1
|
Geetha SD, Karam P, Ziemba Y, Chau K, Savant D, Rosca O, Khutti S, Gimenez C, Das K. Correlation of Cytologic Features With Molecular Testing of Indeterminate Oncocytic (Hürthle Cell) Thyroid Lesions. Diagn Cytopathol 2025; 53:102-110. [PMID: 39582472 DOI: 10.1002/dc.25424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
INTRODUCTION Indeterminate oncocytic/Hürthle cell lesions on thyroid cytology are reflexed to molecular testing. This study aims to examine the cytologic characteristics of thyroid fine-needle aspiration (FNA) smears with oncocytes classified as atypia of undetermined significance (AUS) with particular molecular patterns that can aid in determining a more conclusive Bethesda category upfront thus decreasing unnecessary testing and associated costs. MATERIALS AND METHODS Our pathology database was searched for thyroid FNAs with AUS for oncocyte predominance from 2019 to 2022. Sixty six cases that underwent ThyroSeq testing (33 positive and 33 negative) were selected. Two cytopathologists reviewed the smears for cellularity, colloid: cell ratio, artifacts, lymphocytes, microfollicles, and oncocytic nuclear atypia. Molecular results and surgical follow-up were obtained through chart review. Statistical analysis was done using STATA16.1 (StataCorp LLC College Station, TX). RESULTS Among the 33 ThyroSeq-positive cases, 20 had surgical follow-up. Only 1 case was malignant. Hypercellularity, microfollicular architecture, and oncocytic atypia were associated with a higher incidence of molecular alterations. Five of 66 cases demonstrated microfollicles. Four of these had positive molecular findings, and one was negative. Twenty of 33 (61%) cases with positive molecular findings had no oncocytic nuclear atypia. Of the molecular positive cases with oncocytic atypia that underwent resection, seven of nine (78%) were neoplastic. RAS mutations were the most common finding detected in non-neoplastic and neoplastic lesions. CONCLUSIONS Microfollicles were infrequently seen in nodules with oncocytic predominance; however, those that had microfollicles had high incidence of positive molecular findings. Oncocytic nuclear atypia was present in all the resected neoplastic cases. NRAS and KRAS mutations were the most common molecular abnormalities detected.
Collapse
Affiliation(s)
- Saroja Devi Geetha
- Department of Pathology and Laboratory Medicine, North Shore University Hospital and Long Island Jewish Medical Center, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, New York, USA
| | - Priyanka Karam
- Department of Pathology and Laboratory Medicine, North Shore University Hospital and Long Island Jewish Medical Center, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, New York, USA
| | - Yonah Ziemba
- Department of Pathology and Laboratory Medicine, North Shore University Hospital and Long Island Jewish Medical Center, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, New York, USA
| | - Karen Chau
- Department of Pathology and Laboratory Medicine, North Shore University Hospital and Long Island Jewish Medical Center, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, New York, USA
| | - Deepika Savant
- Department of Pathology and Laboratory Medicine, North Shore University Hospital and Long Island Jewish Medical Center, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, New York, USA
| | - Oana Rosca
- Department of Pathology and Laboratory Medicine, North Shore University Hospital and Long Island Jewish Medical Center, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, New York, USA
| | - Seema Khutti
- Department of Pathology and Laboratory Medicine, North Shore University Hospital and Long Island Jewish Medical Center, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, New York, USA
| | - Cecilia Gimenez
- Department of Pathology and Laboratory Medicine, North Shore University Hospital and Long Island Jewish Medical Center, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, New York, USA
| | - Kasturi Das
- Department of Pathology and Laboratory Medicine, North Shore University Hospital and Long Island Jewish Medical Center, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, New York, USA
| |
Collapse
|
2
|
Wang Y, Ma X, Chen X, Wen Z, Bi C, Xu Z, Liu W. Gold(I) complexes bearing EGFR-inhibiting ligands as anti-HCC agents through dual targeting of EGFR and TrxR. Eur J Med Chem 2025; 283:117137. [PMID: 39693862 DOI: 10.1016/j.ejmech.2024.117137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
Overexpression of epidermal growth factor receptor (EGFR) and thioredoxin reductase (TrxR) are commonly associated with an adverse prognosis in hepatocellular carcinoma (HCC). This makes them key targets for the treatment of HCC. Studies have shown that the clinical efficacy of the EGFR tyrosine kinase inhibitor gefitinib alone in treating HCC is limited. Herein, we developed a series of novel gold(I) complexes using a "dual-targeting strategy" by combining gold(I) complexes with different gefitinib derivatives. Among them, the best complex 6g exhibits significant antiproliferative activity against Huh7 cells and Huh7R (lenvatinib-resistant) cells. Remarkably, complex 6g inhibits the expression of phosphorylated EGFR while also effectively inhibiting intracellular TrxR activity. In addition, complex 6g causes a significant increase in the accumulation of reactive oxygen species (ROS), disrupts mitochondrial membrane potential (MMP), arrests the cell cycle in the G0/G1 phase, and induces apoptosis. Collectively, our findings demonstrate that complex 6g exhibits potential anti-HCC effects via dual-targeting of EGFR and TrxR.
Collapse
Affiliation(s)
- Yawen Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Xiaoyan Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Xuejie Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Zhenfan Wen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Chunyang Bi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Zhongren Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, 215031, PR China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| |
Collapse
|
3
|
Shou S, Maolan A, Zhang D, Jiang X, Liu F, Li Y, Zhang X, Geer E, Pu Z, Hua B, Guo Q, Zhang X, Pang B. Telomeres, telomerase, and cancer: mechanisms, biomarkers, and therapeutics. Exp Hematol Oncol 2025; 14:8. [PMID: 39871386 PMCID: PMC11771031 DOI: 10.1186/s40164-025-00597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
Telomeres and telomerase play crucial roles in the initiation and progression of cancer. As biomarkers, they aid in distinguishing benign from malignant tissues. Despite the promising therapeutic potential of targeting telomeres and telomerase for therapy, translating this concept from the laboratory to the clinic remains challenging. Many candidate drugs remain in the experimental stage, with only a few advancing to clinical trials. This review explores the relationship between telomeres, telomerase, and cancer, synthesizing their roles as biomarkers and reviewing the outcomes of completed trials. We propose that changes in telomere length and telomerase activity can be used to stratify cancer stages. Furthermore, we suggest that differential expression of telomere and telomerase components at the subcellular level holds promise as a biomarker. From a therapeutic standpoint, combining telomerase-targeted therapies with drugs that mitigate the adverse effects of telomerase inhibition may offer a viable strategy.
Collapse
Affiliation(s)
- Songting Shou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ayidana Maolan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Di Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiyuan Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - En Geer
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenqing Pu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baojin Hua
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Qiujun Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Bo Pang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Gu W, Li H, Sun L, Shen Z, Wang Y, Hu X, Wu Y, Liu W, Wan CC, Cai Y, Yan T. The RNA-binding protein CMSS1 promotes the progression of non-small cell lung cancer by regulating the telomerase protein subunit hTERT. Life Sci 2025; 361:123321. [PMID: 39710061 DOI: 10.1016/j.lfs.2024.123321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
AIMS High telomerase activity has been detected in over 85 % of tumors, with the activation of hTERT being the most crucial mechanism for re-establishing telomerase activity. Activation of hTERT maintains telomere length in cells, enabling cancer cells to proliferate indefinitely. Nevertheless, the specific mechanism of telomerase activation in non-small cell lung cancer (NSCLC) remains unclear, and post-transcriptional regulation of hTERT could be a potential activation mechanism. MATERIALS AND METHODS We explored the regulatory impact of CMSS1 on hTERT expression in NSCLC cells using several methods: Yeast three-hybrid system, Reporter gene assay, Western blot, RNA decay assay, and Telomere length measurement. Our analysis revealed significant overexpression of CMSS1 in NSCLC, which correlated with poor prognosis, as determined by bioinformatics and tissue microarray techniques. RNA sequencing analysis showed that CMSS1 knockdown influenced the adhesion capabilities of NSCLC cells. Additionally, potential interacting proteins with CMSS1 were identified through mass spectrometry and co-immunoprecipitation experiments. KEY FINDINGS We discovered that CMSS1 regulates hTERT expression in NSCLC cells by binding to the 5' UTR of hTERT mRNA, impacting its mRNA stability and thereby influencing NSCLC progression. RNA-Seq results and adhesion experiments indicated that CMSS1 knockdown disrupts cell adhesion. hTERT also affects cell adhesion in NSCLC, underscoring CMSS1's role as an upstream regulator of hTERT. Mass spectrometry and Co-IP studies suggest potential interactions between CMSS1, RBM34, and DDX5 that further modulate hTERT expression. SIGNIFICANCE These findings indicate that CMSS1 plays a crucial role in NSCLC progression through its interaction with hTERT, making it a promising therapeutic target.
Collapse
Affiliation(s)
- Wei Gu
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine & Nursing, Huzhou University, Huzhou 313099, China
| | - Hongshui Li
- The Second People Hospital of Dezhou, Dezhou 253022, China
| | - Lei Sun
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ziyi Shen
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yuanhui Wang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Xiaomeng Hu
- Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine & Nursing, Huzhou University, Huzhou 313099, China; University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
| | - Yan Wu
- Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine & Nursing, Huzhou University, Huzhou 313099, China; University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
| | - Wei Liu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
| | - Chunpeng Craig Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Tingdong Yan
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China.
| |
Collapse
|
5
|
Xie JW, Wang HL, Lin LQ, Guo YF, Wang M, Zhu XZ, Niu JJ, Lin LR. Telomere-methylation genes: Novel prognostic biomarkers for hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2025; 49:102516. [PMID: 39675625 DOI: 10.1016/j.clinre.2024.102516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Since telomere length and DNA methylation both correlate with hepatocellular carcinoma (HCC) prognosis, telomere-methylation genes could be novel prognostic markers for HCC. METHOD This study first investigated the interaction between telomere length and DNA methylation in HCC through Mendelian randomization analysis. Then, this study identified telomere-methylation genes in HCC by employing the TCGA-LIHC cohort, and explored the expression patterns of these genes in the tumor microenvironment of HCC and potential underlying mechanisms. Finally, the HCC risk-scoring model and prognostic model based on these genes were established, and the performance of the model was assessed. RESULT The findings revealed a bidirectional relationship between telomere length and DNA methylation in HCC. Fifty telomere-methylation genes were identified, and the prognosis-related telomere-methylation genes were closely associated with Treg and Tprolif cell subsets within the HCC tumor microenvironment. Telomere-methylation genes could potentially impact the prognosis of HCC patients by modulating chromosome stability and regulating the cell cycle. Additionally, the constructed risk scoring model and prognostic prediction model showcased compelling clinical applicability, as evidenced by the receiver operating characteristic curve, the decision curve analysis, and the calibration curves. CONCLUSION This study elucidated the potential of telomere-methylation genes as prognostic biomarkers for HCC and paves the way for novel approaches in prognostication and treatment management for HCC patients.
Collapse
Affiliation(s)
- Jia-Wen Xie
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Hui-Ling Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ling-Qing Lin
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Yin-Feng Guo
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Mao Wang
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China; Department of Pathology, Chengdu Wenjiang District People's Hospital, Chengdu, China
| | - Xiao-Zhen Zhu
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China.
| | - Jian-Jun Niu
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China.
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
6
|
Hwang I, Kang SY, Kim DG, Jang KT, Kim KM. Clinicopathologic and genomic characteristics of biliary tract carcinomas with TERT promoter mutations among East Asian population. Pathol Res Pract 2024; 266:155806. [PMID: 39793339 DOI: 10.1016/j.prp.2024.155806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/22/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025]
Abstract
Telomerase reverse transcriptase gene promoter (TERT) mutations are biomarkers that predict survival and responses to immune checkpoint inhibitors in various malignancies. However, their prevalence and clinicopathologic characteristics in biliary tract carcinomas are largely unknown. We performed a comprehensive genomic profiling of formalin-fixed paraffin-embedded tumor tissue from 485 carcinomas, including intrahepatic (n = 220), perihilar (n = 54), distal biliary tract (n = 110), and gallbladder (n = 101) cancers, using next-generation sequencing. TERT mutations were observed in 50 out of 485 biliary tract cancers (10.3 %) consisting of 39 C228T (78.0 %) and 11 C250T (22.0 %) variants. Among the different anatomic locations, TERT mutations were most frequent in the gallbladder (20.8 %), followed by perihilar (9.3 %), intrahepatic (7.7 %), and distal bile ducts (6.4 %) (p < 0.01). Genetically, TERT mutations were significantly associated with TP53 mutations (p = 0.04), ERBB2 amplification (p < 0.01), and high tumor mutational burdens (TMB) (p < 0.01); moreover, they were negatively correlated with KRAS (p < 0.01), SMAD4 (p = 0.01), and PBRM1 mutations (p = 0.01). In addition, TERT mutations were associated with a poor progression-free survival (PFS, p = 0.01). Specifically, in cases of intrahepatic cholangiocarcinoma, TERT mutations were more frequent in patients with cirrhosis (p = 0.01), hepatitis B virus infection (p = 0.04), and advanced disease stages (p < 0.01). In gallbladder carcinoma, TERT mutations were also associated with poor PFS. In conclusion, TERT mutations in biliary tract carcinomas had unique clinicopathologic and genetic characteristics. Despite its poor PFS, the concomitant presence of ERBB2 amplification and a high TMB indicated a potential for targeted therapy and immunotherapy in this specific subtype.
Collapse
Affiliation(s)
- Inwoo Hwang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - So Young Kang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Deok Geun Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kee-Taek Jang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Center for Companion Diagnostics, Precision Medicine Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| |
Collapse
|
7
|
Ganne-Carrié N, Nahon P. Differences between hepatocellular carcinoma caused by alcohol and other aetiologies. J Hepatol 2024:S0168-8278(24)02817-4. [PMID: 39710147 DOI: 10.1016/j.jhep.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/14/2024] [Accepted: 12/07/2024] [Indexed: 12/24/2024]
Abstract
Alcohol-related liver disease is the third cause of hepatocellular carcinoma worldwide and the leading cause in Europe. Additionally, the recent definition of Metabolic dysfunction-Associated Steatotic Liver Disease with increased alcoholic intake will enrich this population with a more nuanced phenotype, reflecting recent epidemiological trends. In these patients, hepatocellular carcinoma diagnosis is often delayed and less frequently detected through screening programs. Moreover, at the time of diagnosis, patients with alcohol-related hepatocellular carcinoma tend to have a poorer general condition, more severely impaired liver function, and a higher prevalence of comorbidities, leading to increased competitive mortality. However, when hepatocellular carcinoma is diagnosed during surveillance programs in patients with alcohol-related liver disease or metabolic dysfunction-Associated steatotic liver disease with increased alcoholic intake, the rate of allocation to first-line curative treatments is high (56%) and comparable to that of patients with virus-related hepatocellular carcinoma. As a consequence, the etiology of the underlying cirrhosis cannot be considered an independent prognostic factor in patients with hepatocellular carcinoma. Instead, prognosis is driven by liver function, general condition, and tumor burden. This underscores the crucial role of early diagnosis through periodic surveillance in patients with Alcohol-related liver disease or Metabolic dysfunction-Associated Steatotic Liver Disease with increased alcoholic intake -related cirrhosis.
Collapse
Affiliation(s)
- Nathalie Ganne-Carrié
- AP-HP, Hôpital Avicenne, Liver Unit, F-93000 Bobigny, France; University Sorbonne Paris Nord, UFR SMBH, F-93000 Bobigny, France; INSERM UMR-1168, Functional Genomics of Solid Tumours, F-75006 Paris, France.
| | - Pierre Nahon
- AP-HP, Hôpital Avicenne, Liver Unit, F-93000 Bobigny, France; University Sorbonne Paris Nord, UFR SMBH, F-93000 Bobigny, France; INSERM UMR-1168, Functional Genomics of Solid Tumours, F-75006 Paris, France
| |
Collapse
|
8
|
Bayram A, Bagbudar S, Yılmaz İ, Sozen H, Minareci Y, Altay AY, Altunbas SA, Yavuz E, Onder S. Predicting recurrence in adult granulosa cell tumors: the role of Ki67, p53, and TERT mutations. Arch Gynecol Obstet 2024:10.1007/s00404-024-07888-2. [PMID: 39688684 DOI: 10.1007/s00404-024-07888-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 12/10/2024] [Indexed: 12/18/2024]
Abstract
PURPOSE Adult granulosa cell tumors (aGCTs) are a rare type of ovarian malignancy. While most aGCTs have an indolent course, up to 25% experience recurrence. Identifying markers for disease recurrence is crucial for optimal management. METHODS Our study consisted of a total of 55 patients, comprising primary non-recurrent aGCTs (n = 30), aGCT recurrences without corresponding primary tumors (n = 19), and primary aGCTs which later recurred along with their matched recurrences (n = 6). Immunohistochemical analysis was conducted for CD73, Ki67, and p53, along with TERT mutation analysis on selected tissue samples. RESULTS Immunohistochemical analysis revealed higher Ki67 proliferation index in recurrent aGCTs compared to non-recurrent cases. Mutational p53 staining was only present in recurrent cases. CD73 expression did not differ significantly between primary non-recurrent and recurrent aGCTs. A notably increased occurrence of TERT promoter mutations was identified in recurrent aGCTs (14/25, 56%) in contrast to primary non-recurrent instances (8/27, 29.6%) (p = 0.05). In primary non-recurrent aGCTs with identified TERT mutations, the C250T locus was impacted in 2 cases, while the C228T locus was affected in 6 cases. Recurrent aGCT cases predominantly exhibited TERT C228T mutation in 13 out of 14 patients. Among the six pairs of primary and recurrent aGCTs studied, four pairs displayed TERT mutations in both primary and recurrence samples. Moreover, cases with TERT mutations exhibited a higher Ki67 index. CONCLUSION Identifying patients with high Ki67 and mutational p53 together with TERT mutations may help predict potential recurrence in aGCT cases.
Collapse
Affiliation(s)
- Aysel Bayram
- Istanbul Faculty of Medicine, Department of Pathology, Istanbul University, 34390, Fatih, Istanbul, Turkey.
| | - Sidar Bagbudar
- Istanbul Faculty of Medicine, Department of Pathology, Istanbul University, 34390, Fatih, Istanbul, Turkey
| | - İsmail Yılmaz
- Department of Pathology, University of Health Sciences, Sultan Abdulhamid Han Training & Research Hospital, Istanbul, Turkey
| | - Hamdullah Sozen
- Istanbul Faculty of Medicine, Department of Gynecological Oncology, Istanbul University, Istanbul, Turkey
| | - Yağmur Minareci
- Istanbul Faculty of Medicine, Department of Gynecological Oncology, Istanbul University, Istanbul, Turkey
| | - Ali Yılmaz Altay
- Istanbul Faculty of Medicine, Department of Pathology, Istanbul University, 34390, Fatih, Istanbul, Turkey
| | | | - Ekrem Yavuz
- Istanbul Faculty of Medicine, Department of Pathology, Istanbul University, 34390, Fatih, Istanbul, Turkey
| | - Semen Onder
- Istanbul Faculty of Medicine, Department of Pathology, Istanbul University, 34390, Fatih, Istanbul, Turkey
| |
Collapse
|
9
|
Lee JS, Choi HW, Kim JS, Lee TY, Yoon YC. Update on Resection Strategies for Hepatocellular Carcinoma: A Narrative Review. Cancers (Basel) 2024; 16:4093. [PMID: 39682279 DOI: 10.3390/cancers16234093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer, the incidence of which is rising globally. Despite recent advancements in immunotherapeutic and surgical treatment modalities, the prognosis for HCC remains poor. The surgical treatment strategy for HCC comprises a multimodal effort that ranges from ablative therapy and surgical resection to liver transplantation. Thanks to collective efforts from the surgical society, there have been rapid advances in resection strategies, such as 3D printing for surgical planning and minimally invasive techniques to minimize surgical trauma. This review examines recent advancements in surgical techniques, patient selection criteria, and perioperative management for HCC resection. The purpose of this review was to provide clinicians and researchers with an up-to-date perspective on the evolving role of surgical resection in HCC treatment, and to identify key areas for future investigation to improve patient outcomes.
Collapse
Affiliation(s)
- Jun Suh Lee
- Department of Surgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyeong Woo Choi
- Department of Surgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ji Su Kim
- Department of Surgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Tae Yoon Lee
- Department of Surgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Young Chul Yoon
- Department of Surgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
10
|
Zoulim F, Chen PJ, Dandri M, Kennedy PT, Seeger C. Hepatitis B virus DNA integration: Implications for diagnostics, therapy, and outcome. J Hepatol 2024; 81:1087-1099. [PMID: 38971531 DOI: 10.1016/j.jhep.2024.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024]
Abstract
Hepatitis B virus (HBV) DNA integration - originally recognised as a non-functional byproduct of the HBV life cycle - has now been accepted as a significant contributor to HBV pathogenesis and hepatitis D virus (HDV) persistence. Integrated HBV DNA is derived from linear genomic DNA present in viral particles or produced from aberrantly processed relaxed circular genomic DNA following an infection, and can drive expression of hepatitis B surface antigen (HBsAg) and HBx. DNA integration events accumulate over the course of viral infection, ranging from a few percent during early phases to nearly 100 percent of infected cells after prolonged chronic infections. HBV DNA integration events have primarily been investigated in the context of hepatocellular carcinoma development as they can activate known oncogenes and other growth promoting genes, cause chromosomal instability and, presumably, induce epigenetic alterations, promoting tumour growth. More recent evidence suggests that HBsAg expression from integrated DNA might contribute to HBV pathogenesis by attenuating the immune response. Integrated DNA provides a source for envelope proteins required for HDV replication and hence represents a means for HDV persistence. Because integrated DNA is responsible for persistence of HBsAg in the absence of viral replication it impacts established criteria for the resolution of HBV infection, which rely on HBsAg as a diagnostic marker. Integrated HBV DNA has been useful in assessing the turnover of infected hepatocytes which occurs during all phases of chronic hepatitis B including the initial phase of infection historically termed immune tolerant. HBV DNA integration has also been shown to impact the development of novel therapies targeting viral RNAs.
Collapse
Affiliation(s)
- Fabien Zoulim
- Université Claude Bernard Lyon 1, Hospices Civils de Lyon, INSERM, Lyon Hepatology Institute, Lyon, France.
| | - Pei-Jer Chen
- Hepatitis Research Center and Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Maura Dandri
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Partner Site, Germany
| | - Patrick T Kennedy
- Liver Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | | |
Collapse
|
11
|
Fu Y, Maccioni L, Wang XW, Greten TF, Gao B. Alcohol-associated liver cancer. Hepatology 2024; 80:1462-1479. [PMID: 38607725 DOI: 10.1097/hep.0000000000000890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
Heavy alcohol intake induces a wide spectrum of liver diseases ranging from steatosis, steatohepatitis, cirrhosis, and HCC. Although alcohol consumption is a well-known risk factor for the development, morbidity, and mortality of HCC globally, alcohol-associated hepatocellular carcinoma (A-HCC) is poorly characterized compared to viral hepatitis-associated HCC. Most A-HCCs develop after alcohol-associated cirrhosis (AC), but the direct carcinogenesis from ethanol and its metabolites to A-HCC remains obscure. The differences between A-HCC and HCCs caused by other etiologies have not been well investigated in terms of clinical prognosis, genetic or epigenetic landscape, molecular mechanisms, and heterogeneity. Moreover, there is a huge gap between basic research and clinical practice due to the lack of preclinical models of A-HCC. In the current review, we discuss the pathogenesis, heterogeneity, preclinical approaches, epigenetic, and genetic profiles of A-HCC, and discuss the current insights into and the prospects for future research on A-HCC. The potential effect of alcohol on cholangiocarcinoma and liver metastasis is also discussed.
Collapse
Affiliation(s)
- Yaojie Fu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Luca Maccioni
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Xin Wei Wang
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Tim F Greten
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Das D, Wang X, Chiu YC, Bouamar H, Sharkey FE, Lopera JE, Lai Z, Weintraub ST, Han X, Zou Y, Chen HIH, Zeballos Torrez CR, Gu X, Cserhati M, Michalek JE, Halff GA, Chen Y, Zheng S, Cigarroa FG, Sun LZ. Integrative multi-omics characterization of hepatocellular carcinoma in Hispanic patients. J Natl Cancer Inst 2024; 116:1961-1978. [PMID: 39189979 PMCID: PMC11630563 DOI: 10.1093/jnci/djae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/23/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND The incidence and mortality rates of hepatocellular carcinoma among Hispanic individuals in the United States are much higher than in non-Hispanic White people. We conducted multi-omics analyses to elucidate molecular alterations in hepatocellular carcinoma among Hispanic patients. METHODS Paired tumor and adjacent nontumor samples were collected from 31 Hispanic hepatocellular carcinomas in South Texas for genomic, transcriptomic, proteomic, and metabolomic profiling. Serum lipids were profiled in 40 Hispanic and non-Hispanic patients with or without clinically diagnosed hepatocellular carcinoma. RESULTS Exome sequencing revealed high mutation frequencies of AXIN2 and CTNNB1 in South Texas Hispanic hepatocellular carcinoma patients, suggesting a predominant activation of the Wnt/β-catenin pathway. TERT promoter mutations were also statistically significantly more frequent in the Hispanic cohort (Fisher exact test, P < .05). Cell cycles and liver function were positively and negatively enriched, respectively, with gene set enrichment analysis. Gene sets representing specific liver metabolic pathways were associated with dysregulation of corresponding metabolites. Negative enrichment of liver adipogenesis and lipid metabolism corroborated with a significant reduction in most lipids in serum samples of hepatocellular carcinoma patients (paired t test, P < .0001). Two hepatocellular carcinoma subtypes from our Hispanic cohort were identified and validated with the Cancer Genome Atlas liver cancer cohort. Patients with better overall survival showed higher activity of immune and angiogenesis signatures and lower activity of liver function-related gene signatures. They also had higher levels of immune checkpoint and immune exhaustion markers. CONCLUSIONS Our study revealed specific molecular features of Hispanic hepatocellular carcinoma and potential biomarkers for therapeutic management. It provides a unique resource for studying Hispanic hepatocellular carcinoma.
Collapse
Affiliation(s)
- Debodipta Das
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Xiaojing Wang
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yu-Chiao Chiu
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hakim Bouamar
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Francis E Sharkey
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jorge E Lopera
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Susan T Weintraub
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yi Zou
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hung-I H Chen
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Carla R Zeballos Torrez
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Xiang Gu
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Matyas Cserhati
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Joel E Michalek
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Glenn A Halff
- Transplant Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yidong Chen
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Siyuan Zheng
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Francisco G Cigarroa
- Transplant Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Lu-Zhe Sun
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
13
|
El Azzouzi M, El Ahanidi H, Hassan I, Tetou M, Ameur A, Bensaid M, Al Bouzidi A, Oukabli M, Alaoui CH, Addoum B, Chaoui I, Benbacer L, Mzibri ME, Attaleb M. Comprehensive behavioural assessment of TERT in bladder cancer. Urol Oncol 2024; 42:451.e19-451.e29. [PMID: 39147693 DOI: 10.1016/j.urolonc.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Telomerase activity plays a crucial role in cancer development and progression. Thus, telomerase activation through the interplay of mutations and epigenetic alterations in the telomerase reverse transcriptase (TERT) promoter may provide further insight into bladder cancer induction and progression. METHODS In this study 100 bladder tumour tissues were selected, and four molecular signatures were analysed: THOR methylation status, TERT promotor mutation, telomere length, and TERT expression. RESULTS In our study, 88% of bladder cancer patients had an hypermethylation of the THOR region and 60% had mutations in the TERT promoter region. TERT promoter methylation was observed in all stages and grades of bladder cancer. While, TERT promoter mutations were detected in advanced stages and grades. In our cohort, high levels of TERT expression and long telomeres have been found in noninvasive cases of bladder cancer, with a significant association between TERT expression and Telomere length. Interestingly, patients with low TERT expression and cases with long telomeres had significantly longer Disease-free survival and overall survival. CONCLUSION The methylation and mutations occurring in the TERT promoter are implicated in bladder carcinogenesis, offering added prognostic and supplying novel insight into telomere biology in cancer.
Collapse
Affiliation(s)
- Meryem El Azzouzi
- Biology and Medical Research Unit, CNESTEN, Rabat, Morocco; Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Hajar El Ahanidi
- Biology and Medical Research Unit, CNESTEN, Rabat, Morocco; Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Ilias Hassan
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco; Department of Urology, Military Hospital Mohammed V, Rabat, Morocco
| | - Mohammed Tetou
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco; Department of Urology, Military Hospital Mohammed V, Rabat, Morocco
| | - Ahmed Ameur
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco; Department of Urology, Military Hospital Mohammed V, Rabat, Morocco
| | - Mounia Bensaid
- Laboratory of Pathological Anatomy, Military Hospital Mohamed V, Rabat, Morocco; Royal School of Military Health Service, Rabat, Morocco
| | | | - Mohamed Oukabli
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco; Laboratory of Pathological Anatomy, Military Hospital Mohamed V, Rabat, Morocco
| | - Chaimae Hafidi Alaoui
- Biology and Medical Research Unit, CNESTEN, Rabat, Morocco; Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | | | - Imane Chaoui
- Biology and Medical Research Unit, CNESTEN, Rabat, Morocco
| | - Laila Benbacer
- Biology and Medical Research Unit, CNESTEN, Rabat, Morocco
| | | | | |
Collapse
|
14
|
Belizário J, Garay-Malpartida M. Key Epigenetic Players in Etiology and Novel Combinatorial Therapies for Treatment of Hepatocellular Carcinoma. LIVERS 2024; 4:638-655. [DOI: 10.3390/livers4040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of death in which the molecular tumorigenesis and cellular heterogeneity are poorly understood. The genetic principle that specific driver mutations in oncogenes, DNA repair genes, and tumor-suppressor genes can independently drive cancer development has been widely explored. Additionally, a repertory of harmful epigenetic modifications in DNA and chromatin—impacting the expression of genes involved in cellular proliferation, differentiation, genome stability, cell-cycle control, and DNA repair—are now acknowledged across various biological contexts that contribute to cancer etiology. Notably, the dynamic hypermethylation and hypomethylation in enhancer and promoter regions that promote activation or silencing of the master regulatory genes of the epigenetic programs is often altered in tumor cells due to mutation. Genome instability is one of the cancer hallmarks that contribute to transdifferentiation and intratumoral heterogeneity. Thus, it is broadly accepted that tumor tissue is dominated by genetically and epigenetically distinct sub-clones which display a set of genetic and epigenetic mutations. Here we summarize some functions of key genetic and epigenetic players and biochemical pathways leading to liver cell transformation. We discuss the role of the potential epigenetic marks in target genes thought to be involved in sequential events following liver lipid metabolism dysregulation, inflammation, fibrosis, cirrhosis, and finally hepatocellular carcinoma. We also briefly describe new findings showing how epigenetic drugs together with chemotherapy and immunotherapy can improve overall responses in patients with hepatic tumors.
Collapse
Affiliation(s)
- José Belizário
- School of Arts, Sciences and Humanities of the University of Sao Paulo, Rua Arlindo Bettio, 1000, São Paulo 03828-000, Brazil
| | - Miguel Garay-Malpartida
- School of Arts, Sciences and Humanities of the University of Sao Paulo, Rua Arlindo Bettio, 1000, São Paulo 03828-000, Brazil
| |
Collapse
|
15
|
Thu Nguyen T, Van Tran K, Cam Ho T, Xuan Nguyen H, Trong Nguyen T. A systematic analysis with the hierarchical cluster analysis strategy on the complex interaction of TERT and CTNNB1 somatic mutations in Vietnamese hepatocellular carcinoma patients. Gene 2024; 927:148646. [PMID: 38851365 DOI: 10.1016/j.gene.2024.148646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Telomerase reverse transcriptase (TERT) and β-catenin (CTNNB1) mutations may occur following the hepatocellular carcinoma (HCC) pathway signal. We conducted a Hierarchical cluster analysis study on 408 patients diagnosed with HCC by pathological surgery, identifying TERT promoter and CTNNB1 exon 3 mutations by sequencing. The overall preclinical characteristics, cumulative cut-point values, and the factors associated with these somatic mutations were analyzed in uni/multidimensional scaling model. HBV(+) HCV(-) HCC male patients who were older than 62.74 years old and have TERT promoter mutation as well as AFP > 489.78 ng/ml got a higher risk of HCC grade more than two from 27 % to 200 % with p < 0.05 (RR are from 1.27 [1.09-1.47] to 3.06 [2.04-4.61]). This mutation was a good indicator of grade 2 risk (HR = 0.37 [2.72-0.16], β = -1.00, p = 0.019). TERT promoter and CTNNB1 exon 3 mutations independently influenced tumor size and tumor site status in grade 3 and HBV(-) HCV (-) male HCC patients, where the hazard rates, respectively, were 0.28 [0.09-0.89], 0.023 [0.0023-0.23] and 0.06 [0.012-0.32] (β < 0 and p < 0.01). These two mutations inversely impacted each other the tumor sites status, especially in male HCC patients with grade 2 without B, C hepatitis virus (RRCTNNB1 exon 3 mutate - TERT promoter wildtype = 1.12 [1.04-1.20], p < 0.05). Consequently, the mutations in TERT promoter and CTNNB1 exon 3 may synchronize with other factors or independently impact the hepatocarcinogenesis and are important indicators for HCC prognostic in male patients with very high AFP levels or with moderately as well as poorly differentiated in tumor. Our results serve as the basis for further studies to understand the impact of different factors on the outcome of HCC, especially in monitoring and assessing the cancer risk of patients infect HBV and carry mutations.
Collapse
Affiliation(s)
- Thuy Thu Nguyen
- Center for Gene and Protein Research, Hanoi Medical University, 116177 Hanoi, Viet Nam
| | - Khanh Van Tran
- Center for Gene and Protein Research, Hanoi Medical University, 116177 Hanoi, Viet Nam
| | - Tu Cam Ho
- Center for Gene and Protein Research, Hanoi Medical University, 116177 Hanoi, Viet Nam; Institute of Virology, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Hau Xuan Nguyen
- Department of Oncology, Hanoi Medical University, 116177 Hanoi, Viet Nam
| | - Tue Trong Nguyen
- Medical Laboratory Department, Hanoi Medical University, 116177 Hanoi, Viet Nam; Clinical Laboratory Department, Hanoi Medical University Hospital, 116177 Hanoi, Viet Nam.
| |
Collapse
|
16
|
Mishima M, Takai A, Takeda H, Iguchi E, Nakano S, Fujii Y, Ueno M, Ito T, Teramura M, Eso Y, Shimizu T, Maruno T, Hidema S, Nishimori K, Marusawa H, Hatano E, Seno H. TERT upregulation promotes cell proliferation via degradation of p21 and increases carcinogenic potential. J Pathol 2024; 264:318-331. [PMID: 39329419 DOI: 10.1002/path.6351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 06/13/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024]
Abstract
Telomerase reverse transcriptase (TERT) gene aberration is detectable in >80% of cases with hepatocellular carcinoma (HCC). TERT reactivation is essential for cellular immortalization because it stabilizes telomere length, although the role of TERT in hepatocarcinogenesis remains unelucidated. To elucidate the significance of aberrant TERT expression in hepatocytes in inflammation-associated hepatocarcinogenesis, we generated Alb-Cre;TertTg mice, which overexpress TERT in the liver and examined their phenotype during chronic inflammation. Based on transcriptome data from the liver tissue of Alb-Cre;TertTg mice, we examined the role of TERT in hepatocarcinogenesis in vitro. We also evaluated the relationship between TERT and cell-cycle-related molecules, including p21, in HCC samples. The liver tumor development rate was increased by TERT overexpression during chronic inflammation, especially in the absence of p53 function. Gene set enrichment analysis of liver tissues revealed that gene sets related to TNF-NFκB signaling, cell cycle, and apoptosis were upregulated in Alb-Cre;TertTg liver. A luciferase reporter assay and immunoprecipitation revealed that TERT interacted with NFκB p65 and enhanced NFκB promoter activity. On the other hand, TERT formed protein complexes with p21, cyclin A2, and cyclin E and promoted ubiquitin-mediated degradation of p21, specifically in the G1 phase. In the clinical HCC samples, TERT was highly expressed but p21 was conversely downregulated, and TERT expression was associated with the upregulation of molecules related to the cell cycle. Taken together, the aberrant upregulation of TERT increased NFκB promoter activity and promoted cell cycle progression via p21 ubiquitination, leading to hepatocarcinogenesis. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Masako Mishima
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Takai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruhiko Takeda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eriko Iguchi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigeharu Nakano
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yosuke Fujii
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Ueno
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiko Ito
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mari Teramura
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuji Eso
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Shimizu
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shizu Hidema
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, Fukushima, Japan
| | - Katsuhiko Nishimori
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, Osaka, Japan
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Rahdan F, Saberi A, Saraygord-Afshari N, Hadizadeh M, Fayeghi T, Ghanbari E, Dianat-Moghadam H, Alizadeh E. Deciphering the multifaceted role of microRNAs in hepatocellular carcinoma: Integrating literature review and bioinformatics analysis for therapeutic insights. Heliyon 2024; 10:e39489. [PMID: 39498055 PMCID: PMC11532857 DOI: 10.1016/j.heliyon.2024.e39489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/06/2024] [Accepted: 10/15/2024] [Indexed: 11/07/2024] Open
Abstract
Hepatocellular carcinoma (HCC) poses a significant global health challenge, necessitating innovative therapeutic strategies. MicroRNAs (miRNAs) have emerged as pivotal regulators of HCC pathogenesis, influencing key processes such as self-renewal, angiogenesis, glycolysis, autophagy, and metastasis. This article integrates findings from a comprehensive literature review and bioinformatics analysis to elucidate the role of miRNAs in HCC. We discuss how dysregulation of miRNAs can drive HCC initiation, progression, and metastasis by modulating various signaling pathways and target genes. Moreover, leveraging high-throughput technology and bioinformatics tools, we identify key miRNAs involved in multiple cancer hallmarks, offering insights into potential combinatorial therapeutic strategies. Through our analysis considering p-values and signaling pathways associated with key features, we unveil miRNAs with simultaneous roles across critical cancer characteristics, providing a basis for the development of high-performance biomarkers. The microRNAs, miR-34a-5p, miR-373-3p, miR-21-5p, miR-214-5p, miR-195-5p, miR-139-5p were identified to be shared microRNAs in stemness, angiogenesis, glycolysis, autophagy, EMT, and metastasis of HCC. However, challenges such as miRNA stability and delivery hinder the translation of miRNA-based therapeutics into clinical practice. This review underscores the importance of further research to overcome existing barriers and realize the full potential of miRNA-based interventions for HCC management.
Collapse
Affiliation(s)
- Fereshteh Rahdan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alihossein Saberi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Morteza Hadizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahura Fayeghi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ghanbari
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Steinberg E, Dimitstein O, Morand GB, Forest VI, da Silva SD, Pusztaszeri M, Alohali S, Payne RJ. Clinical and Histopathological Features of Thyroid Cancer with TERT Promoter Molecular Alterations in Isolation Versus with Concurrent Molecular Alterations: A Multicenter Retrospective Study. Cancers (Basel) 2024; 16:3446. [PMID: 39456540 PMCID: PMC11506600 DOI: 10.3390/cancers16203446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Molecular testing of thyroid nodules enables the detection of genetic alterations, which can help assess the risk of malignancy and tumor behavior. While telomerase reverse transcriptase (TERTp) mutations are known to be associated with aggressive disease, their exact prognostic significance when occurring alone or with other molecular alterations remains underreported. Methods: This study examined patients with thyroid cancer treated at two tertiary care hospitals from 2017 to 2024. We compared tumor behavior in patients with TERTp molecular alterations occurring alone and with concurrent molecular alterations. Aggressive histologic subtypes were defined as tall-cell, hobnail, and columnar variants of papillary carcinoma, as well as poorly differentiated and anaplastic carcinoma. High-risk disease was defined according to the 2015 ATA guidelines as gross extrathyroidal extension, lymph node metastasis >3 cm, postoperative elevated serum thyroglobulin, distant metastases, and/or positive resection margins. Statistical analysis was performed to assess differences between groups. Results: 30 patients with TERTp-positive thyroid malignancies were included. TERTp/BRAF V600E was the most prevalent mutation combination (n = 13, 43.3%), followed by TERTp alone (n = 8, 26.7%) and TERTp/RAS (n = 7, 23.4%). TERTp/EIF1AX/GNAS and TERTp/EIF1AX/PIK3CA were the least common combinations (n = 1, 3.3% each). Nodules with TERTp and concurrent mutations were significantly more likely to be classified as high-risk (p = 0.006) and were more frequently associated with aggressive histologic subtypes (p = 0.003) compared to those with TERTp mutations alone, which tended to exhibit more benign behavior. Conclusions: Thyroid carcinomas harboring both TERTp and concurrent molecular alterations are associated with more aggressive features and a higher likelihood of being classified as high-risk. In contrast, TERTp mutations occurring alone do not confer an elevated risk.
Collapse
Affiliation(s)
- Emily Steinberg
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
| | - Orr Dimitstein
- Department of Otolaryngology—Head and Neck Surgery, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (O.D.); (G.B.M.); (V.-I.F.); (S.A.); (R.J.P.)
| | - Grégoire B. Morand
- Department of Otolaryngology—Head and Neck Surgery, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (O.D.); (G.B.M.); (V.-I.F.); (S.A.); (R.J.P.)
- Department of Otolaryngology—Head and Neck Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Véronique-Isabelle Forest
- Department of Otolaryngology—Head and Neck Surgery, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (O.D.); (G.B.M.); (V.-I.F.); (S.A.); (R.J.P.)
| | - Sabrina D. da Silva
- Department of Otolaryngology—Head and Neck Surgery, McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| | - Marc Pusztaszeri
- Department of Pathology, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada;
| | - Sama Alohali
- Department of Otolaryngology—Head and Neck Surgery, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (O.D.); (G.B.M.); (V.-I.F.); (S.A.); (R.J.P.)
- Department of Otolaryngology—Head and Neck Surgery, McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
- Department of Otolaryngology—Head and Neck Surgery, King Faisal Specialist Hospital & Research Center, Riyadh 11564, Saudi Arabia
| | - Richard J. Payne
- Department of Otolaryngology—Head and Neck Surgery, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (O.D.); (G.B.M.); (V.-I.F.); (S.A.); (R.J.P.)
- Department of Otolaryngology—Head and Neck Surgery, McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| |
Collapse
|
19
|
Campani C, Imbeaud S, Couchy G, Ziol M, Hirsch TZ, Rebouissou S, Noblet B, Nahon P, Hormigos K, Sidali S, Seror O, Taly V, Ganne Carrie N, Laurent-Puig P, Zucman-Rossi J, Nault JC. Circulating tumour DNA in patients with hepatocellular carcinoma across tumour stages and treatments. Gut 2024; 73:1870-1882. [PMID: 39054058 DOI: 10.1136/gutjnl-2024-331956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE Circulating tumour DNA (ctDNA) is a promising non-invasive biomarker in cancer. We aim to assess the dynamic of ctDNA in patients with hepatocellular carcinoma (HCC). DESIGN We analysed 772 plasmas from 173 patients with HCC collected at the time of diagnosis or treatment (n=502), 24 hours after locoregional treatment (n=154) and during follow-up (n=116). For controls, 56 plasmas from patients with chronic liver disease without HCC were analysed. All samples were analysed for cell free DNA (cfDNA) concentration, and for mutations in TERT promoter, CTNNB1, TP53, PIK3CA and NFE2L2 by sequencing and droplet-based digital PCR. Results were compared with 232 corresponding tumour samples. RESULTS In patients with active HCC, 40.2% of the ctDNA was mutated vs 14.6% in patients with inactive HCC and 1.8% in controls (p<0.001). In active HCC, we identified 27.5% of mutations in TERT promoter, 21.3% in TP53, 13.1% in CTNNB1, 0.4% in PIK3CA and 0.2% in NFE2L2, most of the times similar to those identified in the corresponding tumour. CtDNA mutation rate increased with advanced tumour stages (p<0.001). In 103 patients treated by percutaneous ablation, the presence and number of mutations in the ctDNA before treatment were associated with higher risk of death (p=0.001) and recurrence (p<0.001). Interestingly, cfDNA concentration and detectable mutations increased 24 hours after a locoregional treatment. Among 356 plasmas collected in 53 patients treated by systemic treatments, we detected mutations at baseline in 60.4% of the cases. In patients treated by atezolizumab-bevacizumab, persistence of mutation in ctDNA was associated with radiological progression (63.6% vs 36.4% for disappearance, p=0.019). In two patients progressing under systemic treatments, we detected the occurrence of mutations in CTNNB1 in the plasma that was subclonal in the tumour for one patient and not detectable in the tumour for the other one. CONCLUSION ctDNA offers dynamic information reflecting tumour biology. It represents a non-invasive tool useful to guide HCC clinical management.
Collapse
Affiliation(s)
- Claudia Campani
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
- Internal Medicine and Hepatology Unit, Department of Experimental and Clinical Medicine, University of Firenze, Florence, Italy
| | - Sandrine Imbeaud
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
| | - Gabrielle Couchy
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
| | - Marianne Ziol
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
- Pathology Department and Biological Resource Center Center (BB-0033-00027), Paris-Seine-Saint-Denis, University Hospital, Avicenne Hospital, APHP, Sorbonne Paris Nord University, Bobugny, France
| | - Theo Z Hirsch
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
| | - Sandra Rebouissou
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
| | - Bénédicte Noblet
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
| | - Pierre Nahon
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
- Liver Unit, Avicenne Hospital, APHP, University Sorbonne Paris Nord, Bobigny, France
| | - Katia Hormigos
- Cordeliers Research Center, INSERM, CNRS SNC 5096, Sorbonne University, Paris Cité University, Paris, France
| | - Sabrina Sidali
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
- Liver unit, Paris Cité University, Beaujon Hospital, APHP, DMU DIGEST, Clichy, France
| | - Olivier Seror
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
- Interventional Radiology Unit, Avicenne Hospital, APHP, Bobigny, Paris, France
| | - Valerie Taly
- Cordeliers Research Center, INSERM, CNRS SNC 5096, Sorbonne University, Paris Cité University, Paris, France
| | - Nathalie Ganne Carrie
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
- Liver Unit, Avicenne Hospital, APHP, University Sorbonne Paris Nord, Bobigny, France
| | - Pierre Laurent-Puig
- Cordeliers Research Center, INSERM, Sorbonne University, Paris Cité University, Institut of Cancer Paris CARPEM, AP-HP-Hôpital Européen Georges Pompidou, Paris, France
| | - Jessica Zucman-Rossi
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
- Cordeliers Research Center, INSERM, Sorbonne University, Paris Cité University, Institut of Cancer Paris CARPEM, AP-HP-Hôpital Européen Georges Pompidou, Paris, France
| | - Jean-Charles Nault
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
- Liver Unit, Avicenne Hospital, APHP, University Sorbonne Paris Nord, Bobigny, France
| |
Collapse
|
20
|
Nault JC, Calderaro J, Ronot M. Integration of new technologies in the multidisciplinary approach to primary liver tumours: The next-generation tumour board. J Hepatol 2024; 81:756-762. [PMID: 38871125 DOI: 10.1016/j.jhep.2024.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024]
Abstract
Primary liver tumours, including benign liver tumours, hepatocellular carcinoma and cholangiocarcinoma, present a multifaceted challenge, necessitating a collaborative approach, as evidenced by the role of the multidisciplinary tumour board (MDTB). The approach to managing primary liver tumours involves specialised teams, including surgeons, radiologists, oncologists, pathologists, hepatologists, and radiation oncologists, coming together to propose individualised treatment plans. The evolving landscape of primary liver cancer treatment introduces complexities, particularly with the expanding array of systemic and locoregional therapies, alongside the potential integration of molecular biology and artificial intelligence (AI) into MDTBs in the future. Precision medicine demands collaboration across disciplines, challenging traditional frameworks. In the next decade, we anticipate the convergence of AI, molecular biology, pathology, and advanced imaging, requiring adaptability in MDTB structure to incorporate these cutting-edge technologies. Navigating this evolution also requires a focus on enhancing basic, translational, and clinical research, as well as boosting clinical trials through an upgraded use of MDTBs as hubs for scientific collaboration and raising literacy about AI and new technologies. In this review, we will delineate the current unmet needs in the clinical management of primary liver cancers, discuss our perspective on the future role of MDTBs in primary liver cancers ("next generation" MDTBs), and unravel the potential power and limitations of novel technologies that may shape the multidisciplinary care landscape for primary liver cancers in the coming decade.
Collapse
Affiliation(s)
- Jean-Charles Nault
- Liver unit, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bobigny, France; Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Communauté d'Universités et Etablissements Sorbonne Paris Cité, Paris, France; Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, team « Functional Genomics of Solid Tumors », F-75006 Paris, France.
| | - Julien Calderaro
- Université Paris Est Créteil, INSERM, IMRB, F-94010, Créteil, France; Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Department of Pathology, Créteil, France; MINT-Hep, Mondor Integrative Hepatology, Créteil, France
| | - Maxime Ronot
- Université de Paris, INSERM U1149 "Centre de Recherche sur l'inflammation", CRI, Paris, France; Department of Radiology, AP-HP, Hôpital Beaujon APHP.Nord, Clichy, France
| |
Collapse
|
21
|
Abi-Raad R, Shi Q, Chen F, Antony V, Hsiao WY, Simsir A, Liu X, Brandler TC, Cai G. TERT promoter mutations and additional molecular alterations in thyroid fine-needle aspiration specimens: A multi-institutional study with histopathologic follow-up. Am J Clin Pathol 2024:aqae117. [PMID: 39250709 DOI: 10.1093/ajcp/aqae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/15/2024] [Indexed: 09/11/2024] Open
Abstract
OBJECTIVES TERT promoter mutations are not infrequently encountered in thyroid carcinomas; however, it is unclear if additional molecular alterations may play a role in determining tumor behavior. METHODS Fine-needle aspiration (FNA) specimens from 32 patients with TERT promoter mutations detected by ThyroSeq v3 from 4 institutions were included in the study. FNA diagnoses, molecular results, and surgical follow-up were retrospectively reviewed and analyzed. RESULTS There were 5 benign and 27 malignant neoplasms, including 7 high-grade thyroid carcinomas (HGCs) on histopathologic follow-up. Of 4 cases with an isolated TERT mutation, 3 (75%) cases were malignant. Of 17 cases harboring a co-occurring TERT mutation with 1 additional molecular alteration, 13 (76%) displayed malignancy on histopathologic follow-up. All 11 cases with TERT mutations plus 2 or more additional molecular alterations were malignant on follow-up. Furthermore, HGC was not seen in cases with an isolated TERT mutation, while 80% of cases harboring TERT mutations plus 3 additional molecular alterations showed HGC. CONCLUSIONS TERT promoter mutations are commonly associated with malignancy, particularly HGCs, when multiple co-occurring molecular alterations are present. However, TERT promoter mutations may occasionally be detected in benign thyroid neoplasms when encountered in isolation or with fewer than 2 additional molecular alterations.
Collapse
Affiliation(s)
- Rita Abi-Raad
- Department of Pathology, Yale University School of Medicine, New Haven, CT, US
| | - Qiuying Shi
- Department of Pathology, Emory University Hospital, Atlanta, GA, US
| | - Fei Chen
- Department of Pathology, New York University Langone Health, New York, NY, US
| | - Vijay Antony
- Department of Pathology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT, US
| | - Wen-Yu Hsiao
- Department of Pathology, Emory University Hospital, Atlanta, GA, US
| | - Aylin Simsir
- Department of Pathology, New York University Langone Health, New York, NY, US
| | - Xiaoying Liu
- Department of Pathology and Laboratory Medicine, Dartmouth Health and Geisel School of Medicine at Dartmouth, Lebanon, NH, US
| | - Tamar C Brandler
- Department of Pathology, New York University Langone Health, New York, NY, US
| | - Guoping Cai
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, US
| |
Collapse
|
22
|
Tocci NX, Wehrle CJ, Sun K, Jiao C, Hong H, Gross A, Allkushi E, Uysal M, Linganna MW, Stackhouse K, Hashimoto K, Schlegel A, Walsh RM, Miller C, Kwon DCH, Aucejo F. Circulating tumor DNA in management of primary liver malignancy: A review of the literature and future directions. J Surg Oncol 2024. [PMID: 39155663 DOI: 10.1002/jso.27825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/14/2024] [Indexed: 08/20/2024]
Abstract
Primary liver malignancies are a serious and challenging global health concern. The most common primary tumors are hepatocellular carcinoma and cholangiocarcinoma. These diseases portend poor prognosis when presenting with progressive, extensive disease. There is a critical need for improved diagnosis, therapeutic intervention, and monitoring surveillance in liver-related malignancies. Liquid biopsy using ctDNA provides an opportunity for growth within these domains for liver-related malignancy. However, ctDNA is relatively understudied in this field compared with other solid tumor types, possibly due to the complex nature of the pathology. In this review, we aim to discuss ctDNA, the current literature, and future directions of this technology within primary liver malignancies.
Collapse
Affiliation(s)
- Noah X Tocci
- Department of Hepato-pancreato-biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Chase J Wehrle
- Department of Hepato-pancreato-biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Keyue Sun
- Lerner Research Institute, Inflammation & Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Chunbao Jiao
- Lerner Research Institute, Inflammation & Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Hanna Hong
- Department of Hepato-pancreato-biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Abby Gross
- Department of Hepato-pancreato-biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Erlind Allkushi
- Department of Hepato-pancreato-biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Melis Uysal
- Department of Hepato-pancreato-biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Maureen Whitsett Linganna
- Department of Gastroenterology, Hepatology, and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Katheryn Stackhouse
- Department of Hepato-pancreato-biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Koji Hashimoto
- Department of Hepato-pancreato-biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Andrea Schlegel
- Department of Hepato-pancreato-biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Lerner Research Institute, Inflammation & Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - R Matthew Walsh
- Department of Hepato-pancreato-biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Charles Miller
- Department of Hepato-pancreato-biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - David C H Kwon
- Department of Hepato-pancreato-biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Federico Aucejo
- Department of Hepato-pancreato-biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
23
|
Amadeo E, Foti S, Camera S, Rossari F, Persano M, Lo Prinzi F, Vitiello F, Casadei-Gardini A, Rimini M. Developing targeted therapeutics for hepatocellular carcinoma: a critical assessment of promising phase II agents. Expert Opin Investig Drugs 2024; 33:839-849. [PMID: 39039690 DOI: 10.1080/13543784.2024.2377321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the first for primary liver tumors. In recent years greater therapeutic advancement was represented by employment of tyrosine kinase inhibitors (TKIs) either in monotherapy or in combination with immune checkpoint inhibitors (ICIs). AREAS COVERED Major attention was given to target therapies in the last couple of years, especially in those currently under phase II trials. Priority was given either to combinations of novel ICI and TKIs or those targeting alternative mutations of major carcinogenic pathways. EXPERT OPINION As TKIs are playing a more crucial role in HCC therapeutic strategies, it is fundamental to further expand molecular testing and monitoring of acquired resistances. Despite the recent advancement in both laboratory and clinical studies, further research is necessary to face the discrepancy in clinical practice.
Collapse
Affiliation(s)
- Elisabeth Amadeo
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Silvia Foti
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Silvia Camera
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Federico Rossari
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Mara Persano
- Medical Oncology, University and University Hospital of Cagliari, Cagliari, Italy
| | - Federica Lo Prinzi
- Operative Research Unit of Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Francesco Vitiello
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Andrea Casadei-Gardini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Margherita Rimini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| |
Collapse
|
24
|
Zhang J, Yang XY, Chen J, Zhou Q, Pan G, Wang Y, Luo W, Hou J, Bao H, Xu G, Tang G, Bai H, Yu R. A Poly(amino acid)-Based Nanomedicine Strategy: Telomere-Telomerase Axis Targeting and Magnetic Resonance Imaging in Hepatocellular Carcinoma Treatment. NANO LETTERS 2024; 24:8351-8360. [PMID: 38916238 DOI: 10.1021/acs.nanolett.4c01767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Targeting telomere maintenance has emerged as a promising strategy for hepatocellular carcinoma (HCC) treatment. However, given the duality of the telomere-telomerase axis in telomere maintenance, a comprehensive strategy is urgently needed. Herein, we develop a poly(amino acid) (D-PAAs)-based strategy for spatiotemporal codelivery of telomerase inhibitor, BIBR1523, and AKT inhibitor, isobavachalcone. By leveraging D-PAAs' modifiability, we synthesize polymer-inhibitor conjugates (PB and PI) and a folic acid-decorated tumor-targeting vector (PF). These building blocks undergo micellization to fabricate a codelivery nanomedicine (P-BI@P-FA) by exploiting D-PAAs' noncovalent assembly. P-BI@P-FA improves the pharmacokinetics, tumor selectivity, and bioavailability of small molecule inhibitors and initiates a dual telomere-specific inhibition by combining telomerase deactivation with telomere disruption. Furthermore, a hybrid tumor-targeting magnetic nanosystem is designed using D-PAAs and manganese dioxide to showcase magnetic resonance imaging capacities. Our D-PAAs-based strategy addresses the pressing need for telomere-specific HCC treatment while allowing for diagnostic application, presenting a promising avenue for nanomedicine design.
Collapse
Affiliation(s)
- Jinguo Zhang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Xiao-Yan Yang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Jiayi Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310028, People's Republic of China
| | - Qiaomei Zhou
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Guohua Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310028, People's Republic of China
| | - Yining Wang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Wangping Luo
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Jue Hou
- Department of Chemistry, Zhejiang University, Hangzhou 310028, People's Republic of China
| | - Hanxiao Bao
- Department of Chemistry, Zhejiang University, Hangzhou 310028, People's Republic of China
| | - Guoqiao Xu
- Department of Chemistry, Zhejiang University, Hangzhou 310028, People's Republic of China
| | - Guping Tang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
- Department of Chemistry, Zhejiang University, Hangzhou 310028, People's Republic of China
| | - Hongzhen Bai
- Department of Chemistry, Zhejiang University, Hangzhou 310028, People's Republic of China
| | - Risheng Yu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| |
Collapse
|
25
|
Zhang S, Xiao X, Yi Y, Wang X, Zhu L, Shen Y, Lin D, Wu C. Tumor initiation and early tumorigenesis: molecular mechanisms and interventional targets. Signal Transduct Target Ther 2024; 9:149. [PMID: 38890350 PMCID: PMC11189549 DOI: 10.1038/s41392-024-01848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 06/20/2024] Open
Abstract
Tumorigenesis is a multistep process, with oncogenic mutations in a normal cell conferring clonal advantage as the initial event. However, despite pervasive somatic mutations and clonal expansion in normal tissues, their transformation into cancer remains a rare event, indicating the presence of additional driver events for progression to an irreversible, highly heterogeneous, and invasive lesion. Recently, researchers are emphasizing the mechanisms of environmental tumor risk factors and epigenetic alterations that are profoundly influencing early clonal expansion and malignant evolution, independently of inducing mutations. Additionally, clonal evolution in tumorigenesis reflects a multifaceted interplay between cell-intrinsic identities and various cell-extrinsic factors that exert selective pressures to either restrain uncontrolled proliferation or allow specific clones to progress into tumors. However, the mechanisms by which driver events induce both intrinsic cellular competency and remodel environmental stress to facilitate malignant transformation are not fully understood. In this review, we summarize the genetic, epigenetic, and external driver events, and their effects on the co-evolution of the transformed cells and their ecosystem during tumor initiation and early malignant evolution. A deeper understanding of the earliest molecular events holds promise for translational applications, predicting individuals at high-risk of tumor and developing strategies to intercept malignant transformation.
Collapse
Affiliation(s)
- Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyi Xiao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yonglin Yi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyu Wang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Lingxuan Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Changping Laboratory, 100021, Beijing, China
| | - Yanrong Shen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- CAMS Oxford Institute, Chinese Academy of Medical Sciences, 100006, Beijing, China.
| |
Collapse
|
26
|
Song M, Cheng H, Zou H, Ma K, Lu L, Wei Q, Xu Z, Tang Z, Zhang Y, Wang Y, Sun C. Genomic profiling informs therapies and prognosis for patients with hepatocellular carcinoma in clinical practice. BMC Cancer 2024; 24:673. [PMID: 38825709 PMCID: PMC11145829 DOI: 10.1186/s12885-024-12407-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) genomic research has discovered actionable genetic changes that might guide treatment decisions and clinical trials. Nonetheless, due to a lack of large-scale multicenter clinical validation, these putative targets have not been converted into patient survival advantages. So, it's crucial to ascertain whether genetic analysis is clinically feasible, useful, and whether it can be advantageous for patients. We sequenced tumour tissue and blood samples (as normal controls) from 111 Chinese HCC patients at Qingdao University Hospital using the 508-gene panel and the 688-gene panel, respectively. Approximately 95% of patients had gene variations related to targeted treatment, with 50% having clinically actionable mutations that offered significant information for targeted therapy. Immune cell infiltration was enhanced in individuals with TP53 mutations but decreased in patients with CTNNB1 and KMT2D mutations. More notably, we discovered that SPEN, EPPK1, and BRCA2 mutations were related to decreased median overall survival, although MUC16 mutations were not. Furthermore, we found mutant MUC16 as an independent protective factor for the prognosis of HCC patients after curative hepatectomy. In conclusion, this study connects genetic abnormalities to clinical practice and potentially identifies individuals with poor prognoses who may benefit from targeted treatment or immunotherapy.
Collapse
Affiliation(s)
- Mengqi Song
- Department of Hepatopancreatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Haoyue Cheng
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hao Zou
- Department of Hepatopancreatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Kai Ma
- Department of Hepatopancreatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lianfang Lu
- Department of Hepatopancreatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qian Wei
- Department of Hepatopancreatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zejiang Xu
- Department of Hepatopancreatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zirui Tang
- Software Engineering, Northeastern University, Shenyang, Liaoning, China
| | - Yuanzheng Zhang
- Collage of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, China
| | - Yinan Wang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China.
| | - Chuandong Sun
- Department of Hepatopancreatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
27
|
Zhao G, Ma Q, Yang H, Jiang H, Xu Q, Luo S, Meng Z, Liu J, Zhu L, Lin Q, Li M, Fang J, Ma L, Qiu W, Mao Z, Lu Z. Base editing of the mutated TERT promoter inhibits liver tumor growth. Hepatology 2024; 79:1310-1323. [PMID: 38016019 DOI: 10.1097/hep.0000000000000700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/31/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND AND AIMS Base editing has shown great potential for treating human diseases with mutated genes. However, its potential for treating HCC has not yet been explored. APPROACH AND RESULTS We employed adenine base editors (ABEs) to correct a telomerase reverse transcriptase ( TERT ) promoter mutation, which frequently occurs in various human cancers, including HCC. The mutated TERT promoter -124 C>T is corrected to -124 C by a single guide (sg) RNA-guided and deactivated Campylobacter jejuni Cas9 (CjCas9)-fused adenine base editor (CjABE). This edit impairs the binding of the E-twenty six/ternary complex factor transcription factor family, including E-twenty six-1 and GABPA, to the TERT promoter, leading to suppressed TERT promoter and telomerase activity, decreased TERT expression and cell proliferation, and increased cell senescence. Importantly, injection of adeno-associated viruses expressing sgRNA-guided CjABE or employment of lipid nanoparticle-mediated delivery of CjABE mRNA and sgRNA inhibits the growth of liver tumors harboring TERT promoter mutations. CONCLUSIONS These findings demonstrate that a sgRNA-guided CjABE efficiently converts the mutated TERT promoter -124 C>T to -124 C in HCC cells and underscore the potential to treat HCC by the base editing-mediated correction of TERT promoter mutations.
Collapse
Affiliation(s)
- Gaoxiang Zhao
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Qingxia Ma
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Huang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Hongfei Jiang
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Qianqian Xu
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Shudi Luo
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhaoyuan Meng
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Juanjuan Liu
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Lei Zhu
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Qian Lin
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Min Li
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Fang
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Leina Ma
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Wensheng Qiu
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang 310029, China
| |
Collapse
|
28
|
Yedla P, Bhamidipati P, Syed R, Amanchy R. Working title: Molecular involvement of p53-MDM2 interactome in gastrointestinal cancers. Cell Biochem Funct 2024; 42:e4075. [PMID: 38924101 DOI: 10.1002/cbf.4075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
The interaction between murine double minute 2 (MDM2) and p53, marked by transcriptional induction and feedback inhibition, orchestrates a functional loop dictating cellular fate. The functional loop comprising p53-MDM2 axis is made up of an interactome consisting of approximately 81 proteins, which are spatio-temporally regulated and involved in DNA repair mechanisms. Biochemical and genetic alterations of the interactome result in dysregulation of the p53-mdm2 axis that leads to gastrointestinal (GI) cancers. A large subset of interactome is well known and it consists of proteins that either stabilize p53 or MDM2 and proteins that target the p53-MDM2 complex for ubiquitin-mediated destruction. Upstream signaling events brought about by growth factors and chemical messengers invoke a wide variety of posttranslational modifications in p53-MDM2 axis. Biochemical changes in the transactivation domain of p53 impact the energy landscape, induce conformational switching, alter interaction potential and could change solubility of p53 to redefine its co-localization, translocation and activity. A diverse set of chemical compounds mimic physiological effectors and simulate biochemical modifications of the p53-MDM2 interactome. p53-MDM2 interactome plays a crucial role in DNA damage and repair process. Genetic aberrations in the interactome, have resulted in cancers of GI tract (pancreas, liver, colorectal, gastric, biliary, and esophageal). We present in this article a review of the overall changes in the p53-MDM2 interactors and the effectors that form an epicenter for the development of next-generation molecules for understanding and targeting GI cancers.
Collapse
Affiliation(s)
- Poornachandra Yedla
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
- Department of Pharmacogenomics, Institute of Translational Research, Asian Healthcare Foundation, Hyderabad, Telangana, India
| | - Pranav Bhamidipati
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
- Department of Life Sciences, Imperial College London, London, UK
| | - Riyaz Syed
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
| | - Ramars Amanchy
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
| |
Collapse
|
29
|
Lee Y, Park CK, Park SH. Prognostic Impact of TERT Promoter Mutations in Adult-Type Diffuse Gliomas Based on WHO2021 Criteria. Cancers (Basel) 2024; 16:2032. [PMID: 38893152 PMCID: PMC11171308 DOI: 10.3390/cancers16112032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Mutation in the telomerase reverse transcriptase promoter (TERTp )is commonly observed in various malignancies, such as central nervous system (CNS) tumors, malignant melanoma, bladder cancer, and thyroid carcinoma. These mutations are recognized as significant poor prognostic factors for these tumors. In this investigation, a total of 528 cases of adult-type diffuse gliomas diagnosed at a single institution were reclassified according to the 2021 WHO classifications of CNS tumors, 5th edition (WHO2021). The study analyzed clinicopathological and genetic features, including TERTp mutations in each tumor. The impact of known prognostic factors on patient outcomes was analyzed through Kaplan-Meier survival and Cox regression analysis. TERTp mutations were predominantly identified in 94.1% of oligodendrogliomas (ODG), followed by 66.3% in glioblastoma, IDH-wildtype (GBM-IDHwt), and 9.2% of astrocytomas, IDH-mutant (A-IDHm). When considering A-IDHm and GBM as astrocytic tumors (Group 1) and ODGs (Group 2), TERTp mutations emerged as a significant adverse prognostic factor (p = 0.013) in Group 1. However, within each GBM-IDHwt and A-IDHm, the presence of TERTp mutations did not significantly impact patient prognosis (p = 0.215 and 0.268, respectively). Due to the high frequency of TERTp mutations in Group 2 (ODG) and their consistent prolonged survival, a statistical analysis to evaluate their impact on overall survival was deemed impractical. When considering MGMTp status, the combined TERTp-mutated and MGMTp-unmethylated group exhibited the worst prognosis in OS (p = 0.018) and PFS (p = 0.034) of GBM. This study confirmed that the classification of tumors according to the WHO2021 criteria effectively reflected prognosis. Both uni- and multivariate analyses in GBM, age, MGMTp methylation, and CDKN2A/B homozygous deletion were statistically significant prognostic factors while in univariate analysis in A-IDHm, grade 4, the Ki-67 index and MYCN amplifications were statistically significant prognostic factors. This study suggests that it is important to classify and manage tumors based on their genetic characteristics in adult-type diffuse gliomas.
Collapse
Affiliation(s)
- Yujin Lee
- Department of Hospital Pathology, St. Vincent’s Hospital, The Catholic University of Korea College of Medicine, 93, Jungbu-daero, Paldal-gu, Suwon 16247, Gyeonggi-do, Republic of Korea;
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University College of Medicine, 103 Deahak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, 103 Deahak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Neuroscience Institute, Seoul National University College of Medicine, 103 Deahak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| |
Collapse
|
30
|
Wu TKH, Hui RWH, Mak LY, Fung J, Seto WK, Yuen MF. Hepatocellular carcinoma: Advances in systemic therapies. F1000Res 2024; 13:104. [PMID: 38766497 PMCID: PMC11099512 DOI: 10.12688/f1000research.145493.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
Advanced hepatocellular carcinoma (HCC) is traditionally associated with limited treatment options and a poor prognosis. Sorafenib, a multiple tyrosine kinase inhibitor, was introduced in 2007 as a first-in-class systemic agent for advanced HCC. After sorafenib, a range of targeted therapies and immunotherapies have demonstrated survival benefits in the past 5 years, revolutionizing the treatment landscape of advanced HCC. More recently, evidence of novel combinations of systemic agents with distinct mechanisms has emerged. In particular, combination trials on atezolizumab plus bevacizumab and durvalumab plus tremelimumab have shown encouraging efficacy. Hence, international societies have revamped their guidelines to incorporate new recommendations for these novel systemic agents. Aside from treatment in advanced HCC, the indications for systemic therapy are expanding. For example, the combination of systemic therapeutics with locoregional therapy (trans-arterial chemoembolization or stereotactic body radiation therapy) has demonstrated promising early results in downstaging HCC. Recent trials have also explored the role of systemic therapy as neoadjuvant treatment for borderline-resectable HCC or as adjuvant treatment to reduce recurrence risk after curative resection. Despite encouraging results from clinical trials, the real-world efficacy of systemic agents in specific patient subgroups (such as patients with advanced cirrhosis, high bleeding risk, renal impairment, or cardiometabolic diseases) remains uncertain. The effect of liver disease etiology on systemic treatment efficacy warrants further research. With an increased understanding of the pathophysiological pathways and accumulation of clinical data, personalized treatment decisions will be possible, and the field of systemic treatment for HCC will continue to evolve.
Collapse
Affiliation(s)
- Trevor Kwan-Hung Wu
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Rex Wan-Hin Hui
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Lung-Yi Mak
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| | - James Fung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| | - Wai-Kay Seto
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
31
|
Tang Q, Hu G, Sang Y, Chen Y, Wei G, Zhu M, Chen M, Li S, Liu R, Peng Z. Therapeutic targeting of PLK1 in TERT promoter-mutant hepatocellular carcinoma. Clin Transl Med 2024; 14:e1703. [PMID: 38769666 PMCID: PMC11106514 DOI: 10.1002/ctm2.1703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Hotspot mutations in the promoter of telomerase reverse transcriptase (TERT) gene are the most common genetic variants in hepatocellular carcinoma (HCC) and associated with poor prognosis of the disease. However, no drug was currently approved for treating TERT promoter mutation positive HCC patients. Here, we aim to explore the potential therapeutic strategy for targeting TERT promoter mutation in HCC. METHODS The Liver Cancer Model Repository database was used for screening potential drugs to selectively suppress the growth of TERT promoter mutant HCC cells. RNA-seq, CRISPR-Cas9 technology and siRNA transfection were performed for mechanistic studies. Cell counting kit-8 (CCK8) assay and the xenograft tumour models were used for cell growth detection in vitro and in vivo, respectively. Cell apoptosis and cell cycle arrest were analysed by Annexin V-FITC staining and/or propidium iodide staining. RESULTS PLK1 inhibitors were remarkably more sensitive to HCC cells harbouring TERT promoter mutation than wild-type cells in vitro and in vivo, which were diminished after TERT promoter mutation was edited to the wild-type nucleotide. Comparing the HCC cells with wild-type promoter of TERT, PLK1 inhibitors specifically downregulated Smad3 to regulate TERT for inducing apoptosis and G2/M arrest in TERT mutant HCC cells. Moreover, knockout of Smad3 counteracted the effects of PLK1 inhibitors in TERT mutant HCC cells. Finally, a cooperative effect of PLK1 and Smad3 inhibition was observed in TERT mutant cells. CONCLUSIONS PLK1 inhibition selectively suppressed the growth of TERT mutant HCC cells through Smad3, thus contributed to discover a novel therapeutic strategy to treat HCC patients harbouring TERT promoter mutations. KEY POINTS TERT promoter mutation confers sensitivity to PLK1 inhibitors in HCC. The selective growth inhibition of TERT mutant HCC cells induced by PLK1 inhibitor was mediated by Smad3. Combined inhibition of PLK1 and Smad3 showed a cooperative anti-tumor effect in TERT mutant HCC cells.
Collapse
Affiliation(s)
- Qin Tang
- Department of Radiation OncologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Guanghui Hu
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Ye Sang
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yulu Chen
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Guangyan Wei
- Department of Radiation OncologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Meiyan Zhu
- Department of Radiation OncologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Mengke Chen
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Shiyong Li
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Rengyun Liu
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Zhenwei Peng
- Department of Radiation OncologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Cancer CenterThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
32
|
Akiba J, Ogasawara S, Yano H. Genetic Analyses of Primary Liver Cancer Cell Lines: Correspondence With Morphological Features of Original Tumors. Cancer Genomics Proteomics 2024; 21:260-271. [PMID: 38670592 PMCID: PMC11059599 DOI: 10.21873/cgp.20445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND/AIM Advancements in genetic analysis technologies have led to establishment of molecular classifications systems for primary liver cancers. The correlation between pathological morphology and genetic mutations in hepatocellular carcinoma (HCC) is becoming increasingly evident. To construct appropriate experimental models, it is crucial to select cell lines based on their morphology and genetic mutations. In this study, we conducted comprehensive genetic analyses of primary liver cancer cell lines and examined their correlations with morphology. MATERIALS AND METHODS Thirteen primary liver cancer cell lines established in our Department were investigated. Eleven cell lines were HCC cell lines, whereas 2 were combined hepatocellular-cholangiocarcinoma (CHC) cell line characteristics. Whole exome sequencing and fusion gene analyses were conducted using a next generation sequencing platform. We also examined correlations between cell mutations and morphological findings and conducted experiments to clarify the association between morphological findings and genetic alterations. RESULTS Mutations in TP53, HMCN1, PCLO, HYDIN, APOB, and EYS were found in 11, 5, 4, 4, 3, and 3 cell lines, respectively. CTNNB1 mutation was not identified in any cell line. The original tumor of four cell lines (KYN-1, KYN-2, KYN-3, and HAK-6) showed morphologically macrotrabecular massive patterns and these cell lines harbor TP53 mutations. Two cell lines (KYN-2 and KMCH-2) showed an extremely high tumor mutation burden. These two cell lines possess ultra-mutations associated with DNA repair and/or DNA polymerase. CONCLUSION The study identified correlations between morphological findings and genetic mutations in several HCC cell lines. Cell lines with unique genetic mutations were found. This information will be a valuable tool for the selection of suitable experimental models in HCC research.
Collapse
Affiliation(s)
- Jun Akiba
- Department of Diagnostic Pathology, Kurume University Hospital, Fukuoka, Japan;
| | - Sachiko Ogasawara
- Department of Pathology, Kurume University, School of Medicine, Fukuoka, Japan
| | - Hirohisa Yano
- Department of Pathology, Kurume University, School of Medicine, Fukuoka, Japan
| |
Collapse
|
33
|
Makino K, Ishii T, Takeda H, Saito Y, Fujiwara Y, Fujimoto M, Ito T, Wakama S, Kumagai K, Munekage F, Horie H, Tomofuji K, Oshima Y, Uebayashi EY, Kawai T, Ogiso S, Fukumitsu K, Takai A, Seno H, Hatano E. Integrated analyses of the genetic and clinicopathological features of cholangiolocarcinoma: cholangiolocarcinoma may be characterized by mismatch-repair deficiency. J Pathol 2024; 263:32-46. [PMID: 38362598 DOI: 10.1002/path.6257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/25/2023] [Accepted: 12/21/2023] [Indexed: 02/17/2024]
Abstract
Cholangiolocarcinoma (CLC) is a primary liver carcinoma that resembles the canals of Hering and that has been reported to be associated with stem cell features. Due to its rarity, the nature of CLC remains unclear, and its pathological classification remains controversial. To clarify the positioning of CLC in primary liver cancers and identify characteristics that could distinguish CLC from other liver cancers, we performed integrated analyses using whole-exome sequencing (WES), immunohistochemistry, and a retrospective review of clinical information on eight CLC cases and two cases of recurrent CLC. WES demonstrated that CLC includes IDH1 and BAP1 mutations, which are characteristic of intrahepatic cholangiocarcinoma (iCCA). A mutational signature analysis showed a pattern similar to that of iCCA, which was different from that of hepatocellular carcinoma (HCC). CLC cells, including CK7, CK19, and EpCAM, were positive for cholangiocytic differentiation markers. However, the hepatocytic differentiation marker AFP and stem cell marker SALL4 were completely negative. The immunostaining patterns of CLC with CD56 and epithelial membrane antigen were similar to those of the noncancerous bile ductules. In contrast, mutational signature cluster analyses revealed that CLC formed a cluster associated with mismatch-repair deficiency (dMMR), which was separate from iCCA. Therefore, to evaluate MMR status, we performed immunostaining of four MMR proteins (PMS2, MSH6, MLH1, and MSH2) and detected dMMR in almost all CLCs. In conclusion, CLC had highly similar characteristics to iCCA but not to HCC. CLC can be categorized as a subtype of iCCA. In contrast, CLC has characteristics of dMMR tumors that are not found in iCCA, suggesting that it should be treated distinctly from iCCA. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Kenta Makino
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takamichi Ishii
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruhiko Takeda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoichi Saito
- Laboratory of Bioengineering, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masakazu Fujimoto
- Department of Diagnostic Pathology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Ito
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Wakama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Kumagai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fumiaki Munekage
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Horie
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Katsuhiro Tomofuji
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yu Oshima
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Takayuki Kawai
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Surgery, Medical Research Institute Kitano Hospital, Osaka, Japan
| | - Satoshi Ogiso
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Fukumitsu
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Takai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
34
|
Das D, Wang X, Chiu YC, Bouamar H, Sharkey FE, Lopera JE, Lai Z, Weintraub ST, Han X, Zou Y, Chen HIH, Zeballos Torrez CR, Gu X, Cserhati M, Michalek JE, Halff GA, Chen Y, Zheng S, Cigarroa FG, Sun LZ. Integrative multi-omics characterization of hepatocellular carcinoma in Hispanic patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.27.24306447. [PMID: 38746245 PMCID: PMC11092709 DOI: 10.1101/2024.04.27.24306447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background The incidence and mortality rates of hepatocellular carcinoma (HCC) among Hispanics in the United States are much higher than those of non-Hispanic whites. We conducted comprehensive multi-omics analyses to understand molecular alterations in HCC among Hispanic patients. Methods Paired tumor and adjacent non-tumor samples were collected from 31 Hispanic HCC in South Texas (STX-Hispanic) for genomic, transcriptomic, proteomic, and metabolomic profiling. Additionally, serum lipids were profiled in 40 Hispanic and non-Hispanic patients with or without clinically diagnosed HCC. Results Exome sequencing revealed high mutation frequencies of AXIN2 and CTNNB1 in STX Hispanic HCCs, suggesting a predominant activation of the Wnt/β-catenin pathway. The TERT promoter mutation frequency was also remarkably high in the Hispanic cohort. Cell cycles and liver functions were identified as positively- and negatively-enriched, respectively, with gene set enrichment analysis. Gene sets representing specific liver metabolic pathways were associated with dysregulation of corresponding metabolites. Negative enrichment of liver adipogenesis and lipid metabolism corroborated with a significant reduction in most lipids in the serum samples of HCC patients. Two HCC subtypes from our Hispanic cohort were identified and validated with the TCGA liver cancer cohort. The subtype with better overall survival showed higher activity of immune and angiogenesis signatures, and lower activity of liver function-related gene signatures. It also had higher levels of immune checkpoint and immune exhaustion markers. Conclusions Our study revealed some specific molecular features of Hispanic HCC and potential biomarkers for therapeutic management of HCC and provides a unique resource for studying Hispanic HCC.
Collapse
|
35
|
Zheng S, Chan SW, Liu F, Liu J, Chow PKH, Toh HC, Hong W. Hepatocellular Carcinoma: Current Drug Therapeutic Status, Advances and Challenges. Cancers (Basel) 2024; 16:1582. [PMID: 38672664 PMCID: PMC11048862 DOI: 10.3390/cancers16081582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of liver cancer, accounting for ~90% of liver neoplasms. It is the second leading cause of cancer-related deaths and the seventh most common cancer worldwide. Although there have been rapid developments in the treatment of HCC over the past decade, the incidence and mortality rates of HCC remain a challenge. With the widespread use of the hepatitis B vaccine and antiviral therapy, the etiology of HCC is shifting more toward metabolic-associated steatohepatitis (MASH). Early-stage HCC can be treated with potentially curative strategies such as surgical resection, liver transplantation, and radiofrequency ablation, improving long-term survival. However, most HCC patients, when diagnosed, are already in the intermediate or advanced stages. Molecular targeted therapy, followed by immune checkpoint inhibitor immunotherapy, has been a revolution in HCC systemic treatment. Systemic treatment of HCC especially for patients with compromised liver function is still a challenge due to a significant resistance to immune checkpoint blockade, tumor heterogeneity, lack of oncogenic addiction, and lack of effective predictive and therapeutic biomarkers.
Collapse
Affiliation(s)
- Shunzhen Zheng
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan 250098, China;
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore; (S.W.C.); (W.H.)
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China;
| | - Siew Wee Chan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore; (S.W.C.); (W.H.)
| | - Fei Liu
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan 250098, China;
| | - Jun Liu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China;
| | - Pierce Kah Hoe Chow
- Division of Surgery and Surgical Oncology, National Cancer Centre, Singapore 169610, Singapore;
- Academic Clinical Programme for Surgery, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 168583, Singapore;
| | - Wanjin Hong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore; (S.W.C.); (W.H.)
| |
Collapse
|
36
|
Hazari Y, Chevet E, Bailly-Maitre B, Hetz C. ER stress signaling at the interphase between MASH and HCC. Hepatology 2024:01515467-990000000-00844. [PMID: 38626349 DOI: 10.1097/hep.0000000000000893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/28/2024] [Indexed: 04/18/2024]
Abstract
HCC is the most frequent primary liver cancer with an extremely poor prognosis and often develops on preset of chronic liver diseases. Major risk factors for HCC include metabolic dysfunction-associated steatohepatitis, a complex multifactorial condition associated with abnormal endoplasmic reticulum (ER) proteostasis. To cope with ER stress, the unfolded protein response engages adaptive reactions to restore the secretory capacity of the cell. Recent advances revealed that ER stress signaling plays a critical role in HCC progression. Here, we propose that chronic ER stress is a common transversal factor contributing to the transition from liver disease (risk factor) to HCC. Interventional strategies to target the unfolded protein response in HCC, such as cancer therapy, are also discussed.
Collapse
Affiliation(s)
- Younis Hazari
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute (BNI), University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Eric Chevet
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Béatrice Bailly-Maitre
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1065, Université Côte d'Azur (UCA), Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Team "Metainflammation and Hematometabolism", Metabolism Department, France
- Université Côte d'Azur, INSERM, U1065, C3M, 06200 Nice, France
| | - Claudio Hetz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute (BNI), University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Buck Institute for Research on Aging, Novato, California, USA
| |
Collapse
|
37
|
Zheng L, Wang Y, Liu Z, Wang Z, Tao C, Wu A, Li H, Xiao T, Li Z, Rong W. Identification of molecular characteristics of hepatocellular carcinoma with microvascular invasion based on deep targeted sequencing. Cancer Med 2024; 13:e7043. [PMID: 38572921 PMCID: PMC10993708 DOI: 10.1002/cam4.7043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND As an indicator of tumor invasiveness, microvascular invasion (MVI) is a crucial risk factor for postoperative relapse, metastasis, and unfavorable prognosis in hepatocellular carcinoma (HCC). Nevertheless, the genetic mechanisms underlying MVI, particularly for Chinese patients, remain mostly uncharted. METHODS We applied deep targeted sequencing on 66 Chinese HCC samples. Focusing on the telomerase reverse transcriptase (TERT) promoter (TERTp) and TP53 co-mutation (TERTp+/TP53+) group, gene set enrichment analysis (GSEA) was used to explore the potential molecular mechanisms of the TERTp+/TP53+ group on tumor progression and metastasis. Additionally, we evaluated the tumor immune microenvironment of the TERTp+/TP53+ group in HCC using multiplex immunofluorescence (mIF) staining. RESULTS Among the 66 HCC samples, the mutated genes that mostly appeared were TERT, TP53, and CTNNB1. Of note, we found 10 cases with TERTp+/TP53+, of which nine were MVI-positive and one was MVI-negative, and there was a co-occurrence of TERTp and TP53 (p < 0.05). Survival analysis demonstrated that patients with the TERTp+/TP53+ group had lower the disease-free survival (DFS) (p = 0.028). GSEA results indicated that telomere organization, telomere maintenance, DNA replication, positive regulation of cell cycle, and negative regulation of immune response were significantly enriched in the TERTp+/TP53+ group (all adjusted p-values (p.adj) < 0.05). mIF revealed that the TERTp+/TP53+ group decreased CD8+ T cells infiltration (p = 0.25) and enhanced PDL1 expression (p = 0.55). CONCLUSIONS TERTp+/TP53+ was significantly enriched in MVI-positive patients, leading to poor prognosis for HCC patients by promoting proliferation of HCC cell and inhibiting infiltration of immune cell surrounding HCC. TERTp+/TP53+ can be utilized as a potential indicator for predicting MVI-positive patients and poor prognosis, laying a preliminary foundation for further exploration of co-mutation in HCC with MVI and clinical treatment.
Collapse
Affiliation(s)
- Linlin Zheng
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yaru Wang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhenrong Liu
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhihao Wang
- Department of Hepatobiliary Hernia SurgeryLiaocheng Dongcangfu People's HospitalLiaochengChina
| | - Changcheng Tao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Anke Wu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Haiyang Li
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ting Xiao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhuo Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Weiqi Rong
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
38
|
Angeli-Pahim I, Chambers A, Duarte S, Soma D, Beduschi T, Sahin I, Hughes S, Zarrinpar A. Methylated ctDNA Quantification: Noninvasive Approach to Monitoring Hepatocellular Carcinoma Burden. J Am Coll Surg 2024; 238:770-778. [PMID: 38146818 PMCID: PMC11670922 DOI: 10.1097/xcs.0000000000000939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
BACKGROUND Noninvasive, precision monitoring of hepatocellular carcinoma (HCC) treatment efficacy would greatly facilitate personalized therapy and improve patient outcomes. We hypothesize that quantifying methylated circulating tumor DNA (ctDNA) can be used to effectively monitor HCC burden without the need for biopsy. STUDY DESIGN Blood samples were collected from 25 patients, 21 with HCC and 4 with benign liver masses, at various timepoints throughout the course of treatment at a high-volume academic medical center. Quantification of methylated ctDNA molecules assessed CpG sites on more than 550 preselected cancer-specific amplicons. The tumor methylation score (TMS) was calculated by measuring the difference between the amount of methylation in the plasma and buffy coat with a normal cutoff value of 120 or less. RESULTS Among 10 patients with surgical HCC (5 surgical resections and 5 liver transplants), TMS revealed a statistically significant, rapid postoperative decline in 9. One patient who had a persistently elevated TMS on postoperative day 1 was subsequently found to have had metastatic disease. Patients in the negative control cohort all had normal-range pre- and postoperative TMS. Preoperative TMS correlated moderately with tumor burden on pathology (Spearman r = 0.54) of surgical specimens. From 11 subjects undergoing systemic therapy or Y90 radioembolization, analysis of 16 time periods demonstrated that the change in TMS (ΔTMS) was better associated with tumor progression than the change in Δalpha-fetoprotein (area under the curve 0.800 and 0.783, respectively). A composite score combining ΔTMS and Δalpha-fetoprotein further improved performance for detecting tumor progression with an area under the curve of 0.892. CONCLUSIONS These findings indicate that ctDNA methylation scores can effectively evaluate changes in tumor burden without the need for tumor biopsy.
Collapse
Affiliation(s)
- Isabella Angeli-Pahim
- From the Departments of Surgery (Angeli-Pahim, Chambers, Duarte, Soma, Beduschi, Hughes, Zarrinpar)
| | - Anastasia Chambers
- From the Departments of Surgery (Angeli-Pahim, Chambers, Duarte, Soma, Beduschi, Hughes, Zarrinpar)
| | - Sergio Duarte
- From the Departments of Surgery (Angeli-Pahim, Chambers, Duarte, Soma, Beduschi, Hughes, Zarrinpar)
| | - Daiki Soma
- From the Departments of Surgery (Angeli-Pahim, Chambers, Duarte, Soma, Beduschi, Hughes, Zarrinpar)
| | - Thiago Beduschi
- From the Departments of Surgery (Angeli-Pahim, Chambers, Duarte, Soma, Beduschi, Hughes, Zarrinpar)
| | - Ilyas Sahin
- Medicine (Sahin), University of Florida College of Medicine, Gainesville, FL
| | - Steven Hughes
- From the Departments of Surgery (Angeli-Pahim, Chambers, Duarte, Soma, Beduschi, Hughes, Zarrinpar)
| | - Ali Zarrinpar
- From the Departments of Surgery (Angeli-Pahim, Chambers, Duarte, Soma, Beduschi, Hughes, Zarrinpar)
| |
Collapse
|
39
|
Wang J, Guan X, Shang N, Wu D, Liu Z, Guan Z, Zhang Z, Jin Z, Wei X, Liu X, Song M, Zhu W, Dai G. Dysfunction of CCT3-associated network signals for the critical state during progression of hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167054. [PMID: 38360074 DOI: 10.1016/j.bbadis.2024.167054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and is a serious threat to human health; thus, early diagnosis and adequate treatment are essential. However, there are still great challenges in identifying the tipping point and detecting early warning signals of early HCC. In this study, we aimed to identify the tipping point (critical state) of and key molecules involved in hepatocarcinogenesis based on time series transcriptome expression data of HCC patients. The phase from veHCC (very early HCC) to eHCC (early HCC) was identified as the critical state in HCC progression, with 143 genes identified as key candidate molecules by combining the DDRTree (dimensionality reduction via graph structure learning) and DNB (dynamic network biomarker) methods. Then, we ranked the candidate genes to verify their mRNA levels using the diethylnitrosamine (DEN)-induced HCC mouse model and identified five early warning signals, namely, CCT3, DSTYK, EIF3E, IARS2 and TXNRD1; these signals can be regarded as the potential early warning signals for the critical state of HCC. We identified CCT3 as an independent prognostic factor for HCC, and functions of CCT3 involving in the "MYCtargets_V1" and "E2F-Targets" are closely related to the progression of HCC. The predictive method combining the DDRTree and DNB methods can not only identify the key critical state before cancer but also determine candidate molecules of critical state, thus providing new insight into the early diagnosis and preemptive treatment of HCC.
Collapse
Affiliation(s)
- Jianwei Wang
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 45001, China; School of Life Sciences, Zhengzhou University, Zhengzhou 45001, China
| | - Xiaowen Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou 45001, China
| | - Ning Shang
- School of Life Sciences, Zhengzhou University, Zhengzhou 45001, China
| | - Di Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou 45001, China
| | - Zihan Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 45001, China
| | - Zhenzhen Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou 45001, China
| | - Zhizi Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 45001, China
| | - Zhongzhen Jin
- School of Life Sciences, Zhengzhou University, Zhengzhou 45001, China
| | - Xiaoyi Wei
- School of Life Sciences, Zhengzhou University, Zhengzhou 45001, China
| | - Xiaoran Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 45001, China
| | - Mingzhu Song
- School of Life Sciences, Zhengzhou University, Zhengzhou 45001, China
| | - Weijun Zhu
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 45001, China.
| | - Guifu Dai
- School of Life Sciences, Zhengzhou University, Zhengzhou 45001, China.
| |
Collapse
|
40
|
Gupta T, Jarpula NS. Hepatocellular carcinoma immune microenvironment and check point inhibitors-current status. World J Hepatol 2024; 16:353-365. [PMID: 38577535 PMCID: PMC10989304 DOI: 10.4254/wjh.v16.i3.353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/24/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary tumor of the liver and has a high mortality rate. The Barcelona Clinic Liver Cancer staging system in addition to tumor staging also links the modality of treatment available to a particular stage. The recent description of the tumor microenvironment (TME) in HCC has provided a new concept of immunogenicity within the HCC. Virus-related HCC has been shown to be more immunogenic with higher expression of cytotoxic T lymphocytes and decreased elements for immunosuppression such as regulatory T cells. This immunogenic milieu provides a better response to immunotherapy especially immune checkpoint inhibitors (ICIs). In addition, the recent data on combining locoregional therapies and other strategies may convert the less immunogenic state of the TME towards higher immunogenicity. Therefore, data are emerging on the use of combinations of locoregional therapy and ICIs in unresectable or advanced HCC and has shown better survival outcomes in this difficult population.
Collapse
Affiliation(s)
- Tarana Gupta
- Division of Hepatology, Department of Medicine, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak 124001, Haryana, India.
| | - Nikhil Sai Jarpula
- Division of Hepatology, Department of Medicine, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak 124001, Haryana, India
| |
Collapse
|
41
|
Li HY, Zheng LL, Hu N, Wang ZH, Tao CC, Wang YR, Liu Y, Aizimuaji Z, Wang HW, Zheng RQ, Xiao T, Rong WQ. Telomerase-related advances in hepatocellular carcinoma: A bibliometric and visual analysis. World J Gastroenterol 2024; 30:1224-1236. [PMID: 38577190 PMCID: PMC10989492 DOI: 10.3748/wjg.v30.i9.1224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/03/2024] [Accepted: 02/03/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND As a critical early event in hepatocellular carcinogenesis, telomerase activation might be a promising and critical biomarker for hepatocellular carcinoma (HCC) patients, and its function in the genesis and treatment of HCC has gained much attention over the past two decades. AIM To perform a bibliometric analysis to systematically assess the current state of research on HCC-related telomerase. METHODS The Web of Science Core Collection and PubMed were systematically searched to retrieve publications pertaining to HCC/telomerase limited to "articles" and "reviews" published in English. A total of 873 relevant publications related to HCC and telomerase were identified. We employed the Bibliometrix package in R to extract and analyze the fundamental information of the publications, such as the trends in the publications, citation counts, most prolific or influential writers, and most popular journals; to screen for keywords occurring at high frequency; and to draw collaboration and cluster analysis charts on the basis of coauthorship and co-occurrences. VOSviewer was utilized to compile and visualize the bibliometric data. RESULTS A surge of 51 publications on HCC/telomerase research occurred in 2016, the most productive year from 1996 to 2023, accompanied by the peak citation count recorded in 2016. Up to December 2023, 35226 citations were made to all publications, an average of 46.6 citations to each paper. The United States received the most citations (n = 13531), followed by China (n = 7427) and Japan (n = 5754). In terms of national cooperation, China presented the highest centrality, its strongest bonds being to the United States and Japan. Among the 20 academic institutions with the most publications, ten came from China and the rest of Asia, though the University of Paris Cité, Public Assistance-Hospitals of Paris, and the National Institute of Health and Medical Research (INSERM) were the most prolific. As for individual contributions, Hisatomi H, Kaneko S, and Ide T were the three most prolific authors. Kaneko S ranked first by H-index, G-index, and overall publication count, while Zucman-Rossi J ranked first in citation count. The five most popular journals were the World Journal of Gastroenterology, Hepatology, Journal of Hepatology, Oncotarget, and Oncogene, while Nature Genetics, Hepatology, and Nature Reviews Disease Primers had the most citations. We extracted 2293 keywords from the publications, 120 of which appeared more than ten times. The most frequent were HCC, telomerase and human telomerase reverse transcriptase (hTERT). Keywords such as mutational landscape, TERT promoter mutations, landscape, risk, and prognosis were among the most common issues in this field in the last three years and may be topics for research in the coming years. CONCLUSION Our bibliometric analysis provides a comprehensive overview of HCC/telomerase research and insights into promising upcoming research.
Collapse
Affiliation(s)
- Hai-Yang Li
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lin-Lin Zheng
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Nan Hu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhi-Hao Wang
- Department of Hepatobiliary Hernia Surgery, Liaocheng Dongcangfu People’s Hospital, Liaocheng 252000, Shandong Province, China
| | - Chang-Cheng Tao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ya-Ru Wang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yue Liu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zulihumaer Aizimuaji
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hong-Wei Wang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Rui-Qi Zheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ting Xiao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wei-Qi Rong
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
42
|
Tavabie OD, Salehi S, Aluvihare VR. The challenges and potential of microRNA-based therapy for patients with liver failure syndromes and hepatocellular carcinoma. Expert Opin Ther Targets 2024; 28:179-191. [PMID: 38487923 DOI: 10.1080/14728222.2024.2331598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION Morbidity and mortality from liver disease continues to rise worldwide. There are currently limited curative treatments for patients with liver failure syndromes, encompassing acute liver failure and decompensated cirrhosis states, outside of transplantation. Whilst there have been improvements in therapeutic options for patients with hepatocellular carcinoma (HCC), there remain challenges necessitating novel therapeutic agents. microRNA have long been seen as potential therapeutic targets but there has been limited clinical translation. AREAS COVERED We will discuss the limitations of conventional non-transplant management of patients with liver failure syndromes and HCC. We will provide an overview of microRNA and the challenges in developing and delivering microRNA-based therapeutic agents. We will finally provide an overview of microRNA-based therapeutic agents which have progressed to clinical trials. EXPERT OPINION microRNA have great potential to be developed into therapeutic agents due to their association with critical biological processes which govern health and disease. Utilizing microRNA sponges to target multiple microRNA associated with specific biological processes may improve their therapeutic efficacy. However, there needs to be significant improvements in delivery systems to ensure the safe delivery of microRNA to target sites and minimize systemic distribution. This currently significantly impacts the clinical translation of microRNA-based therapeutic agents.
Collapse
Affiliation(s)
| | - Siamak Salehi
- Institute of Liver Studies, King's College Hospital, London, UK
| | | |
Collapse
|
43
|
Ohni S, Yamaguchi H, Hirotani Y, Nakanishi Y, Midorikawa Y, Sugitani M, Nakayama T, Makishima M, Esumi M. Complex phenotypic heterogeneity of combined hepatocellular-cholangiocarcinoma with a homogenous TERT promoter mutation. Am J Transl Res 2024; 16:690-699. [PMID: 38463590 PMCID: PMC10918120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/18/2024] [Indexed: 03/12/2024]
Abstract
To clarify the mechanism underlying the development and poor prognosis of combined hepatocellular-cholangiocarcinoma (cHCC-CCA), we characterized liver cancer driver mutations and poor prognostic markers in both the HCC and intrahepatic CCA (iCCA) components of a cHCC-CCA tumor. The telomerase reverse transcriptase (TERT) promoter mutation C228T was quantified by digital polymerase chain reaction using DNA from multiple microdissected cancer components of a single cHCC-CCA nodule. The protein expression of cancer-related markers, including TERT, was examined by serial thin-section immunohistochemistry and double-staining immunofluorescence. TERT promoter mutation and TERT protein expression were detected in all cancer components but not in noncancer regions. TERT promoter mutation frequencies were similar among components; those of TERT protein-positive cancer cells were higher in iCCA and mixed components than in HCC. The frequencies of Ki67- and p53-positive cells were similarly higher in iCCA and mixed components than in HCC. However, double-positive cells for the three proteins were unexpectedly rare; single-positive cells dominated, indicating phenotypic microheterogeneity in cancer cells within a component. Interestingly, HCC and CCA marker protein immunohistochemistry suggested dedifferentiation of HCC and transdifferentiation from HCC to iCCA in HCC and iCCA components, respectively. Such phenotypic intercomponent heterogeneity and intracomponent microheterogeneity were detected in a tumor nodule of cHCC-CCA uniformly carrying the early HCC driver mutation. Moreover, poor prognostic markers were randomly expressed without a regular pattern, consistent with the poor prognosis.
Collapse
Affiliation(s)
- Sumie Ohni
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine Tokyo, Japan
| | - Hiromi Yamaguchi
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine Tokyo, Japan
| | - Yukari Hirotani
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine Tokyo, Japan
| | - Yoko Nakanishi
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine Tokyo, Japan
| | - Yutaka Midorikawa
- Department of Surgery, Nihon University School of Medicine Tokyo, Japan
| | - Masahiko Sugitani
- Division of Human Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine Tokyo, Japan
| | - Tomohiro Nakayama
- Division of Clinical Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine Tokyo, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine Tokyo, Japan
| | - Mariko Esumi
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine Tokyo, Japan
| |
Collapse
|
44
|
Zhu Y, Tang S, Yuan Q, Fu J, He J, Liu Z, Zhao X, Li Y, Zhao Y, Zhang Y, Zhang X, Zhang Y, Zhu Y, Wang W, Zheng B, Wu R, Wu T, Yang S, Qiu X, Shen S, Hu J, Chen L, Wang Y, Wang H, Gao D, Chen L. Integrated characterization of hepatobiliary tumor organoids provides a potential landscape of pharmacogenomic interactions. Cell Rep Med 2024; 5:101375. [PMID: 38278146 PMCID: PMC10897507 DOI: 10.1016/j.xcrm.2023.101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/20/2023] [Accepted: 12/15/2023] [Indexed: 01/28/2024]
Abstract
Despite considerable efforts to identify human liver cancer genomic alterations that might unveil druggable targets, the systematic translation of multiomics data remains challenging. Here, we report success in long-term culture of 64 patient-derived hepatobiliary tumor organoids (PDHOs) from a Chinese population. A divergent response to 265 metabolism- and epigenetics-related chemicals and 36 anti-cancer drugs is observed. Integration of the whole genome, transcriptome, chromatin accessibility profiles, and drug sensitivity results of 64 clinically relevant drugs defines over 32,000 genome-drug interactions. RUNX1 promoter mutation is associated with an increase in chromatin accessibility and a concomitant gene expression increase, promoting a cluster of drugs preferentially sensitive in hepatobiliary tumors. These results not only provide an annotated PDHO biobank of human liver cancer but also suggest a systematic approach for obtaining a comprehensive understanding of the gene-regulatory network of liver cancer, advancing the applications of potential personalized medicine.
Collapse
Affiliation(s)
- Yanjing Zhu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China; National Center for Liver Cancer, Shanghai 200438, China
| | - Shijie Tang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuyue Yuan
- CEMS, NCMIS, HCMS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; School of Mathematics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Fu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Juan He
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhuang Liu
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofang Zhao
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yunguang Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhao
- Institute of Metabolism and Integrative Biology and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yani Zhang
- Institute of Metabolism and Integrative Biology and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaoyu Zhang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yangqianwen Zhang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Yiqin Zhu
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenwen Wang
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Bo Zheng
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Rui Wu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China; Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Tong Wu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Shuai Yang
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xinyao Qiu
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Siyun Shen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Ji Hu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 330106, China; Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong 519031, China.
| | - Yong Wang
- CEMS, NCMIS, HCMS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; School of Mathematics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China; West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 330106, China.
| | - Hongyang Wang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China; National Center for Liver Cancer, Shanghai 200438, China; Institute of Metabolism and Integrative Biology and School of Life Sciences, Fudan University, Shanghai 200438, China; Shanghai Key Laboratory of Hepatobiliary Tumor Biology, Shanghai 200438, China.
| | - Dong Gao
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Lei Chen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China; National Center for Liver Cancer, Shanghai 200438, China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai 200438, China.
| |
Collapse
|
45
|
Zhou S, Sarabia SF, Estrine D, Ostrow D, Schmidt RJ, Warren M, Raca G, Shillingford N, Wang L, Pawel B, Stein JE, Biegel JA, Lopez-Terrada D, Mascarenhas L, Ji J. Comparative Clinicopathologic and Genomic Analysis of Hepatocellular Neoplasm, Not Otherwise Specified, and Hepatoblastoma. Mod Pathol 2024; 37:100385. [PMID: 37992967 DOI: 10.1016/j.modpat.2023.100385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023]
Abstract
Accurate diagnosis and treatment of hepatocellular neoplasm, not otherwise specified (HCN-NOS), poses significant challenges. Our study aimed to investigate the clinicopathologic and genomic similarities and differences between HCN-NOS and hepatoblastoma (HB) to guide diagnostic and treatment strategies. The clinicopathologic characteristics of 16 patients with HCN-NOS and 23 patients with HB were compared. Molecular studies, including the OncoKids DNA- and RNA-based next-generation sequencing panel, chromosomal microarray, and targeted Sanger sequencing analyses of CTNNB1 and TERT promoters, were employed. We found that patients with HCN-NOS were older (P < .001) and more frequently classified as high risk (P < .01), yet they showed no significant differences in alpha fetoprotein levels or survival outcomes compared with those with HB. HCN-NOS and HB had a comparable frequency of sequence variants, with CTNNB1 mutations being predominant in both groups. Notably, TERT promoter mutations (37.5%) and rare clinically significant variants (BRAF, NRAS, and KMT2D) were exclusive to HCN-NOS. HCN-NOS demonstrated a higher prevalence of gains in 1q, encompassing the MDM4 locus (17/17 vs 11/24; P < .001), as well as loss/loss of heterozygosity (LOH) of 1p (11/17 vs 6/24; P < .05) and chromosome 11 (7/17 vs 1/24; P < .01) when compared with HB. Furthermore, the recurrent loss/LOH of chromosomes 3, 4p, 9, 15q, and Y was only observed in HCN-NOS. However, no significant differences were noted in gains of chromosomes 2, 8, and 20, or loss/LOH of 4q and 11p between the 2 groups. Notably, no clinically significant gene fusions were detected in either group. In conclusion, our study reveals that HCN-NOS exhibits high-risk clinicopathologic features and greater structural complexity compared with HB. However, patients with HCN-NOS exhibit comparable alpha fetoprotein levels at diagnosis, CTNNB1 mutation rates, and survival outcomes when subjected to aggressive treatment, as compared with those with HB. These findings have the potential to enhance diagnostic accuracy and inform more effective treatments for HCN-NOS.
Collapse
Affiliation(s)
- Shengmei Zhou
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine, University of Southern California, Los Angeles, California.
| | - Stephen F Sarabia
- Department of Pathology and Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Dolores Estrine
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Dejerianne Ostrow
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Ryan J Schmidt
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mikako Warren
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Gordana Raca
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Nick Shillingford
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Larry Wang
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Bruce Pawel
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine, University of Southern California, Los Angeles, California
| | - James E Stein
- Keck School of Medicine, University of Southern California, Los Angeles, California; Division of Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, California
| | - Jaclyn A Biegel
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Dolores Lopez-Terrada
- Department of Pathology and Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Leo Mascarenhas
- Keck School of Medicine, University of Southern California, Los Angeles, California; Division of Hematology/Oncology, Department of Pediatrics, Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Jianling Ji
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
46
|
Di Tommaso S, Dourthe C, Dupuy JW, Dugot-Senant N, Cappellen D, Cazier H, Paradis V, Blanc JF, Le Bail B, Balabaud C, Bioulac-Sage P, Saltel F, Raymond AA. Spatial characterisation of β-catenin-mutated hepatocellular adenoma subtypes by proteomic profiling of the tumour rim. JHEP Rep 2024; 6:100913. [PMID: 38304236 PMCID: PMC10831953 DOI: 10.1016/j.jhepr.2023.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 02/03/2024] Open
Abstract
Background & Aims Hepatocellular adenomas (HCAs) are rare, benign, liver tumours classified at the clinicopathological, genetic, and proteomic levels. The β-catenin-activated (b-HCA) subtypes harbour several mutation types in the β-catenin gene (CTNNB1) associated with different risks of malignant transformation or bleeding. Glutamine synthetase is a surrogate marker of β-catenin pathway activation associated with the risk of malignant transformation. Recently, we revealed an overexpression of glutamine synthetase in the rims of exon 3 S45-mutated b-HCA and exon 7/8-mutated b-HCA compared with the rest of the tumour. A difference in vascularisation was found in this rim shown by diffuse CD34 staining only at the tumour centre. Here, we aimed to characterise this tumour heterogeneity to better understand its physiopathological involvement. Methods Using mass spectrometry imaging, genetic, and proteomic analyses combined with laser capture microdissection, we compared the tumour centre with the tumour rim and with adjacent non-tumoural tissue. Results The tumour rim harboured the same mutation as the tumour centre, meaning both parts belong to the same tumour. Mass spectrometry imaging showed different spectral profiles between the rim and the tumour centre. Proteomic profiling revealed the significant differential expression of 40 proteins at the rim compared with the tumour centre. The majority of these proteins were associated with metabolism, with an expression profile comparable with a normal perivenous hepatocyte expression profile. Conclusions The difference in phenotype between the tumour centres and tumour rims of exon 3 S45-mutated b-HCA and exon 7/8-mutated b-HCA does not depend on CTNNB1 mutational status. In a context of sinusoidal arterial pathology, tumour heterogeneity at the rim harbours perivenous characteristics and could be caused by a functional peripheral venous drainage. Impact and implications Tumour heterogeneity was revealed in β-catenin-mutated hepatocellular adenomas (b-HCAs) via the differential expression of glutamine synthase at tumour rims. The combination of several spatial approaches (mass spectrometry imaging, genetic, and proteomic analyses) after laser capture microdissection allowed identification of a potential role for peripheral venous drainage underlying this difference. Through this study, we were able to illustrate that beyond a mutational context, many factors can downstream regulate gene expression and contribute to different clinicopathological phenotypes. We believe that the combinations of spatial analyses that we used could be inspiring for all researchers wanting to access heterogeneity information of liver tumours.
Collapse
Affiliation(s)
- Sylvaine Di Tommaso
- Université Bordeaux, Inserm UMR1312 BoRdeaux Institute of onCology (BRIC), Bordeaux, France
- Oncoprot Platform, TBM-Core US 005, Bordeaux, France
| | - Cyril Dourthe
- Université Bordeaux, Inserm UMR1312 BoRdeaux Institute of onCology (BRIC), Bordeaux, France
- Oncoprot Platform, TBM-Core US 005, Bordeaux, France
| | | | | | - David Cappellen
- Université Bordeaux, Inserm UMR1312 BoRdeaux Institute of onCology (BRIC), Bordeaux, France
- Bordeaux University Hospital Center, Tumor Bank and Tumor Biology Laboratory, Pessac, France
| | - Hélène Cazier
- Pathology Department, Henri Mondor AP-HP Hospital, Créteil, France
| | - Valérie Paradis
- Pathology Department, Henri Mondor AP-HP Hospital, Créteil, France
| | - Jean-Frédéric Blanc
- Université Bordeaux, Inserm UMR1312 BoRdeaux Institute of onCology (BRIC), Bordeaux, France
- Department of Hepatology and Oncology, Bordeaux University Hospital, INSERM CIC 1401, Bordeaux, France
| | - Brigitte Le Bail
- Université Bordeaux, Inserm UMR1312 BoRdeaux Institute of onCology (BRIC), Bordeaux, France
- Pathology Department, Bordeaux University Hospital, Bordeaux, France
| | - Charles Balabaud
- Université Bordeaux, Inserm UMR1312 BoRdeaux Institute of onCology (BRIC), Bordeaux, France
| | - Paulette Bioulac-Sage
- Université Bordeaux, Inserm UMR1312 BoRdeaux Institute of onCology (BRIC), Bordeaux, France
| | - Frédéric Saltel
- Université Bordeaux, Inserm UMR1312 BoRdeaux Institute of onCology (BRIC), Bordeaux, France
- Oncoprot Platform, TBM-Core US 005, Bordeaux, France
| | - Anne-Aurélie Raymond
- Université Bordeaux, Inserm UMR1312 BoRdeaux Institute of onCology (BRIC), Bordeaux, France
- Oncoprot Platform, TBM-Core US 005, Bordeaux, France
| |
Collapse
|
47
|
McEneaney LJ, Vithayathil M, Khan S. Screening, Surveillance, and Prevention of Hepatocellular Carcinoma. GASTROINTESTINAL ONCOLOGY ‐ A CRITICAL MULTIDISCIPLINARY TEAM APPROACH 2E 2024:271-290. [DOI: 10.1002/9781119756422.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
48
|
Ito T, Ishii T, Takeda H, Sumiyoshi S, Tomofuji K, Wakama S, Makino K, Horie H, Kumagai K, Takai A, Uebayashi EY, Ogiso S, Fukumitsu K, Haga H, Seno H, Hatano E. Comprehensive analyses of the clinicopathological features and genomic mutations of combined hepatocellular-cholangiocarcinoma. Hepatol Res 2024; 54:103-115. [PMID: 37699724 DOI: 10.1111/hepr.13965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023]
Abstract
AIM Combined hepatocellular-cholangiocarcinoma (cHCC-CCA) is a rare primary liver cancer that has two different tumor phenotypes in a single tumor nodule. The relationship between genetic mutations and clinicopathological features of cHCC-CCA remains to be elucidated. METHODS Whole-exome sequencing analyses were carried out in 13 primary and 2 recurrent cHCC-CCAs. The whole-exome analyses and clinicopathological information were integrated. RESULTS TP53 was the most frequently mutated gene in this cohort, followed by BAP1, IDH1/2, and NFE2L2 mutations in multiple cases. All tumors with diameters <3 cm had TP53 mutations. In contrast, six of seven tumors with diameters ≥3 cm did not have TP53 mutations, but all seven tumors had mutations in genes associated with various pathways, including Wnt, RAS/PI3K, and epigenetic modulators. In the signature analysis, the pattern of mutations shown in the TP53 mutation group tended to be more similar to HCC than the TP53 nonmutation group. Mutations in recurrent cHCC-CCA tumors were frequently identical to those in the primary tumor, suggesting that those tumors originated from identical clones of the primary cHCC-CCA tumors. Recurrent and co-occurrent HCC tumors in the same patients with cHCC-CCA had either common or different mutation patterns from the primary cHCC-CCA tumors in each case. CONCLUSIONS The study suggested that there were two subtypes of cHCC-CCA, one involving TP53 mutations in the early stage of the carcinogenic process and the other not involving such mutations. The comparison of the variants between primary and recurrent tumors suggested that cHCC-CCA was derived from an identical clone.
Collapse
Affiliation(s)
- Takashi Ito
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takamichi Ishii
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruhiko Takeda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Katsuhiro Tomofuji
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Wakama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenta Makino
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Horie
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Kumagai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Takai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Satoshi Ogiso
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Fukumitsu
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Surgery, Kyoto Katsura Hospital, Kyoto, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
49
|
Matsuoka T, Yashiro M. Current status and perspectives of genetic testing in gastrointestinal cancer (Review). Oncol Lett 2024; 27:21. [PMID: 38058469 PMCID: PMC10696628 DOI: 10.3892/ol.2023.14155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/30/2023] [Indexed: 12/08/2023] Open
Abstract
Genetic testing has become widespread in daily medical care for gastrointestinal (GI) cancers. However, unlike breast cancer and non-small cell lung cancer, in which personalized medicine targeting various driver genes is standardized, the incidence of targeted gene abnormalities in GI cancers is low. Nevertheless, such abnormalities may be linked to therapeutic agents and the further development of therapeutic agents for personalized medicine for GI cancers is desired. A liquid biopsy is of great benefit in offering clinical decision support, in applications such as GI cancer screening, surgical interventions, monitoring disease status and enhancing patient survival outcomes, all of which would contribute to personalized medicine. Germline genetic testing is required for several types of GI cancer, which shows clinical indications of hereditary predisposition. The increasing use of multigene panel testing has redefined gene-cancer associations, and consequently the estimate of cancer risk that vary from low to high penetrance. Comprehensive genetic testing can enable the detection of novel treatment targets and the discovery of undefined multiple diagnostic/predictive markers, which may enhance the molecular-level understanding of GI cancers. Genetic testing can also aid the design of more appropriate and adequate genomic-driven therapies for patients who may benefit from other standardized therapeutic methods.
Collapse
Affiliation(s)
- Tasuku Matsuoka
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan
| | - Masakazu Yashiro
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan
- Institute of Medical Genetics, Osaka Metropolitan University, Osaka 5458585, Japan
| |
Collapse
|
50
|
Deng XM, Zhang Y, Gao PL, Zhang Z. Primary hepatic carcinosarcoma with osteosarcoma components: A case report and literature review. Asian J Surg 2023; 46:5765-5767. [PMID: 37659925 DOI: 10.1016/j.asjsur.2023.08.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023] Open
Affiliation(s)
- Xiao-Min Deng
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Pei-Lu Gao
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhang Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|