1
|
Bruggeman PJ, Frontiera RR, Kortshagen U, Kushner MJ, Linic S, Schatz GC, Andaraarachchi H, Chaudhuri S, Chen HT, Clay CD, Dias TC, Doyle S, Jones LO, Meyer M, Mueller CM, Nam JH, Raisanen A, Rich CC, Srivastava T, Xu C, Xu D, Zhang Y. Advances in plasma-driven solution electrochemistry. J Chem Phys 2025; 162:071001. [PMID: 39968819 DOI: 10.1063/5.0248579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
Energetic species produced by gas-phase plasmas that impinge on a liquid surface can initiate physicochemical processes at the gas/liquid interface and in the liquid phase. The interaction of these energetic species with the liquid phase can initiate chemical reaction pathways referred to as plasma-driven solution electrochemistry (PDSE). There are several processing opportunities and challenges presented by PDSE. These include the potential use of PDSE to activate chemical pathways that are difficult to activate with other approaches as well as the use of renewable electricity to generate plasmas that could make these liquid-phase chemical conversion processes more sustainable and environmentally friendly. In this review, we focus on PDSE as an approach for controlled and selective chemical conversion including the synthesis of nanoparticles and polymers with desired but currently uncontrollable or unattainable properties as the next step in the use of PDSE. The underpinning redox chemistry and transport processes of PDSE are reviewed as many PDSE-driven processes are transport-limited due to the many short-lived highly reactive species involved.
Collapse
Affiliation(s)
- Peter J Bruggeman
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, Minnesota 55455, USA
| | - Renee R Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Uwe Kortshagen
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, Minnesota 55455, USA
| | - Mark J Kushner
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122, USA
| | - Suljo Linic
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Himashi Andaraarachchi
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, Minnesota 55455, USA
| | - Subhajyoti Chaudhuri
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Han-Ting Chen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Collin D Clay
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Tiago C Dias
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122, USA
| | - Scott Doyle
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122, USA
| | - Leighton O Jones
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Mackenzie Meyer
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122, USA
| | - Chelsea M Mueller
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Jae Hyun Nam
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, Minnesota 55455, USA
| | - Astrid Raisanen
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122, USA
| | - Christopher C Rich
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Tanubhav Srivastava
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, Minnesota 55455, USA
| | - Chi Xu
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, Minnesota 55455, USA
| | - Dongxuan Xu
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, Minnesota 55455, USA
| | - Yi Zhang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
2
|
Novelli F, Buchmann A, Yousaf I, Stiewe LL, Bronsch W, Cilento F, Hoberg C, Havenith M. High-Mobility Electrons in Aqueous Iodide Solutions. ACS OMEGA 2025; 10:5097-5104. [PMID: 39959103 PMCID: PMC11822714 DOI: 10.1021/acsomega.4c11040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/18/2025]
Abstract
The photoexcitation of aqueous iodide solutions is a prototype for the generation of electrons in liquid water. Upon one-photon excitation, the precursors of the solvated electrons are localized states with a radius of a few angstroms. In contrast, with the aid of transient absorption spectroscopy at terahertz, near-infrared, and visible frequencies, we show that the two-photon absorption of ∼400 nm pulses can impulsively generate short-lived (∼250 fs), delocalized electrons that are released tens of angstroms away from the parent ion. We propose that these states can be ascribed to 5p → 6p transitions that, in turn, could be thought of as frustrated Rydberg orbitals or large radius excitons. By capitalizing on the unique capabilities of transient terahertz spectroscopy, we estimate that these delocalized states are characterized by an electronic mobility and diffusivity that are about 500 times greater than those of the fully relaxed electrons.
Collapse
Affiliation(s)
- Fabio Novelli
- Department
of Physical Chemistry II, Ruhr University
Bochum, Bochum 44801, Germany
| | - Adrian Buchmann
- Department
of Physical Chemistry II, Ruhr University
Bochum, Bochum 44801, Germany
| | - Iqra Yousaf
- Department
of Physical Chemistry II, Ruhr University
Bochum, Bochum 44801, Germany
| | - Lion-Luca Stiewe
- Department
of Physical Chemistry II, Ruhr University
Bochum, Bochum 44801, Germany
| | - Wibke Bronsch
- Elettra
- Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, Trieste I-34149, Italy
| | - Federico Cilento
- Elettra
- Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, Trieste I-34149, Italy
| | - Claudius Hoberg
- Department
of Physical Chemistry II, Ruhr University
Bochum, Bochum 44801, Germany
| | - Martina Havenith
- Department
of Physical Chemistry II, Ruhr University
Bochum, Bochum 44801, Germany
| |
Collapse
|
3
|
Lin CY, Jiang ZC, Chen BH, Wagner I, Lavenu L, Zaouter Y, Cui LS, Lu CH, Hanna M, Hodgkiss JM, Yang SD, Chen K. Next-Generation Ultrafast Photoluminescence Spectroscopy: Integration of Transient Grating Optical Gate and Advanced Femtosecond Laser Technology. J Phys Chem Lett 2025; 16:1081-1087. [PMID: 39846282 DOI: 10.1021/acs.jpclett.4c03373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
We demonstrate a high-performance ultrafast broadband time-resolved photoluminescence (TRPL) system based on the transient grating photoluminescence spectroscopy (TGPLS) technique. The core of the system is a Kerr effect-induced transient grating (TG) optical gate driven by high repetition rate ultrashort laser pulses at 1030 nm with micro-Joule pulse energy. Satisfying the demands of spectroscopy applications, the setup achieves high sensitivity, rapid data acquisition, ultrafast time resolution, and a wide spectral window from ultraviolet to near-infrared. The time resolution can be further improved to achieve <80 fs instrument response function by employing the multiple plate compression (MPC) technique to temporally compress the driving pulses. This work presents a new benchmark for ultrafast TRPL.
Collapse
Affiliation(s)
- Chao-Yang Lin
- Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington, Wellington 6012, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin 9016, New Zealand
| | - Zi-Cheng Jiang
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Bo-Han Chen
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Isabella Wagner
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Loïc Lavenu
- Thales LAS France, 2 avenue Gay-Lussac, Elancourt Cedex 78995, France
| | - Yoann Zaouter
- Amplitude, 11 Avenue de Canteranne, Cité de la Photonique, Pessac 33600, France
| | - Lin-Song Cui
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chih-Hsuang Lu
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Marc Hanna
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, Palaiseau 91127, France
| | - Justin M Hodgkiss
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Shang-Da Yang
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Kai Chen
- Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington, Wellington 6012, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin 9016, New Zealand
| |
Collapse
|
4
|
Pritchard FG, Jordan CJC, Verlet JRR. Probing photochemical dynamics using electronic vs vibrational sum-frequency spectroscopy: The case of the hydrated electron at the water/air interface. J Chem Phys 2024; 161:170901. [PMID: 39484892 DOI: 10.1063/5.0235875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024] Open
Abstract
Photo-dynamics can proceed differently at the water/air interface compared to in the respective bulk phases. Second-order non-linear spectroscopy is capable of selectively probing the dynamics of species in such an environment. However, certain conclusions drawn from vibrational and electronic sum-frequency generation spectroscopies do not agree as is the case for the formation and structure of hydrated electrons at the interface. This Perspective aims to highlight these apparent discrepancies, how they can be reconciled, suggests how the two techniques complement one another, and outline the value of performing both techniques on the same system.
Collapse
Affiliation(s)
- Faith G Pritchard
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Caleb J C Jordan
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
5
|
Muchová E, Gopakumar G, Unger I, Öhrwall G, Céolin D, Trinter F, Wilkinson I, Chatzigeorgiou E, Slavíček P, Hergenhahn U, Winter B, Caleman C, Björneholm O. Attosecond formation of charge-transfer-to-solvent states of aqueous ions probed using the core-hole-clock technique. Nat Commun 2024; 15:8903. [PMID: 39406706 PMCID: PMC11480494 DOI: 10.1038/s41467-024-52740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Charge transfer between molecules lies at the heart of many chemical processes. Here, we focus on the ultrafast electron dynamics associated with the formation of charge-transfer-to-solvent (CTTS) states following X-ray absorption in aqueous solutions of Na+, Mg2+, and Al3+ ions. To explore the formation of such states in the aqueous phase, liquid-jet photoemission spectroscopy is employed. Using the core-hole-clock method, based on Auger-Meitner (AM) decay upon 1s excitation or ionization of the respective ions, upper limits are estimated for the metal-atom electron delocalization times to the neighboring water molecules. These delocalization processes represent the first steps in the formation of hydrated electrons, which are determined to take place on a timescale ranging from several hundred attoseconds (as) below the 1s ionization threshold to only 20 as far above the 1s ionization threshold. The decrease in the delocalization times as a function of the photon energy is continuous. This indicates that the excited electrons remain in the vicinity of the studied ions even above the ionization threshold, i.e., metal-ion electronic resonances associated with the CTTS state manifolds are formed. The three studied isoelectronic ions exhibit quantitative differences in their electron energetics and delocalization times, which are linked to the character of the respective excited states.
Collapse
Affiliation(s)
- E Muchová
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic.
| | - G Gopakumar
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - I Unger
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
- Center for Free-Electron Laser Science, DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - G Öhrwall
- MAX IV Laboratory, Lund University, Box 118, SE-22100, Lund, Sweden
| | - D Céolin
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48 91192, Gif-sur-Yvette Cedex, Paris, France
| | - F Trinter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - I Wilkinson
- Institute for Electronic Structure Dynamics, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109, Berlin, Germany
| | - E Chatzigeorgiou
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - P Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - U Hergenhahn
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - B Winter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - C Caleman
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
- Center for Free-Electron Laser Science, DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - O Björneholm
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden.
| |
Collapse
|
6
|
Ficarra G, Sciortino A, Barbata LG, Ettlinger R, De Michele V, Marin E, Cannas M, Morris RE, Buscarino G. Unveiling MOF-808 photocycle and its interaction with luminescent guests. Phys Chem Chem Phys 2024; 26:22269-22277. [PMID: 39136117 DOI: 10.1039/d4cp02279c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The world of metal-organic frameworks (MOFs) has become a hot topic in recent years due to the extreme variety and tunability of their structures. There is evidence of MOFs that exhibit intrinsic luminescence properties that arise directly from their organic components or from the interaction between them and metallic counterparts. A new perspective is to exploit the porous nature of MOFs by encapsulating luminescent guests, such as organic dyes, in order to explore possible changes in the luminescence activity of the combined systems. This work is focused on the optical study of zirconium-based MOF-808 and its interaction with encapsulated rhodamine B molecules. Using a plethora of different techniques, we were able to unravel its photocycle. MOF-808 displays intrinsic luminescence activity that derives from an energy transfer process from the linker to the metal sites occurring in 300 ps. The emission is a singlet-singlet transition in aqueous solution, and it is a triplet transition in powdered form. After exploring the bare MOF, we combined it with rhodamine B molecules, following an easy post-synthetic process. Rhodamine B molecules were found to be encapsulated in MOF pores and interact with the MOF's matrix through nanosecond energy transfer. We created a totally new dual-emitting system and suggested a way, based on the time-resolved studies, to clearly unravel the photocycle of MOFs from the very first photoexcitation.
Collapse
Affiliation(s)
- G Ficarra
- Department of Physics and Chemistry "Emilio Segrè", University of Palermo, Via Archirafi 36, 90123 Palermo, Italy.
| | - A Sciortino
- Department of Physics and Chemistry "Emilio Segrè", University of Palermo, Via Archirafi 36, 90123 Palermo, Italy.
| | - L G Barbata
- Department of Physics and Chemistry "Emilio Segrè", University of Palermo, Via Archirafi 36, 90123 Palermo, Italy.
| | - R Ettlinger
- TUM School of Natural Sciences, Technical University of Munich Lichtenbergstr. 4, 85748 Garching b. München, Germany
| | - V De Michele
- Université Jean Monnet, CNRS, IOGS, Laboratoire Hubert Curien UMR 5516, 42000 Saint-Etienne, France
| | - E Marin
- Université Jean Monnet, CNRS, IOGS, Laboratoire Hubert Curien UMR 5516, 42000 Saint-Etienne, France
| | - M Cannas
- Department of Physics and Chemistry "Emilio Segrè", University of Palermo, Via Archirafi 36, 90123 Palermo, Italy.
| | - R E Morris
- EastChem School of Chemistry, University of St Andrews, North Haugh, St Andrews, UK
| | - G Buscarino
- Department of Physics and Chemistry "Emilio Segrè", University of Palermo, Via Archirafi 36, 90123 Palermo, Italy.
| |
Collapse
|
7
|
Markmann V, Pan J, Hansen BL, Haubro ML, Nimmrich A, Lenzen P, Levantino M, Katayama T, Adachi SI, Gorski-Bilke S, Temps F, Dohn AO, Møller KB, Nielsen MM, Haldrup K. Real-time structural dynamics of the ultrafast solvation process around photo-excited aqueous halides. Chem Sci 2024; 15:11391-11401. [PMID: 39055005 PMCID: PMC11268492 DOI: 10.1039/d4sc01912a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024] Open
Abstract
This work investigates and describes the structural dynamics taking place following charge-transfer-to-solvent photo-abstraction of electrons from I- and Br- ions in aqueous solution following single- and 2-photon excitation at 202 nm and 400 nm, respectively. A Time-Resolved X-ray Solution Scattering (TR-XSS) approach with direct sensitivity to the structure of the surrounding solvent as the water molecules adopt a new equilibrium configuration following the electron-abstraction process is utilized to investigate the structural dynamics of solvent shell expansion and restructuring in real-time. The structural sensitivity of the scattering data enables a quantitative evaluation of competing models for the interaction between the nascent neutral species and surrounding water molecules. Taking the I0-O distance as the reaction coordinate, we find that the structural reorganization is delayed by 0.1 ps with respect to the photoexcitation and completes on a time scale of 0.5-1 ps. On longer time scales we determine from the evolution of the TR-XSS difference signal that I0: e- recombination takes place on two distinct time scales of ∼20 ps and 100 s of picoseconds. These dynamics are well captured by a simple model of diffusive evolution of the initial photo-abstracted electron population where the charge-transfer-to-solvent process gives rise to a broad distribution of electron ejection distances, a significant fraction of which are in the close vicinity of the nascent halogen atoms and recombine on short time scales.
Collapse
Affiliation(s)
- Verena Markmann
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Jaysree Pan
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Bianca L Hansen
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Morten L Haubro
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Amke Nimmrich
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
- Department of Chemistry and Molecular Biology, University of Gothenburg Gothenburg Sweden
| | - Philipp Lenzen
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Matteo Levantino
- European Synchrotron Radiation Facility CS40220 Grenoble 38043 Cedex 9 France
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute Kouto 1-1-1, Sayo Hyogo 679-5198 Japan
- RIKEN SPring-8 Center 1-1-1 Kouto, Sayo Hyogo 679-5148 Japan
| | - Shin-Ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) 1-1 Oho, Tsukuba Ibaraki 305-0801 Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science 1-1 Oho, Tsukuba Ibaraki 305-0801 Japan
| | | | - Friedrich Temps
- Christian-Albrechts-University Kiel Olshausenstr. 40 24098 Kiel Germany
| | - Asmus O Dohn
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
- Science Institute, University of Iceland 107 Reykjavík Iceland
| | - Klaus B Møller
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Martin M Nielsen
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Kristoffer Haldrup
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| |
Collapse
|
8
|
Lan J, Chergui M, Pasquarello A. Dynamics of the charge transfer to solvent process in aqueous iodide. Nat Commun 2024; 15:2544. [PMID: 38514610 PMCID: PMC11258362 DOI: 10.1038/s41467-024-46772-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
Charge-transfer-to-solvent states in aqueous halides are ideal systems for studying the electron-transfer dynamics to the solvent involving a complex interplay between electronic excitation and solvent polarization. Despite extensive experimental investigations, a full picture of the charge-transfer-to-solvent dynamics has remained elusive. Here, we visualise the intricate interplay between the dynamics of the electron and the solvent polarization occurring in this process. Through the combined use of ab initio molecular dynamics and machine learning methods, we investigate the structure, dynamics and free energy as the excited electron evolves through the charge-transfer-to-solvent process, which we characterize as a sequence of states denoted charge-transfer-to-solvent, contact-pair, solvent-separated, and hydrated electron states, depending on the distance between the iodine and the excited electron. Our assignment of the charge-transfer-to-solvent states is supported by the good agreement between calculated and measured vertical binding energies. Our results reveal the charge transfer process in terms of the underlying atomic processes and mechanisms.
Collapse
Affiliation(s)
- Jinggang Lan
- Chaire de Simulation à l'Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
- Department of Chemistry, New York University, New York, NY, 10003, USA.
- Simons Center for Computational Physical Chemistry at New York University, New York, NY, 10003, USA.
| | - Majed Chergui
- Lausanne Centre for Ultrafast Science (LACUS), ISIC, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Elettra - Sincrotrone Trieste, Area Science Park I - 34149, Trieste, Italy
| | - Alfredo Pasquarello
- Chaire de Simulation à l'Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
9
|
Yamamoto YI, Suzuki T. Ultrafast Geminate Recombination Facilitated by Hydrogen-Atom Transfer in Charge Transfer Reactions from Hydroxide and Methoxide Ions. J Phys Chem Lett 2023; 14:10463-10468. [PMID: 37963188 DOI: 10.1021/acs.jpclett.3c02815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Previous transient absorption spectroscopy (TAS) hinted at an exceptionally rapid geminate recombination process in charge transfer reactions involving OH- or OD- ions in liquid water and CH3O- ions in liquid methanol. However, a comprehensive investigation of these dynamics using TAS has been hindered by the technical challenges stemming from the ultrafast spectral shift that spans a wide wavelength range from the mid-infrared to the visible on the subpicosecond time scale. To address these challenges, we have employed ultraviolet time-resolved photoelectron spectroscopy of aqueous solutions, enabling us to observe and analyze the complete dynamics, including electron detachment, solvation, and geminate recombination. Our findings are consistent with those of Iglev et al. ( J. Phys. Chem. Lett. 2015, 6, 986-992), supporting the hypothesis that the structural diffusion of OH/OD/CH3O induced by a presolvated electron plays a pivotal role in facilitating ultrafast geminate recombination.
Collapse
Affiliation(s)
- Yo-Ichi Yamamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| |
Collapse
|
10
|
Reidelbach M, Bai M, Schneeberger M, Zöllner MS, Kubicek K, Kirchberg H, Bressler C, Thorwart M, Herrmann C. Solvent Dynamics of Aqueous Halides before and after Photoionization. J Phys Chem B 2023; 127:1399-1413. [PMID: 36728132 DOI: 10.1021/acs.jpcb.2c07992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Electron transfer reactions can be strongly influenced by solvent dynamics. We study the photoionization of halides in water as a model system for such reactions. There are no internal nuclear degrees of freedom in the solute, allowing the dynamics of the solvent to be uniquely identified. We simulate the equilibrium solvent dynamics for Cl-, Br-, I-, and their respective neutral atoms in water, comparing quantum mechanical/molecular mechanical (QM/MM) and classical molecular dynamics (MD) methods. On the basis of the obtained configurations, we calculate the extended X-ray absorption fine structure (EXAFS) spectra rigorously based on the MD snapshots and compare them in detail with other theoretical and experimental results available in the literature. We find our EXAFS spectra based on QM/MM MD simulations in good agreement with their experimental counterparts for the ions. Classical MD simulations for the ions lead to EXAFS spectra that agree equally well with the experiment when it comes to the oscillatory period of the signal, even though they differ from the QM/MM radial distribution functions extracted from the MD. The amplitude is, however, considerably overestimated. This suggests that to judge the reliability of theoretical simulation methods or to elucidate fine details of the atomistic dynamics of the solvent based on EXAFS spectra, the amplitude as well as the oscillatory period need to be considered. If simulations fail qualitatively, as does the classical MD for the aqueous neutral halogen atoms, the resulting EXAFS will also be strongly affected in both oscillatory period and amplitude. The good reliability of QM/MM-based EXAFS simulations, together with clear qualitative differences in the EXAFS spectra found between halides and their atomic counterparts, suggests that a combined theory and experimental EXAFS approach is suitable for elucidating the nonequilibrium solvent dynamics in the photoionization of halides and possibly also for electron transfer reactions in more complex systems.
Collapse
Affiliation(s)
- Marco Reidelbach
- Department of Chemistry, Universität Hamburg, Harbor Bldg. 610, Luruper Chaussee 149, 22761Hamburg, Germany.,The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany
| | - Mei Bai
- The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany.,I. Institut für Theoretische Physik, Universität Hamburg, Notkestr. 9, 22607Hamburg, Germany
| | - Michaela Schneeberger
- Department of Chemistry, Universität Hamburg, Harbor Bldg. 610, Luruper Chaussee 149, 22761Hamburg, Germany.,The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany
| | - Martin Sebastian Zöllner
- Department of Chemistry, Universität Hamburg, Harbor Bldg. 610, Luruper Chaussee 149, 22761Hamburg, Germany.,The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany
| | - Katharina Kubicek
- The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany.,Department of Physics, Universität Hamburg, Notkestr. 85, 22607Hamburg, Germany.,European XFEL, Holzkoppel 4, 22869Schenefeld, Germany
| | - Henning Kirchberg
- The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany.,I. Institut für Theoretische Physik, Universität Hamburg, Notkestr. 9, 22607Hamburg, Germany
| | - Christian Bressler
- The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany.,Department of Physics, Universität Hamburg, Notkestr. 85, 22607Hamburg, Germany.,European XFEL, Holzkoppel 4, 22869Schenefeld, Germany
| | - Michael Thorwart
- The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany.,I. Institut für Theoretische Physik, Universität Hamburg, Notkestr. 9, 22607Hamburg, Germany
| | - Carmen Herrmann
- Department of Chemistry, Universität Hamburg, Harbor Bldg. 610, Luruper Chaussee 149, 22761Hamburg, Germany.,The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany
| |
Collapse
|
11
|
Carter-Fenk K, Johnson BA, Herbert JM, Schenter GK, Mundy CJ. Birth of the Hydrated Electron via Charge-Transfer-to-Solvent Excitation of Aqueous Iodide. J Phys Chem Lett 2023; 14:870-878. [PMID: 36657160 DOI: 10.1021/acs.jpclett.2c03460] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A primary means to generate hydrated electrons in laboratory experiments is excitation to the charge-transfer-to-solvent (CTTS) state of a solute such as I-(aq), but this initial step in the genesis of e-(aq) has never been simulated directly using ab initio molecular dynamics. We report the first such simulations, combining ground- and excited-state simulations of I-(aq) with a detailed analysis of fluctuations in the Coulomb potential experienced by the nascent solvated electron. What emerges is a two-step picture of the evolution of e-(aq) starting from the CTTS state: I-(aq) + hν → I-*(aq) → I•(aq) + e-(aq). Notably, the equilibrated ground state of e-(aq) evolves from I-*(aq) without any nonadiabatic transitions, simply as a result of solvent reorganization. The methodology used here should be applicable to other photochemical electron transfer processes in solution, an important class of problems directly relevant to photocatalysis and energy transfer.
Collapse
Affiliation(s)
- Kevin Carter-Fenk
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington99352, United States
- Department of Chemistry, University of California, Berkeley, California94720, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| | - Britta A Johnson
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| | - Gregory K Schenter
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| | - Christopher J Mundy
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington99352, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington98195, United States
| |
Collapse
|
12
|
Yamamoto YI, Suzuki YI, Suzuki T. Charge Transfer Reactions from I - to Polar Protic Solvents Studied Using Ultrafast Extreme Ultraviolet Photoelectron Spectroscopy. J Phys Chem Lett 2023; 14:1052-1058. [PMID: 36693229 DOI: 10.1021/acs.jpclett.2c03849] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Charge transfer reactions from I- to solvent water, methanol, and ethanol were studied using extreme ultraviolet time-resolved photoelectron spectroscopy (EUV-TRPES). This technique eliminates spectral broadening, previously seen in UV-TRPES, caused by electron inelastic scattering in liquids, and enables clear observation of the temporal evolution of the spectral shape. The peak position, width, and intensity of the electron binding energy distribution indicate electron detachment and subsequent solvation and thermalization processes. Geminate recombination between detached electrons and iodine atoms is discussed using a diffusion equation and a global fitting analysis based on a kinetics model.
Collapse
Affiliation(s)
- Yo-Ichi Yamamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto606-8502, Japan
| | - Yoshi-Ichi Suzuki
- School of Medical Technology, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsucho, Ishikari, Hokkaido061-0293, Japan
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto606-8502, Japan
| |
Collapse
|
13
|
Villa AM, Doglia SM, De Gioia L, Natalello A, Bertini L. Fluorescence of KCl Aqueous Solution: A Possible Spectroscopic Signature of Nucleation. J Phys Chem B 2022; 126:2564-2572. [PMID: 35344657 PMCID: PMC8996234 DOI: 10.1021/acs.jpcb.2c01496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Ion pairing
in water solutions alters both the water hydrogen-bond network and
ion solvation, modifying the dynamics and properties of electrolyte
water solutions. Here, we report an anomalous intrinsic fluorescence
of KCl aqueous solution at room temperature and show that its intensity
increases with the salt concentration. From the ab initio density
functional theory (DFT) and time-dependent DFT modeling, we propose
that the fluorescence emission could originate from the stiffening
of the hydrogen bond network in the hydration shell of solvated ion-pairs
that suppresses the fast nonradiative decay and allows the slower
radiative channel to become a possible decay pathway. Because computations
suggest that the fluorophores are the local ion-water structures present
in the prenucleation phase, this band could be the signature of the
incoming salt precipitation.
Collapse
Affiliation(s)
- Anna Maria Villa
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Silvia Maria Doglia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
14
|
Carter-Fenk K, Mundy CJ, Herbert JM. Natural Charge-Transfer Analysis: Eliminating Spurious Charge-Transfer States in Time-Dependent Density Functional Theory via Diabatization, with Application to Projection-Based Embedding. J Chem Theory Comput 2021; 17:4195-4210. [PMID: 34189922 DOI: 10.1021/acs.jctc.1c00412] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
For many types of vertical excitation energies, linear-response time-dependent density functional theory (LR-TDDFT) offers a useful degree of accuracy combined with unrivaled computational efficiency, although charge-transfer excitation energies are often systematically and dramatically underestimated, especially for large systems and those that contain explicit solvent. As a result, low-energy electronic spectra of solution-phase chromophores often contain tens to hundreds of spurious charge-transfer states, making LR-TDDFT needlessly expensive in bulk solution. Intensity borrowing by these spurious states can affect intensities of the valence excitations, altering electronic bandshapes. At higher excitation energies, it is difficult to distinguish spurious charge-transfer states from genuine charge-transfer-to-solvent (CTTS) excitations. In this work, we introduce an automated diabatization that enables fast and effective screening of the CTTS acceptor space in bulk solution. Our procedure introduces "natural charge-transfer orbitals" that provide a means to isolate orbitals that are most likely to participate in a CTTS excitation. Projection of these orbitals onto solvent-centered virtual orbitals provides a criterion for defining the most important solvent molecules in a given excitation and be used as an automated subspace selection algorithm for projection-based embedding of a high-level description of the CTTS state in a lower-level description of its environment. We apply this method to an ab initio molecular dynamics trajectory of I-(aq) and report the lowest-energy CTTS band in the absorption spectrum. Our results are in excellent agreement with the experiment, and only one-third of the water molecules in the I-(H2O)96 simulation cell need to be described with LR-TDDFT to obtain excitation energies that are converged to <0.1 eV. The tools introduced herein will improve the accuracy, efficiency, and usability of LR-TDDFT in solution-phase environments.
Collapse
Affiliation(s)
- Kevin Carter-Fenk
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Christopher J Mundy
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
15
|
Kurahashi N, Thürmer S, Liu SY, Yamamoto YI, Karashima S, Bhattacharya A, Ogi Y, Horio T, Suzuki T. Design and characterization of a magnetic bottle electron spectrometer for time-resolved extreme UV and X-ray photoemission spectroscopy of liquid microjets. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:034303. [PMID: 34131579 PMCID: PMC8195612 DOI: 10.1063/4.0000107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
We describe a magnetic bottle time-of-flight electron spectrometer designed for time-resolved photoemission spectroscopy of a liquid microjet using extreme UV and X-ray radiation. The spectrometer can be easily reconfigured depending on experimental requirements and the energy range of interest. To improve the energy resolution at high electron kinetic energy, a retarding potential can be applied either via a stack of electrodes or retarding mesh grids, and a flight-tube extension can be attached to increase the flight time. A gated electron detector was developed to reject intense parasitic signal from light scattered off the surface of the cylindrically shaped liquid microjet. This detector features a two-stage multiplication with a microchannel plate plus a fast-response scintillator followed by an image-intensified photon detector. The performance of the spectrometer was tested at SPring-8 and SACLA, and time-resolved photoelectron spectra were measured for an ultrafast charge transfer to solvent reaction in an aqueous NaI solution with a 200 nm UV pump pulses from a table-top ultrafast laser and the 5.5 keV hard X-ray probe pulses from SACLA.
Collapse
Affiliation(s)
- Naoya Kurahashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8501, Japan
| | - Stephan Thürmer
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8501, Japan
| | - Suet Yi Liu
- Molecular Reaction Dynamics Research Team, RIKEN Center for Advanced Photonics, 2–1 Hirosawa, Wako 351-0198, Japan
| | - Yo-ichi Yamamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8501, Japan
| | - Shutaro Karashima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8501, Japan
| | - Atanu Bhattacharya
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8501, Japan
| | - Yoshihiro Ogi
- Molecular Reaction Dynamics Research Team, RIKEN Center for Advanced Photonics, 2–1 Hirosawa, Wako 351-0198, Japan
| | - Takuya Horio
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8501, Japan
| | | |
Collapse
|
16
|
Rey R, Hynes JT. Solvation Dynamics in Water. 4. On the Initial Regime of Solvation Relaxation. J Phys Chem B 2020; 124:7668-7681. [PMID: 32790403 DOI: 10.1021/acs.jpcb.0c05706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is shown, by means of numerical and analytic work, that initial molecular momenta play little significant role in the initial fast solvation relaxation that follows electronic excitation of, and charge creation for, a standard model system of a solute in water. Instead, the nonequilibrium dynamics are predominantly described by noninertial "steering" by the torques directly generated by the newly created charge distribution. It is this process that largely overcomes inertia and drives the relaxation dynamics on a time scale of a few tens of femtoseconds in the key initial regime of the dynamics. These results are discussed in the context of commonly employed descriptions such as inertial, Gaussian, and underdamped dynamical behavior.
Collapse
Affiliation(s)
- Rossend Rey
- Departament de Fı́sica, Universitat Politècnica de Catalunya, Campus Nord B4-B5, Barcelona 08034, Spain
| | - James T Hynes
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.,Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
17
|
Verlet JRR, Anstöter CS, Bull JN, Rogers JP. Role of Nonvalence States in the Ultrafast Dynamics of Isolated Anions. J Phys Chem A 2020; 124:3507-3519. [PMID: 32233436 PMCID: PMC7212518 DOI: 10.1021/acs.jpca.0c01260] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Nonvalence states
of neutral molecules (Rydberg states) play important
roles in nonadiabatic dynamics of excited states. In anions, such
nonadiabatic transitions between nonvalence and valence states have
been much less explored even though they are believed to play important
roles in electron capture and excited state dynamics of anions. The
aim of this Feature Article is to provide an overview of recent experimental
observations, based on time-resolved photoelectron imaging, of valence
to nonvalence and nonvalence to valence transitions in anions and
to demonstrate that such dynamics may be commonplace in the excited
state dynamics of molecular anions and cluster anions.
Collapse
Affiliation(s)
- Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Cate S Anstöter
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - James N Bull
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Joshua P Rogers
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
18
|
Bhattacharyya D, Mizuno H, Rizzuto AM, Zhang Y, Saykally RJ, Bradforth SE. New Insights into the Charge-Transfer-to-Solvent Spectrum of Aqueous Iodide: Surface versus Bulk. J Phys Chem Lett 2020; 11:1656-1661. [PMID: 32040333 DOI: 10.1021/acs.jpclett.9b03857] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Liquid phase charge-transfer-to-solvent (CTTS) transitions are important, as they serve as photochemical routes to solvated electrons. In this work, broadband deep-ultraviolet electronic sum frequency generation (DUV-ESFG) and two-photon absorption (2PA) spectroscopic techniques were used to assign and compare the nature of the aqueous iodide CTTS excitations at the air/water interface and in bulk solution. In the one-photon absorption (1PA) spectrum, excitation to the 6s Rydberg-like orbital (5p → 6s) gives rise to a pair of spin-orbit split iodine states, 2P3/2 and 2P1/2. In the 2PA spectra, the lower-energy 2P3/2 peak is absent and the observed 2PA peak, which is ∼0.14 eV blue-shifted relative to the upper 2P1/2 CTTS peak seen in 1PA, arises from 5p → 6p electronic promotion. The band observed in the ESFG spectrum is attributed to mixing of excited states involving 5p → 6p and 5p → 6s promotions caused by both vibronic coupling and the external electric field generated by asymmetric interfacial solvation.
Collapse
Affiliation(s)
- Dhritiman Bhattacharyya
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Hikaru Mizuno
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Anthony M Rizzuto
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yuyuan Zhang
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Richard J Saykally
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stephen E Bradforth
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
19
|
Svoboda V, Michiels R, LaForge AC, Med J, Stienkemeier F, Slavíček P, Wörner HJ. Real-time observation of water radiolysis and hydrated electron formation induced by extreme-ultraviolet pulses. SCIENCE ADVANCES 2020; 6:eaaz0385. [PMID: 32010776 PMCID: PMC6968931 DOI: 10.1126/sciadv.aaz0385] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/26/2019] [Indexed: 05/17/2023]
Abstract
The dominant pathway of radiation damage begins with the ionization of water. Thus far, however, the underlying primary processes could not be conclusively elucidated. Here, we directly study the earliest steps of extreme ultraviolet (XUV)-induced water radiolysis through one-photon excitation of large water clusters using time-resolved photoelectron imaging. Results are presented for H2O and D2O clusters using femtosecond pump pulses centered at 133 or 80 nm. In both excitation schemes, hydrogen or proton transfer is observed to yield a prehydrated electron within 30 to 60 fs, followed by its solvation in 0.3 to 1.0 ps and its decay through geminate recombination on a ∼10-ps time scale. These results are interpreted by comparison with detailed multiconfigurational non-adiabatic ab-initio molecular dynamics calculations. Our results provide the first comprehensive picture of the primary steps of radiation chemistry and radiation damage and demonstrate new approaches for their study with unprecedented time resolution.
Collapse
Affiliation(s)
- Vít Svoboda
- Laboratory of Physical Chemistry, ETH-Zürich, 8093 Zürich, Switzerland
| | - Rupert Michiels
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| | - Aaron C. LaForge
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| | - Jakub Med
- Department of Physical chemistry, UCT Prague, 16628 Prague, Czech Republic
| | | | - Petr Slavíček
- Department of Physical chemistry, UCT Prague, 16628 Prague, Czech Republic
| | - Hans Jakob Wörner
- Laboratory of Physical Chemistry, ETH-Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
20
|
Villa AM, Doglia SM, De Gioia L, Bertini L, Natalello A. Anomalous Intrinsic Fluorescence of HCl and NaOH Aqueous Solutions. J Phys Chem Lett 2019; 10:7230-7236. [PMID: 31689111 DOI: 10.1021/acs.jpclett.9b02163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The unique properties of liquid water mainly arise from its hydrogen bond network. The geometry and dynamics of this network play a key role in shaping the characteristics of soft matter, from simple solutions to biosystems. Here we report an anomalous intrinsic fluorescence of HCl and NaOH aqueous solutions at room temperature that shows important differences in the excitation and emission bands between the two solutes. From ab initio time-dependent density functional theory modeling we propose that fluorescence emission could originate from hydrated ion species contained in transient cavities of the bulk solvent. These cavities, which are characterized by a stiff surface, could provide an environment that, upon trapping the excited state, suppresses the fast nonradiative decay and allows the slower radiative channel to become a possible decay pathway.
Collapse
Affiliation(s)
- Anna Maria Villa
- Department of Biotechnology and Biosciences , University of Milano-Bicocca , Piazza della Scienza 2 , 20126 Milan , Italy
| | - Silvia Maria Doglia
- Department of Biotechnology and Biosciences , University of Milano-Bicocca , Piazza della Scienza 2 , 20126 Milan , Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences , University of Milano-Bicocca , Piazza della Scienza 2 , 20126 Milan , Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences , University of Milano-Bicocca , Piazza della Scienza 2 , 20126 Milan , Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences , University of Milano-Bicocca , Piazza della Scienza 2 , 20126 Milan , Italy
| |
Collapse
|
21
|
Cheng M, Rivas N, Lim SJ, Pichugin K, Petruk AA, Klinkova A, Smith R, Hopkins WS, Sciaini G. Trapping a Photoelectron behind a Repulsive Coulomb Barrier in Solution. J Phys Chem Lett 2019; 10:5742-5747. [PMID: 31498643 DOI: 10.1021/acs.jpclett.9b01712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multiply charged anions (MCAs) display unique photophysics and solvent-stabilizing effects. Well-known aqueous species such as SO42- and PO43- experience spontaneous electron detachment or charge-separation fragmentation in the gas phase owing to the strong Coulomb repulsion arising from the excess of negative charge. Thus, anions often present low photodetachment thresholds and the ability to quickly eject electrons into the solvent via charge-transfer-to-solvent (CTTS) states. Here, we report spectroscopic evidence for the existence of a repulsive Coulomb barrier (RCB) that blocks the ejection of "CTTS-like" electrons of the aqueous B12F122- dianion. Our spectroscopic experimental and theoretical studies indicate that despite the exerted Coulomb repulsion by the nascent radical monoanion B12F12-•aq, the photoexcited electron remains about the B12F12-• core. The RCB is an established feature of the potential energy landscape of MCAs in vacuo, which seems to extend to the liquid phase highlighting recent observations about the dielectric behavior of confined water.
Collapse
Affiliation(s)
- Meixin Cheng
- Department of Chemistry, and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue W. , Waterloo , ON N2L 3G1 , Canada
| | - Nicolás Rivas
- Department of Chemistry, and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue W. , Waterloo , ON N2L 3G1 , Canada
| | - Su Ji Lim
- Department of Chemistry, and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue W. , Waterloo , ON N2L 3G1 , Canada
| | - Kostyantyn Pichugin
- Department of Chemistry, and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue W. , Waterloo , ON N2L 3G1 , Canada
| | - Ariel A Petruk
- Department of Chemistry, and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue W. , Waterloo , ON N2L 3G1 , Canada
| | - Anna Klinkova
- Department of Chemistry, and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue W. , Waterloo , ON N2L 3G1 , Canada
| | - Rodney Smith
- Department of Chemistry, and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue W. , Waterloo , ON N2L 3G1 , Canada
| | - W Scott Hopkins
- Department of Chemistry, and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue W. , Waterloo , ON N2L 3G1 , Canada
| | - Germán Sciaini
- Department of Chemistry, and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue W. , Waterloo , ON N2L 3G1 , Canada
| |
Collapse
|
22
|
Nishitani J, Yamamoto YI, West CW, Karashima S, Suzuki T. Binding energy of solvated electrons and retrieval of true UV photoelectron spectra of liquids. SCIENCE ADVANCES 2019; 5:eaaw6896. [PMID: 31497644 PMCID: PMC6716956 DOI: 10.1126/sciadv.aaw6896] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/24/2019] [Indexed: 05/24/2023]
Abstract
The electronic energy and dynamics of solvated electrons, the simplest yet elusive chemical species, is of interest in chemistry, physics, and biology. Here, we present the electron binding energy distributions of solvated electrons in liquid water, methanol, and ethanol accurately measured using extreme ultraviolet (EUV) photoelectron spectroscopy of liquids with a single-order high harmonic. The distributions are Gaussian in all cases. Using the EUV and UV photoelectron spectra of solvated electrons, we succeeded in retrieving sharp electron kinetic energy distributions from the spectra broadened and energy shifted by inelastic scattering in liquids, overcoming an obstacle in ultrafast UV photoelectron spectroscopy of liquids. The method is demonstrated for the benchmark systems of charge transfer to solvent reaction and ultrafast internal conversion of hydrated electron from the first excited state.
Collapse
|
23
|
Abstract
After presenting the basic theoretical models of excitation energy transfer and charge transfer, I describe some of the novel experimental methods used to probe them. Finally, I discuss recent results concerning ultrafast energy and charge transfer in biological systems, in chemical systems and in photovoltaics based on sensitized transition metal oxides.
Collapse
Affiliation(s)
- Majed Chergui
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC, Lausanne Centre for Ultrafast Science (LACUS), FSB, Station 6, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
24
|
Tyson AL, Verlet JRR. On the Mechanism of Phenolate Photo-Oxidation in Aqueous Solution. J Phys Chem B 2019; 123:2373-2379. [PMID: 30768899 DOI: 10.1021/acs.jpcb.8b11766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The photo-oxidation dynamics following ultraviolet (257 nm) excitation of the phenolate anion in aqueous solution is studied using broadband (550-950 nm) transient absorption spectroscopy. A clear signature from electron ejection is observed on a sub-picosecond timescale, followed by cooling dynamics and the decay of the signal to a constant offset that is assigned to the hydrated electron. The dynamics are compared to the charge-transfer-to-solvent dynamics from iodide at the same excitation wavelength and are shown to be very similar to these. This is in stark contrast to a previous study on the phenolate anion excited at 266 nm, in which electron emission was observed over longer timescales. We account for the differences using a simple Marcus picture for electron emission in which the electron tunneling rate depends sensitively on the initial excitation energy. After electron emission, a contact pair is formed which undergoes geminate recombination and dissociation to form the free hydrated electron at rates that are slightly faster than those for the iodide system. Our results show that, although the underlying chemical physics of electron emission differs between iodide and phenolate, the observed dynamics can appear very similar.
Collapse
Affiliation(s)
| | - Jan R R Verlet
- Department of Chemistry , Durham University , Durham DH1 3LE , U.K
| |
Collapse
|
25
|
Affiliation(s)
- Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
26
|
Koga M, Yoneda Y, Sotome H, Miyasaka H. Ionization dynamics of a phenylenediamine derivative in solutions as revealed by femtosecond simultaneous and stepwise two-photon excitation. Phys Chem Chem Phys 2019; 21:2889-2898. [PMID: 30451254 DOI: 10.1039/c8cp06530f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Femtosecond transient absorption spectroscopy with off-resonant simultaneous and resonant stepwise two-photon excitation methods were applied to the direct observation of photoionization dynamics of a phenylenediamine derivative in n-hexane, ethanol and acetonitrile solutions. Upon the selective excitation of the solute via the off-resonant two-photon excitation to the energy level almost equivalent with the ionization potential in the gas phase, rapid appearance of the radical cation (within ca. 100-200 fs) was observed in polar and nonpolar solutions. On the other hand, in the case where the excited energy level from the ground state is 0.8 eV lower than the ionization potential in the gas phase, the radical cation appears only in polar solutions in sub-ps to ps time scales, indicating that the photoionization does not occur directly from the highly electronically excited state even in the polar solution. Comparison of the dynamics between ethanol and acetonitrile solutions strongly suggested that the solvation process of the precursor species leading to the ionization took a crucial role in the electron ejection process with lower energy in polar solutions.
Collapse
Affiliation(s)
- Masafumi Koga
- Division of Frontier Materials Science and Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | | | | | | |
Collapse
|
27
|
Lin Z, Van Voorhis T. Triplet Tuning: A Novel Family of Non-Empirical Exchange–Correlation Functionals. J Chem Theory Comput 2019; 15:1226-1241. [DOI: 10.1021/acs.jctc.8b00853] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Zhou Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
28
|
Marin TW, Janik I, Bartels DM. Ultraviolet charge-transfer-to-solvent spectroscopy of halide and hydroxide ions in subcritical and supercritical water. Phys Chem Chem Phys 2019; 21:24419-24428. [DOI: 10.1039/c9cp03805a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exploring charge-transfer-to-solvent excitation of aqueous halide anions by vacuum ultraviolet spectroscopy – new insights up to 380 °C.
Collapse
Affiliation(s)
- Timothy W. Marin
- Department of Physical Sciences
- Benedictine University
- Lisle
- USA
- Notre Dame Radiation Laboratory
| | | | | |
Collapse
|
29
|
Alnaed MK, Endicott JF. Chemical Scavenging Yields for Short-Lived Products from the Visible Light Photoionization of the Tris(bipyridine)ruthenium(II) Triplet Metal-to-Ligand Charge-Transfer Excited State. J Phys Chem A 2018; 122:9251-9266. [PMID: 30387605 DOI: 10.1021/acs.jpca.8b08471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The rate of visible light photoionization of the tris(bipyridine)ruthenium(II) triplet metal-to-ligand charge-transfer excited state (3MLCT) is very strongly dependent on the acid concentration in aqueous solution, and the pattern of this dependence is similar to that reported for the photoionization of iodide. With 405 nm visible irradiation of 3MLCT, less than 15% of the photoionized products appear as free solvated electrons in bulk solution, while more than 75% of the photoproducts appear to be solvent-separated, (oxidized substrate)-electron ion pairs that efficiently recombine with the photo-oxidized complex in the absence of an electron scavenger. The quantum yield of free solvated electrons generated by these 405 nm irradiations is approximately 0.004, but the net quantum yield of scavengeable electrons is estimated to be about 0.04. A visible-region photoionization threshold energy for the 3MLCT is consistent with thermodynamic expectations, and similar behavior is expected for many redox-active complexes.
Collapse
Affiliation(s)
- Marim K Alnaed
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| | - John F Endicott
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| |
Collapse
|
30
|
Ding W, Liu Y, Wang D. Computational Comparative Mechanistic Study of C−E (E=C,N,O,S) Coupling Reactions through CO2Activation Mediated by Uranium(III) Complexes. Chemistry 2018; 24:19289-19299. [DOI: 10.1002/chem.201804072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Wanjian Ding
- MOE Key Laboratory of Theoretical and Computational Photochemistry, and College of ChemistryBeijing Normal University Beijing 100875 P.R. China
| | - Yanxiao Liu
- MOE Key Laboratory of Theoretical and Computational Photochemistry, and College of ChemistryBeijing Normal University Beijing 100875 P.R. China
| | - Dongqi Wang
- Division of Multidisciplinary ResearchInstitute of High Energy PhysicsChinese Academy of Sciences Beijing 100049 P.R. China
| |
Collapse
|
31
|
Chergui M. Ultrafast photophysics and photochemistry of iron hexacyanides in solution: Infrared to X-ray spectroscopic studies. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Slanina T, Oberschmid T. Rhodamine 6G Radical: A Spectro (Fluoro) Electrochemical and Transient Spectroscopic Study. ChemCatChem 2018. [DOI: 10.1002/cctc.201800971] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Tomáš Slanina
- Department of Chemistry and RECETOX Faculty of Science; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
- Institute of Organic Chemistry and Chemical Biology; Goethe University Frankfurt; 60323 Frankfurt am Main Germany
| | - Teresa Oberschmid
- Institute of Organic Chemistry Faculty of Chemistry and Pharmacy; University of Regensburg; 93040 Regensburg Germany
| |
Collapse
|
33
|
Abstract
Invited by the editorial committee of the Annual Review of Physical Chemistry to "contribute my autobiography," I present it here, as I understand the term. It is about my parents, my mentors, my coworkers, and my friends in learning and the scientific problems that we tried to address. Courtesy of the editorial assistance of Annual Reviews, some of the science is in the figure captions and sidebars. I am by no means done: I am currently trying to fuse the quantitative rigor of physical chemistry with systems biology while also dealing with a post-Born-Oppenheimer regime in electronic dynamics and am attempting to instruct molecules to perform advanced logic.
Collapse
Affiliation(s)
- Raphael D Levine
- The Fritz Haber Research Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; .,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
34
|
Zvereva E, Segarra-Martí J, Marazzi M, Brazard J, Nenov A, Weingart O, Léonard J, Garavelli M, Rivalta I, Dumont E, Assfeld X, Haacke S, Monari A. The effect of solvent relaxation in the ultrafast time-resolved spectroscopy of solvated benzophenone. Photochem Photobiol Sci 2018; 17:323-331. [DOI: 10.1039/c7pp00439g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Modeling time-resolved spectra to unravel ultra fast solvent reorganization.
Collapse
|
35
|
Rivas N, Moriena G, Domenianni L, Hodak JH, Marceca E. Counterion effects on the ultrafast dynamics of charge-transfer-to-solvent electrons. Phys Chem Chem Phys 2017; 19:31581-31591. [PMID: 29170768 DOI: 10.1039/c7cp05903e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We performed femtosecond transient absorption (TA) experiments to monitor the solvation dynamics of charge-transfer-to-solvent (CTTS) electrons originating from UV photoexcitation of ammoniated iodide in close proximity to the counterions. Solutions of KI were prepared in liquid ammonia and TA experiments were carried out at different temperatures and densities, along the liquid-gas coexistence curve of the fluid. The results complement previous femtosecond TA work by P. Vöhringer's group in neat ammonia via multiphoton ionization. The dynamics of CTTS-detached electrons in ammonia was found to be strongly affected by ion pairing. Geminate recombination time constants as well as escape probabilities were determined from the measured temporal profiles and analysed as a function of the medium density. A fast unresolved (τ < 250 fs) increase of absorption related to the creation/thermalization of solvated electron species was followed by two decay components: one with a characteristic time around 10 ps, and a slower one that remains active for hundreds of picoseconds. While the first process is attributed to an early recombination of (I, e-) pairs, the second decay and its asymptote reflects the effect of the K+ counterion on the geminate recombination dynamics, rate and yield. The cation basically acts as an electron anchor that restricts the ejection distance, leading to solvent-separated counterion-electron species. The formation of (K+, NH3, e-) pairs close to the parent iodine atom brings the electron escape probability to very low values. Transient spectra of the electron species have also been estimated as a function of time by probing the temporal profiles at different wavelengths.
Collapse
Affiliation(s)
- N Rivas
- DQIAQF-FCEN, Universidad de Buenos Aires and INQUIMAE-CONICET, Ciudad Universitaria, 3er piso, Pabellón II, Buenos Aires (C1428EGA), Argentina.
| | | | | | | | | |
Collapse
|
36
|
El Hage K, Brickel S, Hermelin S, Gaulier G, Schmidt C, Bonacina L, van Keulen SC, Bhattacharyya S, Chergui M, Hamm P, Rothlisberger U, Wolf JP, Meuwly M. Implications of short time scale dynamics on long time processes. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061507. [PMID: 29308419 PMCID: PMC5741438 DOI: 10.1063/1.4996448] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/15/2017] [Indexed: 05/02/2023]
Abstract
This review provides a comprehensive overview of the structural dynamics in topical gas- and condensed-phase systems on multiple length and time scales. Starting from vibrationally induced dissociation of small molecules in the gas phase, the question of vibrational and internal energy redistribution through conformational dynamics is further developed by considering coupled electron/proton transfer in a model peptide over many orders of magnitude. The influence of the surrounding solvent is probed for electron transfer to the solvent in hydrated I-. Next, the dynamics of a modified PDZ domain over many time scales is analyzed following activation of a photoswitch. The hydration dynamics around halogenated amino acid side chains and their structural dynamics in proteins are relevant for iodinated TyrB26 insulin. Binding of nitric oxide to myoglobin is a process for which experimental and computational analyses have converged to a common view which connects rebinding time scales and the underlying dynamics. Finally, rhodopsin is a paradigmatic system for multiple length- and time-scale processes for which experimental and computational methods provide valuable insights into the functional dynamics. The systems discussed here highlight that for a comprehensive understanding of how structure, flexibility, energetics, and dynamics contribute to functional dynamics, experimental studies in multiple wavelength regions and computational studies including quantum, classical, and more coarse grained levels are required.
Collapse
Affiliation(s)
- Krystel El Hage
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Sebastian Brickel
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Sylvain Hermelin
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Geoffrey Gaulier
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Cédric Schmidt
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Luigi Bonacina
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Siri C van Keulen
- Institute of Chemical Sciences and Engineering, EPFL, Lausanne, Switzerland
| | | | - Majed Chergui
- Institute of Chemical Sciences and Engineering, EPFL, Lausanne, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | | | - Jean-Pierre Wolf
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
37
|
Wörner HJ, Arrell CA, Banerji N, Cannizzo A, Chergui M, Das AK, Hamm P, Keller U, Kraus PM, Liberatore E, Lopez-Tarifa P, Lucchini M, Meuwly M, Milne C, Moser JE, Rothlisberger U, Smolentsev G, Teuscher J, van Bokhoven JA, Wenger O. Charge migration and charge transfer in molecular systems. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061508. [PMID: 29333473 PMCID: PMC5745195 DOI: 10.1063/1.4996505] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/25/2017] [Indexed: 05/12/2023]
Abstract
The transfer of charge at the molecular level plays a fundamental role in many areas of chemistry, physics, biology and materials science. Today, more than 60 years after the seminal work of R. A. Marcus, charge transfer is still a very active field of research. An important recent impetus comes from the ability to resolve ever faster temporal events, down to the attosecond time scale. Such a high temporal resolution now offers the possibility to unravel the most elementary quantum dynamics of both electrons and nuclei that participate in the complex process of charge transfer. This review covers recent research that addresses the following questions. Can we reconstruct the migration of charge across a molecule on the atomic length and electronic time scales? Can we use strong laser fields to control charge migration? Can we temporally resolve and understand intramolecular charge transfer in dissociative ionization of small molecules, in transition-metal complexes and in conjugated polymers? Can we tailor molecular systems towards specific charge-transfer processes? What are the time scales of the elementary steps of charge transfer in liquids and nanoparticles? Important new insights into each of these topics, obtained from state-of-the-art ultrafast spectroscopy and/or theoretical methods, are summarized in this review.
Collapse
Affiliation(s)
| | - Christopher A Arrell
- Laboratory of Ultrafast Spectroscopy and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Natalie Banerji
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Andrea Cannizzo
- Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Majed Chergui
- Laboratory of Ultrafast Spectroscopy and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Akshaya K Das
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Ursula Keller
- Department of Physics, ETH Zürich, Zürich, Switzerland
| | | | - Elisa Liberatore
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Pablo Lopez-Tarifa
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Markus Meuwly
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Chris Milne
- SwissFEL, Paul-Scherrer Institute, Villigen, Switzerland
| | - Jacques-E Moser
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ursula Rothlisberger
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Joël Teuscher
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Oliver Wenger
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| |
Collapse
|
38
|
Sciortino A, Madonia A, Gazzetto M, Sciortino L, Rohwer EJ, Feurer T, Gelardi FM, Cannas M, Cannizzo A, Messina F. The interaction of photoexcited carbon nanodots with metal ions disclosed down to the femtosecond scale. NANOSCALE 2017; 9:11902-11911. [PMID: 28660936 DOI: 10.1039/c7nr03754f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fluorescent carbon nanodots are a novel family of carbon-based nanoscale materials endowed with an outstanding combination of properties that make them very appealing for applications in nanosensing, photonics, solar energy harvesting and photocatalysis. One of the remarkable properties of carbon dots is their strong sensitivity to the local environment, especially to metal ions in solution. These interactions provide a testing ground for their marked photochemical properties, highlighted by many studies, and frequently driven by charge transfer events. Here we combine several optical techniques, down to femtosecond time resolution, to understand the interplay between carbon nanodots and aqueous metal ions such as Cu2+ and Zn2+. We find that copper inhibits the fluorescence of carbon dots through static and diffusional quenching mechanisms, and our measurements allow discriminating between the two. Ultrafast optical methods are then used to address the dynamics of copper-dot complexes, wherein static quenching takes place, and unveil the underlying complexity of their photocycle. We propose an initial increase of electronic charge on the surface of the dot, upon photo-excitation, followed by a partial electron transfer to the nearby ion, with 0.2 ps and 1.9 ps time constants, and finally a very fast (≪1 ps) non-radiative electron-hole recombination which brings the system back to the ground state. Notably, we find that the electron transfer stage is governed by an ultrafast water rearrangement around photo-excited dots, pointing out the key role of solvent interactions in the photo-physics of these systems.
Collapse
Affiliation(s)
- A Sciortino
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Reinhard M, Auböck G, Besley NA, Clark IP, Greetham GM, Hanson-Heine MWD, Horvath R, Murphy TS, Penfold TJ, Towrie M, George MW, Chergui M. Photoaquation Mechanism of Hexacyanoferrate(II) Ions: Ultrafast 2D UV and Transient Visible and IR Spectroscopies. J Am Chem Soc 2017; 139:7335-7347. [DOI: 10.1021/jacs.7b02769] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marco Reinhard
- Ecole polytechnique Fédérale de Lausanne, Laboratoire de spectroscopie ultrarapide, ISIC, and Lausanne Centre
for Ultrafast Science (LACUS), FSB, Station 6, CH-1015 Lausanne, Switzerland
| | - Gerald Auböck
- Ecole polytechnique Fédérale de Lausanne, Laboratoire de spectroscopie ultrarapide, ISIC, and Lausanne Centre
for Ultrafast Science (LACUS), FSB, Station 6, CH-1015 Lausanne, Switzerland
| | - Nicholas A. Besley
- School
of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Ian P. Clark
- Central
Laser Facility, Research Complex at Harwell Science and Technology
Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Gregory M. Greetham
- Central
Laser Facility, Research Complex at Harwell Science and Technology
Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | | | - Raphael Horvath
- School
of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Thomas S. Murphy
- School
of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Thomas J. Penfold
- School
of Chemistry, Newcastle University, Newcastle upon Tyne NE1
7RU, United Kingdom
| | - Michael Towrie
- Central
Laser Facility, Research Complex at Harwell Science and Technology
Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Michael W. George
- School
of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Department
of Chemical and Environmental Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China
| | - Majed Chergui
- Ecole polytechnique Fédérale de Lausanne, Laboratoire de spectroscopie ultrarapide, ISIC, and Lausanne Centre
for Ultrafast Science (LACUS), FSB, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
40
|
Nowakowski PJ, Woods DA, Verlet JRR. Charge Transfer to Solvent Dynamics at the Ambient Water/Air Interface. J Phys Chem Lett 2016; 7:4079-4085. [PMID: 27684095 DOI: 10.1021/acs.jpclett.6b01985] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Electron-transfer reactions at ambient aqueous interfaces represent one of the most fundamental and ubiquitous chemical reactions. Here the dynamics of the charge transfer to solvent (CTTS) reaction from iodide was probed at the ambient water/air interface by phase-sensitive transient second-harmonic generation. Using the three allowed polarization combinations, distinctive dynamics assigned to the CTTS state evolution and to the subsequent solvating electron-iodine contact pair have been resolved. The CTTS state is asymmetrically solvated in the plane of the surface, while the subsequent electron solvation dynamics are very similar to those observed in the bulk, although slightly faster. Between 3 and 30 ps, a small phase shift distinguishes an electron bound in a contact pair with iodine and a free hydrated electron at the water/air interface. Our results suggest that the hydrated electron is fully solvated in a region of reduced water density at the interface.
Collapse
Affiliation(s)
- Paweł J Nowakowski
- Department of Chemistry, University of Durham , Durham DH1 3LE, United Kingdom
| | - David A Woods
- Department of Chemistry, University of Durham , Durham DH1 3LE, United Kingdom
| | - Jan R R Verlet
- Department of Chemistry, University of Durham , Durham DH1 3LE, United Kingdom
| |
Collapse
|
41
|
Okuyama H, Suzuki YI, Karashima S, Suzuki T. Charge-transfer-to-solvent reactions from I− to water, methanol, and ethanol studied by time-resolved photoelectron spectroscopy of liquids. J Chem Phys 2016; 145:074502. [PMID: 27544114 DOI: 10.1063/1.4960385] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Haruki Okuyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoshi-Ichi Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Faculty of Pharmaceutical Science, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsucho, Ishikari, Hokkaido 061-0293, Japan
| | - Shutaro Karashima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
42
|
Chaban VV, Prezhdo OV. Electron Solvation in Liquid Ammonia: Lithium, Sodium, Magnesium, and Calcium as Electron Sources. J Phys Chem B 2016; 120:2500-6. [PMID: 26886153 DOI: 10.1021/acs.jpcb.6b00412] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A free electron in solution, known as a solvated electron, is the smallest possible anion. Alkali and alkaline earth atoms serve as electron donors in solvents that mediate outer-sphere electron transfer. We report herein ab initio molecular dynamics simulations of lithium, sodium, magnesium, and calcium in liquid ammonia at 250 K. By analyzing the electronic properties and the ionic and solvation structures and dynamics, we systematically characterize these metals as electron donors and ammonia molecules as electron acceptors. We show that the solvated metal strongly modifies the properties of its solvation shells and that the observed effect is metal-specific. Specifically, the radius and charge exhibit major impacts. The single solvated electron present in the alkali metal systems is distributed more uniformly among the solvent molecules of each metal's two solvation shells. In contrast, alkaline earth metals favor a less uniform distribution of the electron density. Alkali and alkaline earth atoms are coordinated by four and six NH3 molecules, respectively. The smaller atoms, Li and Mg, are stronger electron donors than Na and Ca. This result is surprising, as smaller atoms in a column of the periodic table have higher ionization potentials. However, it can be explained by stronger electron donor-acceptor interactions between the smaller atoms and the solvent molecules. The structure of the first solvation shell is sharpest for Mg, which has a large charge and a small radius. Solvation is weakest for Na, which has a small charge and a large radius. Weak solvation leads to rapid dynamics, as reflected in the diffusion coefficients of NH3 molecules of the first two solvation shells and the Na atom. The properties of the solvated electrons established in the present study are important for radiation chemistry, synthetic chemistry, condensed-matter charge transfer, and energy sources.
Collapse
Affiliation(s)
- Vitaly V Chaban
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo , 12231-280 São José dos Campos, SP Brazil
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| |
Collapse
|
43
|
Messina F, Pomarico E, Silatani M, Baranoff E, Chergui M. Ligand-centred fluorescence and electronic relaxation cascade at vibrational time scales in transition-metal complexes. J Phys Chem Lett 2015; 6:4475-4480. [PMID: 26509329 DOI: 10.1021/acs.jpclett.5b02146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Using femtosecond-resolved photoluminescence up-conversion, we report the observation of the fluorescence of the high-lying ligand-centered (LC) electronic state upon 266 nm excitation of an iridium complex, Ir(ppy)3, with a lifetime of 70 ± 10 fs. It is accompanied by a simultaneous emission of all lower-lying electronic states, except the lowest triplet metal-to-ligand charge-transfer ((3)MLCT) state that shows a rise on the same time scale. Thus, we observe the departure, the intermediate steps, and the arrival of the relaxation cascade spanning ∼1.6 eV from the (1)LC state to the lowest (3)MLCT state, which then yields the long-lived luminescence of the molecule. This represents the first measurement of the total relaxation time over an entire cascade of electronic states in a polyatomic molecule. We find that the relaxation cascade proceeds in ≤10 fs, which is faster than some of the highest-frequency modes of the system. We invoke the participation of the latter modes in conical intersections and their overdamping to low-frequency intramolecular modes. On the basis of literature, we also conclude that this behavior is not specific to transition-metal complexes but also applies to organic molecules.
Collapse
Affiliation(s)
- Fabrizio Messina
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, ISIC, FSB , CH-1015 Lausanne, Switzerland
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo , Via Archirafi 36, 90123 Palermo, Italy
| | - Enrico Pomarico
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, ISIC, FSB , CH-1015 Lausanne, Switzerland
| | - Mahsa Silatani
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, ISIC, FSB , CH-1015 Lausanne, Switzerland
| | - Etienne Baranoff
- School of Chemistry, University of Birmingham , Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, ISIC, FSB , CH-1015 Lausanne, Switzerland
| |
Collapse
|
44
|
Inokuchi Y, Ebata T, Rizzo TR. UV and IR Spectroscopy of Cold H2O(+)-Benzo-Crown Ether Complexes. J Phys Chem A 2015; 119:11113-8. [PMID: 26491792 DOI: 10.1021/acs.jpca.5b07033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The H2O(+) radical ion, produced in an electrospray ion source via charge transfer from Eu(3+), is encapsulated in benzo-15-crown-5 (B15C5) or benzo-18-crown-6 (B18C6). We measure UV photodissociation (UVPD) spectra of the (H2O·B15C5)(+) and (H2O·B18C6)(+) complexes in a cold, 22-pole ion trap. These complexes show sharp vibronic bands in the 35 700-37 600 cm(-1) region, similar to the case of neutral B15C5 or B18C6. These results indicate that the positive charge in the complexes is localized on H2O, giving the forms H2O(+)·B15C5 and H2O(+)·B18C6, in spite of the fact that the ionization energy of B15C5 and B18C6 is lower than that of H2O. The formation of the H2O(+) complexes and the suppression of the H3O(+) production through the reaction of H2O(+) and H2O can be attributed to the encapsulation of hydrated Eu(3+) clusters by B15C5 and B18C6. On the contrary, the main fragment ions subsequent to the UV excitation of these complexes are B15C5(+) and B18C6(+) radical ions; the charge transfer occurs from H2O(+) to B15C5 and B18C6 after the UV excitation. The position of the band origin for the H2O(+)·B18C6 complex (36323 cm(-1)) is almost the same as that for Rb(+)·B18C6 (36315 cm(-1)); the strength of the intermolecular interaction of H2O(+) with B18C6 is similar to that of Rb(+). The spectral features of the H2O(+)·B15C5 complex also resemble those of the Rb(+)·B15C5 ion. We measure IR-UV spectra of these complexes in the CH and OH stretching region. Four conformers are found for the H2O(+)·B15C5 complex, but there is one dominant form for the H2O(+)·B18C6 ion. This study demonstrates the production of radical ions by charge transfer from multivalent metal ions, their encapsulation by host molecules, and separate detection of their conformers by cold UV spectroscopy in the gas phase.
Collapse
Affiliation(s)
- Yoshiya Inokuchi
- Department of Chemistry, Graduate School of Science, Hiroshima University , Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takayuki Ebata
- Department of Chemistry, Graduate School of Science, Hiroshima University , Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Thomas R Rizzo
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne , Lausanne CH-1015, Switzerland
| |
Collapse
|
45
|
Elkins MH, Williams HL, Neumark DM. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent. J Chem Phys 2015; 142:234501. [DOI: 10.1063/1.4922441] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Madeline H. Elkins
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Holly L. Williams
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Daniel M. Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
46
|
|
47
|
Iglev H, Kolev SK, Rossmadl H, St Petkov P, Vayssilov GN. Hydrogen Atom Transfer from Water or Alcohols Activated by Presolvated Electrons. J Phys Chem Lett 2015; 6:986-992. [PMID: 26262857 DOI: 10.1021/acs.jpclett.5b00288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
High-energy irradiation of protic solvents can transiently introduce excess electrons that are implicated in a diverse range of reductive processes. Here we report the evolution of electron solvation in water and in alcohols following photodetachment from aqueous hydroxide or the corresponding alkoxides studied by two- and three-pulse femtosecond spectroscopy and ab initio molecular dynamic simulations. The experiments reveal an ultrafast recombination channel of the excess electrons. Through the calculations this channel emerges as an H-atom transfer process to the hydroxyl or alkoxy radical species from neighboring solvent molecules, which are activated as the presolvated electron occupies their antibonding orbitals. The initially low activation barrier in the early stages of electron solvation was found to increase (from 12 to 44 kJ/mol in water) as full solvation proceeded.
Collapse
Affiliation(s)
- Hristo Iglev
- †Physik-Department, Technische Universität München, James-Franck-Strasse, D-85748 Garching, Germany
| | - Stefan K Kolev
- ‡Faculty of Chemistry and Pharmacy, University of Sofia, Blvd. J. Bauchier 1, 1126 Sofia, Bulgaria
| | - Hubert Rossmadl
- †Physik-Department, Technische Universität München, James-Franck-Strasse, D-85748 Garching, Germany
| | - Petko St Petkov
- ‡Faculty of Chemistry and Pharmacy, University of Sofia, Blvd. J. Bauchier 1, 1126 Sofia, Bulgaria
- ∥Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Georgi N Vayssilov
- ‡Faculty of Chemistry and Pharmacy, University of Sofia, Blvd. J. Bauchier 1, 1126 Sofia, Bulgaria
| |
Collapse
|
48
|
Stähler J, Deinert JC, Wegkamp D, Hagen S, Wolf M. Real-time measurement of the vertical binding energy during the birth of a solvated electron. J Am Chem Soc 2015; 137:3520-4. [PMID: 25611976 DOI: 10.1021/ja511571y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Using femtosecond time-resolved two-photon photoelectron spectroscopy, we determine (i) the vertical binding energy (VBE = 0.8 eV) of electrons in the conduction band in supported amorphous solid water (ASW) layers, (ii) the time scale of ultrafast trapping at pre-existing sites (22 fs), and (iii) the initial VBE (1.4 eV) of solvated electrons before significant molecular reorganization sets in. Our results suggest that the excess electron dynamics prior to solvation are representative for bulk ASW.
Collapse
Affiliation(s)
- Julia Stähler
- Abteilung Physikalische Chemie, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Jan-Christoph Deinert
- Abteilung Physikalische Chemie, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Daniel Wegkamp
- Abteilung Physikalische Chemie, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Sebastian Hagen
- Abteilung Physikalische Chemie, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Martin Wolf
- Abteilung Physikalische Chemie, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
49
|
Wagner MS, Ilieva ED, Petkov PS, Nikolova RD, Kienberger R, Iglev H. Ultrafast hydrogen bond dynamics and partial electron transfer after photoexcitation of diethyl ester of 7-(diethylamino)-coumarin-3-phosphonic acid and its benzoxaphosphorin analog. Phys Chem Chem Phys 2015; 17:9919-26. [DOI: 10.1039/c4cp05727a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The solvation dynamics after optical excitation of two phosphono-substituted coumarin derivatives dissolved in various solutions are studied by fluorescence up-conversion spectroscopy and quantum chemical simulations.
Collapse
Affiliation(s)
- M. S. Wagner
- Physik-Department E11
- Technische Universität München
- 85748 Garching
- Germany
| | - E. D. Ilieva
- Physik-Department E11
- Technische Universität München
- 85748 Garching
- Germany
- Faculty of Chemistry and Pharmacy
| | - P. St. Petkov
- Faculty of Chemistry and Pharmacy
- Sofia University
- 1126 Sofia
- Bulgaria
- Engineering and Science
| | - R. D. Nikolova
- Faculty of Chemistry and Pharmacy
- Sofia University
- 1126 Sofia
- Bulgaria
| | - R. Kienberger
- Physik-Department E11
- Technische Universität München
- 85748 Garching
- Germany
| | - H. Iglev
- Physik-Department E11
- Technische Universität München
- 85748 Garching
- Germany
| |
Collapse
|
50
|
Kothe A, Wilke M, Moguilevski A, Engel N, Winter B, Kiyan IY, Aziz EF. Charge transfer to solvent dynamics in iodide aqueous solution studied at ionization threshold. Phys Chem Chem Phys 2015; 17:1918-24. [DOI: 10.1039/c4cp02482f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The population of charge-transfer-to-solvent states in iodide aqueous solution can undergo via non-resonant multiphoton electronic excitation above the vacuum level.
Collapse
Affiliation(s)
- Alexander Kothe
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| | - Martin Wilke
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| | - Alexandre Moguilevski
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| | - Nicholas Engel
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| | - Bernd Winter
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| | - Igor Yu. Kiyan
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| | - Emad F. Aziz
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| |
Collapse
|