, its core component, the centriole, was realized more than 50 or so years later also to comprise the basal body of the cilium. Here, we chart the more recent acquisition of a molecular understanding of centrosome structure and function. The strategies for gaining such knowledge were quickly developed in the yeasts to decipher the structure and function of their distinctive spindle pole bodies. Only within the past decade have studies with model eukaryotes and cultured cells brought a similar degree of sophistication to our understanding of the centrosome duplication cycle and the multiple roles of this organelle and its component parts in cell division and signaling. Now as we begin to understand these functions in the context of development, the way is being opened up for studies of the roles of centrosomes in human disease.
Collapse
Affiliation(s)
- Jingyan Fu
- Cancer Research UK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Iain M Hagan
- Cancer Research UK Manchester Institute, University of Manchester, Withington, Manchester M20 4BX, United Kingdom
| | - David M Glover
- Cancer Research UK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| |
Collapse
|
45
|
Douthwright S, Sluder G. Link between DNA damage and centriole disengagement/reduplication in untransformed human cells. J Cell Physiol 2014; 229:1427-36. [PMID: 24532022 PMCID: PMC4122266 DOI: 10.1002/jcp.24579] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/12/2014] [Indexed: 12/21/2022]
Abstract
The radiation and radiomimetic drugs used to treat human tumors damage DNA in both cancer cells and normal proliferating cells. Centrosome amplification after DNA damage is well established for transformed cell types but is sparsely reported and not fully understood in untransformed cells. We characterize centriole behavior after DNA damage in synchronized untransformed human cells. One hour treatment of S phase cells with the radiomimetic drug, Doxorubicin, prolongs G2 by at least 72 h, though 14% of the cells eventually go through mitosis in that time. By 72 h after DNA damage we observe a 52% incidence of centriole disengagement plus a 10% incidence of extra centrioles. We find that either APC/C or Plk activities can disengage centrioles after DNA damage, though they normally work in concert. All disengaged centrioles are associated with γ-tubulin and maturation markers and thus, should in principle be capable of reduplicating and organizing spindle poles. The low incidence of reduplication of disengaged centrioles during G2 is due to the p53-dependent expression of p21 and the consequent loss of Cdk2 activity. We find that 26% of the cells going through mitosis after DNA damage contain disengaged or extra centrioles. This could produce genomic instability through transient or persistent spindle multipolarity. Thus, for cancer patients the use of DNA damaging therapies raises the chances of genomic instability and evolution of transformed characteristics in proliferating normal cell populations.
Collapse
Affiliation(s)
- Stephen Douthwright
- Department of Cell and Developmental Biology University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Greenfield Sluder
- Department of Cell and Developmental Biology University of Massachusetts Medical School, Worcester, Massachusetts 01655
| |
Collapse
|
46
|
Rosario CO, Kazazian K, Zih FSW, Brashavitskaya O, Haffani Y, Xu RSZ, George A, Dennis JW, Swallow CJ. A novel role for Plk4 in regulating cell spreading and motility. Oncogene 2014; 34:3441-51. [PMID: 25174401 DOI: 10.1038/onc.2014.275] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 07/01/2014] [Accepted: 07/19/2014] [Indexed: 12/18/2022]
Abstract
Polo family kinase 4 (Plk4) is required for mitotic progression, and is haploinsufficient for tumor suppression and timely hepatocyte polarization in regenerating liver. At the same time, recent evidence suggests that Plk4 expression may have a role in clinical cancer progression, although the mechanisms are not clear. Here we identify a gene expression pattern predictive of reduced motility in Plk4(+/-) murine embryonic fibroblasts (MEFs) and validate this prediction with functional assays of cell spreading, migration and invasion. Increased Plk4 expression enhances cell spreading in Plk4(+/-) MEFs and migration in human embryonic kidney 293T cells, and increases invasion by DLD-1 colon cancer cells. Plk4 depletion impairs invasion of wild-type MEFs and suppresses invasion by MDA-MB231 breast cancer cells. Cytoskeletal reorganization and development of polarity are impaired in Plk4-deficient cells that have been stimulated to migrate. Endogenous Plk4 phosphorylated at the autophosphorylation site S305 localizes to the protrusions of motile cells, coincident with the RhoA GEF Ect2, GTP-bound RhoA and the RhoA effector mDia. Taken together, our findings reveal an unexpected activity of Plk4 that promotes cell migration and may underlie an association between increased Plk4 expression, cancer progression and death from metastasis in solid tumor patients.
Collapse
Affiliation(s)
- C O Rosario
- 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada [2] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - K Kazazian
- 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada [2] Department of Surgery, University of Toronto, Toronto, ON, Canada [3] Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - F S W Zih
- 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada [2] Department of Surgery, University of Toronto, Toronto, ON, Canada [3] Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - O Brashavitskaya
- 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada [2] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Y Haffani
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - R S Z Xu
- 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada [2] Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - A George
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - J W Dennis
- 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada [2] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada [3] Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - C J Swallow
- 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada [2] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada [3] Department of Surgery, University of Toronto, Toronto, ON, Canada [4] Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
47
|
Zitouni S, Nabais C, Jana SC, Guerrero A, Bettencourt-Dias M. Polo-like kinases: structural variations lead to multiple functions. Nat Rev Mol Cell Biol 2014; 15:433-52. [PMID: 24954208 DOI: 10.1038/nrm3819] [Citation(s) in RCA: 340] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Members of the polo-like kinase (PLK) family are crucial regulators of cell cycle progression, centriole duplication, mitosis, cytokinesis and the DNA damage response. PLKs undergo major changes in abundance, activity, localization and structure at different stages of the cell cycle. They interact with other proteins in a tightly controlled spatiotemporal manner as part of a network that coordinates key cell cycle events. Their essential roles are highlighted by the fact that alterations in PLK function are associated with cancers and other diseases. Recent knowledge gained from PLK crystal structures, evolution and interacting molecules offers important insights into the mechanisms that underlie their regulation and activity, and suggests novel functions unrelated to cell cycle control for this family of kinases.
Collapse
Affiliation(s)
- Sihem Zitouni
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Catarina Nabais
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Swadhin Chandra Jana
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Adán Guerrero
- 1] Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal. [2] Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico (UNAM), Avenida Universidad 2001, Col. Chamilpa, C.P. 62210 Cuernavaca Mor., Mexico
| | | |
Collapse
|
48
|
Ward A, Hudson JW. p53-Dependent and cell specific epigenetic regulation of the polo-like kinases under oxidative stress. PLoS One 2014; 9:e87918. [PMID: 24498222 PMCID: PMC3909268 DOI: 10.1371/journal.pone.0087918] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/01/2014] [Indexed: 12/27/2022] Open
Abstract
The polo-like kinase (PLKs) family, consisting of five known members, are key regulators of important cell cycle processes, which include mitotic entry, centrosome duplication, spindle assembly, and cytokinesis. The PLKs have been implicated in a variety of cancers, such as hepatocellular carcinoma (HCC), with PLK1 typically overexpressed and PLKs 2-5 often downregulated. Altered expression of the PLKs in malignancy is often correlated with aberrant promoter methylation. Epigenetic marks are dynamic and can be modified in response to external environmental stimuli. The aim of our study was to determine if oxidative stress, a common feature of solid tumours, would induce changes to the promoter methylation of the PLKs resulting in changes in expression. We examined the promoter methylation status via MSP and subsequent expression levels of the PLK family members under exposure to hypoxic conditions or reactive oxygen species (ROS). Interestingly, murine embryonic fibroblasts exposed to hypoxia and ROS displayed significant hypermethylation of Plk1 and Plk4 promoter regions post treatment. Corresponding proteins were also depleted by 40% after treatment. We also examined the HCC-derived cell lines HepG2 and Hep3B and found that for PLK1 and PLK4, the increase in hypermethylation was correlated with the presence of functional p53. In p53 wild-type cells, HepG2, both PLK1 and PLK4 were repressed with treatment, while in the p53 null cell line, Hep3B, PLK4 protein was elevated in the presence of hypoxia and ROS. This was also the case for ROS-treated, p53 null, osteosarcoma cells, Saos-2, where the PLK4 promoter became hypomethylated and protein levels were elevated. Our data supports a model in which the PLKs are susceptible to epigenetic changes induced by microenvironmental cues and these modifications may be p53-dependent. This has important implications in HCC and other cancers, where epigenetic alterations of the PLKs could contribute to tumourigenesis and disease progression.
Collapse
Affiliation(s)
- Alejandra Ward
- Department of Biology, University of Windsor, Windsor, Ontario, Canada
| | - John W. Hudson
- Department of Biology, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
49
|
Marina M, Saavedra HI. Nek2 and Plk4: prognostic markers, drivers of breast tumorigenesis and drug resistance. Front Biosci (Landmark Ed) 2014; 19:352-65. [PMID: 24389189 DOI: 10.2741/4212] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Nek2 and Plk4 kinases serve as crucial regulators of mitotic processes such as the centrosome duplication cycle and spindle assembly. Deregulation of these processes can trigger chromosome instability and aneuploidy, which are hallmarks of many solid tumors, including breast cancer. Emerging data from the literature illustrated various functions of Nek2 in breast cancer models, with compelling evidence of its prognostic value in breast tumors. The two kinases control distinct steps in the centrosome-centriole cycle and their dysregulation lead to centrosome amplification, marked by the presence of more than two centrosomes within the cell. We found single or composite overexpression of these kinases in breast tumor samples, regardless of subtype, which strongly associated with poor prognosis. Interestingly, in a panel of established cell lines, both kinases are highly expressed in Her2-positive breast cancer cells exhibiting centrosome amplification and trastuzumab resistance. In summary, it appears that Nek2 and Plk4 might synergize to promote breast tumorigenesis and may also be involved in tamoxifen and trastuzumab resistance.
Collapse
Affiliation(s)
- Mihaela Marina
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322
| | - Harold I Saavedra
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322
| |
Collapse
|
50
|
Ledoux AC, Sellier H, Gillies K, Iannetti A, James J, Perkins ND. NFκB regulates expression of Polo-like kinase 4. Cell Cycle 2013; 12:3052-62. [PMID: 23974100 PMCID: PMC3875679 DOI: 10.4161/cc.26086] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/07/2013] [Accepted: 08/07/2013] [Indexed: 01/21/2023] Open
Abstract
Activation of the NFκB signaling pathway allows the cell to respond to infection and stress and can affect many cellular processes. As a consequence, NFκB activity must be integrated with a wide variety of parallel signaling pathways. One mechanism through which NFκB can exert widespread effects is through controlling the expression of key regulatory kinases. Here we report that NFκB regulates the expression of genes required for centrosome duplication, and that Polo-like kinase 4 (PLK4) is a direct NFκB target gene. RNA interference, chromatin immunoprecipitation, and analysis of the PLK4 promoter in a luciferase reporter assay revealed that all NFκB subunits participate in its regulation. Moreover, we demonstrate that NFκB regulation of PLK4 expression is seen in multiple cell types. Significantly long-term deletion of the NFκB2 (p100/p52) subunit leads to defects in centrosome structure. This data reveals a new component of cell cycle regulation by NFκB and suggests a mechanism through which deregulated NFκB activity in cancer can lead to increased genomic instability and uncontrolled proliferation.
Collapse
Affiliation(s)
- Adeline C Ledoux
- Institute for Cell and Molecular Biosciences; Faculty of Medical Sciences; Newcastle University; Newcastle Upon Tyne, UK
| | - Hélène Sellier
- Institute for Cell and Molecular Biosciences; Faculty of Medical Sciences; Newcastle University; Newcastle Upon Tyne, UK
| | | | - Alessio Iannetti
- Institute for Cell and Molecular Biosciences; Faculty of Medical Sciences; Newcastle University; Newcastle Upon Tyne, UK
| | - John James
- College of Life Sciences; University of Dundee; Dundee, UK
| | - Neil D Perkins
- Institute for Cell and Molecular Biosciences; Faculty of Medical Sciences; Newcastle University; Newcastle Upon Tyne, UK
| |
Collapse
|