1
|
Roske JJ, Yeeles JTP. Structural basis for processive daughter-strand synthesis and proofreading by the human leading-strand DNA polymerase Pol ε. Nat Struct Mol Biol 2024; 31:1921-1931. [PMID: 39112807 PMCID: PMC11638069 DOI: 10.1038/s41594-024-01370-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/11/2024] [Indexed: 10/18/2024]
Abstract
During chromosome replication, the nascent leading strand is synthesized by DNA polymerase epsilon (Pol ε), which associates with the sliding clamp processivity factor proliferating cell nuclear antigen (PCNA) to form a processive holoenzyme. For high-fidelity DNA synthesis, Pol ε relies on nucleotide selectivity and its proofreading ability to detect and excise a misincorporated nucleotide. Here, we present cryo-electron microscopy (cryo-EM) structures of human Pol ε in complex with PCNA, DNA and an incoming nucleotide, revealing how Pol ε associates with PCNA through its PCNA-interacting peptide box and additional unique features of its catalytic domain. Furthermore, by solving a series of cryo-EM structures of Pol ε at a mismatch-containing DNA, we elucidate how Pol ε senses and edits a misincorporated nucleotide. Our structures delineate steps along an intramolecular switching mechanism between polymerase and exonuclease activities, providing the basis for a proofreading mechanism in B-family replicative polymerases.
Collapse
|
2
|
Ghosh P, Betz K, Gutfreund C, Pal A, Marx A, Srivatsan SG. Structures of a DNA Polymerase Caught while Incorporating Responsive Dual-Functional Nucleotide Probes. Angew Chem Int Ed Engl 2024:e202414319. [PMID: 39428682 DOI: 10.1002/anie.202414319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Functionalizing nucleic acids using DNA polymerases is essential in biophysical and biotechnology applications. This study focuses on understanding how DNA polymerases recognize and incorporate nucleotides with diverse chemical modifications, aiming to develop advanced nucleotide probes. We present the crystal structures of ternary complexes of Thermus aquaticus DNA polymerase (KlenTaq) with C5-heterocycle-modified environment-sensitive 2'-deoxyuridine-5'-triphosphate (dUTP) probes. These nucleotides include SedUTP, BFdUTP and FBFdUTP, which bear selenophene, benzofuran and fluorobenzofuran, respectively, at the C5 position of uracil, and exhibit high conformational sensitivity. SedUTP and FBFdUTP serve as dual-app probes, combining a fluorophore with X-ray anomalous scattering Se or 19F NMR labels. Our study reveals that the size of the heterocycle influences how DNA polymerase families A and B incorporate these modified nucleotides during single nucleotide incorporation and primer extension reactions. Remarkably, the responsiveness of FBFdUTP enabled real-time monitoring of the binary complex formation and polymerase activity through fluorescence and 19F NMR spectroscopy. Comparative analysis of incorporation profiles, fluorescence, 19F NMR data, and crystal structures of ternary complexes highlights the plasticity of the enzyme. Key insight is provided into the role of gatekeeper amino acids (Arg660 and Arg587) in accommodating and processing these modified substrates, offering a structural basis for next-generation nucleotide probe development.
Collapse
Affiliation(s)
- Pulak Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Karin Betz
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Cédric Gutfreund
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Arindam Pal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Andreas Marx
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
3
|
Chen W, Chen B, Li X, Xu G, Yang L, Wu J, Yu H. Non-canonical amino acids uncover the significant impact of Tyr671 on Taq DNA polymerase catalytic activity. FEBS J 2024; 291:2876-2896. [PMID: 38362811 DOI: 10.1111/febs.17091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/20/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Responsible for synthesizing the complementary strand of the DNA template, DNA polymerase is a crucial enzyme in DNA replication, recombination and repair. A highly conserved tyrosine (Tyr), located at the C-terminus of the O-helix in family A DNA polymerases, plays a critical role in enzyme activity and fidelity. Here, we combined the technology of genetic code extension to incorporate non-canonical amino acids and molecular dynamics (MD) simulations to uncover the mechanisms by which Tyr671 impacts substrate binding and conformation transitions in a DNA polymerase from Thermus aquaticus. Five non-canonical amino acids, namely l-3,4-dihydroxyphenylalanine (l-DOPA), p-aminophenylalanine (pAF), p-acetylphenylalanine (pAcF), p-cyanophenylalanine (pCNF) and p-nitrophenylalanine (pNTF), were individually incorporated at position 671. Strikingly, Y671pAF and Y671DOPA were active, but with lower activity compared to Y671F and wild-type. Y671pAF showed a higher fidelity than the Y671F, despite both possessing lower fidelity than the wild-type. Metadynamics and long-timescale MD simulations were carried out to probe the role of mutations in affecting protein structure, including open conformation, open-to-closed conformation transition, closed conformation, and closed-to-open conformation transition. The MD simulations clearly revealed that the size of the 671 amino acid residue and interactions with substrate or nearby residues were critical for Tyr671 to determine enzyme activity and fidelity.
Collapse
Affiliation(s)
- Wanyi Chen
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| | - Binbin Chen
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| | - Xinjia Li
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| | - Gang Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| | - Haoran Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| |
Collapse
|
4
|
Durham RJ, Jayaraman V. Single-Molecule FRET Analyses of NMDA Receptors. Methods Mol Biol 2024; 2799:225-242. [PMID: 38727910 PMCID: PMC11164542 DOI: 10.1007/978-1-0716-3830-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Single-molecule fluorescence resonance energy transfer (smFRET) enables the real-time observation of conformational changes in a single protein molecule of interest. These observations are achieved by attaching fluorophores to proteins of interest in a site-specific manner and investigating the FRET between the fluorophores. Here we describe the method wherein the FRET is studied by adhering the protein molecules to a slide using affinity-based interactions and measuring the fluorophores' fluorescence intensity from a single molecule over time. The resulting information can be used to derive distance values for a point-to-point measurement within a protein or to calculate kinetic transition rates between various conformational states of a protein. Comparing these parameters between different conditions such as the presence of protein binding partners, application of ligands, or changes in the primary sequence of the protein can provide insights into protein structural changes as well as kinetics of these changes (if in the millisecond to second timescale) that underlie functional effects. Here we describe the procedure for conducting analyses of NMDA receptor conformational changes using the above methodology and provide a discussion of various considerations that affect the design, execution, and interpretation of similar smFRET studies.
Collapse
Affiliation(s)
- Ryan J Durham
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
5
|
Ivanovaitė ŠRN, Paksaitė J, Kopu Stas A, Karzaitė G, Rutkauskas D, Silanskas A, Sasnauskas G, Zaremba M, Jones SK, Tutkus M. smFRET Detection of Cis and Trans DNA Interactions by the BfiI Restriction Endonuclease. J Phys Chem B 2023. [PMID: 37452775 PMCID: PMC10388346 DOI: 10.1021/acs.jpcb.3c03269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Protein-DNA interactions are fundamental to many biological processes. Proteins must find their target site on a DNA molecule to perform their function, and mechanisms for target search differ across proteins. Especially challenging phenomena to monitor and understand are transient binding events that occur across two DNA target sites, whether occurring in cis or trans. Type IIS restriction endonucleases rely on such interactions. They play a crucial role in safeguarding bacteria against foreign DNA, including viral genetic material. BfiI, a type IIS restriction endonuclease, acts upon a specific asymmetric sequence, 5-ACTGGG-3, and precisely cuts both upper and lower DNA strands at fixed locations downstream of this sequence. Here, we present two single-molecule Förster resonance energy-transfer-based assays to study such interactions in a BfiI-DNA system. The first assay focuses on DNA looping, detecting both "Phi"- and "U"-shaped DNA looping events. The second assay only allows in trans BfiI-target DNA interactions, improving the specificity and reducing the limits on observation time. With total internal reflection fluorescence microscopy, we directly observe on- and off-target binding events and characterize BfiI binding events. Our results show that BfiI binds longer to target sites and that BfiI rarely changes conformations during binding. This newly developed assay could be employed for other DNA-interacting proteins that bind two targets and for the dsDNA substrate BfiI-PAINT, a useful strategy for DNA stretch assays and other super-resolution fluorescence microscopy studies.
Collapse
Affiliation(s)
- Ša Ru Nė Ivanovaitė
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Savanorių 231, Vilnius LT-02300, Lithuania
- Vilnius University, Life Sciences Center, Institute of Biotechnology, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Justė Paksaitė
- Vilnius University, Life Sciences Center, Institute of Biotechnology, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Aurimas Kopu Stas
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Savanorių 231, Vilnius LT-02300, Lithuania
- Vilnius University, Life Sciences Center, Institute of Biotechnology, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Giedrė Karzaitė
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Savanorių 231, Vilnius LT-02300, Lithuania
| | - Danielis Rutkauskas
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Savanorių 231, Vilnius LT-02300, Lithuania
| | - Arunas Silanskas
- Vilnius University, Life Sciences Center, Institute of Biotechnology, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Giedrius Sasnauskas
- Vilnius University, Life Sciences Center, Institute of Biotechnology, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Mindaugas Zaremba
- Vilnius University, Life Sciences Center, Institute of Biotechnology, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Stephen K Jones
- VU LSC-EMBL Partnership for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Marijonas Tutkus
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Savanorių 231, Vilnius LT-02300, Lithuania
- Vilnius University, Life Sciences Center, Institute of Biotechnology, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| |
Collapse
|
6
|
Park J, Herrmann GK, Mitchell PG, Sherman MB, Yin YW. Polγ coordinates DNA synthesis and proofreading to ensure mitochondrial genome integrity. Nat Struct Mol Biol 2023; 30:812-823. [PMID: 37202477 PMCID: PMC10920075 DOI: 10.1038/s41594-023-00980-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/28/2023] [Indexed: 05/20/2023]
Abstract
Accurate replication of mitochondrial DNA (mtDNA) by DNA polymerase γ (Polγ) is essential for maintaining cellular energy supplies, metabolism, and cell cycle control. To illustrate the structural mechanism for Polγ coordinating polymerase (pol) and exonuclease (exo) activities to ensure rapid and accurate DNA synthesis, we determined four cryo-EM structures of Polγ captured after accurate or erroneous incorporation to a resolution of 2.4-3.0 Å. The structures show that Polγ employs a dual-checkpoint mechanism to sense nucleotide misincorporation and initiate proofreading. The transition from replication to error editing is accompanied by increased dynamics in both DNA and enzyme, in which the polymerase relaxes its processivity and the primer-template DNA unwinds, rotates, and backtracks to shuttle the mismatch-containing primer terminus 32 Å to the exo site for editing. Our structural and functional studies also provide a foundation for analyses of Polγ mutation-induced human diseases and aging.
Collapse
Affiliation(s)
- Joon Park
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Geoffrey K Herrmann
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Patrick G Mitchell
- Division of CryoEM and Bioimaging, Stanford Synchrotron Radiation Lightsource, Stanford Linear Accelerator Center National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA
| | - Michael B Sherman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Y Whitney Yin
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
7
|
Dangerfield TL, Johnson KA. Design and interpretation of experiments to establish enzyme pathway and define the role of conformational changes in enzyme specificity. Methods Enzymol 2023; 685:461-492. [PMID: 37245912 DOI: 10.1016/bs.mie.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We describe the experimental methods and analysis to define the role of enzyme conformational changes in specificity based on published studies using DNA polymerases as an ideal model system. Rather than give details of how to perform transient-state and single-turnover kinetic experiments, we focus on the rationale of the experimental design and interpretation. We show how initial experiments to measure kcat and kcat/Km can accurately quantify specificity but do not define its underlying mechanistic basis. We describe methods to fluorescently label enzymes to monitor conformational changes and to correlate fluorescence signals with rapid-chemical-quench flow assays to define the steps in the pathway. Measurements of the rate of product release and of the kinetics of the reverse reaction complete the kinetic and thermodynamic description of the full reaction pathway. This analysis showed that the substrate-induced change in enzyme structure from an open to a closed state was much faster than rate-limiting chemical bond formation. However, because the reverse of the conformational change was much slower than chemistry, specificity is governed solely by the product of the binding constant for the initial weak substrate binding and the rate constant for the conformational change (kcat/Km=K1k2) so that the specificity constant does not include kcat. The enzyme conformational change leads to a closed complex in which the substrate is bound tightly and is committed to the forward reaction. In contrast, an incorrect substrate is bound weakly, and the rate of chemistry is slow, so the mismatch is released from the enzyme rapidly. Thus, the substrate-induced-fit is the major determinant of specificity. The methods outlined here should be applicable to other enzyme systems.
Collapse
Affiliation(s)
- Tyler L Dangerfield
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Kenneth A Johnson
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
8
|
Dorawa S, Werbowy O, Plotka M, Kaczorowska AK, Makowska J, Kozlowski LP, Fridjonsson OH, Hreggvidsson GO, Aevarsson A, Kaczorowski T. Molecular Characterization of a DNA Polymerase from Thermus thermophilus MAT72 Phage vB_Tt72: A Novel Type-A Family Enzyme with Strong Proofreading Activity. Int J Mol Sci 2022; 23:ijms23147945. [PMID: 35887293 PMCID: PMC9324360 DOI: 10.3390/ijms23147945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
We present a structural and functional analysis of the DNA polymerase of thermophilic Thermus thermophilus MAT72 phage vB_Tt72. The enzyme shows low sequence identity (<30%) to the members of the type-A family of DNA polymerases, except for two yet uncharacterized DNA polymerases of T. thermophilus phages: φYS40 (91%) and φTMA (90%). The Tt72 polA gene does not complement the Escherichia colipolA− mutant in replicating polA-dependent plasmid replicons. It encodes a 703-aa protein with a predicted molecular weight of 80,490 and an isoelectric point of 5.49. The enzyme contains a nucleotidyltransferase domain and a 3′-5′ exonuclease domain that is engaged in proofreading. Recombinant enzyme with His-tag at the N-terminus was overproduced in E. coli, subsequently purified by immobilized metal affinity chromatography, and biochemically characterized. The enzyme exists in solution in monomeric form and shows optimum activity at pH 8.5, 25 mM KCl, and 0.5 mM Mg2+. Site-directed analysis proved that highly-conserved residues D15, E17, D78, D180, and D184 in 3′-5′ exonuclease and D384 and D615 in the nucleotidyltransferase domain are critical for the enzyme’s activity. Despite the source of origin, the Tt72 DNA polymerase has not proven to be highly thermoresistant, with a temperature optimum at 55 °C. Above 60 °C, the rapid loss of function follows with no activity > 75 °C. However, during heat treatment (10 min at 75 °C), trehalose, trimethylamine N-oxide, and betaine protected the enzyme against thermal inactivation. A midpoint of thermal denaturation at Tm = 74.6 °C (ΔHcal = 2.05 × 104 cal mol−1) and circular dichroism spectra > 60 °C indicate the enzyme’s moderate thermal stability.
Collapse
Affiliation(s)
- Sebastian Dorawa
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (S.D.); (O.W.); (M.P.)
| | - Olesia Werbowy
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (S.D.); (O.W.); (M.P.)
| | - Magdalena Plotka
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (S.D.); (O.W.); (M.P.)
| | - Anna-Karina Kaczorowska
- Collection of Plasmids and Microorganisms, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland;
| | - Joanna Makowska
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland;
| | - Lukasz P. Kozlowski
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warsaw, Poland;
| | | | - Gudmundur O. Hreggvidsson
- Matis, 113 Reykjavik, Iceland; (O.H.F.); (G.O.H.); (A.A.)
- Department of Biology, School of Engineering and Natural Sciences, University of Iceland, 102 Reykjavik, Iceland
| | | | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (S.D.); (O.W.); (M.P.)
- Correspondence:
| |
Collapse
|
9
|
Millar DP. Conformational Dynamics of DNA Polymerases Revealed at the Single-Molecule Level. Front Mol Biosci 2022; 9:826593. [PMID: 35281261 PMCID: PMC8913937 DOI: 10.3389/fmolb.2022.826593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/20/2022] [Indexed: 12/25/2022] Open
Abstract
DNA polymerases are intrinsically dynamic macromolecular machines. The purpose of this review is to describe the single-molecule Förster resonance energy transfer (smFRET) methods that are used to probe the conformational dynamics of DNA polymerases, focusing on E. coli DNA polymerase I. The studies reviewed here reveal the conformational dynamics underpinning the nucleotide selection, proofreading and 5′ nuclease activities of Pol I. Moreover, the mechanisms revealed for Pol I are likely employed across the DNA polymerase family. smFRET methods have also been used to examine other aspects of DNA polymerase activity.
Collapse
|
10
|
Evans GW, Craggs T, Kapanidis AN. The Rate-limiting Step of DNA Synthesis by DNA Polymerase Occurs in the Fingers-closed Conformation. J Mol Biol 2022; 434:167410. [PMID: 34929202 PMCID: PMC8783057 DOI: 10.1016/j.jmb.2021.167410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/22/2021] [Accepted: 12/12/2021] [Indexed: 12/03/2022]
Abstract
DNA polymerases maintain genomic integrity by copying DNA with high fidelity, part of which relies on the polymerase fingers opening-closing transition, a series of conformational changes during the DNA synthesis reaction cycle. Fingers opening and closing has been challenging to study, mainly due to the need to synchronise molecular ensembles. We previously studied fingers opening-closing on single polymerase-DNA complexes using single-molecule FRET; however, our work was limited to pre-chemistry reaction steps. Here, we advance our analysis to extensible substrates, and observe DNA polymerase (Pol) conformational changes across the entire DNA polymerisation reaction in real-time, gaining direct access to an elusive post-chemistry step rate-limiting for DNA synthesis. Our results showed that Pol adopts the fingers-closed conformation during polymerisation, and that the post-chemistry rate-limiting step occurs in the fingers-closed conformation. We found that fingers-opening in the Pol-DNA binary complex in the absence of polymerisation is slow (∼5.3 s-1), and comparable to the rate of fingers-opening after polymerisation (3.4 s-1); this indicates that the fingers-opening step itself could be largely responsible for the slow post-chemistry step, with the residual rate potentially accounted for by pyrophosphase release. We also observed that DNA chain-termination of the 3' end of the primer increases substantially the rate of fingers-opening in the Pol-DNA binary complex (5.3 → 29 s-1), demonstrating that the 3'-OH residue is important for the kinetics of fingers conformational changes. Our observations offer mechanistic insight and tools to offer mechanistic insight for all nucleic acid polymerases.
Collapse
Affiliation(s)
- Geraint W Evans
- Department of Physics and Biological Physics Research Group, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom. https://twitter.com/geraintwe
| | - Timothy Craggs
- Department of Physics and Biological Physics Research Group, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom; Sheffield Institute for Nucleic Acids, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, United Kingdom. https://twitter.com/Craggs_Lab
| | - Achillefs N Kapanidis
- Department of Physics and Biological Physics Research Group, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom.
| |
Collapse
|
11
|
Fu J, Wu L, Hu G, Li F, Ge Q, Lu Z, Tu J. Solid-state nanopore analysis on the conformation change of DNA polymerase I induced by a DNA substrate. Analyst 2022; 147:3087-3095. [DOI: 10.1039/d2an00567k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We studied the conformational changes between a Klenow fragment and its monomer complex with a DNA substrate using a SiN nanopore and found that the monomer complex has a tighter structure and transports slower.
Collapse
Affiliation(s)
- Jiye Fu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Linlin Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Gang Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Fuyao Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
12
|
Dangerfield TL, Kirmizialtin S, Johnson KA. Conformational dynamics during misincorporation and mismatch extension defined using a DNA polymerase with a fluorescent artificial amino acid. J Biol Chem 2021; 298:101451. [PMID: 34838820 PMCID: PMC8715121 DOI: 10.1016/j.jbc.2021.101451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/09/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022] Open
Abstract
High-fidelity DNA polymerases select the correct nucleotide over the structurally similar incorrect nucleotides with extremely high specificity while maintaining fast rates of incorporation. Previous analysis revealed the conformational dynamics and complete kinetic pathway governing correct nucleotide incorporation using a high-fidelity DNA polymerase variant containing a fluorescent unnatural amino acid. Here we extend this analysis to investigate the kinetics of nucleotide misincorporation and mismatch extension. We report the specificity constants for all possible misincorporations and characterize the conformational dynamics of the enzyme during misincorporation and mismatch extension. We present free energy profiles based on the kinetic measurements and discuss the effect of different steps on specificity. During mismatch incorporation and subsequent extension with the correct nucleotide, the rates of the conformational change and chemistry are both greatly reduced. The nucleotide dissociation rate, however, increases to exceed the rate of chemistry. To investigate the structural basis for discrimination against mismatched nucleotides, we performed all atom molecular dynamics simulations on complexes with either the correct or mismatched nucleotide bound at the polymerase active site. The simulations suggest that the closed form of the enzyme with a mismatch bound is greatly destabilized due to weaker interactions with active site residues, nonideal base pairing, and a large increase in the distance from the 3'-OH group of the primer strand to the α-phosphate of the incoming nucleotide, explaining the reduced rates of misincorporation. The observed kinetic and structural mechanisms governing nucleotide misincorporation reveal the general principles likely applicable to other high-fidelity DNA polymerases.
Collapse
Affiliation(s)
- Tyler L Dangerfield
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, USA
| | - Serdal Kirmizialtin
- Chemistry Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kenneth A Johnson
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, USA.
| |
Collapse
|
13
|
Li QS, Shu YG, Ou-Yang ZC, Li M. Kinetic assays of DNA polymerase fidelity: A theoretical perspective beyond Michaelis-Menten kinetics. Phys Rev E 2021; 104:014408. [PMID: 34412358 DOI: 10.1103/physreve.104.014408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/23/2021] [Indexed: 11/07/2022]
Abstract
The high fidelity of DNA polymerase (DNAP) is critical for the faithful replication of DNA. There are several quantitative approaches to measure DNAP fidelity. Directly counting the error frequency in the replication products gives the true fidelity but it turns out very hard to implement in practice. Two biochemical kinetic approaches, the steady-state assay and the transient-state assay, were then suggested and widely adopted. In these assays, the error frequency is indirectly estimated by using kinetic theories combined with the measured apparent kinetic rates. However, whether it is equivalent to the true fidelity has never been clarified theoretically, and in particular there are different strategies using these assays to quantify the proofreading efficiency of DNAP but often lead to inconsistent results. In this paper, we make a comprehensive examination on the theoretical foundation of the two kinetic assays, based on the theory of DNAP fidelity recently proposed by us. Our studies show that while the conventional kinetic assays are generally valid to quantify the discrimination efficiency of DNAP, they are valid to quantify the proofreading efficiency of DNAP only when the kinetic parameters satisfy some constraints which will be given explicitly in this paper. These results may inspire more carefully-designed experiments to quantify DNAP fidelity.
Collapse
Affiliation(s)
- Qiu-Shi Li
- School of Physical Science, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 101400, People's Republic of China
| | - Yao-Gen Shu
- Wenzhou Institute, University of Chinese Academy of Sciences, No 1, Jinlian Road, Longwan District, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Zhong-Can Ou-Yang
- Institute of Theoretical Physics, Chinese Academy of Sciences, Zhong Guan Cun East Street 55, P. O. Box 2735, Beijing 100190, People's Republic of China
| | - Ming Li
- School of Physical Science, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 101400, People's Republic of China
| |
Collapse
|
14
|
Chim N, Meza RA, Trinh AM, Yang K, Chaput JC. Following replicative DNA synthesis by time-resolved X-ray crystallography. Nat Commun 2021; 12:2641. [PMID: 33976175 PMCID: PMC8113479 DOI: 10.1038/s41467-021-22937-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/06/2021] [Indexed: 11/09/2022] Open
Abstract
The mechanism of DNA synthesis has been inferred from static structures, but the absence of temporal information raises longstanding questions about the order of events in one of life's most central processes. Here we follow the reaction pathway of a replicative DNA polymerase using time-resolved X-ray crystallography to elucidate the order and transition between intermediates. In contrast to the canonical model, the structural changes observed in the time-lapsed images reveal a catalytic cycle in which translocation precedes catalysis. The translocation step appears to follow a push-pull mechanism where the O-O1 loop of the finger subdomain acts as a pawl to facilitate unidirectional movement along the template with conserved tyrosine residues 714 and 719 functioning as tandem gatekeepers of DNA synthesis. The structures capture the precise order of critical events that may be a general feature of enzymatic catalysis among replicative DNA polymerases.
Collapse
Affiliation(s)
- Nicholas Chim
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Roman A Meza
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Anh M Trinh
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Kefan Yang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, USA
| | - John C Chaput
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA. .,Department of Chemistry, University of California, Irvine, CA, USA. .,Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA. .,Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, USA.
| |
Collapse
|
15
|
Bocanegra R, Ismael Plaza GA, Pulido CR, Ibarra B. DNA replication machinery: Insights from in vitro single-molecule approaches. Comput Struct Biotechnol J 2021; 19:2057-2069. [PMID: 33995902 PMCID: PMC8085672 DOI: 10.1016/j.csbj.2021.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/03/2021] [Accepted: 04/03/2021] [Indexed: 11/16/2022] Open
Abstract
The replisome is the multiprotein molecular machinery that replicates DNA. The replisome components work in precise coordination to unwind the double helix of the DNA and replicate the two strands simultaneously. The study of DNA replication using in vitro single-molecule approaches provides a novel quantitative understanding of the dynamics and mechanical principles that govern the operation of the replisome and its components. ‘Classical’ ensemble-averaging methods cannot obtain this information. Here we describe the main findings obtained with in vitro single-molecule methods on the performance of individual replisome components and reconstituted prokaryotic and eukaryotic replisomes. The emerging picture from these studies is that of stochastic, versatile and highly dynamic replisome machinery in which transient protein-protein and protein-DNA associations are responsible for robust DNA replication.
Collapse
Affiliation(s)
- Rebeca Bocanegra
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - G A Ismael Plaza
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - Carlos R Pulido
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - Borja Ibarra
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
16
|
Lerner E, Barth A, Hendrix J, Ambrose B, Birkedal V, Blanchard SC, Börner R, Sung Chung H, Cordes T, Craggs TD, Deniz AA, Diao J, Fei J, Gonzalez RL, Gopich IV, Ha T, Hanke CA, Haran G, Hatzakis NS, Hohng S, Hong SC, Hugel T, Ingargiola A, Joo C, Kapanidis AN, Kim HD, Laurence T, Lee NK, Lee TH, Lemke EA, Margeat E, Michaelis J, Michalet X, Myong S, Nettels D, Peulen TO, Ploetz E, Razvag Y, Robb NC, Schuler B, Soleimaninejad H, Tang C, Vafabakhsh R, Lamb DC, Seidel CAM, Weiss S. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. eLife 2021; 10:e60416. [PMID: 33779550 PMCID: PMC8007216 DOI: 10.7554/elife.60416] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current 'state of the art' from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of 'soft recommendations' about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage 'open science' practices.
Collapse
Affiliation(s)
- Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Anders Barth
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt UniversityDiepenbeekBelgium
| | - Benjamin Ambrose
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Victoria Birkedal
- Department of Chemistry and iNANO center, Aarhus UniversityAarhusDenmark
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
| | - Richard Börner
- Laserinstitut HS Mittweida, University of Applied Science MittweidaMittweidaGermany
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität MünchenPlanegg-MartinsriedGermany
| | - Timothy D Craggs
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati School of MedicineCincinnatiUnited States
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology and The Institute for Biophysical Dynamics, University of ChicagoChicagoUnited States
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia UniversityNew YorkUnited States
| | - Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Howard Hughes Medical InstituteBaltimoreUnited States
| | - Christian A Hanke
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of ScienceRehovotIsrael
| | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Centre, University of CopenhagenCopenhagenDenmark
- Denmark Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National UniversitySeoulRepublic of Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science and Department of Physics, Korea UniversitySeoulRepublic of Korea
| | - Thorsten Hugel
- Institute of Physical Chemistry and Signalling Research Centres BIOSS and CIBSS, University of FreiburgFreiburgGermany
| | - Antonino Ingargiola
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of TechnologyDelftNetherlands
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of OxfordOxfordUnited Kingdom
| | - Harold D Kim
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Ted Laurence
- Physical and Life Sciences Directorate, Lawrence Livermore National LaboratoryLivermoreUnited States
| | - Nam Ki Lee
- School of Chemistry, Seoul National UniversitySeoulRepublic of Korea
| | - Tae-Hee Lee
- Department of Chemistry, Pennsylvania State UniversityUniversity ParkUnited States
| | - Edward A Lemke
- Departments of Biology and Chemistry, Johannes Gutenberg UniversityMainzGermany
- Institute of Molecular Biology (IMB)MainzGermany
| | - Emmanuel Margeat
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Universitié de MontpellierMontpellierFrance
| | | | - Xavier Michalet
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Sua Myong
- Department of Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| | - Daniel Nettels
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Thomas-Otavio Peulen
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Evelyn Ploetz
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Yair Razvag
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Nicole C Robb
- Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Benjamin Schuler
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Hamid Soleimaninejad
- Biological Optical Microscopy Platform (BOMP), University of MelbourneParkvilleAustralia
| | - Chun Tang
- College of Chemistry and Molecular Engineering, PKU-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Peking UniversityBeijingChina
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Claus AM Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
- Department of Physiology, CaliforniaNanoSystems Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
17
|
Pauszek RF, Lamichhane R, Rajkarnikar Singh A, Millar DP. Single-molecule view of coordination in a multi-functional DNA polymerase. eLife 2021; 10:e62046. [PMID: 33704066 PMCID: PMC7952088 DOI: 10.7554/elife.62046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/28/2020] [Indexed: 01/01/2023] Open
Abstract
Replication and repair of genomic DNA requires the actions of multiple enzymatic functions that must be coordinated in order to ensure efficient and accurate product formation. Here, we have used single-molecule FRET microscopy to investigate the physical basis of functional coordination in DNA polymerase I (Pol I) from Escherichia coli, a key enzyme involved in lagging-strand replication and base excision repair. Pol I contains active sites for template-directed DNA polymerization and 5' flap processing in separate domains. We show that a DNA substrate can spontaneously transfer between polymerase and 5' nuclease domains during a single encounter with Pol I. Additionally, we show that the flexibly tethered 5' nuclease domain adopts different positions within Pol I-DNA complexes, depending on the nature of the DNA substrate. Our results reveal the structural dynamics that underlie functional coordination in Pol I and are likely relevant to other multi-functional DNA polymerases.
Collapse
Affiliation(s)
- Raymond F Pauszek
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Rajan Lamichhane
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Arishma Rajkarnikar Singh
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - David P Millar
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| |
Collapse
|
18
|
Vink JNA, Brouns SJJ, Hohlbein J. Extracting Transition Rates in Particle Tracking Using Analytical Diffusion Distribution Analysis. Biophys J 2020; 119:1970-1983. [PMID: 33086040 DOI: 10.1016/j.bpj.2020.09.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 10/23/2022] Open
Abstract
Single-particle tracking is an important technique in the life sciences to understand the kinetics of biomolecules. The analysis of apparent diffusion coefficients in vivo, for example, enables researchers to determine whether biomolecules are moving alone, as part of a larger complex, or are bound to large cellular components such as the membrane or chromosomal DNA. A remaining challenge has been to retrieve quantitative kinetic models, especially for molecules that rapidly switch between different diffusional states. Here, we present analytical diffusion distribution analysis (anaDDA), a framework that allows for extracting transition rates from distributions of apparent diffusion coefficients calculated from short trajectories that feature less than 10 localizations per track. Under the assumption that the system is Markovian and diffusion is purely Brownian, we show that theoretically predicted distributions accurately match simulated distributions and that anaDDA outperforms existing methods to retrieve kinetics, especially in the fast regime of 0.1-10 transitions per imaging frame. AnaDDA does account for the effects of confinement and tracking window boundaries. Furthermore, we added the option to perform global fitting of data acquired at different frame times to allow complex models with multiple states to be fitted confidently. Previously, we have started to develop anaDDA to investigate the target search of CRISPR-Cas complexes. In this work, we have optimized the algorithms and reanalyzed experimental data of DNA polymerase I diffusing in live Escherichia coli. We found that long-lived DNA interaction by DNA polymerase are more abundant upon DNA damage, suggesting roles in DNA repair. We further revealed and quantified fast DNA probing interactions that last shorter than 10 ms. AnaDDA pushes the boundaries of the timescale of interactions that can be probed with single-particle tracking and is a mathematically rigorous framework that can be further expanded to extract detailed information about the behavior of biomolecules in living cells.
Collapse
Affiliation(s)
- Jochem N A Vink
- Department of Bionanoscience, Delft University of Technology, HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands.
| | - Johannes Hohlbein
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, the Netherlands; Microspectroscopy Reasearch Facility, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
19
|
Ambrose B, Baxter JM, Cully J, Willmott M, Steele EM, Bateman BC, Martin-Fernandez ML, Cadby A, Shewring J, Aaldering M, Craggs TD. The smfBox is an open-source platform for single-molecule FRET. Nat Commun 2020; 11:5641. [PMID: 33159061 PMCID: PMC7648814 DOI: 10.1038/s41467-020-19468-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 10/08/2020] [Indexed: 01/08/2023] Open
Abstract
Single-molecule Förster Resonance Energy Transfer (smFRET) is a powerful technique capable of resolving both relative and absolute distances within and between structurally dynamic biomolecules. High instrument costs, and a lack of open-source hardware and acquisition software have limited smFRET’s broad application by non-specialists. Here, we present the smfBox, a cost-effective confocal smFRET platform, providing detailed build instructions, open-source acquisition software, and full validation, thereby democratising smFRET for the wider scientific community. Broad uptake of smFRET has been hindered by high instrument costs and a lack of open-source hardware and acquisition software. Here, the authors present the smfBox, a cost-effective open-source platform capable of measuring precise FRET efficiencies between dyes on freely diffusing single molecules.
Collapse
Affiliation(s)
- Benjamin Ambrose
- Sheffield Institute for Nucleic Acids, Department of Chemistry, University of Sheffield, Sheffield, UK
| | - James M Baxter
- Sheffield Institute for Nucleic Acids, Department of Chemistry, University of Sheffield, Sheffield, UK
| | - John Cully
- Sheffield Institute for Nucleic Acids, Department of Chemistry, University of Sheffield, Sheffield, UK
| | - Matthew Willmott
- Sheffield Institute for Nucleic Acids, Department of Chemistry, University of Sheffield, Sheffield, UK
| | - Elliot M Steele
- Department of Physics, University of Sheffield, Sheffield, UK
| | - Benji C Bateman
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxford, UK
| | | | - Ashley Cadby
- Department of Physics, University of Sheffield, Sheffield, UK
| | - Jonathan Shewring
- Sheffield Institute for Nucleic Acids, Department of Chemistry, University of Sheffield, Sheffield, UK
| | - Marleen Aaldering
- Sheffield Institute for Nucleic Acids, Department of Chemistry, University of Sheffield, Sheffield, UK
| | - Timothy D Craggs
- Sheffield Institute for Nucleic Acids, Department of Chemistry, University of Sheffield, Sheffield, UK.
| |
Collapse
|
20
|
Abstract
DNA polymerases play a central role in biology by transferring genetic information from one generation to the next during cell division. Harnessing the power of these enzymes in the laboratory has fueled an increase in biomedical applications that involve the synthesis, amplification, and sequencing of DNA. However, the high substrate specificity exhibited by most naturally occurring DNA polymerases often precludes their use in practical applications that require modified substrates. Moving beyond natural genetic polymers requires sophisticated enzyme-engineering technologies that can be used to direct the evolution of engineered polymerases that function with tailor-made activities. Such efforts are expected to uniquely drive emerging applications in synthetic biology by enabling the synthesis, replication, and evolution of synthetic genetic polymers with new physicochemical properties.
Collapse
|
21
|
Fijen C, Mahmoud MM, Kronenberg M, Kaup R, Fontana M, Towle-Weicksel JB, Sweasy JB, Hohlbein J. Using single-molecule FRET to probe the nucleotide-dependent conformational landscape of polymerase β-DNA complexes. J Biol Chem 2020; 295:9012-9020. [PMID: 32385112 PMCID: PMC7335799 DOI: 10.1074/jbc.ra120.013049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/07/2020] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic DNA polymerase β (Pol β) plays an important role in cellular DNA repair, as it fills short gaps in dsDNA that result from removal of damaged bases. Since defects in DNA repair may lead to cancer and genetic instabilities, Pol β has been extensively studied, especially its mechanisms for substrate binding and a fidelity-related conformational change referred to as "fingers closing." Here, we applied single-molecule FRET to measure distance changes associated with DNA binding and prechemistry fingers movement of human Pol β. First, using a doubly labeled DNA construct, we show that Pol β bends the gapped DNA substrate less than indicated by previously reported crystal structures. Second, using acceptor-labeled Pol β and donor-labeled DNA, we visualized dynamic fingers closing in single Pol β-DNA complexes upon addition of complementary nucleotides and derived rates of conformational changes. We further found that, while incorrect nucleotides are quickly rejected, they nonetheless stabilize the polymerase-DNA complex, suggesting that Pol β, when bound to a lesion, has a strong commitment to nucleotide incorporation and thus repair. In summary, the observation and quantification of fingers movement in human Pol β reported here provide new insights into the delicate mechanisms of prechemistry nucleotide selection.
Collapse
Affiliation(s)
- Carel Fijen
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, The Netherlands; Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA.
| | - Mariam M Mahmoud
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Meike Kronenberg
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, The Netherlands
| | - Rebecca Kaup
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, The Netherlands
| | - Mattia Fontana
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, The Netherlands
| | - Jamie B Towle-Weicksel
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Joann B Sweasy
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Johannes Hohlbein
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, The Netherlands; Microspectroscopy Research Facility, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
22
|
Craggs TD, Sustarsic M, Plochowietz A, Mosayebi M, Kaju H, Cuthbert A, Hohlbein J, Domicevica L, Biggin PC, Doye JPK, Kapanidis AN. Substrate conformational dynamics facilitate structure-specific recognition of gapped DNA by DNA polymerase. Nucleic Acids Res 2020; 47:10788-10800. [PMID: 31544938 PMCID: PMC6846080 DOI: 10.1093/nar/gkz797] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 09/02/2019] [Accepted: 09/18/2019] [Indexed: 01/23/2023] Open
Abstract
DNA-binding proteins utilise different recognition mechanisms to locate their DNA targets; some proteins recognise specific DNA sequences, while others interact with specific DNA structures. While sequence-specific DNA binding has been studied extensively, structure-specific recognition mechanisms remain unclear. Here, we study structure-specific DNA recognition by examining the structure and dynamics of DNA polymerase I Klenow Fragment (Pol) substrates both alone and in DNA–Pol complexes. Using a docking approach based on a network of 73 distances collected using single-molecule FRET, we determined a novel solution structure of the single-nucleotide-gapped DNA–Pol binary complex. The structure resembled existing crystal structures with regards to the downstream primer-template DNA substrate, and revealed a previously unobserved sharp bend (∼120°) in the DNA substrate; this pronounced bend was present in living cells. MD simulations and single-molecule assays also revealed that 4–5 nt of downstream gap-proximal DNA are unwound in the binary complex. Further, experiments and coarse-grained modelling showed the substrate alone frequently adopts bent conformations with 1–2 nt fraying around the gap, suggesting a mechanism wherein Pol recognises a pre-bent, partially-melted conformation of gapped DNA. We propose a general mechanism for substrate recognition by structure-specific enzymes driven by protein sensing of the conformational dynamics of their DNA substrates.
Collapse
Affiliation(s)
- Timothy D Craggs
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Marko Sustarsic
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Anne Plochowietz
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Majid Mosayebi
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK.,School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19538-33511, Iran
| | - Hendrik Kaju
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Andrew Cuthbert
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Johannes Hohlbein
- Laboratory of Biophysics, Wageningen University & Research, Wageningen 6708 WE, The Netherlands.,Microspectroscopy Research Facility Wageningen, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Laura Domicevica
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| |
Collapse
|
23
|
Enzymatic Cleavage of 3'-Esterified Nucleotides Enables a Long, Continuous DNA Synthesis. Sci Rep 2020; 10:7515. [PMID: 32372056 PMCID: PMC7200780 DOI: 10.1038/s41598-020-64541-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
The reversible dye-terminator (RDT)-based DNA sequencing-by-synthesis (SBS) chemistry has driven the advancement of the next-generation sequencing technologies for the past two decades. The RDT-based SBS chemistry relies on the DNA polymerase reaction to incorporate the RDT nucleotide (NT) for extracting DNA sequence information. The main drawback of this chemistry is the "DNA scar" issue since the removal of dye molecule from the RDT-NT after each sequencing reaction cycle leaves an extra chemical residue in the newly synthesized DNA. To circumvent this problem, we designed a novel class of reversible (2-aminoethoxy)-3-propionyl (Aep)-dNTPs by esterifying the 3'-hydroxyl group (3'-OH) of deoxyribonucleoside triphosphate (dNTP) and examined the NT-incorporation activities by A-family DNA polymerases. Using the large fragment of both Bacillus stearothermophilus (BF) and E. coli DNA polymerase I (KF) as model enzymes, we further showed that both proteins efficiently and faithfully incorporated the 3'-Aep-dNMP. Additionally, we analyzed the post-incorporation product of N + 1 primer and confirmed that the 3'-protecting group of 3'-Aep-dNMP was converted back to a normal 3'-OH after it was incorporated into the growing DNA chain by BF. By applying all four 3'-Aep-dNTPs and BF for an in vitro DNA synthesis reaction, we demonstrated that the enzyme-mediated deprotection of inserted 3'-Aep-dNMP permits a long, continuous, and scar-free DNA synthesis.
Collapse
|
24
|
Marx A, Betz K. The Structural Basis for Processing of Unnatural Base Pairs by DNA Polymerases. Chemistry 2020; 26:3446-3463. [PMID: 31544987 PMCID: PMC7155079 DOI: 10.1002/chem.201903525] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/17/2019] [Indexed: 12/16/2022]
Abstract
Unnatural base pairs (UBPs) greatly increase the diversity of DNA and RNA, furthering their broad range of molecular biological and biotechnological approaches. Different candidates have been developed whereby alternative hydrogen-bonding patterns and hydrophobic and packing interactions have turned out to be the most promising base-pairing concepts to date. The key in many applications is the highly efficient and selective acceptance of artificial base pairs by DNA polymerases, which enables amplification of the modified DNA. In this Review, computational as well as experimental studies that were performed to characterize the pairing behavior of UBPs in free duplex DNA or bound to the active site of KlenTaq DNA polymerase are highlighted. The structural studies, on the one hand, elucidate how base pairs lacking hydrogen bonds are accepted by these enzymes and, on the other hand, highlight the influence of one or several consecutive UBPs on the structure of a DNA double helix. Understanding these concepts facilitates optimization of future UBPs for the manifold fields of applications.
Collapse
Affiliation(s)
- Andreas Marx
- Department of ChemistryKonstanz Research School Chemical BiologyUniversity of KonstanzUniversitätsstrasse 1078464KonstanzGermany
| | - Karin Betz
- Department of ChemistryKonstanz Research School Chemical BiologyUniversity of KonstanzUniversitätsstrasse 1078464KonstanzGermany
| |
Collapse
|
25
|
Rapid functionalisation and detection of viruses via a novel Ca 2+-mediated virus-DNA interaction. Sci Rep 2019; 9:16219. [PMID: 31700064 PMCID: PMC6838052 DOI: 10.1038/s41598-019-52759-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/22/2019] [Indexed: 11/28/2022] Open
Abstract
Current virus detection methods often take significant time or can be limited in sensitivity and specificity. The increasing frequency and magnitude of viral outbreaks in recent decades has resulted in an urgent need for diagnostic methods that are facile, sensitive, rapid and inexpensive. Here, we describe and characterise a novel, calcium-mediated interaction of the surface of enveloped viruses with DNA, that can be used for the functionalisation of intact virus particles via chemical groups attached to the DNA. Using DNA modified with fluorophores, we have demonstrated the rapid and sensitive labelling and detection of influenza and other viruses using single-particle tracking and particle-size determination. With this method, we have detected clinical isolates of influenza in just one minute, significantly faster than existing rapid diagnostic tests. This powerful technique is easily extendable to a wide range of other enveloped pathogenic viruses and holds significant promise as a future diagnostic tool.
Collapse
|
26
|
de Paz AM, Cybulski TR, Marblestone AH, Zamft BM, Church GM, Boyden ES, Kording KP, Tyo KEJ. High-resolution mapping of DNA polymerase fidelity using nucleotide imbalances and next-generation sequencing. Nucleic Acids Res 2019; 46:e78. [PMID: 29718339 PMCID: PMC6061839 DOI: 10.1093/nar/gky296] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/12/2018] [Indexed: 02/06/2023] Open
Abstract
DNA polymerase fidelity is affected by both intrinsic properties and environmental conditions. Current strategies for measuring DNA polymerase error rate in vitro are constrained by low error subtype sensitivity, poor scalability, and lack of flexibility in types of sequence contexts that can be tested. We have developed the Magnification via Nucleotide Imbalance Fidelity (MagNIFi) assay, a scalable next-generation sequencing assay that uses a biased deoxynucleotide pool to quantitatively shift error rates into a range where errors are frequent and hence measurement is robust, while still allowing for accurate mapping to error rates under typical conditions. This assay is compatible with a wide range of fidelity-modulating conditions, and enables high-throughput analysis of sequence context effects on base substitution and single nucleotide deletion fidelity using a built-in template library. We validate this assay by comparing to previously established fidelity metrics, and use it to investigate neighboring sequence-mediated effects on fidelity for several DNA polymerases. Through these demonstrations, we establish the MagNIFi assay for robust, high-throughput analysis of DNA polymerase fidelity.
Collapse
Affiliation(s)
- Alexandra M de Paz
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
| | - Thaddeus R Cybulski
- Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL 60611, USA
| | - Adam H Marblestone
- Biophysics Program, Harvard University, Boston, MA 02115, USA.,Wyss Institute, Harvard University, Boston, MA 02115, USA
| | - Bradley M Zamft
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - George M Church
- Biophysics Program, Harvard University, Boston, MA 02115, USA.,Wyss Institute, Harvard University, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Edward S Boyden
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Konrad P Kording
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keith E J Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
27
|
Stern HR, Sefcikova J, Chaparro VE, Beuning PJ. Mammalian DNA Polymerase Kappa Activity and Specificity. Molecules 2019; 24:E2805. [PMID: 31374881 PMCID: PMC6695781 DOI: 10.3390/molecules24152805] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 12/31/2022] Open
Abstract
DNA polymerase (pol) kappa is a Y-family translesion DNA polymerase conserved throughout all domains of life. Pol kappa is special6 ized for the ability to copy DNA containing minor groove DNA adducts, especially N2-dG adducts, as well as to extend primer termini containing DNA damage or mismatched base pairs. Pol kappa generally cannot copy DNA containing major groove modifications or UV-induced photoproducts. Pol kappa can also copy structured or non-B-form DNA, such as microsatellite DNA, common fragile sites, and DNA containing G quadruplexes. Thus, pol kappa has roles both in maintaining and compromising genomic integrity. The expression of pol kappa is altered in several different cancer types, which can lead to genome instability. In addition, many cancer-associated single-nucleotide polymorphisms have been reported in the POLK gene, some of which are associated with poor survival and altered chemotherapy response. Because of this, identifying inhibitors of pol kappa is an active area of research. This review will address these activities of pol kappa, with a focus on lesion bypass and cellular mutagenesis.
Collapse
Affiliation(s)
- Hannah R Stern
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Jana Sefcikova
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Victoria E Chaparro
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Penny J Beuning
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Liptak C, Mahmoud MM, Eckenroth BE, Moreno MV, East K, Alnajjar KS, Huang J, Towle-Weicksel JB, Doublié S, Loria J, Sweasy JB. I260Q DNA polymerase β highlights precatalytic conformational rearrangements critical for fidelity. Nucleic Acids Res 2019; 46:10740-10756. [PMID: 30239932 PMCID: PMC6237750 DOI: 10.1093/nar/gky825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/05/2018] [Indexed: 11/14/2022] Open
Abstract
DNA polymerase β (pol β) fills single nucleotide gaps in DNA during base excision repair and non-homologous end-joining. Pol β must select the correct nucleotide from among a pool of four nucleotides with similar structures and properties in order to maintain genomic stability during DNA repair. Here, we use a combination of X-ray crystallography, fluorescence resonance energy transfer and nuclear magnetic resonance to show that pol β‘s ability to access the appropriate conformations both before and upon binding to nucleotide substrates is integral to its fidelity. Importantly, we also demonstrate that the inability of the I260Q mutator variant of pol β to properly navigate this conformational landscape results in error-prone DNA synthesis. Our work reveals that precatalytic conformational rearrangements themselves are an important underlying mechanism of substrate selection by DNA pol β.
Collapse
Affiliation(s)
- Cary Liptak
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Mariam M Mahmoud
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Brian E Eckenroth
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Marcus V Moreno
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Kyle East
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Khadijeh S Alnajjar
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ji Huang
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jamie B Towle-Weicksel
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - J Patrick Loria
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- To whom correspondence should be addressed. Tel: +203 436 2518; Fax: +203 436 6144; . Correspondence may also be addressed to Joann B. Sweasy. Tel: +203 737 2626; Fax: +203 785 6309;
| | - Joann B Sweasy
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
- To whom correspondence should be addressed. Tel: +203 436 2518; Fax: +203 436 6144; . Correspondence may also be addressed to Joann B. Sweasy. Tel: +203 737 2626; Fax: +203 785 6309;
| |
Collapse
|
29
|
Yang M, Peng S, Sun R, Lin J, Wang N, Chen C. The Conformational Dynamics of Cas9 Governing DNA Cleavage Are Revealed by Single-Molecule FRET. Cell Rep 2019; 22:372-382. [PMID: 29320734 DOI: 10.1016/j.celrep.2017.12.048] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 10/28/2017] [Accepted: 12/14/2017] [Indexed: 12/27/2022] Open
Abstract
Off-target binding and cleavage by Cas9 pose major challenges in its application. How the conformational dynamics of Cas9 govern its nuclease activity under on- and off-target conditions remains largely unknown. Here, using intra-molecular single-molecule fluorescence resonance energy transfer measurements, we revealed that Cas9 in apo, sgRNA-bound, and dsDNA/sgRNA-bound forms spontaneously transits among three major conformational states, mainly reflecting significant conformational mobility of the catalytic HNH domain. We also uncovered surprising long-range allosteric communication between the HNH domain and the RNA/DNA heteroduplex at the PAM-distal end to ensure correct positioning of the catalytic site, which demonstrated that a unique proofreading mechanism served as the last checkpoint before DNA cleavage. Several Cas9 residues were likely to mediate the allosteric communication and proofreading step. Modulating interactions between Cas9 and heteroduplex at the PAM-distal end by introducing mutations on these sites provides an alternative route to improve and optimize the CRISPR/Cas9 toolbox.
Collapse
Affiliation(s)
- Mengyi Yang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
| | - Sijia Peng
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
| | - Ruirui Sun
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
| | - Jingdi Lin
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
| | - Nan Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
| | - Chunlai Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
30
|
Sowers ML, Anderson APP, Wrabl JO, Yin YW. Networked Communication between Polymerase and Exonuclease Active Sites in Human Mitochondrial DNA Polymerase. J Am Chem Soc 2019; 141:10821-10829. [PMID: 31251605 PMCID: PMC7119269 DOI: 10.1021/jacs.9b04655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High fidelity human mitochondrial DNA polymerase (Pol γ) contains two active sites, a DNA polymerization site (pol) and a 3'-5' exonuclease site (exo) for proofreading. Although separated by 35 Å, coordination between the pol and exo sites is crucial to high fidelity replication. The biophysical mechanisms for this coordination are not completely understood. To understand the communication between the two active sites, we used a statistical-mechanical model of the protein ensemble to calculate the energetic landscape and local stability. We compared a series of structures of Pol γ, complexed with primer/template DNA, and either a nucleotide substrate or a series of nucleotide analogues, which are differentially incorporated and excised by pol and exo activity. Despite the nucleotide or its analogues being bound in the pol, Pol γ residue stability varied across the protein, particularly in the exo domain. This suggests that substrate presence in the pol can be "sensed" in the exo domain. Consistent with this hypothesis, in silico mutations made in one active site mutually perturbed the energetics of the other. To identify specific regions of the polymerase that contributed to this communication, we constructed an allosteric network connectivity map that further demonstrates specific pol-exo cooperativity. Thus, a cooperative network underlies energetic connectivity. We propose that Pol γ and other dual-function polymerases exploit an energetic coupling network that facilitates domain-domain communication to enhance discrimination between correct and incorrect nucleotides.
Collapse
Affiliation(s)
- Mark L. Sowers
- MD-PhD Combined Degree Program, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Andrew P. P. Anderson
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Program of Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, Texas 71115, United States
| | - James O. Wrabl
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Y. Whitney Yin
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Program of Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, Texas 71115, United States
| |
Collapse
|
31
|
Martin E, Williams HEL, Pitoulias M, Stevens D, Winterhalter C, Craggs TD, Murray H, Searle MS, Soultanas P. DNA replication initiation in Bacillus subtilis: structural and functional characterization of the essential DnaA-DnaD interaction. Nucleic Acids Res 2019; 47:2101-2112. [PMID: 30534966 PMCID: PMC6393240 DOI: 10.1093/nar/gky1220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023] Open
Abstract
The homotetrameric DnaD protein is essential in low G+C content gram positive bacteria and is involved in replication initiation at oriC and re-start of collapsed replication forks. It interacts with the ubiquitously conserved bacterial master replication initiation protein DnaA at the oriC but structural and functional details of this interaction are lacking, thus contributing to our incomplete understanding of the molecular details that underpin replication initiation in bacteria. DnaD comprises N-terminal (DDBH1) and C-terminal (DDBH2) domains, with contradicting bacterial two-hybrid and yeast two-hybrid studies suggesting that either the former or the latter interact with DnaA, respectively. Using Nuclear Magnetic Resonance (NMR) we showed that both DDBH1 and DDBH2 interact with the N-terminal domain I of DnaA and studied the DDBH2 interaction in structural detail. We revealed two families of conformations for the DDBH2-DnaA domain I complex and showed that the DnaA-interaction patch of DnaD is distinct from the DNA-interaction patch, suggesting that DnaD can bind simultaneously DNA and DnaA. Using sensitive single-molecule FRET techniques we revealed that DnaD remodels DnaA-DNA filaments consistent with stretching and/or untwisting. Furthermore, the DNA binding activity of DnaD is redundant for this filament remodelling. This in turn suggests that DnaA and DnaD are working collaboratively in the oriC to locally melt the DNA duplex during replication initiation.
Collapse
Affiliation(s)
- Eleyna Martin
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Huw E L Williams
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Matthaios Pitoulias
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Daniel Stevens
- Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle NE2 4AX, UK
| | - Charles Winterhalter
- Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle NE2 4AX, UK
| | - Timothy D Craggs
- Sheffield Institute for Nucleic Acids, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK
| | - Heath Murray
- Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle NE2 4AX, UK
| | - Mark S Searle
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
- Correspondence may also be addressed to Mark S. Searle. Tel: +44 115 9513567; Fax: +44 115 9513564;
| | - Panos Soultanas
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
- To whom correspondence should be addressed. Tel: +44 115 9513525; Fax: +44 115 9513564;
| |
Collapse
|
32
|
Fontana M, Fijen C, Lemay SG, Mathwig K, Hohlbein J. High-throughput, non-equilibrium studies of single biomolecules using glass-made nanofluidic devices. LAB ON A CHIP 2018; 19:79-86. [PMID: 30468446 DOI: 10.1039/c8lc01175c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Single-molecule detection schemes offer powerful means to overcome static and dynamic heterogeneity inherent to complex samples. However, probing biomolecular interactions and reactions with high throughput and time resolution remains challenging, often requiring surface-immobilized entities. Here, we introduce glass-made nanofluidic devices for the high-throughput detection of freely-diffusing single biomolecules by camera-based fluorescence microscopy. Nanochannels of 200 nm height and a width of several micrometers confine the movement of biomolecules. Using pressure-driven flow through an array of parallel nanochannels and by tracking the movement of fluorescently labelled DNA oligonucleotides, we observe conformational changes with high throughput. In a device geometry featuring a T-shaped junction of nanochannels, we drive steady-state non-equilibrium conditions by continuously mixing reactants and triggering chemical reactions. We use the device to probe the conformational equilibrium of a DNA hairpin as well as to continuously observe DNA synthesis in real time. Our platform offers a straightforward and robust method for studying reaction kinetics at the single-molecule level.
Collapse
Affiliation(s)
- Mattia Fontana
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | | | | | | | | |
Collapse
|
33
|
Christian TV, Konigsberg WH. Single-molecule FRET reveals proofreading complexes in the large fragment of Bacillus stearothermophilus DNA polymerase I. AIMS BIOPHYSICS 2018; 5:144-154. [PMID: 29888335 PMCID: PMC5990039 DOI: 10.3934/biophy.2018.2.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is increasing interest in the use of DNA polymerases (DNA pols) in next-generation sequencing strategies. These methodologies typically rely on members of the A and B family of DNA polymerases that are classified as high-fidelity DNA polymerases. These enzymes possess the ability to selectively incorporate the correct nucleotide opposite a templating base with an error frequency of only 1 in 106 insertion events. How they achieve this remarkable fidelity has been the subject of numerous investigations, yet the mechanism by which these enzymes achieve this level of accuracy remains elusive. Several smFRET assays were designed to monitor the conformational changes associated with the nucleotide selection mechanism(s) employed by DNA pols. smFRET has also been used to monitor the movement of DNA pols along a DNA substrate as well as to observe the formation of proof-reading complexes. One member among this class of enzymes, the large fragment of Bacillus stearothermophilus DNA polymerase I (Bst pol I LF), contains both 5'→3' polymerase and 3'→5' exonuclease domains, but reportedly lacks exonuclease activity. We have designed a smFRET assay showing that Bst pol I LF forms proofreading complexes. The formation of proofreading complexes at the single molecule level is strongly influenced by the presence of the 3' hydroxyl at the primer-terminus of the DNA substrate. Our assays also identify an additional state, observed in the presence of a mismatched primer-template terminus, that may be involved in the transfer of the primer-terminus from the polymerase to the exonuclease active site.
Collapse
Affiliation(s)
- Thomas V Christian
- Konigsberg Laboratory, Yale University, 333 Cedar Street, New Haven, CT 06520, USA
| | - William H Konigsberg
- Konigsberg Laboratory, Yale University, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
34
|
Fijen C, Montón Silva A, Hochkoeppler A, Hohlbein J. A single-molecule FRET sensor for monitoring DNA synthesis in real time. Phys Chem Chem Phys 2018; 19:4222-4230. [PMID: 28116374 DOI: 10.1039/c6cp05919h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a versatile DNA assay and framework for monitoring polymerization of DNA in real time and at the single-molecule level. The assay consists of an acceptor labelled DNA primer annealed to a DNA template that is labelled on its single stranded, downstream overhang with a donor fluorophore. Upon extension of the primer using a DNA polymerase, the overhang of the template alters its conformation from a random coil to the canonical structure of double stranded DNA. This conformational change increases the distance between the donor and the acceptor fluorophore and can be detected as a decrease in the Förster resonance energy transfer (FRET) efficiency between both fluorophores. Remarkably, the DNA assay does not require any modification of the DNA polymerase and albeit the simple and robust spectroscopic readout facilitates measurements even with conventional fluorimeters or stopped-flow equipment, single-molecule FRET provides additional access to parameters such as the processivity of DNA synthesis and, for one of the three DNA polymerases tested, the detection of binding and dissociation of the DNA polymerase to DNA. We furthermore demonstrate that primer extensions by a single base can be resolved.
Collapse
Affiliation(s)
- Carel Fijen
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands.
| | - Alejandro Montón Silva
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands. and Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, Bologna, 40136, Italy
| | - Alejandro Hochkoeppler
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, Bologna, 40136, Italy
| | - Johannes Hohlbein
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands. and Microspectroscopy Centre, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| |
Collapse
|
35
|
Yeager A, Humphries K, Farmer E, Cline G, Miller BR. Investigation of Nascent Base Pair and Polymerase Behavior in the Presence of Mismatches in DNA Polymerase I Using Molecular Dynamics. J Chem Inf Model 2018; 58:338-349. [PMID: 29280634 DOI: 10.1021/acs.jcim.7b00516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Optimizing DNA polymerases for a broad range of tasks requires an understanding of the factors influencing polymerase fidelity, but many details of polymerase behavior remain unknown, especially in the presence of mismatched nascent base pairs. Using molecular dynamics, the large fragment of Bacillus stearothermophilus DNA polymerase I is simulated in the presence of all 16 possible standard nucleoside triphosphate-template (dNTP-dN) pairs, including four Watson-Crick pairs and 12 mismatches. The precatalytic steps of nucleotide addition from nucleotide insertion to immediately preceding catalysis are explored using three starting structures representing different stages of nucleotide addition. From these simulations, interactions between dNTPs and the DNA-protein complex formed by the polymerase are elucidated. Patterns of large-scale conformational shifts, classification of nucleotide pairs based on composition, and investigation of the roles of residues interacting with dNTPs are completed on 50+ μs of simulation. The role of molecular dynamics in studies of polymerase behavior is discussed.
Collapse
Affiliation(s)
- Andrew Yeager
- Department of Chemistry, Truman State University , 100 E. Normal Ave, Kirksville, Missouri 63501, United States
| | - Kathryn Humphries
- Department of Chemistry, Truman State University , 100 E. Normal Ave, Kirksville, Missouri 63501, United States
| | - Ellen Farmer
- Department of Chemistry, Truman State University , 100 E. Normal Ave, Kirksville, Missouri 63501, United States
| | - Gene Cline
- Department of Chemistry, Truman State University , 100 E. Normal Ave, Kirksville, Missouri 63501, United States
| | - Bill R Miller
- Department of Chemistry, Truman State University , 100 E. Normal Ave, Kirksville, Missouri 63501, United States
| |
Collapse
|
36
|
Prakasha Gowda AS, Spratt TE. Active Site Interactions Impact Phosphoryl Transfer during Replication of Damaged and Undamaged DNA by Escherichia coli DNA Polymerase I. Chem Res Toxicol 2017; 30:2033-2043. [PMID: 29053918 DOI: 10.1021/acs.chemrestox.7b00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Replicative DNA polymerases are able to discriminate between very similar substrates with high accuracy. One mechanism by which E. coli DNA polymerase I checks for Watson-Crick geometry is through a hydrogen bonding fork between Arg668 and the incoming dNTP and the minor groove of the primer terminus. The importance of the Arg-fork was examined by disrupting it with either a guanine to 3-deazaguanine substitution at the primer terminus or the use of a carbocyclic deoxyribose analog of dUTP. Using thio-substituted dNTPs and differential quench techniques, we determined that when the Arg-fork was disrupted, the rate-limiting step changed from a conformational change to phosphodiester bond formation. This result indicates that Arg668 is involved in the phosphoryl transfer step. We examined the role of the Arg-fork in the replication of four DNA damaged templates, O6-methylguanine (O6-mG), 8-oxo-7,8-dihydroguanine (oxoG), O2-[4-(3-pyridyl)-4-oxobutyl]thymine (O2-POB-T), and N2-[(7S,8R,9S,10R)-7,8,9,10-tetrahydro-8,9,10-trihydroxybenzo[a]pyren-7-yl]-guanine (N2-BP-G). In general, the guanine to 3-deazaguanine substitution caused a decrease in kpol that was proportional to kpol over five orders of magnitude. The linear relationship indicates that the Arg668-fork helps catalyze phosphoryl transfer by the same mechanism with all the substrates. Exceptions to the linear relationship were the incorporations of dTTP opposite G, oxoG, and O6mG, which showed large decreases in kpol, similar to that exhibited by the Watson-Crick base pairs. It was proposed that the incorporation of dTTP opposite G, oxoG, and O6mG occurred via Watson-Crick-like structures.
Collapse
Affiliation(s)
- A S Prakasha Gowda
- Department of Biochemistry and Molecular Biology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine , Hershey, Pennsylvania 17033, United States
| | - Thomas E Spratt
- Department of Biochemistry and Molecular Biology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine , Hershey, Pennsylvania 17033, United States
| |
Collapse
|
37
|
Paladino A, Marchetti F, Rinaldi S, Colombo G. Protein design: from computer models to artificial intelligence. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1318] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Antonella Paladino
- Biomolecular Simulations & Computational Chemistry Group; Istituto Istituto di Chimica del Riconoscimento Molecolare, CNR; Milano Italy
| | - Filippo Marchetti
- Biomolecular Simulations & Computational Chemistry Group; Istituto Istituto di Chimica del Riconoscimento Molecolare, CNR; Milano Italy
| | - Silvia Rinaldi
- Biomolecular Simulations & Computational Chemistry Group; Istituto Istituto di Chimica del Riconoscimento Molecolare, CNR; Milano Italy
| | - Giorgio Colombo
- Biomolecular Simulations & Computational Chemistry Group; Istituto Istituto di Chimica del Riconoscimento Molecolare, CNR; Milano Italy
| |
Collapse
|
38
|
Abstract
Ubiquitous conserved processes that repair DNA damage are essential for the maintenance and propagation of genomes over generations. Then again, inaccuracies in DNA transactions and failures to remove mutagenic lesions cause heritable genome changes. Building on decades of research using genetics and biochemistry, unprecedented quantitative insight into DNA repair mechanisms has come from the new-found ability to measure single proteins in vitro and inside individual living cells. This has brought together biologists, chemists, engineers, physicists, and mathematicians to solve long-standing questions about the way in which repair enzymes search for DNA lesions and form protein complexes that act in DNA repair pathways. Furthermore, unexpected discoveries have resulted from capabilities to resolve molecular heterogeneity and cell subpopulations, provoking new questions about the role of stochastic processes in DNA repair and mutagenesis. These studies are leading to new technologies that will find widespread use in basic research, biotechnology, and medicine.
Collapse
Affiliation(s)
- Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom; ,
| | - David J Sherratt
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom; ,
| |
Collapse
|
39
|
Kim E, Baaske MD, Schuldes I, Wilsch PS, Vollmer F. Label-free optical detection of single enzyme-reactant reactions and associated conformational changes. SCIENCE ADVANCES 2017; 3:e1603044. [PMID: 28435868 PMCID: PMC5371424 DOI: 10.1126/sciadv.1603044] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/09/2017] [Indexed: 05/21/2023]
Abstract
Monitoring the kinetics and conformational dynamics of single enzymes is crucial to better understand their biological functions because these motions and structural dynamics are usually unsynchronized among the molecules. However, detecting the enzyme-reactant interactions and associated conformational changes of the enzyme on a single-molecule basis remains as a challenge to established optical techniques because of the commonly required labeling of the reactants or the enzyme itself. The labeling process is usually nontrivial, and the labels themselves might skew the physical properties of the enzyme. We demonstrate an optical, label-free method capable of observing enzymatic interactions and associated conformational changes on a single-molecule level. We monitor polymerase/DNA interactions via the strong near-field enhancement provided by plasmonic nanorods resonantly coupled to whispering gallery modes in microcavities. Specifically, we use two different recognition schemes: one in which the kinetics of polymerase/DNA interactions are probed in the vicinity of DNA-functionalized nanorods, and the other in which these interactions are probed via the magnitude of conformational changes in the polymerase molecules immobilized on nanorods. In both approaches, we find that low and high polymerase activities can be clearly discerned through their characteristic signal amplitude and signal length distributions. Furthermore, the thermodynamic study of the monitored interactions suggests the occurrence of DNA polymerization. This work constitutes a proof-of-concept study of enzymatic activities using plasmonically enhanced microcavities and establishes an alternative and label-free method capable of investigating structural changes in single molecules.
Collapse
Affiliation(s)
- Eugene Kim
- Corresponding author. (E.K.); (M.D.B.); (F.V.)
| | | | | | | | | |
Collapse
|
40
|
Multidomain structure and correlated dynamics determined by self-consistent FRET networks. Nat Methods 2016; 14:174-180. [PMID: 27918541 PMCID: PMC5289555 DOI: 10.1038/nmeth.4081] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/26/2016] [Indexed: 01/17/2023]
Abstract
We present an approach that allows us to simultaneously access structure and dynamics of a multi-domain protein in solution. Dynamic domain arrangements are experimentally determined by combining self-consistent networks of distance distributions with known domain structures. Local structural dynamics are correlated with the global arrangements by analyzing networks of time-resolved single-molecule fluorescence parameters. The strength of this hybrid approach is shown by an application to the flexible multi-domain Hsp90. The average solution structure of Hsp90’s closed state resembles the known x-ray crystal structure with Angstrom precision. The open state is represented by an ensemble of conformations with inter-domain fluctuations of up to 25 Å. The data reveal a state-specific suppression of the sub-millisecond fluctuations by dynamic protein-protein interaction. Finally, the method enables localization and functional characterization of dynamic elements and domain interfaces.
Collapse
|
41
|
Hartmann S, Weidlich D, Klostermeier D. Single-Molecule Confocal FRET Microscopy to Dissect Conformational Changes in the Catalytic Cycle of DNA Topoisomerases. Methods Enzymol 2016; 581:317-351. [PMID: 27793284 DOI: 10.1016/bs.mie.2016.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Molecular machines undergo large-scale conformational changes during their catalytic cycles that are linked to their biological functions. DNA topoisomerases are molecular machines that interconvert different DNA topoisomers and resolve torsional stress that is introduced during cellular processes that involve local DNA unwinding. DNA gyrase catalyzes the introduction of negative supercoils into DNA in an ATP-dependent reaction. During its catalytic cycle, gyrase undergoes large-scale conformational changes that drive the supercoiling reaction. These conformational changes can be followed by single-molecule Förster resonance energy transfer (FRET). Here, we use DNA gyrase from Bacillus subtilis as an illustrative example to present strategies for the investigation of conformational dynamics of multisubunit complexes. We provide a brief introduction into single-molecule FRET and confocal microscopy, with a focus on practical considerations in sample preparation and data analysis. Different strategies in the preparation of donor-acceptor-labeled molecules suitable for single-molecule FRET experiments are outlined. The insight into the mechanism of DNA supercoiling by gyrase gained from single-molecule FRET experiment is summarized. The general strategies described here can also be applied to investigate conformational changes and their link to biological function of other multisubunit molecular machines.
Collapse
Affiliation(s)
- S Hartmann
- Institute for Physical Chemistry, University of Muenster, Muenster, Germany
| | - D Weidlich
- Institute for Physical Chemistry, University of Muenster, Muenster, Germany
| | - D Klostermeier
- Institute for Physical Chemistry, University of Muenster, Muenster, Germany.
| |
Collapse
|
42
|
Hohlbein J, Kapanidis AN. Probing the Conformational Landscape of DNA Polymerases Using Diffusion-Based Single-Molecule FRET. Methods Enzymol 2016; 581:353-378. [PMID: 27793286 DOI: 10.1016/bs.mie.2016.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Monitoring conformational changes in DNA polymerases using single-molecule Förster resonance energy transfer (smFRET) has provided new tools for studying fidelity-related mechanisms that promote the rejection of incorrect nucleotides before DNA synthesis. In addition to the previously known open and closed conformations of DNA polymerases, our smFRET assays utilizing doubly labeled variants of Escherichia coli DNA polymerase I were pivotal in identifying and characterizing a partially closed conformation as a primary checkpoint for nucleotide selection. Here, we provide a comprehensive overview of the methods we used for the conformational analysis of wild-type DNA polymerase and some of its low-fidelity derivatives; these methods include strategies for protein labeling and our procedures for solution-based single-molecule fluorescence data acquisition and data analysis. We also discuss alternative single-molecule fluorescence strategies for analyzing the conformations of DNA polymerases in vitro and in vivo.
Collapse
Affiliation(s)
- J Hohlbein
- Laboratory of Biophysics, Wageningen University and Research, Wageningen, The Netherlands; Microspectroscopy Centre, Wageningen University and Research, Wageningen, The Netherlands.
| | - A N Kapanidis
- Clarendon Laboratory, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
43
|
Robb NC, Te Velthuis AJW, Wieneke R, Tampé R, Cordes T, Fodor E, Kapanidis AN. Single-molecule FRET reveals the pre-initiation and initiation conformations of influenza virus promoter RNA. Nucleic Acids Res 2016; 44:10304-10315. [PMID: 27694620 PMCID: PMC5137447 DOI: 10.1093/nar/gkw884] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 01/20/2023] Open
Abstract
Influenza viruses have a segmented viral RNA (vRNA) genome, which is replicated by the viral RNA-dependent RNA polymerase (RNAP). Replication initiates on the vRNA 3′ terminus, producing a complementary RNA (cRNA) intermediate, which serves as a template for the synthesis of new vRNA. RNAP structures show the 3′ terminus of the vRNA template in a pre-initiation state, bound on the surface of the RNAP rather than in the active site; no information is available on 3′ cRNA binding. Here, we have used single-molecule Förster resonance energy transfer (smFRET) to probe the viral RNA conformations that occur during RNAP binding and initial replication. We show that even in the absence of nucleotides, the RNAP-bound 3′ termini of both vRNA and cRNA exist in two conformations, corresponding to the pre-initiation state and an initiation conformation in which the 3′ terminus of the viral RNA is in the RNAP active site. Nucleotide addition stabilises the 3′ vRNA in the active site and results in unwinding of the duplexed region of the promoter. Our data provide insights into the dynamic motions of RNA that occur during initial influenza replication and has implications for our understanding of the replication mechanisms of similar pathogenic viruses.
Collapse
Affiliation(s)
- Nicole C Robb
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Aartjan J W Te Velthuis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK.,Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Ralph Wieneke
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
| | - Thorben Cordes
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ervin Fodor
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| |
Collapse
|
44
|
Farooq S, Hohlbein J. Camera-based single-molecule FRET detection with improved time resolution. Phys Chem Chem Phys 2016; 17:27862-72. [PMID: 26439729 DOI: 10.1039/c5cp04137f] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The achievable time resolution of camera-based single-molecule detection is often limited by the frame rate of the camera. Especially in experiments utilizing single-molecule Förster resonance energy transfer (smFRET) to probe conformational dynamics of biomolecules, increasing the frame rate by either pixel-binning or cropping the field of view decreases the number of molecules that can be monitored simultaneously. Here, we present a generalised excitation scheme termed stroboscopic alternating-laser excitation (sALEX) that significantly improves the time resolution without sacrificing highly parallelised detection in total internal reflection fluorescence (TIRF) microscopy. In addition, we adapt a technique known from diffusion-based confocal microscopy to analyse the complex shape of FRET efficiency histograms. We apply both sALEX and dynamic probability distribution analysis (dPDA) to resolve conformational dynamics of interconverting DNA hairpins in the millisecond time range.
Collapse
Affiliation(s)
- Shazia Farooq
- Laboratory of Biophysics, Wageningen UR, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands.
| | | |
Collapse
|
45
|
Meli M, Sustarsic M, Craggs TD, Kapanidis AN, Colombo G. DNA Polymerase Conformational Dynamics and the Role of Fidelity-Conferring Residues: Insights from Computational Simulations. Front Mol Biosci 2016; 3:20. [PMID: 27303671 PMCID: PMC4882331 DOI: 10.3389/fmolb.2016.00020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/10/2016] [Indexed: 12/11/2022] Open
Abstract
Herein we investigate the molecular bases of DNA polymerase I conformational dynamics that underlie the replication fidelity of the enzyme. Such fidelity is determined by conformational changes that promote the rejection of incorrect nucleotides before the chemical ligation step. We report a comprehensive atomic resolution study of wild type and mutant enzymes in different bound states and starting from different crystal structures, using extensive molecular dynamics (MD) simulations that cover a total timespan of ~5 ms. The resulting trajectories are examined via a combination of novel methods of internal dynamics and energetics analysis, aimed to reveal the principal molecular determinants for the (de)stabilization of a certain conformational state. Our results show that the presence of fidelity-decreasing mutations or the binding of incorrect nucleotides in ternary complexes tend to favor transitions from closed toward open structures, passing through an ensemble of semi-closed intermediates. The latter ensemble includes the experimentally observed ajar conformation which, consistent with previous experimental observations, emerges as a molecular checkpoint for the selection of the correct nucleotide to incorporate. We discuss the implications of our results for the understanding of the relationships between the structure, dynamics, and function of DNA polymerase I at the atomistic level.
Collapse
Affiliation(s)
- Massimiliano Meli
- Computational Biochemistry Group, Istituto di Chimica del Riconoscimento Molecolare, National Research Council of Italy Milano, Italy
| | - Marko Sustarsic
- Clarendon Laboratory, Department of Physics, Biological Physics Research Group, University of Oxford Oxford, UK
| | - Timothy D Craggs
- Clarendon Laboratory, Department of Physics, Biological Physics Research Group, University of Oxford Oxford, UK
| | - Achillefs N Kapanidis
- Clarendon Laboratory, Department of Physics, Biological Physics Research Group, University of Oxford Oxford, UK
| | - Giorgio Colombo
- Computational Biochemistry Group, Istituto di Chimica del Riconoscimento Molecolare, National Research Council of Italy Milano, Italy
| |
Collapse
|
46
|
Plochowietz A, El-Sagheer AH, Brown T, Kapanidis AN. Stable end-sealed DNA as robust nano-rulers for in vivo single-molecule fluorescence. Chem Sci 2016; 7:4418-4422. [PMID: 30155088 PMCID: PMC6014160 DOI: 10.1039/c6sc00639f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/21/2016] [Indexed: 11/24/2022] Open
Abstract
Protected DNA standards with chemically linked ends were synthesized as robust in vivo nano-rulers for smFRET studies.
Single-molecule fluorescence and Förster resonance energy transfer (smFRET) are important tools for studying molecular heterogeneity, cellular organization, and protein structure in living cells. However, in vivo smFRET studies are still very challenging, and a standardized approach for robust in vivo smFRET measurements is still missing. Here, we synthesized protected DNAs with chemically linked ends as robust in vivo nano-rulers. We efficiently internalized doubly-labeled end-sealed DNA standards into live bacteria using electroporation and obtained stable and long-lasting smFRET signatures. Single-molecule fluorescence signals could be extended to ∼1 min by studying multi-fluorophore DNA standards. The high stability of protected DNA standards offers a general approach to evaluate single-molecule fluorescence and FRET signals, autofluorescence background, and fluorophore density, and hence, quality check the workflow for studying single-molecule trajectories and conformational dynamics of biomolecules in vivo.
Collapse
Affiliation(s)
- A Plochowietz
- Department of Physics , University of Oxford , Clarendon Laboratory , Parks Road , Oxford , OX1 3PU , UK . ;
| | - A H El-Sagheer
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , Oxford , OX1 3TA , UK.,Chemistry Branch , Department of Chemistry , Faculty of Petroleum and Mining Engineering , Suez University , Suez 43721 , Egypt
| | - T Brown
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , Oxford , OX1 3TA , UK
| | - A N Kapanidis
- Department of Physics , University of Oxford , Clarendon Laboratory , Parks Road , Oxford , OX1 3PU , UK . ;
| |
Collapse
|
47
|
McGinn S, Bauer D, Brefort T, Dong L, El-Sagheer A, Elsharawy A, Evans G, Falk-Sörqvist E, Forster M, Fredriksson S, Freeman P, Freitag C, Fritzsche J, Gibson S, Gullberg M, Gut M, Heath S, Heath-Brun I, Heron AJ, Hohlbein J, Ke R, Lancaster O, Le Reste L, Maglia G, Marie R, Mauger F, Mertes F, Mignardi M, Moens L, Oostmeijer J, Out R, Pedersen JN, Persson F, Picaud V, Rotem D, Schracke N, Sengenes J, Stähler PF, Stade B, Stoddart D, Teng X, Veal CD, Zahra N, Bayley H, Beier M, Brown T, Dekker C, Ekström B, Flyvbjerg H, Franke A, Guenther S, Kapanidis AN, Kaye J, Kristensen A, Lehrach H, Mangion J, Sauer S, Schyns E, Tost J, van Helvoort JMLM, van der Zaag PJ, Tegenfeldt JO, Brookes AJ, Mir K, Nilsson M, Willcocks JP, Gut IG. New technologies for DNA analysis--a review of the READNA Project. N Biotechnol 2015; 33:311-30. [PMID: 26514324 DOI: 10.1016/j.nbt.2015.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/17/2015] [Indexed: 01/09/2023]
Abstract
The REvolutionary Approaches and Devices for Nucleic Acid analysis (READNA) project received funding from the European Commission for 41/2 years. The objectives of the project revolved around technological developments in nucleic acid analysis. The project partners have discovered, created and developed a huge body of insights into nucleic acid analysis, ranging from improvements and implementation of current technologies to the most promising sequencing technologies that constitute a 3(rd) and 4(th) generation of sequencing methods with nanopores and in situ sequencing, respectively.
Collapse
Affiliation(s)
- Steven McGinn
- CEA - Centre National de Génotypage, 2, rue Gaston Cremieux, 91057 Evry Cedex, France
| | - David Bauer
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Thomas Brefort
- Comprehensive Biomarker Center GmbH, Im Neuenheimer Feld 583, D-69120 Heidelberg, Germany
| | - Liqin Dong
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Afaf El-Sagheer
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK; Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford OX1 3TA, UK; Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Abdou Elsharawy
- Institute of Clinical Molecular Biology, Christian-Albrechts-University (CAU), Am Botanischen Garten 11, D-24118 Kiel, Germany; Faculty of Sciences, Division of Biochemistry, Chemistry Department, Damietta University, New Damietta City, Egypt
| | - Geraint Evans
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, Parks Road, Oxford OX1 3PU, UK
| | - Elin Falk-Sörqvist
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Michael Forster
- Institute of Clinical Molecular Biology, Christian-Albrechts-University (CAU), Am Botanischen Garten 11, D-24118 Kiel, Germany
| | | | - Peter Freeman
- University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Camilla Freitag
- Department of Physics, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Joachim Fritzsche
- Department of Applied Physics, Chalmers University of Technology, Kemivägen 10, 412 96 Göteborg, Sweden
| | - Spencer Gibson
- University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Mats Gullberg
- Olink AB, Dag Hammarskjölds väg 52A, 752 37 Uppsala, Sweden
| | - Marta Gut
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, C/Baldiri Reixac 7, 08028 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Simon Heath
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, C/Baldiri Reixac 7, 08028 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Isabelle Heath-Brun
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, C/Baldiri Reixac 7, 08028 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Andrew J Heron
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, UK
| | - Johannes Hohlbein
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, Parks Road, Oxford OX1 3PU, UK
| | - Rongqin Ke
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Box 1031, Se-171 21 Solna, Sweden; Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Owen Lancaster
- University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Ludovic Le Reste
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, Parks Road, Oxford OX1 3PU, UK
| | - Giovanni Maglia
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, UK
| | - Rodolphe Marie
- DTU Nanotech, Oerstedsplads Building 345 East, 2800, Kongens Lyngby, Denmark
| | - Florence Mauger
- CEA - Centre National de Génotypage, 2, rue Gaston Cremieux, 91057 Evry Cedex, France
| | - Florian Mertes
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | - Marco Mignardi
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Box 1031, Se-171 21 Solna, Sweden; Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Lotte Moens
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | | | - Ruud Out
- FlexGen BV, Galileiweg 8, 2333 BD Leiden, The Netherlands
| | | | - Fredrik Persson
- Department of Physics, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Vincent Picaud
- CEA-Saclay, Bât DIGITEO 565 - Pt Courrier 192, 91191 Gif-sur-Yvette Cedex, France
| | - Dvir Rotem
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, UK
| | - Nadine Schracke
- Comprehensive Biomarker Center GmbH, Im Neuenheimer Feld 583, D-69120 Heidelberg, Germany
| | - Jennifer Sengenes
- CEA - Centre National de Génotypage, 2, rue Gaston Cremieux, 91057 Evry Cedex, France
| | - Peer F Stähler
- Comprehensive Biomarker Center GmbH, Im Neuenheimer Feld 583, D-69120 Heidelberg, Germany
| | - Björn Stade
- Institute of Clinical Molecular Biology, Christian-Albrechts-University (CAU), Am Botanischen Garten 11, D-24118 Kiel, Germany
| | - David Stoddart
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, UK
| | - Xia Teng
- FlexGen BV, Galileiweg 8, 2333 BD Leiden, The Netherlands
| | - Colin D Veal
- University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Nathalie Zahra
- University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Hagan Bayley
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, UK
| | - Markus Beier
- Comprehensive Biomarker Center GmbH, Im Neuenheimer Feld 583, D-69120 Heidelberg, Germany
| | - Tom Brown
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK; Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford OX1 3TA, UK
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Björn Ekström
- Olink AB, Dag Hammarskjölds väg 52A, 752 37 Uppsala, Sweden
| | - Henrik Flyvbjerg
- DTU Nanotech, Oerstedsplads Building 345 East, 2800, Kongens Lyngby, Denmark
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University (CAU), Am Botanischen Garten 11, D-24118 Kiel, Germany
| | - Simone Guenther
- Thermo Fisher Scientific Frankfurter Straße 129B, 64293 Darmstadt, Germany
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, Parks Road, Oxford OX1 3PU, UK
| | - Jane Kaye
- HeLEX - Centre for Health, Law and Emerging Technologies, Nuffield Department of Population Health, University of Oxford, Old Road Campus, Oxford OX3 7LF, UK
| | - Anders Kristensen
- DTU Nanotech, Oerstedsplads Building 345 East, 2800, Kongens Lyngby, Denmark
| | - Hans Lehrach
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | - Jonathan Mangion
- Thermo Fisher Scientific Frankfurter Straße 129B, 64293 Darmstadt, Germany
| | - Sascha Sauer
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | - Emile Schyns
- PHOTONIS France S.A.S. Avenue Roger Roncier, 19100 Brive B.P. 520, 19106 BRIVE Cedex, France
| | - Jörg Tost
- CEA - Centre National de Génotypage, 2, rue Gaston Cremieux, 91057 Evry Cedex, France
| | | | - Pieter J van der Zaag
- Philips Research Laboratories, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| | - Jonas O Tegenfeldt
- Division of Solid State Physics and NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| | | | - Kalim Mir
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Box 1031, Se-171 21 Solna, Sweden; Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - James P Willcocks
- Oxford Nanopore Technologies, Edmund Cartwright House, 4 Robert Robinson Avenue, Oxford Science Park, Oxford OX4 4GA, UK
| | - Ivo G Gut
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, C/Baldiri Reixac 7, 08028 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
48
|
Abstract
All biological information, since the last common ancestor of all life on Earth, has been encoded by a genetic alphabet consisting of only four nucleotides that form two base pairs. Long-standing efforts to develop two synthetic nucleotides that form a third, unnatural base pair (UBP) have recently yielded three promising candidates, one based on alternative hydrogen bonding, and two based on hydrophobic and packing forces. All three of these UBPs are replicated and transcribed with remarkable efficiency and fidelity, and the latter two thus demonstrate that hydrogen bonding is not unique in its ability to underlie the storage and retrieval of genetic information. This Review highlights these recent developments as well as the applications enabled by the UBPs, including the expansion of the evolution process to include new functionality and the creation of semi-synthetic life that stores increased information.
Collapse
Affiliation(s)
- Denis A Malyshev
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA).
| |
Collapse
|
49
|
|
50
|
Miller BR, Beese LS, Parish CA, Wu EY. The Closing Mechanism of DNA Polymerase I at Atomic Resolution. Structure 2015. [PMID: 26211612 DOI: 10.1016/j.str.2015.06.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA polymerases must quickly and accurately distinguish between similar nucleic acids to form Watson-Crick base pairs and avoid DNA replication errors. Deoxynucleoside triphosphate (dNTP) binding to the DNA polymerase active site induces a large conformational change that is difficult to characterize experimentally on an atomic level. Here, we report an X-ray crystal structure of DNA polymerase I bound to DNA in the open conformation with a dNTP present in the active site. We use this structure to computationally simulate the open to closed transition of DNA polymerase in the presence of a Watson-Crick base pair. Our microsecond simulations allowed us to characterize the key steps involved in active site assembly, and propose the sequence of events involved in the prechemistry steps of DNA polymerase catalysis. They also reveal new features of the polymerase mechanism, such as a conserved histidine as a potential proton acceptor from the primer 3'-hydroxyl.
Collapse
Affiliation(s)
- Bill R Miller
- Department of Biology, University of Richmond, 28 Westhampton Way, Richmond, VA 23173, USA; Department of Chemistry, University of Richmond, 28 Westhampton Way, Richmond, VA 23173, USA
| | - Lorena S Beese
- Department of Biochemistry, Duke University Medical Center, 255 Nanaline H. Duke Building, Durham, NC 27710, USA
| | - Carol A Parish
- Department of Chemistry, University of Richmond, 28 Westhampton Way, Richmond, VA 23173, USA.
| | - Eugene Y Wu
- Department of Biology, University of Richmond, 28 Westhampton Way, Richmond, VA 23173, USA; Department of Biochemistry, Duke University Medical Center, 255 Nanaline H. Duke Building, Durham, NC 27710, USA.
| |
Collapse
|