1
|
Chen J, Sun C, Dong Y, Jin M, Lai S, Jia L, Zhao X, Wang H, Gao NL, Bork P, Liu Z, Chen W, Zhao X. Efficient Recovery of Complete Gut Viral Genomes by Combined Short- and Long-Read Sequencing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305818. [PMID: 38240578 PMCID: PMC10987132 DOI: 10.1002/advs.202305818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/01/2023] [Indexed: 04/04/2024]
Abstract
Current metagenome assembled human gut phage catalogs contained mostly fragmented genomes. Here, comprehensive gut virome detection procedure is developed involving virus-like particle (VLP) enrichment from ≈500 g feces and combined sequencing of short- and long-read. Applied to 135 samples, a Chinese Gut Virome Catalog (CHGV) is assembled consisting of 21,499 non-redundant viral operational taxonomic units (vOTUs) that are significantly longer than those obtained by short-read sequencing and contained ≈35% (7675) complete genomes, which is ≈nine times more than those in the Gut Virome Database (GVD, ≈4%, 1,443). Interestingly, the majority (≈60%, 13,356) of the CHGV vOTUs are obtained by either long-read or hybrid assemblies, with little overlap with those assembled from only the short-read data. With this dataset, vast diversity of the gut virome is elucidated, including the identification of 32% (6,962) novel vOTUs compare to public gut virome databases, dozens of phages that are more prevalent than the crAssphages and/or Gubaphages, and several viral clades that are more diverse than the two. Finally, the functional capacities are also characterized of the CHGV encoded proteins and constructed a viral-host interaction network to facilitate future research and applications.
Collapse
Affiliation(s)
- Jingchao Chen
- Key Laboratory of Molecular Biophysics of the Ministry of EducationHubei Key Laboratory of Bioinformatics and Molecular ImagingCenter for Artificial Intelligence BiologyDepartment of Bioinformatics and Systems BiologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Chuqing Sun
- Key Laboratory of Molecular Biophysics of the Ministry of EducationHubei Key Laboratory of Bioinformatics and Molecular ImagingCenter for Artificial Intelligence BiologyDepartment of Bioinformatics and Systems BiologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Yanqi Dong
- Department of NeurologyZhongshan Hospital and Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghai200433China
| | - Menglu Jin
- Key Laboratory of Molecular Biophysics of the Ministry of EducationHubei Key Laboratory of Bioinformatics and Molecular ImagingCenter for Artificial Intelligence BiologyDepartment of Bioinformatics and Systems BiologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
- College of Life ScienceHenan Normal UniversityXinxiangHenan453007China
| | - Senying Lai
- Department of NeurologyZhongshan Hospital and Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghai200433China
| | - Longhao Jia
- Department of NeurologyZhongshan Hospital and Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghai200433China
| | - Xueyang Zhao
- College of Life ScienceHenan Normal UniversityXinxiangHenan453007China
| | - Huarui Wang
- Key Laboratory of Molecular Biophysics of the Ministry of EducationHubei Key Laboratory of Bioinformatics and Molecular ImagingCenter for Artificial Intelligence BiologyDepartment of Bioinformatics and Systems BiologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Na L. Gao
- Key Laboratory of Molecular Biophysics of the Ministry of EducationHubei Key Laboratory of Bioinformatics and Molecular ImagingCenter for Artificial Intelligence BiologyDepartment of Bioinformatics and Systems BiologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
- Department of Laboratory MedicineZhongnan Hospital of Wuhan UniversityWuhan UniversityWuhan430071China
| | - Peer Bork
- European Molecular Biology LaboratoryStructural and Computational Biology Unit69117HeidelbergGermany
- Max Delbrück Centre for Molecular Medicine13125BerlinGermany
- Yonsei Frontier Lab (YFL)Yonsei University03722SeoulSouth Korea
- Department of BioinformaticsBiocenterUniversity of Würzburg97070WürzburgGermany
| | - Zhi Liu
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and Technology430074WuhanChina
| | - Wei‐Hua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of EducationHubei Key Laboratory of Bioinformatics and Molecular ImagingCenter for Artificial Intelligence BiologyDepartment of Bioinformatics and Systems BiologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
- College of Life ScienceHenan Normal UniversityXinxiangHenan453007China
- Institution of Medical Artificial IntelligenceBinzhou Medical UniversityYantai264003China
| | - Xing‐Ming Zhao
- Department of NeurologyZhongshan Hospital and Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghai200433China
- MOE Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligenceand MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200433China
- State Key Laboratory of Medical NeurobiologyInstitute of Brain ScienceFudan UniversityShanghai200433China
- International Human Phenome Institutes (Shanghai)Shanghai200433China
| |
Collapse
|
2
|
Pargin E, Roach MJ, Skye A, Papudeshi B, Inglis LK, Mallawaarachchi V, Grigson SR, Harker C, Edwards RA, Giles SK. The human gut virome: composition, colonization, interactions, and impacts on human health. Front Microbiol 2023; 14:963173. [PMID: 37293229 PMCID: PMC10244655 DOI: 10.3389/fmicb.2023.963173] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
The gut virome is an incredibly complex part of the gut ecosystem. Gut viruses play a role in many disease states, but it is unknown to what extent the gut virome impacts everyday human health. New experimental and bioinformatic approaches are required to address this knowledge gap. Gut virome colonization begins at birth and is considered unique and stable in adulthood. The stable virome is highly specific to each individual and is modulated by varying factors such as age, diet, disease state, and use of antibiotics. The gut virome primarily comprises bacteriophages, predominantly order Crassvirales, also referred to as crAss-like phages, in industrialized populations and other Caudoviricetes (formerly Caudovirales). The stability of the virome's regular constituents is disrupted by disease. Transferring the fecal microbiome, including its viruses, from a healthy individual can restore the functionality of the gut. It can alleviate symptoms of chronic illnesses such as colitis caused by Clostridiodes difficile. Investigation of the virome is a relatively novel field, with new genetic sequences being published at an increasing rate. A large percentage of unknown sequences, termed 'viral dark matter', is one of the significant challenges facing virologists and bioinformaticians. To address this challenge, strategies include mining publicly available viral datasets, untargeted metagenomic approaches, and utilizing cutting-edge bioinformatic tools to quantify and classify viral species. Here, we review the literature surrounding the gut virome, its establishment, its impact on human health, the methods used to investigate it, and the viral dark matter veiling our understanding of the gut virome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sarah K. Giles
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
3
|
Arnau V, Díaz-Villanueva W, Mifsut Benet J, Villasante P, Beamud B, Mompó P, Sanjuan R, González-Candelas F, Domingo-Calap P, Džunková M. Inference of the Life Cycle of Environmental Phages from Genomic Signature Distances to Their Hosts. Viruses 2023; 15:v15051196. [PMID: 37243281 DOI: 10.3390/v15051196] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The environmental impact of uncultured phages is shaped by their preferred life cycle (lytic or lysogenic). However, our ability to predict it is very limited. We aimed to discriminate between lytic and lysogenic phages by comparing the similarity of their genomic signatures to those of their hosts, reflecting their co-evolution. We tested two approaches: (1) similarities of tetramer relative frequencies, (2) alignment-free comparisons based on exact k = 14 oligonucleotide matches. First, we explored 5126 reference bacterial host strains and 284 associated phages and found an approximate threshold for distinguishing lysogenic and lytic phages using both oligonucleotide-based methods. The analysis of 6482 plasmids revealed the potential for horizontal gene transfer between different host genera and, in some cases, distant bacterial taxa. Subsequently, we experimentally analyzed combinations of 138 Klebsiella pneumoniae strains and their 41 phages and found that the phages with the largest number of interactions with these strains in the laboratory had the shortest genomic distances to K. pneumoniae. We then applied our methods to 24 single-cells from a hot spring biofilm containing 41 uncultured phage-host pairs, and the results were compatible with the lysogenic life cycle of phages detected in this environment. In conclusion, oligonucleotide-based genome analysis methods can be used for predictions of (1) life cycles of environmental phages, (2) phages with the broadest host range in culture collections, and (3) potential horizontal gene transfer by plasmids.
Collapse
Affiliation(s)
- Vicente Arnau
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), 46980 Valencia, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research of the Valencian Community (FISABIO), 46020 Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), 28029 Madrid, Spain
| | - Wladimiro Díaz-Villanueva
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), 46980 Valencia, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research of the Valencian Community (FISABIO), 46020 Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), 28029 Madrid, Spain
| | - Jorge Mifsut Benet
- Department of Space, Earth and Environment, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | | | - Beatriz Beamud
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), 46980 Valencia, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research of the Valencian Community (FISABIO), 46020 Valencia, Spain
| | - Paula Mompó
- Foundation for the Promotion of Sanitary and Biomedical Research of the Valencian Community (FISABIO), 46020 Valencia, Spain
| | - Rafael Sanjuan
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), 46980 Valencia, Spain
| | - Fernando González-Candelas
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), 46980 Valencia, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research of the Valencian Community (FISABIO), 46020 Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), 28029 Madrid, Spain
| | - Pilar Domingo-Calap
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), 46980 Valencia, Spain
| | - Mária Džunková
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), 46980 Valencia, Spain
| |
Collapse
|
4
|
Du Y, Fuhrman JA, Sun F. ViralCC retrieves complete viral genomes and virus-host pairs from metagenomic Hi-C data. Nat Commun 2023; 14:502. [PMID: 36720887 PMCID: PMC9889337 DOI: 10.1038/s41467-023-35945-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023] Open
Abstract
The introduction of high-throughput chromosome conformation capture (Hi-C) into metagenomics enables reconstructing high-quality metagenome-assembled genomes (MAGs) from microbial communities. Despite recent advances in recovering eukaryotic, bacterial, and archaeal genomes using Hi-C contact maps, few of Hi-C-based methods are designed to retrieve viral genomes. Here we introduce ViralCC, a publicly available tool to recover complete viral genomes and detect virus-host pairs using Hi-C data. Compared to other Hi-C-based methods, ViralCC leverages the virus-host proximity structure as a complementary information source for the Hi-C interactions. Using mock and real metagenomic Hi-C datasets from several different microbial ecosystems, including the human gut, cow fecal, and wastewater, we demonstrate that ViralCC outperforms existing Hi-C-based binning methods as well as state-of-the-art tools specifically dedicated to metagenomic viral binning. ViralCC can also reveal the taxonomic structure of viruses and virus-host pairs in microbial communities. When applied to a real wastewater metagenomic Hi-C dataset, ViralCC constructs a phage-host network, which is further validated using CRISPR spacer analyses. ViralCC is an open-source pipeline available at https://github.com/dyxstat/ViralCC .
Collapse
Affiliation(s)
- Yuxuan Du
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Fengzhu Sun
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Zhou F, Yang H, Si Y, Gan R, Yu L, Chen C, Ren C, Wu J, Zhang F. PhageTailFinder: A tool for phage tail module detection and annotation. Front Genet 2023; 14:947466. [PMID: 36755570 PMCID: PMC9901426 DOI: 10.3389/fgene.2023.947466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023] Open
Abstract
Decades of overconsumption of antimicrobials in the treatment and prevention of bacterial infections have resulted in the increasing emergence of drug-resistant bacteria, which poses a significant challenge to public health, driving the urgent need to find alternatives to conventional antibiotics. Bacteriophages are viruses infecting specific bacterial hosts, often destroying the infected bacterial hosts. Phages attach to and enter their potential hosts using their tail proteins, with the composition of the tail determining the range of potentially infected bacteria. To aid the exploitation of bacteriophages for therapeutic purposes, we developed the PhageTailFinder algorithm to predict tail-related proteins and identify the putative tail module in previously uncharacterized phages. The PhageTailFinder relies on a two-state hidden Markov model (HMM) to predict the probability of a given protein being tail-related. The process takes into account the natural modularity of phage tail-related proteins, rather than simply considering amino acid properties or secondary structures for each protein in isolation. The PhageTailFinder exhibited robust predictive power for phage tail proteins in novel phages due to this sequence-independent operation. The performance of the prediction model was evaluated in 13 extensively studied phages and a sample of 992 complete phages from the NCBI database. The algorithm achieved a high true-positive prediction rate (>80%) in over half (571) of the studied phages, and the ROC value was 0.877 using general models and 0.968 using corresponding morphologic models. It is notable that the median ROC value of 992 complete phages is more than 0.75 even for novel phages, indicating the high accuracy and specificity of the PhageTailFinder. When applied to a dataset containing 189,680 viral genomes derived from 11,810 bulk metagenomic human stool samples, the ROC value was 0.895. In addition, tail protein clusters could be identified for further studies by density-based spatial clustering of applications with the noise algorithm (DBSCAN). The developed PhageTailFinder tool can be accessed either as a web server (http://www.microbiome-bigdata.com/PHISDetector/index/tools/PhageTailFinder) or as a stand-alone program on a standard desktop computer (https://github.com/HIT-ImmunologyLab/PhageTailFinder).
Collapse
Affiliation(s)
- Fengxia Zhou
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Han Yang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yu Si
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Rui Gan
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ling Yu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chuangeng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chunyan Ren
- Department of Hematology, Department of Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jiqiu Wu
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Fan Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
6
|
Liu Q, Liu F, Miao Y, He J, Dong T, Hou T, Liu Y. Virsearcher: Identifying Bacteriophages from Metagenomes by Combining Convolutional Neural Network and Gene Information. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:763-774. [PMID: 35316191 DOI: 10.1109/tcbb.2022.3161135] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Metagenome sequencing provides an unprecedented opportunity for the discovery of unknown microbes and viruses. A large number of phages and prokaryotes are mixed together in metagenomes. To study the influence of phages on human bodies and environments, it is of great significance to isolate phages from metagenomes. However, it is difficult to identify novel phages because of the diversity of their sequences and the frequent presence of short contigs in metagenomes. Here, virSearcher is developed to identify phages from metagenomes by combining the convolutional neural network (CNN) and the gene information of input sequences. Firstly, an input sequence is encoded in accordance with the different functions of its coding and the non-coding regions and then is converted into word embedding code through a word embedding layer before a convolutional layer. Meanwhile, the hit ratio of the virus genes is combined with the output of the CNN to further improve the performance of the network. The genes used by virSearcher consist of complete and incomplete genes. Experiments on several metagenomes have showed that, compared with others, virSearcher can significantly improve the performance for the identification of short sequences, while maintaining the performance for long ones. The source code of virSearcher is freely available from http://github.com/DrJackson18/virSearcher.
Collapse
|
7
|
Chu Y, Guo S, Cui D, Fu X, Ma Y. DeephageTP: a convolutional neural network framework for identifying phage-specific proteins from metagenomic sequencing data. PeerJ 2022; 10:e13404. [PMID: 35698617 PMCID: PMC9188312 DOI: 10.7717/peerj.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/18/2022] [Indexed: 01/14/2023] Open
Abstract
Bacteriophages (phages) are the most abundant and diverse biological entity on Earth. Due to the lack of universal gene markers and database representatives, there about 50-90% of genes of phages are unable to assign functions. This makes it a challenge to identify phage genomes and annotate functions of phage genes efficiently by homology search on a large scale, especially for newly phages. Portal (portal protein), TerL (large terminase subunit protein), and TerS (small terminase subunit protein) are three specific proteins of Caudovirales phage. Here, we developed a CNN (convolutional neural network)-based framework, DeephageTP, to identify the three specific proteins from metagenomic data. The framework takes one-hot encoding data of original protein sequences as the input and automatically extracts predictive features in the process of modeling. To overcome the false positive problem, a cutoff-loss-value strategy is introduced based on the distributions of the loss values of protein sequences within the same category. The proposed model with a set of cutoff-loss-values demonstrates high performance in terms of Precision in identifying TerL and Portal sequences (94% and 90%, respectively) from the mimic metagenomic dataset. Finally, we tested the efficacy of the framework using three real metagenomic datasets, and the results shown that compared to the conventional alignment-based methods, our proposed framework had a particular advantage in identifying the novel phage-specific protein sequences of portal and TerL with remote homology to their counterparts in the training datasets. In summary, our study for the first time develops a CNN-based framework for identifying the phage-specific protein sequences with high complexity and low conservation, and this framework will help us find novel phages in metagenomic sequencing data. The DeephageTP is available at https://github.com/chuym726/DeephageTP.
Collapse
Affiliation(s)
- Yunmeng Chu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese, Shenzhen, Guangdong, P.R. China,Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, Fujian, P.R. China
| | - Shun Guo
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese, Shenzhen, Guangdong, P.R. China
| | - Dachao Cui
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese, Shenzhen, Guangdong, P.R. China
| | - Xiongfei Fu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese, Shenzhen, Guangdong, P.R. China
| | - Yingfei Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
8
|
Ruohan W, Xianglilan Z, Jianping W, Shuai Cheng LI. DeepHost: phage host prediction with convolutional neural network. Brief Bioinform 2021; 23:6374063. [PMID: 34553750 DOI: 10.1093/bib/bbab385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/10/2021] [Accepted: 08/27/2021] [Indexed: 01/21/2023] Open
Abstract
Next-generation sequencing expands the known phage genomes rapidly. Unlike culture-based methods, the hosts of phages discovered from next-generation sequencing data remain uncharacterized. The high diversity of the phage genomes makes the host assignment task challenging. To solve the issue, we proposed a phage host prediction tool-DeepHost. To encode the phage genomes into matrices, we design a genome encoding method that applied various spaced $k$-mer pairs to tolerate sequence variations, including insertion, deletions, and mutations. DeepHost applies a convolutional neural network to predict host taxonomies. DeepHost achieves the prediction accuracy of 96.05% at the genus level (72 taxonomies) and 90.78% at the species level (118 taxonomies), which outperforms the existing phage host prediction tools by 10.16-30.48% and achieves comparable results to BLAST. For the genomes without hits in BLAST, DeepHost obtains the accuracy of 38.00% at the genus level and 26.47% at the species level, making it suitable for genomes of less homologous sequences with the existing datasets. DeepHost is alignment-free, and it is faster than BLAST, especially for large datasets. DeepHost is available at https://github.com/deepomicslab/DeepHost.
Collapse
Affiliation(s)
- Wang Ruohan
- Department of Computer Science at City University of Hong Kong
| | - Zhang Xianglilan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology
| | - Wang Jianping
- Department of Computer Science at City University of Hong Kong
| | - L I Shuai Cheng
- Department of Computer Science at City University of Hong Kong
| |
Collapse
|
9
|
Kothari A, Roux S, Zhang H, Prieto A, Soneja D, Chandonia JM, Spencer S, Wu X, Altenburg S, Fields MW, Deutschbauer AM, Arkin AP, Alm EJ, Chakraborty R, Mukhopadhyay A. Ecogenomics of Groundwater Phages Suggests Niche Differentiation Linked to Specific Environmental Tolerance. mSystems 2021; 6:e0053721. [PMID: 34184913 PMCID: PMC8269241 DOI: 10.1128/msystems.00537-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 05/26/2021] [Indexed: 01/21/2023] Open
Abstract
Viruses are ubiquitous microbiome components, shaping ecosystems via strain-specific predation, horizontal gene transfer and redistribution of nutrients through host lysis. Viral impacts are important in groundwater ecosystems, where microbes drive many nutrient fluxes and metabolic processes; however, little is known about the diversity of viruses in these environments. We analyzed four groundwater plasmidomes (the entire plasmid content of an environment) and identified 200 viral sequences, which clustered into 41 genus-level viral clusters (approximately equivalent to viral genera) including 9 known and 32 putative new genera. We used publicly available bacterial whole-genome sequences (WGS) and WGS from 261 bacterial isolates from this groundwater environment to identify potential viral hosts. We linked 76 of the 200 viral sequences to a range of bacterial phyla, the majority associated with Proteobacteria, followed by Firmicutes, Bacteroidetes, and Actinobacteria. The publicly available WGS enabled mapping bacterial hosts to several viral sequences. The WGS of groundwater isolates increased the depth of host prediction by allowing host identification at the strain level. The latter included 4 viruses that were almost entirely (>99% query coverage, >99% identity) identified as integrated in the genomes of Pseudomonas, Acidovorax, and Castellaniella strains, resulting in high-confidence host assignments. Lastly, 21 of these viruses carried putative auxiliary metabolite genes for metal and antibiotic resistance, which might drive their infection cycles and/or provide selective advantage to infected hosts. Exploring the groundwater virome provides a necessary foundation for integration of viruses into ecosystem models where they are key players in microbial adaption to environmental stress. IMPORTANCE To our knowledge, this is the first study to identify the bacteriophage distribution in a groundwater ecosystem shedding light on their prevalence and distribution across metal-contaminated and background sites. Our study is uniquely based on selective sequencing of solely the extrachromosomal elements of a microbiome followed by analysis for viral signatures, thus establishing a more focused approach for phage identifications. Using this method, we detected several novel phage genera along with those previously established. Our approach of using the whole-genome sequences of hundreds of bacterial isolates from the same site enabled us to make host assignments with high confidence, several at strain levels. Certain phage genes suggest that they provide an environment-specific selective advantage to their bacterial hosts. Our study lays the foundation for future research on directed phage isolations using specific bacterial host strains to further characterize groundwater phages, their life cycles, and their effects on groundwater microbiome and biogeochemistry.
Collapse
Affiliation(s)
- Ankita Kothari
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Simon Roux
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Hanqiao Zhang
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Anatori Prieto
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Drishti Soneja
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - John-Marc Chandonia
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Sarah Spencer
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Xiaoqin Wu
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Sara Altenburg
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
| | - Matthew W. Fields
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana, USA
| | - Adam M. Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Adam P. Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Energy Biosciences Institute, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Eric J. Alm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Broad Institute of MIT Cambridge, Cambridge, Massachusetts, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Romy Chakraborty
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Aindrila Mukhopadhyay
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
10
|
Townsend EM, Kelly L, Muscatt G, Box JD, Hargraves N, Lilley D, Jameson E. The Human Gut Phageome: Origins and Roles in the Human Gut Microbiome. Front Cell Infect Microbiol 2021; 11:643214. [PMID: 34150671 PMCID: PMC8213399 DOI: 10.3389/fcimb.2021.643214] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/19/2021] [Indexed: 12/14/2022] Open
Abstract
The investigation of the microbial populations of the human body, known as the microbiome, has led to a revolutionary field of science, and understanding of its impacts on human development and health. The majority of microbiome research to date has focussed on bacteria and other kingdoms of life, such as fungi. Trailing behind these is the interrogation of the gut viruses, specifically the phageome. Bacteriophages, viruses that infect bacterial hosts, are known to dictate the dynamics and diversity of bacterial populations in a number of ecosystems. However, the phageome of the human gut, while of apparent importance, remains an area of many unknowns. In this paper we discuss the role of bacteriophages within the human gut microbiome. We examine the methods used to study bacteriophage populations, how this evolved over time and what we now understand about the phageome. We review the phageome development in infancy, and factors that may influence phage populations in adult life. The role and action of the phageome is then discussed at both a biological-level, and in the broader context of human health and disease.
Collapse
Affiliation(s)
- Eleanor M Townsend
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Lucy Kelly
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - George Muscatt
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Joshua D Box
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Nicole Hargraves
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Daniel Lilley
- Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| | - Eleanor Jameson
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| |
Collapse
|
11
|
Campbell DE, Ly LK, Ridlon JM, Hsiao A, Whitaker RJ, Degnan PH. Infection with Bacteroides Phage BV01 Alters the Host Transcriptome and Bile Acid Metabolism in a Common Human Gut Microbe. Cell Rep 2021; 32:108142. [PMID: 32937127 PMCID: PMC8354205 DOI: 10.1016/j.celrep.2020.108142] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/07/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Gut-associated phages are hypothesized to alter the abundance and activity of their bacterial hosts, contributing to human health and disease. Although temperate phages constitute a significant fraction of the gut virome, the effects of lysogenic infection are underexplored. We report that the temperate phage, Bacteroides phage BV01, broadly alters its host's transcriptome, the prominent human gut symbiont Bacteroides vulgatus. This alteration occurs through phage-induced repression of a tryptophan-rich sensory protein (TspO) and represses bile acid deconjugation. Because microbially modified bile acids are important signals for the mammalian host, this is a mechanism by which a phage may influence mammalian phenotypes. Furthermore, BV01 and its relatives in the proposed phage family Salyersviridae are ubiquitous in human gut metagenomes, infecting a broad range of Bacteroides hosts. These results demonstrate the complexity of phage-bacteria-mammal relationships and emphasize a need to better understand the role of temperate phages in the gut microbiome.
Collapse
Affiliation(s)
| | - Lindsey K Ly
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA; Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Jason M Ridlon
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA; Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA
| | - Rachel J Whitaker
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Patrick H Degnan
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
12
|
Barrón-Rodríguez RJ, Rojas-Anaya E, Ayala-Sumuano JT, Romero-Espinosa JÁI, Vázquez-Pérez JA, Cortés-Cruz M, García-Espinosa G, Loza-Rubio E. Swine virome on rural backyard farms in Mexico: communities with different abundances of animal viruses and phages. Arch Virol 2021; 166:475-489. [PMID: 33394173 DOI: 10.1007/s00705-020-04894-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/06/2020] [Indexed: 11/24/2022]
Abstract
Domestic swine have been introduced by humans into a wide diversity of environments and have been bred in different production systems. This has resulted in an increased risk for the occurrence and spread of diseases. Although viromes of swine in intensive farms have been described, little is known about the virus communities in backyard production systems around the world. The aim of this study was to describe the viral diversity of 23 healthy domestic swine maintained in rural backyards in Morelos, Mexico, through collection and analysis of nasal and rectal samples. Next-generation sequencing was used to identify viruses that are present in swine. Through homology search and bioinformatic analysis of reads and their assemblies, we found that rural backyard swine have a high degree of viral diversity, different from those reported in intensive production systems or under experimental conditions. There was a higher frequency of bacteriophages and lower diversity of animal viruses than reported previously. In addition, sapoviruses, bocaparvoviruses, and mamastroviruses that had not been reported previously in our country were identified. These findings were correlated with the health status of animals, their social interactions, and the breeding/rearing environment (which differed from intensive systems), providing baseline information about viral communities in backyard swine.
Collapse
Affiliation(s)
- Rodrigo Jesús Barrón-Rodríguez
- Laboratorio de Biotecnología en Salud Animal, Centro Nacional de Investigación Disciplinaria en Microbiología Animal (CENID-Microbiología), Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), carretera federal México-Toluca km 15.5, colonia palo Alto, Cuajimalpa, P.C. 05110, Mexico City, Mexico.,Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 3000, colonia Ciudad universitaria, Coyoacán, P.C. 04510, Mexico City, Mexico
| | - Edith Rojas-Anaya
- Laboratorio de Biotecnología en Salud Animal, Centro Nacional de Investigación Disciplinaria en Microbiología Animal (CENID-Microbiología), Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), carretera federal México-Toluca km 15.5, colonia palo Alto, Cuajimalpa, P.C. 05110, Mexico City, Mexico
| | - Jorge Tonatiuh Ayala-Sumuano
- Idix S.A. de C.V., Sonterra 3035 interior 26, Fraccionamiento Sonterra, P.C. 76230, Santiago de Querétaro, Querétaro, Mexico
| | - José Ángel Iván Romero-Espinosa
- Laboratorio de Virología, Instituto Nacional de Enfermedades Respiratorias (INER), Calzada de Tlalpan 4502, Del. Tlalpan, colonia Sección XVI, Tlalpan, P.C. 14080, Mexico City, Mexico
| | - Joel Armando Vázquez-Pérez
- Laboratorio de Virología, Instituto Nacional de Enfermedades Respiratorias (INER), Calzada de Tlalpan 4502, Del. Tlalpan, colonia Sección XVI, Tlalpan, P.C. 14080, Mexico City, Mexico
| | - Moisés Cortés-Cruz
- Centro Nacional de Recursoso Genéticos (CNRG), Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), Boulevard de la biodiversidad 400, Rancho las Cruces, P.C. 47600, Tepatitlán de Morelos, Jalisco, Mexico
| | - Gary García-Espinosa
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 3000, colonia Ciudad universitaria, Coyoacán, P.C. 04510, Mexico City, Mexico
| | - Elizabeth Loza-Rubio
- Laboratorio de Biotecnología en Salud Animal, Centro Nacional de Investigación Disciplinaria en Microbiología Animal (CENID-Microbiología), Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), carretera federal México-Toluca km 15.5, colonia palo Alto, Cuajimalpa, P.C. 05110, Mexico City, Mexico.
| |
Collapse
|
13
|
Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nat Microbiol 2021; 6:960-970. [PMID: 34168315 PMCID: PMC8241571 DOI: 10.1038/s41564-021-00928-6] [Citation(s) in RCA: 224] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023]
Abstract
Bacteriophages have important roles in the ecology of the human gut microbiome but are under-represented in reference databases. To address this problem, we assembled the Metagenomic Gut Virus catalogue that comprises 189,680 viral genomes from 11,810 publicly available human stool metagenomes. Over 75% of genomes represent double-stranded DNA phages that infect members of the Bacteroidia and Clostridia classes. Based on sequence clustering we identified 54,118 candidate viral species, 92% of which were not found in existing databases. The Metagenomic Gut Virus catalogue improves detection of viruses in stool metagenomes and accounts for nearly 40% of CRISPR spacers found in human gut Bacteria and Archaea. We also produced a catalogue of 459,375 viral protein clusters to explore the functional potential of the gut virome. This revealed tens of thousands of diversity-generating retroelements, which use error-prone reverse transcription to mutate target genes and may be involved in the molecular arms race between phages and their bacterial hosts.
Collapse
|
14
|
Yan Q, Wang Y, Chen X, Jin H, Wang G, Guan K, Zhang Y, Zhang P, Ayaz T, Liang Y, Wang J, Cui G, Sun Y, Xiao M, Kang J, Zhang W, Zhang A, Li P, Liu X, Ulllah H, Ma Y, Li S, Ma T. Characterization of the gut DNA and RNA Viromes in a Cohort of Chinese Residents and Visiting Pakistanis. Virus Evol 2021; 7:veab022. [PMID: 33959381 PMCID: PMC8087960 DOI: 10.1093/ve/veab022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Trillions of viruses inhabit the gastrointestinal tract. Some of them have been well-studied on their roles in infection and human health, but the majority remains unsurveyed. It has been established that the composition of the gut virome is highly variable based on the changes of diet, physical state, and environmental factors. However, the effect of host genetic factors, for example ethnic origin, on the gut virome is rarely investigated. Here, we characterized and compared the gut virome in a cohort of local Chinese residents and visiting Pakistani individuals, each group containing twenty-four healthy adults and six children. Using metagenomic shotgun sequencing and assembly of fecal samples, a huge number of viral operational taxonomic units (vOTUs) were identified for profiling the DNA and RNA viromes. National background contributed a primary variation to individuals' gut virome. Compared with the Chinese adults, the Pakistan adults showed higher macrodiversity and different compositional and functional structures in their DNA virome and lower diversity and altered composition in their RNA virome. The virome variations of Pakistan children were not only inherited from that of the adults but also tended to share similar characteristics with the Chinese cohort. We also analyzed and compared the bacterial microbiome between two cohorts and further revealed numerous connections between viruses and bacterial host. Statistically, the gut DNA and RNA viromes were covariant to some extent (P < 0.001), and they both correlated the holistic bacterial composition and vice versa. This study provides an overview of the gut viral community in Chinese and visiting Pakistanis and proposes a considerable role of ethnic origin in shaping the virome.
Collapse
Affiliation(s)
- Qiulong Yan
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing 210029, China
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Yu Wang
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing 210029, China
- Institute of Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 210029, China
| | - Xiuli Chen
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing 210029, China
| | - Hao Jin
- Shenzhen Puensum Genetech Institute, 345 Dongbin Road, Nanshan District, Shenzhen 518052, China
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Saihan District, Hohhot 010018, China
| | - Guangyang Wang
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Kuiqing Guan
- Shenzhen Puensum Genetech Institute, 345 Dongbin Road, Nanshan District, Shenzhen 518052, China
| | - Yue Zhang
- Shenzhen Puensum Genetech Institute, 345 Dongbin Road, Nanshan District, Shenzhen 518052, China
| | - Pan Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai 200032, China
| | - Taj Ayaz
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Yanshan Liang
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing 210029, China
| | - Junyi Wang
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing 210029, China
| | - Guangyi Cui
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing 210029, China
| | - Yuanyuan Sun
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Manchun Xiao
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Jian Kang
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Wei Zhang
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Aiqin Zhang
- Shenzhen Puensum Genetech Institute, 345 Dongbin Road, Nanshan District, Shenzhen 518052, China
| | - Peng Li
- Shenzhen Puensum Genetech Institute, 345 Dongbin Road, Nanshan District, Shenzhen 518052, China
| | - Xueyang Liu
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Hayan Ulllah
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Yufang Ma
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Shenghui Li
- Shenzhen Puensum Genetech Institute, 345 Dongbin Road, Nanshan District, Shenzhen 518052, China
| | - Tonghui Ma
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing 210029, China
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| |
Collapse
|
15
|
Tariq MA, Newberry F, Haagmans R, Booth C, Wileman T, Hoyles L, Clokie MRJ, Ebdon J, Carding SR. Genome Characterization of a Novel Wastewater Bacteroides fragilis Bacteriophage (vB_BfrS_23) and its Host GB124. Front Microbiol 2020; 11:583378. [PMID: 33193224 PMCID: PMC7644841 DOI: 10.3389/fmicb.2020.583378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
Bacteroides spp. are part of the human intestinal microbiota but can under some circumstances become clinical pathogens. Phages are a potentially valuable therapeutic treatment option for many pathogens, but phage therapy for pathogenic Bacteroides spp. including Bacteroides fragilis is currently limited to three genome-sequenced phages. Here we describe the isolation from sewage wastewater and genome of a lytic phage, vB_BfrS_23, that infects and kills B. fragilis strain GB124. Transmission electron microscopy identified this phage as a member of the Siphoviridae family. The phage is stable when held at temperatures of 4 and 60°C for 1 h. It has a very narrow host range, only infecting one host from a panel of B. fragilis strains (n = 8). Whole-genome sequence analyses of vB_BfrS_23 determined it is double-stranded DNA phage and is circularly permuted, with a genome of 48,011 bp. The genome encodes 73 putative open reading frames. We also sequenced the host bacterium, B. fragilis GB124 (5.1 Mb), which has two plasmids of 43,923 and 4,138 bp. Although this phage is host specific, its isolation together with the detailed characterization of the host B. fragilis GB124 featured in this study represent a useful starting point from which to facilitate the future development of highly specific therapeutic agents. Furthermore, the phage could be a novel tool in determining water (and water reuse) treatment efficacy, and for identifying human fecal transmission pathways within contaminated environmental waters and foodstuffs.
Collapse
Affiliation(s)
- Mohammad A. Tariq
- Gut Microbes and Health Research Programme, Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Fiona Newberry
- Gut Microbes and Health Research Programme, Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Rik Haagmans
- Gut Microbes and Health Research Programme, Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Catherine Booth
- Gut Microbes and Health Research Programme, Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Tom Wileman
- Gut Microbes and Health Research Programme, Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom
| | - Martha R. J. Clokie
- Department of Genetics and Genome Biology, Leicester University, Leicester, United Kingdom
| | - James Ebdon
- Environment and Public Health Research Group, School of Environment and Technology, University of Brighton, Brighton, United Kingdom
| | - Simon R. Carding
- Gut Microbes and Health Research Programme, Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
16
|
Carr VR, Shkoporov A, Hill C, Mullany P, Moyes DL. Probing the Mobilome: Discoveries in the Dynamic Microbiome. Trends Microbiol 2020; 29:158-170. [PMID: 32448763 DOI: 10.1016/j.tim.2020.05.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
There has been an explosion of metagenomic data representing human, animal, and environmental microbiomes. This provides an unprecedented opportunity for comparative and longitudinal studies of many functional aspects of the microbiome that go beyond taxonomic classification, such as profiling genetic determinants of antimicrobial resistance, interactions with the host, potentially clinically relevant functions, and the role of mobile genetic elements (MGEs). One of the most important but least studied of these aspects are the MGEs, collectively referred to as the 'mobilome'. Here we elaborate on the benefits and limitations of using different metagenomic protocols, discuss the relative merits of various sequencing technologies, and highlight relevant bioinformatics tools and pipelines to predict the presence of MGEs and their microbial hosts.
Collapse
Affiliation(s)
- Victoria R Carr
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK; The Alan Turing Institute, British Library, London, UK.
| | - Andrey Shkoporov
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, Ireland
| | - Peter Mullany
- Eastman Dental Institute, University College London, London, UK
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK.
| |
Collapse
|
17
|
Gilbert RA, Townsend EM, Crew KS, Hitch TCA, Friedersdorff JCA, Creevey CJ, Pope PB, Ouwerkerk D, Jameson E. Rumen Virus Populations: Technological Advances Enhancing Current Understanding. Front Microbiol 2020; 11:450. [PMID: 32273870 PMCID: PMC7113391 DOI: 10.3389/fmicb.2020.00450] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/02/2020] [Indexed: 01/07/2023] Open
Abstract
The rumen contains a multi-kingdom, commensal microbiome, including protozoa, bacteria, archaea, fungi and viruses, which enables ruminant herbivores to ferment and utilize plant feedstuffs that would be otherwise indigestible. Within the rumen, virus populations are diverse and highly abundant, often out-numbering the microbial populations that they both predate on and co-exist with. To date the research effort devoted to understanding rumen-associated viral populations has been considerably less than that given to the other microbial populations, yet their contribution to maintaining microbial population balance, intra-ruminal microbial lysis, fiber breakdown, nutrient cycling and genetic transfer may be highly significant. This review follows the technological advances which have contributed to our current understanding of rumen viruses and drawing on knowledge from other environmental and animal-associated microbiomes, describes the known and potential roles and impacts viruses have on rumen function and speculates on the future directions of rumen viral research.
Collapse
Affiliation(s)
- Rosalind A. Gilbert
- Department of Agriculture and Fisheries, Brisbane, QLD, Australia
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Eleanor M. Townsend
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Kathleen S. Crew
- Department of Agriculture and Fisheries, Brisbane, QLD, Australia
| | - Thomas C. A. Hitch
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Jessica C. A. Friedersdorff
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Christopher J. Creevey
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Phillip B. Pope
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Diane Ouwerkerk
- Department of Agriculture and Fisheries, Brisbane, QLD, Australia
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Eleanor Jameson
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
18
|
Abstract
Here we introduce methods for the detection, enumeration, and isolation of bacteriophages from Escherichia coli. In bacteria, horizontal gene transfer may be mediated by virulent and temperate phages. Strict virulent phages, able to propagate in a suitable strain following the lytic pathway, can be isolated directly from different natural environments. In temperate phages, the lytic cycle must be activated, and phages are detected after their induction. In both cases, detection is based on the production of visible plaques in a confluent lawn of the host strain using a double agar layer method. Further purification and characterization are achieved by density gradients, electron microscopy studies, and genomic analysis. This straightforward methodology can be applied to the detection, enumeration, and isolation of bacteriophages from any bacterial species, using the appropriate host strain, media, and culture conditions.
Collapse
Affiliation(s)
- Juan Jofre
- Department of Microbiology, University of Barcelona, Barcelona, Spain
| | - Maite Muniesa
- Department of Microbiology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
19
|
Alves DR, Nzakizwanayo J, Dedi C, Olympiou C, Hanin A, Kot W, Hansen L, Lametsch R, Gahan CGM, Schellenberger P, Ogilvie LA, Jones BV. Genomic and Ecogenomic Characterization of Proteus mirabilis Bacteriophages. Front Microbiol 2019; 10:1783. [PMID: 31447809 PMCID: PMC6691071 DOI: 10.3389/fmicb.2019.01783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/18/2019] [Indexed: 01/21/2023] Open
Abstract
Proteus mirabilis often complicates the care of catheterized patients through the formation of crystalline biofilms which block urine flow. Bacteriophage therapy has been highlighted as a promising approach to control this problem, but relatively few phages infecting P. mirabilis have been characterized. Here we characterize five phages capable of infecting P. mirabilis, including those shown to reduce biofilm formation, and provide insights regarding the wider ecological and evolutionary relationships of these phages. Transmission electron microscopy (TEM) imaging of phages vB_PmiP_RS1pmA, vB_PmiP_RS1pmB, vB_PmiP_RS3pmA, and vB_PmiP_RS8pmA showed that all share morphologies characteristic of the Podoviridae family. The genome sequences of vB_PmiP_RS1pmA, vB_PmiP_RS1pmB, and vB_PmiP_RS3pmA showed these are species of the same phage differing only by point mutations, and are closely related to vB_PmiP_RS8pmA. Podophages characterized in this study were also found to share similarity in genome architecture and composition to other previously described P. mirabilis podophages (PM16 and PM75). In contrast, vB_PimP_RS51pmB showed morphology characteristic of the Myoviridae family, with no notable similarity to other phage genomes examined. Ecogenomic profiling of all phages revealed no association with human urinary tract viromes, but sequences similar to vB_PimP_RS51pmB were found within human gut, and human oral microbiomes. Investigation of wider host-phage evolutionary relationships through tetranucleotide profiling of phage genomes and bacterial chromosomes, indicated vB_PimP_RS51pmB has a relatively recent association with Morganella morganii and other non-Proteus members of the Morganellaceae family. Subsequent host range assays confirmed vB_PimP_RS51pmB can infect M. morganii.
Collapse
Affiliation(s)
- Diana R. Alves
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
- Blond McIndoe Research Foundation, Queen Victoria Hospital, East Grinstead, United Kingdom
- Queen Victoria Hospital NHS Foundation Trust, East Grinstead, United Kingdom
| | - Jonathan Nzakizwanayo
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Cinzia Dedi
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Chara Olympiou
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
- School of Pharmacy, Queen’s University, Belfast, United Kingdom
| | - Aurélie Hanin
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Witold Kot
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rene Lametsch
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Cormac G. M. Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | | | - Lesley A. Ogilvie
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Brian V. Jones
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
- Queen Victoria Hospital NHS Foundation Trust, East Grinstead, United Kingdom
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| |
Collapse
|
20
|
García-López R, Pérez-Brocal V, Moya A. Beyond cells - The virome in the human holobiont. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 6:373-396. [PMID: 31528630 PMCID: PMC6717880 DOI: 10.15698/mic2019.09.689] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/14/2019] [Accepted: 04/03/2019] [Indexed: 01/01/2023]
Abstract
Viromics, or viral metagenomics, is a relatively new and burgeoning field of research that studies the complete collection of viruses forming part of the microbiota in any given niche. It has strong foundations rooted in over a century of discoveries in the field of virology and recent advances in molecular biology and sequencing technologies. Historically, most studies have deconstructed the concept of viruses into a simplified perception of viral agents as mere pathogens, which demerits the scope of large-scale viromic analyses. Viruses are, in fact, much more than regular parasites. They are by far the most dynamic and abundant entity and the greatest killers on the planet, as well as the most effective geo-transforming genetic engineers and resource recyclers, acting on all life strata in any habitat. Yet, most of this uncanny viral world remains vastly unexplored to date, greatly hindered by the bewildering complexity inherent to such studies and the methodological and conceptual limitations. Viromic studies are just starting to address some of these issues but they still lag behind microbial metagenomics. In recent years, however, higher-throughput analysis and resequencing have rekindled interest in a field that is just starting to show its true potential. In this review, we take a look at the scientific and technological developments that led to the advent of viral and bacterial metagenomics with a particular, but not exclusive, focus on human viromics from an ecological perspective. We also address some of the most relevant challenges that current viral studies face and ponder on the future directions of the field.
Collapse
Affiliation(s)
- Rodrigo García-López
- Institute of Evolutionary Systems Biology (I2Sysbio), Universitat de València and CSIC, València, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), Madrid, Spain
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), València, Spain
| | - Vicente Pérez-Brocal
- Institute of Evolutionary Systems Biology (I2Sysbio), Universitat de València and CSIC, València, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), Madrid, Spain
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), València, Spain
| | - Andrés Moya
- Institute of Evolutionary Systems Biology (I2Sysbio), Universitat de València and CSIC, València, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), Madrid, Spain
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), València, Spain
| |
Collapse
|
21
|
Zheng T, Li J, Ni Y, Kang K, Misiakou MA, Imamovic L, Chow BKC, Rode AA, Bytzer P, Sommer M, Panagiotou G. Mining, analyzing, and integrating viral signals from metagenomic data. MICROBIOME 2019; 7:42. [PMID: 30890181 PMCID: PMC6425642 DOI: 10.1186/s40168-019-0657-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/07/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Viruses are important components of microbial communities modulating community structure and function; however, only a couple of tools are currently available for phage identification and analysis from metagenomic sequencing data. Here we employed the random forest algorithm to develop VirMiner, a web-based phage contig prediction tool especially sensitive for high-abundances phage contigs, trained and validated by paired metagenomic and phagenomic sequencing data from the human gut flora. RESULTS VirMiner achieved 41.06% ± 17.51% sensitivity and 81.91% ± 4.04% specificity in the prediction of phage contigs. In particular, for the high-abundance phage contigs, VirMiner outperformed other tools (VirFinder and VirSorter) with much higher sensitivity (65.23% ± 16.94%) than VirFinder (34.63% ± 17.96%) and VirSorter (18.75% ± 15.23%) at almost the same specificity. Moreover, VirMiner provides the most comprehensive phage analysis pipeline which is comprised of metagenomic raw reads processing, functional annotation, phage contig identification, and phage-host relationship prediction (CRISPR-spacer recognition) and supports two-group comparison when the input (metagenomic sequence data) includes different conditions (e.g., case and control). Application of VirMiner to an independent cohort of human gut metagenomes obtained from individuals treated with antibiotics revealed that 122 KEGG orthology and 118 Pfam groups had significantly differential abundance in the pre-treatment samples compared to samples at the end of antibiotic administration, including clustered regularly interspaced short palindromic repeats (CRISPR), multidrug resistance, and protein transport. The VirMiner webserver is available at http://sbb.hku.hk/VirMiner/ . CONCLUSIONS We developed a comprehensive tool for phage prediction and analysis for metagenomic samples. Compared to VirSorter and VirFinder-the most widely used tools-VirMiner is able to capture more high-abundance phage contigs which could play key roles in infecting bacteria and modulating microbial community dynamics. TRIAL REGISTRATION The European Union Clinical Trials Register, EudraCT Number: 2013-003378-28 . Registered on 9 April 2014.
Collapse
Affiliation(s)
- Tingting Zheng
- Systems Biology & Bioinformatics Group, School of Biological Sciences, Faculty of Sciences, The University of Hong Kong, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Jun Li
- Department of Infectious Diseases and Public Health, The Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong, Special Administrative Region of China
- School of Data Science, City University of Hong Kong, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Yueqiong Ni
- Department of Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Kang Kang
- Department of Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Maria-Anna Misiakou
- Bacterial Synthetic Biology Section, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Lejla Imamovic
- Bacterial Synthetic Biology Section, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Billy K. C. Chow
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Anne A. Rode
- Department of Medicine, Zealand University Hospital, Køge, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Peter Bytzer
- Department of Medicine, Zealand University Hospital, Køge, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Morten Sommer
- Bacterial Synthetic Biology Section, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Gianni Panagiotou
- Systems Biology & Bioinformatics Group, School of Biological Sciences, Faculty of Sciences, The University of Hong Kong, Hong Kong, Hong Kong, Special Administrative Region of China
- Department of Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, Special Administrative Region of China
| |
Collapse
|
22
|
Abstract
Understanding how an animal organism and its gut microbes form an integrated biological organization, known as a holobiont, is becoming a central issue in biological studies. Such an organization inevitably involves a complex web of transmission processes that occur on different scales in time and space, across microbes and hosts. Network-based models are introduced in this chapter to tackle aspects of this complexity and to better take into account vertical and horizontal dimensions of transmission. Two types of network-based models are presented, sequence similarity networks and bipartite graphs. One interest of these networks is that they can consider a rich diversity of important players in microbial evolution that are usually excluded from evolutionary studies, like plasmids and viruses. These methods bring forward the notion of "gene externalization," which is defined as the presence of redundant copies of prokaryotic genes on mobile genetic elements (MGEs), and therefore emphasizes a related although distinct process from lateral gene transfer between microbial cells. This chapter introduces guidelines to the construction of these networks, reviews their analysis, and illustrates their possible biological interpretations and uses. The application to human gut microbiomes shows that sequences present in a higher diversity of MGEs have both biased functions and a broader microbial and human host range. These results suggest that an "externalized gut metagenome" is partly common to humans and benefits the gut microbial community. We conclude that testing relationships between microbial genes, microbes, and their animal hosts, using network-based methods, could help to unravel additional mechanisms of transmission in holobionts.
Collapse
|
23
|
Larrañaga O, Brown-Jaque M, Quirós P, Gómez-Gómez C, Blanch AR, Rodríguez-Rubio L, Muniesa M. Phage particles harboring antibiotic resistance genes in fresh-cut vegetables and agricultural soil. ENVIRONMENT INTERNATIONAL 2018; 115:133-141. [PMID: 29567433 DOI: 10.1016/j.envint.2018.03.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/02/2018] [Accepted: 03/13/2018] [Indexed: 05/04/2023]
Abstract
Bacteriophages are ubiquitously distributed prokaryotic viruses that are more abundant than bacteria. As a consequence of their life cycle, phages can kidnap part of their host's genetic material, including antibiotic resistance genes (ARGs), which released phage particles transfer in a process called transduction. The spread of ARGs among pathogenic bacteria currently constitutes a serious global health problem. In this study, fresh vegetables (lettuce, spinach and cucumber), and cropland soil were screened by qPCR for ten ARGs (blaTEM, blaCTX-M-1 group, blaCTX-M-9 group, blaOXA-48, blaVIM, mecA, sul1, qnrA, qnrS and armA) in their viral DNA fraction. The presence of ARGs in the phage DNA was analyzed before and after propagation experiments in an Escherichia coli host strain to evaluate the ability of the phage particles to infect a host. ARGs were found in the phage DNA fraction of all matrices, although with heterogeneous values. ARG prevalence was significantly higher in lettuce and soil, and the most common overall were β-lactamases. After propagation experiments, an increase in ARG densities in phage particles was observed in samples of all four matrices, confirming that part of the isolated phage particles were infectious. This study reveals the abundance of free, replicative ARG-containing phage particles in vegetable matrices and cropland soil. The particles are proposed as vehicles for resistance transfer in these environments, where they can persist for a long time, with the possibility of generating new resistant bacterial strains. Ingestion of these mobile genetic elements may also favor the emergence of new resistances, a risk not previously considered.
Collapse
Affiliation(s)
- Olatz Larrañaga
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028 Barcelona, Spain
| | - Maryury Brown-Jaque
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028 Barcelona, Spain
| | - Pablo Quirós
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028 Barcelona, Spain
| | - Clara Gómez-Gómez
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028 Barcelona, Spain
| | - Anicet R Blanch
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028 Barcelona, Spain
| | - Lorena Rodríguez-Rubio
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028 Barcelona, Spain
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028 Barcelona, Spain.
| |
Collapse
|
24
|
Mayer R, Reischer GH, Ixenmaier SK, Derx J, Blaschke AP, Ebdon JE, Linke R, Egle L, Ahmed W, Blanch AR, Byamukama D, Savill M, Mushi D, Cristóbal HA, Edge TA, Schade MA, Aslan A, Brooks YM, Sommer R, Masago Y, Sato MI, Taylor HD, Rose JB, Wuertz S, Shanks OC, Piringer H, Mach RL, Savio D, Zessner M, Farnleitner AH. Global Distribution of Human-Associated Fecal Genetic Markers in Reference Samples from Six Continents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5076-5084. [PMID: 29570973 PMCID: PMC5932593 DOI: 10.1021/acs.est.7b04438] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 03/09/2018] [Accepted: 03/23/2018] [Indexed: 05/19/2023]
Abstract
Numerous bacterial genetic markers are available for the molecular detection of human sources of fecal pollution in environmental waters. However, widespread application is hindered by a lack of knowledge regarding geographical stability, limiting implementation to a small number of well-characterized regions. This study investigates the geographic distribution of five human-associated genetic markers (HF183/BFDrev, HF183/BacR287, BacHum-UCD, BacH, and Lachno2) in municipal wastewaters (raw and treated) from 29 urban and rural wastewater treatment plants (750-4 400 000 population equivalents) from 13 countries spanning six continents. In addition, genetic markers were tested against 280 human and nonhuman fecal samples from domesticated, agricultural and wild animal sources. Findings revealed that all genetic markers are present in consistently high concentrations in raw (median log10 7.2-8.0 marker equivalents (ME) 100 mL-1) and biologically treated wastewater samples (median log10 4.6-6.0 ME 100 mL-1) regardless of location and population. The false positive rates of the various markers in nonhuman fecal samples ranged from 5% to 47%. Results suggest that several genetic markers have considerable potential for measuring human-associated contamination in polluted environmental waters. This will be helpful in water quality monitoring, pollution modeling and health risk assessment (as demonstrated by QMRAcatch) to guide target-oriented water safety management across the globe.
Collapse
Affiliation(s)
- René
E. Mayer
- Research
Group Environmental Microbiology and Molecular
Diagnostics 166-5-3, Institute of Chemical, Environmental
and Bioscience Engineering, TU Wien, 1060 Vienna, Austria
- Interuniversity
Cooperation Centre Water & Health, Vienna, Austria
| | - Georg H. Reischer
- Research
Group Environmental Microbiology and Molecular
Diagnostics 166-5-3, Institute of Chemical, Environmental
and Bioscience Engineering, TU Wien, 1060 Vienna, Austria
- Molecular
Diagnostics Group, IFA-Tulln, Institute
of Chemical, Environmental and Bioscience Engineering, TU Wien, 3430 Tulln, Austria
| | - Simone K. Ixenmaier
- Research
Group Environmental Microbiology and Molecular
Diagnostics 166-5-3, Institute of Chemical, Environmental
and Bioscience Engineering, TU Wien, 1060 Vienna, Austria
- Interuniversity
Cooperation Centre Water & Health, Vienna, Austria
| | - Julia Derx
- Interuniversity
Cooperation Centre Water & Health, Vienna, Austria
- Institute of Hydraulic
Engineering and Water Resources Management, TU Wien, 1040 Vienna, Austria
| | - Alfred Paul Blaschke
- Interuniversity
Cooperation Centre Water & Health, Vienna, Austria
- Institute of Hydraulic
Engineering and Water Resources Management, TU Wien, 1040 Vienna, Austria
| | - James E. Ebdon
- Environment
& Public Health Research and Enterprise Group, School of Environment
and Technology, University of Brighton, BN2 4GJ Brighton, U.K.
| | - Rita Linke
- Research
Group Environmental Microbiology and Molecular
Diagnostics 166-5-3, Institute of Chemical, Environmental
and Bioscience Engineering, TU Wien, 1060 Vienna, Austria
- Interuniversity
Cooperation Centre Water & Health, Vienna, Austria
| | - Lukas Egle
- Institute for Water Quality
and Resource Management, TU Wien, 1040 Vienna, Austria
| | - Warish Ahmed
- CSIRO
Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - Anicet R. Blanch
- Department
of Genetics, Microbiology and Statistics, University of Barcelona, 08028 Barcelona, Spain
| | - Denis Byamukama
- Department
of Biochemistry, Makerere University, P.O. Box 27755 Kampala, Uganda
| | - Marion Savill
- Affordable Water Limited, 1011 Auckland, New Zealand
| | - Douglas Mushi
- Department
of Biosciences, Sokoine University of Agriculture, PO BOX 3038, Morogoro, Tanzania
| | - Héctor A. Cristóbal
- Laboratorio
de Aguas y Suelos, Instituto de Investigaciones para la Industria
Química (INIQUI), Consejo Nacional
de Investigaciones Científicas y Técnicas and Universidad
Nacional de Salta, CP 4400 Salta, Argentina
| | - Thomas A. Edge
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, L7S 1A1, Ontario, Canada
| | | | - Asli Aslan
- Department
of Epidemiology and Environmental Health Sciences, Georgia Southern University, Statesboro, 30460 Georgia, United States
| | - Yolanda M. Brooks
- Department of Fisheries and Wildlife, Michigan State University East Lansing, 48824 Michigan, United States
| | - Regina Sommer
- Interuniversity
Cooperation Centre Water & Health, Vienna, Austria
- Institute
for Hygiene and Applied Immunology, Water Hygiene, Medical University of Vienna, 1090 Vienna, Austria
| | - Yoshifumi Masago
- New
Industry Creation Hatchery Center, Tohoku
University, 980-8579 Sendai, Japan
| | - Maria I. Sato
- Departamento
de Análises Ambientais, CETESB -
Cia. Ambiental do Estado de São Paulo, 05459-900 São
Paulo, Brasil
| | - Huw D. Taylor
- Environment
& Public Health Research and Enterprise Group, School of Environment
and Technology, University of Brighton, BN2 4GJ Brighton, U.K.
| | - Joan B. Rose
- Department of Fisheries and Wildlife, Michigan State University East Lansing, 48824 Michigan, United States
| | - Stefan Wuertz
- Singapore Centre
for Environmental Life Sciences Engineering and
School of Civil and Environmental Engineering, Nanyang Technological University, 637551 Singapore
| | - Orin C. Shanks
- U.S. Environmental Protection Agency, Office
of Research and Development, 45268 Cincinnati, Ohio, United States
| | | | - Robert L. Mach
- Research Division Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, 1060 Vienna, Austria
| | - Domenico Savio
- Division Water Quality and Health, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
| | - Matthias Zessner
- Institute for Water Quality
and Resource Management, TU Wien, 1040 Vienna, Austria
| | - Andreas H. Farnleitner
- Research
Group Environmental Microbiology and Molecular
Diagnostics 166-5-3, Institute of Chemical, Environmental
and Bioscience Engineering, TU Wien, 1060 Vienna, Austria
- Interuniversity
Cooperation Centre Water & Health, Vienna, Austria
- Division Water Quality and Health, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
- Phone: +43 664 605882244; e-mail:
| |
Collapse
|
25
|
Ma Y, You X, Mai G, Tokuyasu T, Liu C. A human gut phage catalog correlates the gut phageome with type 2 diabetes. MICROBIOME 2018; 6:24. [PMID: 29391057 PMCID: PMC5796561 DOI: 10.1186/s40168-018-0410-y] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 01/19/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Substantial efforts have been made to link the gut bacterial community to many complex human diseases. Nevertheless, the gut phages are often neglected. RESULTS In this study, we used multiple bioinformatic methods to catalog gut phages from whole-community metagenomic sequencing data of fecal samples collected from both type II diabetes (T2D) patients (n = 71) and normal Chinese adults (n = 74). The definition of phage operational taxonomic units (pOTUs) and identification of large phage scaffolds (n = 2567, ≥ 10 k) revealed a comprehensive human gut phageome with a substantial number of novel sequences encoding genes that were unrelated to those in known phages. Interestingly, we observed a significant increase in the number of gut phages in the T2D group and, in particular, identified 7 pOTUs specific to T2D. This finding was further validated in an independent dataset of 116 T2D and 109 control samples. Co-occurrence/exclusion analysis of the bacterial genera and pOTUs identified a complex core interaction between bacteria and phages in the human gut ecosystem, suggesting that the significant alterations of the gut phageome cannot be explained simply by co-variation with the altered bacterial hosts. CONCLUSIONS Alterations in the gut bacterial community have been linked to the chronic disease T2D, but the role of gut phages therein is not well understood. This is the first study to identify a T2D-specific gut phageome, indicating the existence of other mechanisms that might govern the gut phageome in T2D patients. These findings suggest the importance of the phageome in T2D risk, which warrants further investigation.
Collapse
Affiliation(s)
- Yingfei Ma
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, University Town, Nanshan, Shenzhen, 518055 China
| | - Xiaoyan You
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, University Town, Nanshan, Shenzhen, 518055 China
| | - Guoqin Mai
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, University Town, Nanshan, Shenzhen, 518055 China
| | - Taku Tokuyasu
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, University Town, Nanshan, Shenzhen, 518055 China
| | - Chenli Liu
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, University Town, Nanshan, Shenzhen, 518055 China
| |
Collapse
|
26
|
Ogilvie LA, Nzakizwanayo J, Guppy FM, Dedi C, Diston D, Taylor H, Ebdon J, Jones BV. Resolution of habitat-associated ecogenomic signatures in bacteriophage genomes and application to microbial source tracking. ISME JOURNAL 2017; 12:942-958. [PMID: 29259289 PMCID: PMC5864186 DOI: 10.1038/s41396-017-0015-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/06/2017] [Accepted: 11/11/2017] [Indexed: 12/28/2022]
Abstract
Just as the expansion in genome sequencing has revealed and permitted the exploitation of phylogenetic signals embedded in bacterial genomes, the application of metagenomics has begun to provide similar insights at the ecosystem level for microbial communities. However, little is known regarding this aspect of bacteriophage associated with microbial ecosystems, and if phage encode discernible habitat-associated signals diagnostic of underlying microbiomes. Here we demonstrate that individual phage can encode clear habitat-related 'ecogenomic signatures', based on relative representation of phage-encoded gene homologues in metagenomic data sets. Furthermore, we show the ecogenomic signature encoded by the gut-associated ɸB124-14 can be used to segregate metagenomes according to environmental origin, and distinguish 'contaminated' environmental metagenomes (subject to simulated in silico human faecal pollution) from uncontaminated data sets. This indicates phage-encoded ecological signals likely possess sufficient discriminatory power for use in biotechnological applications, such as development of microbial source tracking tools for monitoring water quality.
Collapse
Affiliation(s)
- Lesley A Ogilvie
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK.
| | | | - Fergus M Guppy
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Cinzia Dedi
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - David Diston
- Mikrobiologische & Biotechnologische Risiken Bundesamt für Gesundheit BAG, 3003, Bern, Switzerland
| | - Huw Taylor
- School of Environment and Technology, University of Brighton, Brighton, UK
| | - James Ebdon
- School of Environment and Technology, University of Brighton, Brighton, UK
| | - Brian V Jones
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK.
| |
Collapse
|
27
|
The human gut virome: form and function. Emerg Top Life Sci 2017; 1:351-362. [PMID: 33525769 DOI: 10.1042/etls20170039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 01/15/2023]
Abstract
Advances in next-generation sequencing technologies and the application of metagenomic approaches have fuelled an exponential increase in our understanding of the human gut microbiome. These approaches are now also illuminating features of the diverse and abundant collection of viruses (termed the virome) subsisting with the microbial ecosystems residing within the human holobiont. Here, we focus on the current and emerging knowledge of the human gut virome, in particular on viruses infecting bacteria (bacteriophage or phage), which are a dominant component of this viral community. We summarise current insights regarding the form and function of this 'human gut phageome' and highlight promising avenues for future research. In doing so, we discuss the potential for phage to drive ecological functioning and evolutionary change within this important microbial ecosystem, their contribution to modulation of host-microbiome interactions and stability of the community as a whole, as well as the potential role of the phageome in human health and disease. We also consider the emerging concepts of a 'core healthy gut phageome' and the putative existence of 'viral enterotypes' and 'viral dysbiosis'.
Collapse
|
28
|
Carding SR, Davis N, Hoyles L. Review article: the human intestinal virome in health and disease. Aliment Pharmacol Ther 2017; 46:800-815. [PMID: 28869283 PMCID: PMC5656937 DOI: 10.1111/apt.14280] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 04/07/2017] [Accepted: 08/07/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND The human virome consists of animal-cell viruses causing transient infections, bacteriophage (phage) predators of bacteria and archaea, endogenous retroviruses and viruses causing persistent and latent infections. High-throughput, inexpensive, sensitive sequencing methods and metagenomics now make it possible to study the contribution dsDNA, ssDNA and RNA virus-like particles make to the human virome, and in particular the intestinal virome. AIM To review and evaluate the pioneering studies that have attempted to characterise the human virome and generated an increased interest in understanding how the intestinal virome might contribute to maintaining health, and the pathogenesis of chronic diseases. METHODS Relevant virome-related articles were selected for review following extensive language- and date-unrestricted, electronic searches of the literature. RESULTS The human intestinal virome is personalised and stable, and dominated by phages. It develops soon after birth in parallel with prokaryotic communities of the microbiota, becoming established during the first few years of life. By infecting specific populations of bacteria, phages can alter microbiota structure by killing host cells or altering their phenotype, enabling phages to contribute to maintaining intestinal homeostasis or microbial imbalance (dysbiosis), and the development of chronic infectious and autoimmune diseases including HIV infection and Crohn's disease, respectively. CONCLUSIONS Our understanding of the intestinal virome is fragmented and requires standardised methods for virus isolation and sequencing to provide a more complete picture of the virome, which is key to explaining the basis of virome-disease associations, and how enteric viruses can contribute to disease aetiologies and be rationalised as targets for interventions.
Collapse
Affiliation(s)
- S. R. Carding
- Norwich Medical SchoolUniversity of East AngliaNorwichUK,The Gut Health and Food Safety Research ProgrammeThe Quadram InstituteNorwich Research ParkNorwichUK
| | - N. Davis
- Norwich Medical SchoolUniversity of East AngliaNorwichUK
| | - L. Hoyles
- Department of Surgery and CancerImperial College LondonLondonUK
| |
Collapse
|
29
|
Affiliation(s)
- Lesley A Ogilvie
- School of Pharmacy & Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Brian V Jones
- School of Pharmacy & Biomolecular Sciences, University of Brighton, Brighton, UK
| |
Collapse
|
30
|
The Human Gut Phage Community and Its Implications for Health and Disease. Viruses 2017; 9:v9060141. [PMID: 28594392 PMCID: PMC5490818 DOI: 10.3390/v9060141] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/23/2017] [Accepted: 06/02/2017] [Indexed: 12/23/2022] Open
Abstract
In this review, we assess our current understanding of the role of bacteriophages infecting the human gut bacterial community in health and disease. In general, bacteriophages contribute to the structure of their microbial communities by driving host and viral diversification, bacterial evolution, and by expanding the functional diversity of ecosystems. Gut bacteriophages are an ensemble of unique and shared phages in individuals, which encompass temperate phages found predominately as prophage in gut bacteria (prophage reservoir) and lytic phages. In healthy individuals, only a small fraction of the prophage reservoir is activated and found as extracellular phages. Phage community dysbiosis is characterized by a shift in the activated prophage community or an increase of lytic phages, and has been correlated with disease, suggesting that a proper balance between lysis and lysogeny is needed to maintain health. Consequently, the concept of microbial dysbiosis might be extended to the phage component of the microbiome as well. Understanding the dynamics and mechanisms to restore balance after dysbiosis is an active area of research. The use of phage transplants to re-establish health suggests that phages can be used as disease treatment. Such advances represent milestones in our understanding of gut phages in human health and should fuel research on their role in health and disease.
Collapse
|
31
|
Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME JOURNAL 2017; 11:1511-1520. [PMID: 28291233 DOI: 10.1038/ismej.2017.16] [Citation(s) in RCA: 413] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 12/04/2016] [Accepted: 01/19/2017] [Indexed: 01/07/2023]
Abstract
Viruses that infect bacteria (phages) can influence bacterial community dynamics, bacterial genome evolution and ecosystem biogeochemistry. These influences differ depending on whether phages establish lytic, chronic or lysogenic infections. Although the first two produce virion progeny, with lytic infections resulting in cell destruction, phages undergoing lysogenic infections replicate with cells without producing virions. The impacts of lysogeny are numerous and well-studied at the cellular level, but ecosystem-level consequences remain underexplored compared to those of lytic infections. Here, we review lysogeny from molecular mechanisms to ecological patterns to emerging approaches of investigation. Our goal is to highlight both its diversity and importance in complex communities. Altogether, using a combined viral ecology toolkit that is applied across broad model systems and environments will help us understand more of the diverse lifestyles and ecological impacts of lysogens in nature.
Collapse
|
32
|
Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, Poulos BT, Solonenko N, Lara E, Poulain J, Pesant S, Kandels-Lewis S, Dimier C, Picheral M, Searson S, Cruaud C, Alberti A, Duarte CM, Gasol JM, Vaqué D, Bork P, Acinas SG, Wincker P, Sullivan MB. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 2016; 537:689-693. [PMID: 27654921 DOI: 10.1038/nature19366] [Citation(s) in RCA: 483] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 08/12/2016] [Indexed: 12/26/2022]
Abstract
Ocean microbes drive biogeochemical cycling on a global scale. However, this cycling is constrained by viruses that affect community composition, metabolic activity, and evolutionary trajectories. Owing to challenges with the sampling and cultivation of viruses, genome-level viral diversity remains poorly described and grossly understudied, with less than 1% of observed surface-ocean viruses known. Here we assemble complete genomes and large genomic fragments from both surface- and deep-ocean viruses sampled during the Tara Oceans and Malaspina research expeditions, and analyse the resulting 'global ocean virome' dataset to present a global map of abundant, double-stranded DNA viruses complete with genomic and ecological contexts. A total of 15,222 epipelagic and mesopelagic viral populations were identified, comprising 867 viral clusters (defined as approximately genus-level groups). This roughly triples the number of known ocean viral populations and doubles the number of candidate bacterial and archaeal virus genera, providing a near-complete sampling of epipelagic communities at both the population and viral-cluster level. We found that 38 of the 867 viral clusters were locally or globally abundant, together accounting for nearly half of the viral populations in any global ocean virome sample. While two-thirds of these clusters represent newly described viruses lacking any cultivated representative, most could be computationally linked to dominant, ecologically relevant microbial hosts. Moreover, we identified 243 viral-encoded auxiliary metabolic genes, of which only 95 were previously known. Deeper analyses of four of these auxiliary metabolic genes (dsrC, soxYZ, P-II (also known as glnB) and amoC) revealed that abundant viruses may directly manipulate sulfur and nitrogen cycling throughout the epipelagic ocean. This viral catalog and functional analyses provide a necessary foundation for the meaningful integration of viruses into ecosystem models where they act as key players in nutrient cycling and trophic networks.
Collapse
Affiliation(s)
- Simon Roux
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jennifer R Brum
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, The Netherlands
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
- Department of Marine Biology, Federal University of Rio de Janeiro, Rio de Janeiro, CEP 21941-902, Brazil
| | - Shinichi Sunagawa
- Structural and Computational Biology, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Melissa B Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Alexander Loy
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry Meets Microbiology, University of Vienna, A-1090 Vienna, Austria
- Austrian Polar Research Institute, A-1090 Vienna, Austria
| | - Bonnie T Poulos
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Natalie Solonenko
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Elena Lara
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), CSIC Barcelona E0800, Spain
- Institute of Marine Sciences (CNR-ISMAR), National Research Council, 30122 Venezia, Italy
| | - Julie Poulain
- CEA - Institut de Génomique, GENOSCOPE, 91057 Evry, France
| | - Stéphane Pesant
- PANGAEA, Data Publisher for Earth and Environmental Science, University of Bremen, 28359 Bremen, Germany
- MARUM, Bremen University, 28359 Bremen, Germany
| | - Stefanie Kandels-Lewis
- Structural and Computational Biology, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Directors' Research, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Céline Dimier
- CNRS, UMR 7144, EPEP, Station Biologique de Roscoff, 29680 Roscoff, France
- Sorbonne Universités, UPMC Université Paris 06, UMR 7144, Station Biologique de Roscoff, 29680 Roscoff, France
- Institut de Biologie de l'École Normale Supérieure, École Normale Supérieure, Paris Sciences et Lettres Research University, CNRS UMR 8197, INSERM U1024, F-75005 Paris, France
| | - Marc Picheral
- CNRS, UMR 7093, Laboratoire d'océanographie de Villefranche, Observatoire Océanologique, 06230 Villefranche-sur-mer, France
- Sorbonne Universités, UPMC Université Paris 06, UMR 7093, Observatoire Océanologique, 06230 Villefranche-sur-mer, France
| | - Sarah Searson
- CNRS, UMR 7093, Laboratoire d'océanographie de Villefranche, Observatoire Océanologique, 06230 Villefranche-sur-mer, France
- Sorbonne Universités, UPMC Université Paris 06, UMR 7093, Observatoire Océanologique, 06230 Villefranche-sur-mer, France
| | - Corinne Cruaud
- CEA - Institut de Génomique, GENOSCOPE, 91057 Evry, France
| | | | - Carlos M Duarte
- Mediterranean Institute of Advanced Studies, CSIC-UiB, 21-07190 Esporles, Mallorca, Spain
- King Abdullah University of Science and Technology, Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia
| | - Josep M Gasol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), CSIC Barcelona E0800, Spain
| | - Dolors Vaqué
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), CSIC Barcelona E0800, Spain
| | - Peer Bork
- Structural and Computational Biology, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Max-Delbrück-Centre for Molecular Medicine, 13092 Berlin, Germany
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), CSIC Barcelona E0800, Spain
| | - Patrick Wincker
- CEA - Institut de Génomique, GENOSCOPE, 91057 Evry, France
- CNRS, UMR 8030, 91057 Evry, France
- Université d'Evry, UMR 8030, 91057 Evry, France
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
33
|
Davison M, Treangen TJ, Koren S, Pop M, Bhaya D. Diversity in a Polymicrobial Community Revealed by Analysis of Viromes, Endolysins and CRISPR Spacers. PLoS One 2016; 11:e0160574. [PMID: 27611571 PMCID: PMC5017753 DOI: 10.1371/journal.pone.0160574] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/21/2016] [Indexed: 12/13/2022] Open
Abstract
The polymicrobial biofilm communities in Mushroom and Octopus Spring in Yellowstone National Park (YNP) are well characterized, yet little is known about the phage populations. Dominant species, Synechococcus sp. JA-2-3B'a(2–13), Synechococcus sp. JA-3-3Ab, Chloroflexus sp. Y-400-fl, and Roseiflexus sp. RS-1, contain multiple CRISPR-Cas arrays, suggesting complex interactions with phage predators. To analyze phage populations from Octopus Spring biofilms, we sequenced a viral enriched fraction. To assemble and analyze phage metagenomic data, we developed a custom module, VIRITAS, implemented within the MetAMOS framework. This module bins contigs into groups based on tetranucleotide frequencies and CRISPR spacer-protospacer matching and ORF calling. Using this pipeline we were able to assemble phage sequences into contigs and bin them into three clusters that corroborated with their potential host range. The virome contained 52,348 predicted ORFs; some were clearly phage-like; 9319 ORFs had a recognizable Pfam domain while the rest were hypothetical. Of the recognized domains with CRISPR spacer matches, was the phage endolysin used by lytic phage to disrupt cells. Analysis of the endolysins present in the thermophilic cyanophage contigs revealed a subset of characterized endolysins as well as a Glyco_hydro_108 (PF05838) domain not previously associated with sequenced cyanophages. A search for CRISPR spacer matches to all identified phage endolysins demonstrated that a majority of endolysin domains were targets. This strategy provides a general way to link host and phage as endolysins are known to be widely distributed in bacteriophage. Endolysins can also provide information about host cell wall composition and have the additional potential to be used as targets for novel therapeutics.
Collapse
Affiliation(s)
- Michelle Davison
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, United States of America
- Stanford University, Department of Biology, Stanford, CA, 94305, United States of America
- * E-mail: (MD); (DB)
| | - Todd J. Treangen
- Center for Bioinformatics and Computational Biology, Biomolecular Sciences Building, College Park, MD, 20742, United States of America
| | - Sergey Koren
- Center for Bioinformatics and Computational Biology, Biomolecular Sciences Building, College Park, MD, 20742, United States of America
| | - Mihai Pop
- Center for Bioinformatics and Computational Biology, Biomolecular Sciences Building, College Park, MD, 20742, United States of America
- Department of Computer Science, University of Maryland, College Park, MD, 20742, United States of America
| | - Devaki Bhaya
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, United States of America
- Stanford University, Department of Biology, Stanford, CA, 94305, United States of America
- * E-mail: (MD); (DB)
| |
Collapse
|
34
|
Enault F, Briet A, Bouteille L, Roux S, Sullivan MB, Petit MA. Phages rarely encode antibiotic resistance genes: a cautionary tale for virome analyses. ISME JOURNAL 2016; 11:237-247. [PMID: 27326545 DOI: 10.1038/ismej.2016.90] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/11/2016] [Accepted: 05/10/2016] [Indexed: 12/21/2022]
Abstract
Antibiotic resistance genes (ARGs) are pervasive in gut microbiota, but it remains unclear how often ARGs are transferred, particularly to pathogens. Traditionally, ARG spread is attributed to horizontal transfer mediated either by DNA transformation, bacterial conjugation or generalized transduction. However, recent viral metagenome (virome) analyses suggest that ARGs are frequently carried by phages, which is inconsistent with the traditional view that phage genomes rarely encode ARGs. Here we used exploratory and conservative bioinformatic strategies found in the literature to detect ARGs in phage genomes, and experimentally assessed a subset of ARG predicted using exploratory thresholds. ARG abundances in 1181 phage genomes were vastly overestimated using exploratory thresholds (421 predicted vs 2 known), due to low similarities and matches to protein unrelated to antibiotic resistance. Consistent with this, four ARGs predicted using exploratory thresholds were experimentally evaluated and failed to confer antibiotic resistance in Escherichia coli. Reanalysis of available human- or mouse-associated viromes for ARGs and their genomic context suggested that bona fide ARG attributed to phages in viromes were previously overestimated. These findings provide guidance for documentation of ARG in viromes, and reassert that ARGs are rarely encoded in phages.
Collapse
Affiliation(s)
- François Enault
- Clermont Université, Université Blaise Pascal, Laboratoire 'Microorganismes: Génome et Environnement', Clermont-Ferrand, France.,CNRS UMR 6023, LMGE, Aubière, France
| | - Arnaud Briet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Léa Bouteille
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Simon Roux
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.,Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Marie-Agnès Petit
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
35
|
Bruder K, Malki K, Cooper A, Sible E, Shapiro JW, Watkins SC, Putonti C. Freshwater Metaviromics and Bacteriophages: A Current Assessment of the State of the Art in Relation to Bioinformatic Challenges. Evol Bioinform Online 2016; 12:25-33. [PMID: 27375355 PMCID: PMC4915788 DOI: 10.4137/ebo.s38549] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/03/2016] [Accepted: 04/10/2016] [Indexed: 12/30/2022] Open
Abstract
Advances in bioinformatics and sequencing technologies have allowed for the analysis of complex microbial communities at an unprecedented rate. While much focus is often placed on the cellular members of these communities, viruses play a pivotal role, particularly bacteria-infecting viruses (bacteriophages); phages mediate global biogeochemical processes and drive microbial evolution through bacterial grazing and horizontal gene transfer. Despite their importance and ubiquity in nature, very little is known about the diversity and structure of viral communities. Though the need for culture-based methods for viral identification has been somewhat circumvented through metagenomic techniques, the analysis of metaviromic data is marred with many unique issues. In this review, we examine the current bioinformatic approaches for metavirome analyses and the inherent challenges facing the field as illustrated by the ongoing efforts in the exploration of freshwater phage populations.
Collapse
Affiliation(s)
- Katherine Bruder
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Kema Malki
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | | | - Emily Sible
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Jason W Shapiro
- Department of Biology, Loyola University Chicago, Chicago, IL, USA.; Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA
| | | | - Catherine Putonti
- Department of Biology, Loyola University Chicago, Chicago, IL, USA.; Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA.; Department of Computer Science, Loyola University Chicago, Chicago, IL, USA
| |
Collapse
|
36
|
Abstract
In 1675, Antoni Van Leeuwenhoeck was the first to observe several forms using an optical microscope that he named "animalcules", realizing later that these were microorganisms. The first classification of living organisms proposed by Ehrenberg in 1833 was based on what we could visualize. The failure of this kind of classification arises from viral culture, which preceded direct observations that were finally achieved during the 20th century by electron microscopy. The number of prokaryotic species is estimated at approximately 10 million, although only 1800 were known in 1980, and 14,000 to date, thanks to the advent of 16S rRNA amplification and sequencing. This highlights our inability to access the entire diversity. Indeed, a large number of bacteria are only, known as Operational Taxonomic Units (OTUs) and detected as a result of metagenomics studies, revealing an unexplored world known as the "dark matter". Recently, the rebirth of bacterial culture through the example of culturomics has dramatically increased the human gut repertoire as well as the 18SrRNA sequencing allowed to largely extend the repertoire of Eukaryotes. Finally, filtration and co-culture on free-living protists associated with high-throughput culture elucidated a part of the megavirome. While the majority of studies currently performed on the human gut microbiota focus on bacterial diversity, it appears that several other prokaryotes (including archaea) and eukaryotic populations also inhabit this ecosystem; their detection depending exclusively on the tools used. Rational and comprehensive establishment of this ecosystem will allow the understanding of human health associated with gut microbiota and the potential to change this.
Collapse
|
37
|
Broecker F, Klumpp J, Moelling K. Long-term microbiota and virome in a Zürich patient after fecal transplantation against Clostridium difficile infection. Ann N Y Acad Sci 2016; 1372:29-41. [PMID: 27286042 DOI: 10.1111/nyas.13100] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/14/2022]
Abstract
Fecal microbiota transplantation (FMT) is an emerging therapeutic option for Clostridium difficile infections that are refractory to conventional treatment. FMT introduces fecal microbes into the patient's intestine that prevent the recurrence of C. difficile, leading to rapid expansion of bacteria characteristic of healthy microbiota. However, the long-term effects of FMT remain largely unknown. The C. difficile patient described in this paper revealed protracted microbiota adaptation processes from 6 to 42 months post-FMT. Ultimately, bacterial communities were donor similar, suggesting sustainable stool engraftment. Since little is known about the consequences of transmitted viruses during C. difficile infection, we also interrogated virome changes. Our approach allowed identification of about 10 phage types per sample that represented larger viral communities, and phages were found to be equally abundant in the cured patient and donor. The healthy microbiota appears to be characterized by low phage abundance. Although viruses were likely transferred, the patient established a virome distinct from the donor. Surprisingly, the patient had sequences of algal giant viruses (chloroviruses) that have not previously been reported for the human gut. Chloroviruses have not been associated with intestinal disease, but their presence in the oropharynx may influence cognitive abilities. The findings suggest that the virome is an important indicator of health or disease. A better understanding of the role of viruses in the gut ecosystem may uncover novel microbiota-modulating therapeutic strategies.
Collapse
Affiliation(s)
- Felix Broecker
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institute for Medical Microbiology, University of Zürich, Zürich, Switzerland.,Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Jochen Klumpp
- Institute of Food, Nutrition, and Health, ETH Zürich, Zürich, Switzerland
| | - Karin Moelling
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institute for Medical Microbiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
38
|
The information science of microbial ecology. Curr Opin Microbiol 2016; 31:209-216. [PMID: 27183115 DOI: 10.1016/j.mib.2016.04.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/14/2016] [Accepted: 04/16/2016] [Indexed: 01/07/2023]
Abstract
A revolution is unfolding in microbial ecology where petabytes of 'multi-omics' data are produced using next generation sequencing and mass spectrometry platforms. This cornucopia of biological information has enormous potential to reveal the hidden metabolic powers of microbial communities in natural and engineered ecosystems. However, to realize this potential, the development of new technologies and interpretative frameworks grounded in ecological design principles are needed to overcome computational and analytical bottlenecks. Here we explore the relationship between microbial ecology and information science in the era of cloud-based computation. We consider microorganisms as individual information processing units implementing a distributed metabolic algorithm and describe developments in ecoinformatics and ubiquitous computing with the potential to eliminate bottlenecks and empower knowledge creation and translation.
Collapse
|
39
|
Christensen T. Human endogenous retroviruses in neurologic disease. APMIS 2016; 124:116-26. [DOI: 10.1111/apm.12486] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 10/26/2015] [Indexed: 12/13/2022]
|
40
|
Kim MS, Bae JW. Spatial disturbances in altered mucosal and luminal gut viromes of diet-induced obese mice. Environ Microbiol 2016; 18:1498-510. [PMID: 26690305 DOI: 10.1111/1462-2920.13182] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/28/2015] [Accepted: 12/04/2015] [Indexed: 12/15/2022]
Abstract
Gut microbial biogeography is a key feature of host-microbe relationships. In gut viral ecology, biogeography and responses to dietary intervention remain poorly understood. Here, we conducted a metagenomic study to determine the composition of the mucosal and luminal viromes of the gut and to evaluate the impact of a Western diet on gut viral ecology. We found that mucosal and luminal viral assemblages comprised predominantly temperate phages. The mucosal virome significantly differed from the luminal virome in low-fat diet-fed lean mice, where spatial variation correlated with bacterial microbiota from the mucosa and lumen. The mucosal and luminal viromes of high-fat, high-sucrose 'Western' diet-fed obese mice were significantly enriched with temperate phages of the Caudovirales order. Interestingly, this community alteration occurred to a greater extent in the mucosa than lumen, leading to loss of spatial differences; however, these changes recovered after switching to a low-fat diet. Temperate phages enriched in the Western diet-induced obese mice were associated with the Bacilli, Negativicutes and Bacteroidia classes and temperate phages from the Bacteroidia class particularly encoded stress and niche-specific functions advantageous to bacterial host adaptation. This study illustrates a biogeographic view of the gut virome and phage-bacterial host connections under the diet-induced microbial dysbiosis.
Collapse
Affiliation(s)
- Min-Soo Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Jin-Woo Bae
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| |
Collapse
|
41
|
Edwards RA, McNair K, Faust K, Raes J, Dutilh BE. Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol Rev 2015; 40:258-72. [PMID: 26657537 PMCID: PMC5831537 DOI: 10.1093/femsre/fuv048] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2015] [Indexed: 01/21/2023] Open
Abstract
Metagenomics has changed the face of virus discovery by enabling the accurate identification of viral genome sequences without requiring isolation of the viruses. As a result, metagenomic virus discovery leaves the first and most fundamental question about any novel virus unanswered: What host does the virus infect? The diversity of the global virosphere and the volumes of data obtained in metagenomic sequencing projects demand computational tools for virus–host prediction. We focus on bacteriophages (phages, viruses that infect bacteria), the most abundant and diverse group of viruses found in environmental metagenomes. By analyzing 820 phages with annotated hosts, we review and assess the predictive power of in silico phage–host signals. Sequence homology approaches are the most effective at identifying known phage–host pairs. Compositional and abundance-based methods contain significant signal for phage–host classification, providing opportunities for analyzing the unknowns in viral metagenomes. Together, these computational approaches further our knowledge of the interactions between phages and their hosts. Importantly, we find that all reviewed signals significantly link phages to their hosts, illustrating how current knowledge and insights about the interaction mechanisms and ecology of coevolving phages and bacteria can be exploited to predict phage–host relationships, with potential relevance for medical and industrial applications. New viruses infecting bacteria are increasingly being discovered in many environments through sequence-based explorations. To understand their role in microbial ecosystems, computational tools are indispensable to prioritize and guide experimental efforts. This review assesses and discusses a range of bioinformatic approaches to predict bacteriophage–host relationships when all that is known is their genome sequence.
Collapse
Affiliation(s)
- Robert A Edwards
- Department of Computer Science, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA Department of Marine Biology, Institute of Biology, Federal University of Rio de Janeiro, CEP 21941-902, Brazil Division of Mathematics and Computer Science, Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439, USA
| | - Katelyn McNair
- Department of Computer Science, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| | - Karoline Faust
- Department of Microbiology and Immunology, Rega Institute KU Leuven, Herestraat 49, 3000 Leuven, Belgium VIB Center for the Biology of Disease, VIB, Herestraat 49, 3000 Leuven, Belgium Laboratory of Microbiology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Institute KU Leuven, Herestraat 49, 3000 Leuven, Belgium VIB Center for the Biology of Disease, VIB, Herestraat 49, 3000 Leuven, Belgium Laboratory of Microbiology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Bas E Dutilh
- Department of Marine Biology, Institute of Biology, Federal University of Rio de Janeiro, CEP 21941-902, Brazil Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| |
Collapse
|
42
|
Marbouty M, Koszul R. Metagenome Analysis Exploiting High-Throughput Chromosome Conformation Capture (3C) Data. Trends Genet 2015; 31:673-682. [PMID: 26608779 DOI: 10.1016/j.tig.2015.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/15/2015] [Accepted: 10/15/2015] [Indexed: 01/26/2023]
Abstract
Microbial communities are complex and constitute important parts of our environment. Genomic analysis of these populations is a dynamic research area but remains limited by the difficulty in assembling full genomes of individual species. Recently, a new method for metagenome assembly/analysis based on chromosome conformation capture has emerged (meta3C). This approach quantifies the collisions experienced by DNA molecules to identify those sharing the same cellular compartments, allowing the characterization of genomes present within complex mixes of species. The exploitation of these chromosome 3D signatures holds promising perspectives for genome sequencing of discrete species in complex populations. It also has the potential to assign correctly extra-chromosomal elements, such as plasmids, mobile elements and phages, to their host cells.
Collapse
Affiliation(s)
- Martial Marbouty
- Institut Pasteur, Department of Genomes and Genetics, Groupe Régulation Spatiale des Génomes, 75015 Paris, France; CNRS, UMR 3525, 75015 Paris, France
| | - Romain Koszul
- Institut Pasteur, Department of Genomes and Genetics, Groupe Régulation Spatiale des Génomes, 75015 Paris, France; CNRS, UMR 3525, 75015 Paris, France.
| |
Collapse
|
43
|
Ogilvie LA, Jones BV. The human gut virome: a multifaceted majority. Front Microbiol 2015; 6:918. [PMID: 26441861 PMCID: PMC4566309 DOI: 10.3389/fmicb.2015.00918] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/21/2015] [Indexed: 12/21/2022] Open
Abstract
Here, we outline our current understanding of the human gut virome, in particular the phage component of this ecosystem, highlighting progress, and challenges in viral discovery in this arena. We reveal how developments in high-throughput sequencing technologies and associated data analysis methodologies are helping to illuminate this abundant 'biological dark matter.' Current evidence suggests that the human gut virome is a highly individual but temporally stable collective, dominated by phages exhibiting a temperate lifestyle. This viral community also appears to encode a surprisingly rich functional repertoire that confers a range of attributes to their bacterial hosts, ranging from bacterial virulence and pathogenesis to maintaining host-microbiome stability and community resilience. Despite the significant advances in our understanding of the gut virome in recent years, it is clear that we remain in a period of discovery and revelation, as new methods and technologies begin to provide deeper understanding of the inherent ecological characteristics of this viral ecosystem. As our understanding increases, the nature of the multi-partite interactions occurring between host and microbiome will become clearer, helping us to more rationally define the concepts and principles that will underpin approaches to using human gut virome components for medical or biotechnological applications.
Collapse
Affiliation(s)
- Lesley A. Ogilvie
- School of Pharmacy and Biomolecular Sciences, University of BrightonBrighton, UK
- Alacris Theranostics GmbHBerlin, Germany
| | - Brian V. Jones
- School of Pharmacy and Biomolecular Sciences, University of BrightonBrighton, UK
- Queen Victoria Hospital NHS Foundation TrustEast Grinstead, UK
| |
Collapse
|
44
|
Yolken RH, Severance EG, Sabunciyan S, Gressitt KL, Chen O, Stallings C, Origoni A, Katsafanas E, Schweinfurth LAB, Savage CLG, Banis M, Khushalani S, Dickerson FB. Metagenomic Sequencing Indicates That the Oropharyngeal Phageome of Individuals With Schizophrenia Differs From That of Controls. Schizophr Bull 2015; 41:1153-61. [PMID: 25666826 PMCID: PMC4535630 DOI: 10.1093/schbul/sbu197] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mucosal sites such as the oropharynx contain a wide range of microorganisms, collectively designated as the microbiome. The microbiome can affect behavior through a number of neurobiological and immunological mechanisms. Most previous studies have focused on the bacterial components of the microbiome. However, the microbiome also includes viruses such as bacteriophages, which are viruses that infect bacteria and alter their metabolism and replication. We employed metagenomic analysis to characterize bacteriophage genomes in the oral pharynx of 41 individuals with schizophrenia and 33 control individuals without a psychiatric disorder. This analysis was performed by the generation of more than 100,000,000 sequence reads from each sample and the mapping of these reads to databases. We identified 79 distinct bacteriophage sequences in the oropharyngeal samples. Of these, one bacteriophage genome, Lactobacillus phage phiadh, was found to be significantly different in individuals with schizophrenia (P < .00037, q < 0.03 adjusted for multiple comparisons). The differential levels of Lactobacillus phage phiadh remained significant when controlling for age, gender, race, socioeconomic status, or cigarette smoking (P < .006). Within the group of individuals with schizophrenia, the level of Lactobacillus phage phiadh correlated with the prevalence of immunological disorders as well as with the administration of valproate, which has been shown in animal models to alter the microbiome. The bacteriophage composition of the oropharynx in individuals with schizophrenia differs from that of controls. The biological consequences of this difference and the potential effects of altering bacteriophage levels through therapeutic interventions are worthy of further investigation.
Collapse
Affiliation(s)
- Robert H. Yolken
- Stanley Laboratory of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD;,*To whom correspondence should be addressed; Department of Pediatrics, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Blalock 1105, Baltimore, MD 21287–4933, US; tel: 410-614-0004, fax: 410-955-3723, e-mail:
| | - Emily G. Severance
- Stanley Laboratory of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| | - Sarven Sabunciyan
- Stanley Laboratory of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| | - Kristin L. Gressitt
- Stanley Laboratory of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| | - Ou Chen
- Stanley Laboratory of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| | - Cassie Stallings
- Stanley Laboratory of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| | - Andrea Origoni
- Stanley Research Program, Sheppard Pratt Health System, Baltimore, MD
| | - Emily Katsafanas
- Stanley Research Program, Sheppard Pratt Health System, Baltimore, MD
| | | | | | - Maria Banis
- Stanley Research Program, Sheppard Pratt Health System, Baltimore, MD
| | - Sunil Khushalani
- Stanley Research Program, Sheppard Pratt Health System, Baltimore, MD
| | | |
Collapse
|
45
|
Simmonds P. Methods for virus classification and the challenge of incorporating metagenomic sequence data. J Gen Virol 2015; 96:1193-1206. [PMID: 26068186 DOI: 10.1099/jgv.0.000016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The division of viruses into orders, families, genera and species provides a classification framework that seeks to organize and make sense of the diversity of viruses infecting animals, plants and bacteria. Classifications are based on similarities in genome structure and organization, the presence of homologous genes and sequence motifs and at lower levels such as species, host range, nucleotide and antigenic relatedness and epidemiology. Classification below the level of family must also be consistent with phylogeny and virus evolutionary histories. Recently developed methods such as PASC, DEMaRC and NVR offer alternative strategies for genus and species assignments that are based purely on degrees of divergence between genome sequences. They offer the possibility of automating classification of the vast number of novel virus sequences being generated by next-generation metagenomic sequencing. However, distance-based methods struggle to deal with the complex evolutionary history of virus genomes that are shuffled by recombination and reassortment, and where taxonomic lineages evolve at different rates. In biological terms, classifications based on sequence distances alone are also arbitrary whereas the current system of virus taxonomy is of utility precisely because it is primarily based upon phenotypic characteristics. However, a separate system is clearly needed by which virus variants that lack biological information might be incorporated into the ICTV classification even if based solely on sequence relationships to existing taxa. For these, simplified taxonomic proposals and naming conventions represent a practical way to expand the existing virus classification and catalogue our rapidly increasing knowledge of virus diversity.
Collapse
Affiliation(s)
- Peter Simmonds
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| |
Collapse
|
46
|
Simmonds P. Methods for virus classification and the challenge of incorporating metagenomic sequence data. J Gen Virol 2015. [DOI: 10.1099/vir.0.000016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
47
|
Muniesa M, Jofre J. Identifying and analyzing bacteriophages in human fecal samples: what could we discover? Future Microbiol 2015; 9:879-86. [PMID: 25156377 DOI: 10.2217/fmb.14.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The human gut is a complex ecosystem, densely populated with microbes including enormous amounts of phages. Metagenomic studies indicate a great diversity of bacteriophages, and because of the variety of gut bacterial species, the human or animal gut is probably a perfect ecological niche for phages that can infect and propagate in their bacterial communities. In addition, some phages have the capacity to mobilize genes, as demonstrated by the enormous fraction of phage particles in feces that contain bacterial DNA. All these facts indicate that, through predation and horizontal gene transfer, bacteriophages play a key role in shaping the size, structure and function of intestinal microbiomes, although our understanding of their effects on gut bacterial populations is only just beginning.
Collapse
Affiliation(s)
- Maite Muniesa
- Department of Microbiology, University of Barcelona, Diagonal 643, Annex, Floor 0, Barcelona, Spain
| | | |
Collapse
|
48
|
Carda-Diéguez M, Mizuno CM, Ghai R, Rodriguez-Valera F, Amaro C. Replicating phages in the epidermal mucosa of the eel (Anguilla anguilla). Front Microbiol 2015; 6:3. [PMID: 25688234 PMCID: PMC4310352 DOI: 10.3389/fmicb.2015.00003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/03/2015] [Indexed: 11/13/2022] Open
Abstract
In this work, we used the eel (Anguilla anguilla) as an animal model to test the hypothesis of Barr et al. (2013a,b) about the putative role of the epidermal mucosa as a phage enrichment layer. To this end, we analyzed the microbial content of the skin mucus of wild and farmed eels by using a metagenomic approach. We found a great abundance of replicating phage genomes (concatemers) in all the samples. They were assembled in four complete genomes of three Myovirus and one Podovirus. We also found evidences that ΦKZ and Podovirus phages could be part of the resident microbiota associated to the eel mucosal surface and persist on them over the time. Moreover, the viral abundance estimated by epiflorescent counts and by metagenomic recruitment from eel mucosa was higher than that of the surrounding water. Taken together, our results support the hypothesis that claims a possible role of phages in the animal mucus as agents controlling bacterial populations, including pathogenic species, providing a kind of innate immunity.
Collapse
Affiliation(s)
| | - Carolina Megumi Mizuno
- Evolutionary Genomics Group, Department de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante Spain
| | - Rohit Ghai
- Evolutionary Genomics Group, Department de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Department de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante Spain
| | - Carmen Amaro
- ERI Biotecmed, University of Valencia, Valencia Spain
| |
Collapse
|
49
|
Siranosian B, Perera S, Williams E, Ye C, de Graffenried C, Shank P. Tetranucleotide usage highlights genomic heterogeneity among mycobacteriophages. F1000Res 2015; 4:36. [PMID: 27134721 PMCID: PMC4841201 DOI: 10.12688/f1000research.6077.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2015] [Indexed: 02/02/2023] Open
Abstract
Background The genomic sequences of mycobacteriophages, phages infecting mycobacterial hosts, are diverse and mosaic. Mycobacteriophages often share little nucleotide similarity, but most of them have been grouped into lettered clusters and further into subclusters. Traditionally, mycobacteriophage genomes are analyzed based on sequence alignment or knowledge of gene content. However, these approaches are computationally expensive and can be ineffective for significantly diverged sequences. As an alternative to alignment-based genome analysis, we evaluated tetranucleotide usage in mycobacteriophage genomes. These methods make it easier to characterize features of the mycobacteriophage population at many scales. Description We computed tetranucleotide usage deviation (TUD), the ratio of observed counts of 4-mers in a genome to the expected count under a null model. TUD values are comparable between members of a phage subcluster and distinct between subclusters. With few exceptions, neighbor joining phylogenetic trees and hierarchical clustering dendrograms constructed using TUD values place phages in a monophyletic clade with members of the same subcluster. Regions in a genome with exceptional TUD values can point to interesting features of genomic architecture. Finally, we found that subcluster B3 mycobacteriophages contain significantly overrepresented 4-mers and 6-mers that are atypical of phage genomes. Conclusions Statistics based on tetranucleotide usage support established clustering of mycobacteriophages and can uncover interesting relationships within and between sequenced phage genomes. These methods are efficient to compute and do not require sequence alignment or knowledge of gene content. The code to download mycobacteriophage genome sequences and reproduce our analysis is freely available at
https://github.com/bsiranosian/tango_final.
Collapse
Affiliation(s)
- Benjamin Siranosian
- Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA; Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
| | - Sudheesha Perera
- Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
| | - Edward Williams
- Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
| | - Chen Ye
- Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
| | | | - Peter Shank
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
50
|
Džunková M, D’Auria G, Moya A. Direct sequencing of human gut virome fractions obtained by flow cytometry. Front Microbiol 2015; 6:955. [PMID: 26441889 PMCID: PMC4568480 DOI: 10.3389/fmicb.2015.00955] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/28/2015] [Indexed: 02/05/2023] Open
Abstract
The sequence assembly of the human gut virome encounters several difficulties. A high proportion of human and bacterial matches is detected in purified viral samples. Viral DNA extraction results in a low DNA concentration, which does not reach the minimal limit required for sequencing library preparation. Therefore, the viromes are usually enriched by whole genome amplification (WGA), which is, however, prone to the development of chimeras and amplification bias. In addition, as there is a very wide diversity of gut viral species, very extensive sequencing efforts must be made for the assembling of whole viral genomes. We present an approach to improve human gut virome assembly by employing a more precise preparation of a viral sample before sequencing. Particles present in a virome previously filtered through 0.2 μm pores were further divided into groups in accordance with their size and DNA content by fluorescence activated cell sorting (FACS). One selected viral fraction was sequenced excluding the WGA step, so that unbiased sequences with high reliability were obtained. The DNA extracted from the 314 viral particles of the selected fraction was assembled into 34 contigs longer than 1,000 bp. This represents an increase to the number of assembled long contigs per sequenced Gb in comparison with other studies where non-fractioned viromes are sequenced. Seven of these contigs contained open reading frames (ORFs) with explicit matches to proteins related to bacteriophages. The remaining contigs also possessed uncharacterized ORFs with bacteriophage-related domains. When the particles that are present in the filtered viromes are sorted into smaller groups by FACS, large pieces of viral genomes can be recovered easily. This approach has several advantages over the conventional sequencing of non-fractioned viromes: non-viral contamination is reduced and the sequencing efforts required for viral assembly are minimized.
Collapse
Affiliation(s)
- Mária Džunková
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana – Salud Pública, ValenciaSpain
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, ValenciaSpain
- CIBER en Epidemiología y Salud Pública, MadridSpain
| | - Giuseppe D’Auria
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana – Salud Pública, ValenciaSpain
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, ValenciaSpain
- CIBER en Epidemiología y Salud Pública, MadridSpain
| | - Andrés Moya
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana – Salud Pública, ValenciaSpain
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, ValenciaSpain
- CIBER en Epidemiología y Salud Pública, MadridSpain
- *Correspondence: Andrés Moya, Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana – Salud Pública, Avenida de Cataluña 21, 46020 Valencia, Spain,
| |
Collapse
|