1
|
Parker JL, Deme JC, Lichtinger SM, Kuteyi G, Biggin PC, Lea SM, Newstead S. Structural basis for antibiotic transport and inhibition in PepT2. Nat Commun 2024; 15:8755. [PMID: 39384780 PMCID: PMC11464717 DOI: 10.1038/s41467-024-53096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024] Open
Abstract
The uptake and elimination of beta-lactam antibiotics in the human body are facilitated by the proton-coupled peptide transporters PepT1 (SLC15A1) and PepT2 (SLC15A2). The mechanism by which SLC15 family transporters recognize and discriminate between different drug classes and dietary peptides remains unclear, hampering efforts to improve antibiotic pharmacokinetics through targeted drug design and delivery. Here, we present cryo-EM structures of the proton-coupled peptide transporter, PepT2 from Rattus norvegicus, in complex with the widely used beta-lactam antibiotics cefadroxil, amoxicillin and cloxacillin. Our structures, combined with pharmacophore mapping, molecular dynamics simulations and biochemical assays, establish the mechanism of beta-lactam antibiotic recognition and the important role of protonation in drug binding and transport.
Collapse
Affiliation(s)
- Joanne L Parker
- Department of Biochemistry, University of Oxford, Oxford, UK.
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| | - Justin C Deme
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, USA
| | | | - Gabriel Kuteyi
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Susan M Lea
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, USA.
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, UK.
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Newstead S, Parker J, Deme J, Lichtinger S, Kuteyi G, Biggin P, Lea S. Structural basis for antibiotic transport and inhibition in PepT2, the mammalian proton-coupled peptide transporter. RESEARCH SQUARE 2024:rs.3.rs-4435259. [PMID: 38903084 PMCID: PMC11188089 DOI: 10.21203/rs.3.rs-4435259/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The uptake and elimination of beta-lactam antibiotics in the human body are facilitated by the proton-coupled peptide transporters PepT1 (SLC15A1) and PepT2 (SLC15A2). The mechanism by which SLC15 family transporters recognize and discriminate between different drug classes and dietary peptides remains unclear, hampering efforts to improve antibiotic pharmacokinetics through targeted drug design and delivery. Here, we present cryo-EM structures of the mammalian proton-coupled peptide transporter, PepT2, in complex with the widely used beta-lactam antibiotics cefadroxil, amoxicillin and cloxacillin. Our structures, combined with pharmacophore mapping, molecular dynamics simulations and biochemical assays, establish the mechanism of antibiotic recognition and the important role of protonation in drug binding and transport.
Collapse
Affiliation(s)
| | | | - Justin Deme
- National Cancer Institute, National Institutes of Health
| | | | | | | | - Susan Lea
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute
| |
Collapse
|
3
|
Naik HM, Cai X, Ladiwala P, Reddy JV, Betenbaugh MJ, Antoniewicz MR. Elucidating uptake and metabolic fate of dipeptides in CHO cell cultures using 13C labeling experiments and kinetic modeling. Metab Eng 2024; 83:12-23. [PMID: 38460784 DOI: 10.1016/j.ymben.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/05/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
The rapidly growing market of biologics including monoclonal antibodies has stimulated the need to improve biomanufacturing processes including mammalian host systems such as Chinese Hamster Ovary (CHO) cells. Cell culture media formulations continue to be enhanced to enable intensified cell culture processes and optimize cell culture performance. Amino acids, major components of cell culture media, are consumed in large amounts by CHO cells. Due to their low solubility and poor stability, certain amino acids including tyrosine, leucine, and phenylalanine can pose major challenges leading to suboptimal bioprocess performance. Dipeptides have the potential to replace amino acids in culture media. However, very little is known about the cleavage, uptake, and utilization kinetics of dipeptides in CHO cell cultures. In this study, replacing amino acids, including leucine and tyrosine by their respective dipeptides including but not limited to Ala-Leu and Gly-Tyr, supported similar cell growth, antibody production, and lactate profiles. Using 13C labeling techniques and spent media studies, dipeptides were shown to undergo both intracellular and extracellular cleavage in cultures. Extracellular cleavage increased with the culture duration, indicating cleavage by host cell proteins that are likely secreted and accumulate in cell culture over time. A kinetic model was built and for the first time, integrated with 13C labeling experiments to estimate dipeptide utilization rates, in CHO cell cultures. Dipeptides with alanine at the N-terminus had a higher utilization rate than dipeptides with alanine at the C-terminus and dipeptides with glycine instead of alanine at N-terminus. Simultaneous supplementation of more than one dipeptide in culture led to reduction in individual dipeptide utilization rates indicating that dipeptides compete for the same cleavage enzymes, transporters, or both. Dipeptide utilization rates in culture and cleavage rates in cell-free experiments appeared to follow Michaelis-Menten kinetics, reaching a maximum at higher dipeptide concentrations. Dipeptide utilization behavior was found to be similar in cell-free and cell culture environments, paving the way for future testing approaches for dipeptides in cell-free environments prior to use in large-scale bioreactors. Thus, this study provides a deeper understanding of the fate of dipeptides in CHO cell cultures through an integration of cell culture, 13C labeling, and kinetic modeling approaches providing insights in how to best use dipeptides in media formulations for robust and optimal mammalian cell culture performance.
Collapse
Affiliation(s)
- Harnish Mukesh Naik
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Xiangchen Cai
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Pranay Ladiwala
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jayanth Venkatarama Reddy
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Maciek R Antoniewicz
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
4
|
Kertsch AL, Einicke J, Miedl J, Hellwig M, Henle T. Utilization of Free and Dipeptide-Bound Formyline and Pyrraline by Saccharomyces Yeasts. Chembiochem 2024:e202300854. [PMID: 38613434 DOI: 10.1002/cbic.202300854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
The utilization of the glycated amino acids formyline and pyrraline as well as their peptide-bound derivatives by 14 Saccharomyces yeasts, including 6 beer yeasts (bottom and top fermenting), one wine yeast, 6 strains isolated from natural habitats and one laboratory reference yeast strain (wild type) was investigated. All yeasts were able to metabolize glycated amino acids via the Ehrlich pathway to the corresponding Ehrlich metabolites. While formyline and small amounts of pyrraline entered the yeast cells via passive diffusion, the amounts of dipeptide-bound MRPs, especially the dipeptides glycated at the C-terminus, decreased much faster, indicating an uptake into the yeast cells. Furthermore, the glycation-mediated hydrophobization in general leads to an faster degradation rate compared to the native lysine dipeptides. While the utilization of free formyline is yeast-specific, the amounts of (glycated) dipeptides decreased faster in the presence of brewer's yeasts, which also showed a higher formation rate of Ehrlich metabolites compared to naturally isolated strains. Due to rapid uptake of alanyl dipeptides, it can be assumed that the Ehrlich enzyme system of naturally isolated yeasts is overloaded and the intracellularly released MRP is primarily excreted from the cell. This indicates adaptation of technologically used yeasts to (glycated) dipeptides as a nitrogen source.
Collapse
Affiliation(s)
- Anna-Lena Kertsch
- Chair of Food Chemistry, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Jana Einicke
- Chair of Food Chemistry, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Julia Miedl
- Chair of Food Chemistry, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Michael Hellwig
- Chair of Special Food Chemistry, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Thomas Henle
- Chair of Food Chemistry, Technische Universität Dresden, D-01062, Dresden, Germany
| |
Collapse
|
5
|
Boytsov D, Madej GM, Horn G, Blaha N, Köcher T, Sitte HH, Siekhaus D, Ziegler C, Sandtner W, Roblek M. Orphan lysosomal solute carrier MFSD1 facilitates highly selective dipeptide transport. Proc Natl Acad Sci U S A 2024; 121:e2319686121. [PMID: 38507452 PMCID: PMC10990142 DOI: 10.1073/pnas.2319686121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
Orphan solute carrier (SLC) represents a group of membrane transporters whose exact functions and substrate specificities are not known. Elucidating the function and regulation of orphan SLC transporters is not only crucial for advancing our knowledge of cellular and molecular biology but can potentially lead to the development of new therapeutic strategies. Here, we provide evidence for the biological function of a ubiquitous orphan lysosomal SLC, the Major Facilitator Superfamily Domain-containing Protein 1 (MFSD1), which has remained phylogenetically unassigned. Targeted metabolomics revealed that dipeptides containing either lysine or arginine residues accumulate in lysosomes of cells lacking MFSD1. Whole-cell patch-clamp electrophysiological recordings of HEK293-cells expressing MFSD1 on the cell surface displayed transport affinities for positively charged dipeptides in the lower mM range, while dipeptides that carry a negative net charge were not transported. This was also true for single amino acids and tripeptides, which MFSD1 failed to transport. Our results identify MFSD1 as a highly selective lysosomal lysine/arginine/histidine-containing dipeptide exporter, which functions as a uniporter.
Collapse
Affiliation(s)
- Danila Boytsov
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, ViennaAT-1090, Austria
| | - Gregor M. Madej
- Department of Biophysics II/Structural Biology, University of Regensburg, RegensburgDE-93053, Germany
| | - Georg Horn
- Department of Biophysics II/Structural Biology, University of Regensburg, RegensburgDE-93053, Germany
| | - Nadine Blaha
- Vienna BioCenter Core Facilities, Metabolomics, Vienna BioCenter, ViennaAT-1030, Austria
| | - Thomas Köcher
- Vienna BioCenter Core Facilities, Metabolomics, Vienna BioCenter, ViennaAT-1030, Austria
| | - Harald H. Sitte
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, ViennaAT-1090, Austria
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, AmmanJO-19328, Jordan
- Center for Addiction Research and Science, Medical University of Vienna, ViennaAT-1090, Austria
| | - Daria Siekhaus
- Institute of Science and Technology Austria, KlosterneuburgAT-3400, Austria
| | - Christine Ziegler
- Department of Biophysics II/Structural Biology, University of Regensburg, RegensburgDE-93053, Germany
| | - Walter Sandtner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, ViennaAT-1090, Austria
| | - Marko Roblek
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, ViennaAT-1090, Austria
- Institute of Science and Technology Austria, KlosterneuburgAT-3400, Austria
| |
Collapse
|
6
|
Körner A, Bazzone A, Wichert M, Barthmes M, Dondapati SK, Fertig N, Kubick S. Unraveling the kinetics and pharmacology of human PepT1 using solid supported membrane-based electrophysiology. Bioelectrochemistry 2024; 155:108573. [PMID: 37748262 DOI: 10.1016/j.bioelechem.2023.108573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023]
Abstract
The human Peptide Transporter 1 (hPepT1) is known for its broad substrate specificity and its ability to transport (pro-)drugs. Here, we present an in-depth comprehensive study of hPepT1 and its interactions with various substrates via solid supported membrane-based electrophysiology (SSME). Using hPepT1-containing vesicles, we could not identify any peptide induced pre-steady-state currents, indicating that the recorded peak currents reflect steady-state transport. Electrogenic co-transport of H+/glycylglycine (GlyGly) was observed across a pH range of 5.0 to 9.0. The pH dependence is described by a bell-shaped activity curve and two pK values. KM and relative Vmax values of various canonical and non-canonical peptide substrates were contextualized with current mechanistic understandings of hPepT1. Finally, specific inhibition was observed for various inhibitors in a high throughput format, and IC50 values are reported. Taken together, these findings contribute to promoting the design and analysis of pharmacologically relevant substances.
Collapse
Affiliation(s)
- Alexander Körner
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany; Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Andre Bazzone
- Nanion Technologies GmbH, Ganghoferstr. 70a, 80339 Munich, Germany
| | - Maximilian Wichert
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany; Freie Universität Berlin, Institute of Chemistry and Biochemistry - Biochemistry, 14195 Berlin, Germany
| | - Maria Barthmes
- Nanion Technologies GmbH, Ganghoferstr. 70a, 80339 Munich, Germany
| | - Srujan Kumar Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany.
| | - Niels Fertig
- Nanion Technologies GmbH, Ganghoferstr. 70a, 80339 Munich, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany; Freie Universität Berlin, Institute of Chemistry and Biochemistry - Biochemistry, 14195 Berlin, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Germany
| |
Collapse
|
7
|
Minen RI, Thirumalaikumar VP, Skirycz A. Proteinogenic dipeptides, an emerging class of small-molecule regulators. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102395. [PMID: 37311365 DOI: 10.1016/j.pbi.2023.102395] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 06/15/2023]
Abstract
Proteinogenic dipeptides, with few known exceptions, are products of protein degradation. Dipeptide levels respond to the changes in the environment, often in a dipeptide-specific manner. What drives this specificity is currently unknown; what likely contributes is the activity of the different peptidases that cleave off the terminal dipeptide from the longer peptides. Dipeptidases that degrade dipeptides to amino acids, and the turnover rates of the "substrate" proteins/peptides. Plants can both uptake dipeptides from the soil, but dipeptides are also found in root exudates. Dipeptide transporters, members of the proton-coupled peptide transporters NTR1/PTR family, contribute to nitrogen reallocation between the sink and source tissues. Besides their role in nitrogen distribution, it becomes increasingly clear that dipeptides may also serve regulatory, dipeptide-specific functions. Dipeptides are found in protein complexes affecting the activity of their protein partners. Moreover, dipeptide supplementation leads to cellular phenotypes reflected in changes in plant growth and stress tolerance. Herein we will review the current understanding of dipeptides' metabolism, transport, and functions and discuss significant challenges and future directions for the comprehensive characterization of this fascinating but underrated group of small-molecule compounds.
Collapse
Affiliation(s)
| | | | - Aleksandra Skirycz
- Boyce Thompson Institute, 14853, Ithaca, NY, USA; Cornell University, 14853, Ithaca, NY, USA.
| |
Collapse
|
8
|
Kotov V, Killer M, Jungnickel KEJ, Lei J, Finocchio G, Steinke J, Bartels K, Strauss J, Dupeux F, Humm AS, Cornaciu I, Márquez JA, Pardon E, Steyaert J, Löw C. Plasticity of the binding pocket in peptide transporters underpins promiscuous substrate recognition. Cell Rep 2023; 42:112831. [PMID: 37467108 DOI: 10.1016/j.celrep.2023.112831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/09/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
Proton-dependent oligopeptide transporters (POTs) are promiscuous transporters of the major facilitator superfamily that constitute the main route of entry for a wide range of dietary peptides and orally administrated peptidomimetic drugs. Given their clinical and pathophysiological relevance, several POT homologs have been studied extensively at the structural and molecular level. However, the molecular basis of recognition and transport of diverse peptide substrates has remained elusive. We present 14 X-ray structures of the bacterial POT DtpB in complex with chemically diverse di- and tripeptides, providing novel insights into the plasticity of the conserved central binding cavity. We analyzed binding affinities for more than 80 peptides and monitored uptake by a fluorescence-based transport assay. To probe whether all 8400 natural di- and tripeptides can bind to DtpB, we employed state-of-the-art molecular docking and machine learning and conclude that peptides with compact hydrophobic residues are the best DtpB binders.
Collapse
Affiliation(s)
- Vadim Kotov
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Maxime Killer
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany; Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Hamburg, Germany
| | - Katharina E J Jungnickel
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Jian Lei
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany; State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Giada Finocchio
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Josi Steinke
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Kim Bartels
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Jan Strauss
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Florine Dupeux
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs CS 90181, 38042 Grenoble Cedex 9, France
| | - Anne-Sophie Humm
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs CS 90181, 38042 Grenoble Cedex 9, France
| | - Irina Cornaciu
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs CS 90181, 38042 Grenoble Cedex 9, France
| | - José A Márquez
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs CS 90181, 38042 Grenoble Cedex 9, France
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; VIB-VUB Center for Structural Biology, VIB, 1050 Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; VIB-VUB Center for Structural Biology, VIB, 1050 Brussels, Belgium
| | - Christian Löw
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany.
| |
Collapse
|
9
|
Masuda M, Terada Y, Tsuji R, Nakano S, Ito K. Time-Series Sensory Analysis Provided Important TI Parameters for Masking the Beany Flavor of Soymilk. Foods 2023; 12:2752. [PMID: 37509844 PMCID: PMC10379375 DOI: 10.3390/foods12142752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this study is to provide a new perspective on the development of masking agents by examining the application of their time-series sensory profiles. The analysis of the relationship between 14 time-intensity (TI) parameters and the beany flavor masking ability of 100 flavoring materials indicate that the values of AreaInc, DurDec, and AreaDec, TI parameters related to the flavor release in the increasing and decreasing phases, were significantly higher in the top 10 masking score materials than in the bottom 10 materials. In addition to individual analysis, machine learning analysis, which can derive complex rules from large amounts of data, was performed. Machine learning-based principal component analysis and cluster analysis of the flavoring materials presented AreaInc and AreaDec as TI parameters contributing to the classification of flavor materials and their masking ability. AreaDec was suggested to be particularly important for the beany flavor masking in the two different analyses: an effective masking can be achieved by focusing on the TI profiles of flavor materials. This study proposed that time-series profiles, which are mainly used for the understanding of the sensory characteristics of foods, can be applied to the development of masking agents.
Collapse
Affiliation(s)
- Miyu Masuda
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yuko Terada
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ryoki Tsuji
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Shogo Nakano
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Keisuke Ito
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
10
|
Liu C, Hao D, Sun R, Zhang Y, Peng Y, Yuan Y, Jiang K, Li W, Wen X, Guo H. Arabidopsis NPF2.13 functions as a critical transporter of bacterial natural compound tunicamycin in plant-microbe interaction. THE NEW PHYTOLOGIST 2023; 238:765-780. [PMID: 36653958 DOI: 10.1111/nph.18752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Metabolites including antibiotics, enzymes, and volatiles produced by plant-associated bacteria are key factors in plant-microbiota interaction that regulates various plant biological processes. There should be crucial mediators responsible for their entry into host plants. However, less is known about the identities of these plant transporters. We report that the Arabidopsis Nitrate Transporter1 (NRT1)/NPF protein NPF2.13 functions in plant uptake of tunicamycin (TM), a natural antibiotic produced by several Streptomyces spp., which inhibits protein N-glycosylation. Loss of NPF2.13 function resulted in enhanced TM tolerance, whereas NPF2.13 overexpression led to TM hypersensitivity. Transport assays confirmed that NPF2.13 is a H+ /TM symporter and the transport is not affected by other substrates like nitrate. NPF2.13 exclusively showed TM transport activity among tested NPFs. Tunicamycin uptake from TM-producing Streptomyces upregulated the expression of nitrate-related genes including NPF2.13. Moreover, nitrate allocation to younger leaves was promoted by TM in host plants. Tunicamycin could also benefit plant defense against the pathogen. Notably, the TM effects were significantly repressed in npf2.13 mutant. Overall, this study identifies NPF2.13 protein as an important TM transporter in plant-microbe interaction and provides insights into multiple facets of NPF proteins in modulating plant nutrition and defense by transporting exterior bacterial metabolites.
Collapse
Affiliation(s)
- Chuanfa Liu
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech, 518055, Shenzhen, China
| | - Dongdong Hao
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech, 518055, Shenzhen, China
| | - Ruixue Sun
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech, 518055, Shenzhen, China
| | - Yi Zhang
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech, 518055, Shenzhen, China
| | - Yang Peng
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech, 518055, Shenzhen, China
| | - Yang Yuan
- The Applied Plant Genomics Laboratory, Crop Genomics and Bioinformatics Centre and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Kai Jiang
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech, 518055, Shenzhen, China
- SUSTech Academy for Advanced and Interdisciplinary Studies, SUSTech, 518055, Shenzhen, China
| | - Wenyang Li
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech, 518055, Shenzhen, China
| | - Xing Wen
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech, 518055, Shenzhen, China
| | - Hongwei Guo
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech, 518055, Shenzhen, China
| |
Collapse
|
11
|
Banno A, Yamamoto M, Mijiti M, Takeuchi A, Ye Y, Oda N, Nishino N, Ebihara A, Nagaoka S. The physiological blood concentration of phenylalanine-proline can ameliorate cholesterol metabolism in HepG2 cells. Biosci Biotechnol Biochem 2022; 87:90-98. [PMID: 36352466 DOI: 10.1093/bbb/zbac167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
Abstract
We have previously reported that the dipeptide Phe-Pro affects lipid metabolism in vivo and in vitro, but very little is known regarding the mechanism of action of Phe-Pro after it is absorbed by the intestines via PepT1. In this study, we administered a single oral dose of Phe-Pro to rats and quantified its concentration in the portal plasma using LC-TOF/MS analysis. Additionally, the physiological blood concentration of Phe-Pro was added to the lipid accumulation model of HepG2 cells to decrease intracellular cholesterol and increase the expression of CYP7A1 and PPARα mRNA levels. Moreover, we analyzed the binding of PPARα and Phe-Pro using AlphaFold2. We found that Phe-Pro is a ligand for PPARα. To the best of our knowledge, this is the first study that shows Phe-Pro to be present in the portal plasma. We found for the first time that Phe-Pro ameliorated cholesterol metabolism in HepG2 cells.
Collapse
Affiliation(s)
- Arata Banno
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Mako Yamamoto
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Maihemuti Mijiti
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Asahi Takeuchi
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Yuyang Ye
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Natsuki Oda
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Nanami Nishino
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Akio Ebihara
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Satoshi Nagaoka
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
12
|
Kanstrup C, Nour-Eldin HH. The emerging role of the nitrate and peptide transporter family: NPF in plant specialized metabolism. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102243. [PMID: 35709542 DOI: 10.1016/j.pbi.2022.102243] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/14/2022] [Accepted: 05/07/2022] [Indexed: 05/02/2023]
Abstract
The nitrate and peptide transporter family (NPF) is one of the largest transporter families in the plant kingdom. The name of the family reflects the substrates (nitrate and peptides) identified for the two founding members CHL1 and PTR2 from Arabidopsis thaliana almost 30 years ago. However, since then, the NPF has emerged as a hotspot for transporters with a wide range of crucial roles in plant specialized metabolism. Recent prominent examples include 1) controlling accumulation of antinutritional glucosinolates in Brassica seeds, 2) deposition of heat-stress tolerance flavonol diglucosides to pollen coats 3) production of anti-cancerous monoterpene indole alkaloid precursors in Catharanthus roseus and 4) detoxification of steroid glycoalkaloids in ripening tomatoes. In this review, we turn the spotlight on the emerging role of the NPF in plant specialized metabolism and its potential for improving crop traits through transport engineering.
Collapse
Affiliation(s)
- Christa Kanstrup
- DynaMo Center of Excellence, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Hussam Hassan Nour-Eldin
- DynaMo Center of Excellence, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
13
|
Genome-wide analysis of PTR transporters in Candida species and their functional characterization in Candida auris. Appl Microbiol Biotechnol 2022; 106:4223-4235. [PMID: 35648145 DOI: 10.1007/s00253-022-11998-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/02/2022]
Abstract
The peptide transport (PTR) or proton-dependent oligopeptide transporter (POT) family exploits the inwardly directed proton motive force to facilitate the cellular uptake of di/tripeptides. Interestingly, some representatives are also shown to import peptide-based antifungals in certain Candida species. Thus, the identification and characterization of PTR transporters serve as an essential first step for their potential usage as antifungal peptide uptake systems. Herein, we present a genome-wide inventory of the PTR transporters in five prominent Candida species. Our study identifies 2 PTR transporters each in C. albicans and C. dubliniensis, 1 in C. glabrata, 4 in C. parapsilosis, and 3 in C. auris. Notably, despite all representatives retaining the conserved features seen in the PTR family, there exist two distinct classes of PTR transporters that differ in terms of their sequence identities and lengths of certain extracellular and intracellular segments. Further, we also evaluated the contribution of each PTR protein of the newly emerged multi-drug-resistant C. auris in di/tripeptide uptake. Notably, deletion of two PTR genes BNJ08_003830 and BNJ08_005124 led to a marked reduction in the transport capabilities of several tested di/tripeptides. However, all three genes could complement the role of native PTR2 gene of Saccharomyces cerevisiae, albeit to varied levels. Besides, BNJ08_005124 deletion also resulted in increased resistance toward the peptide-nucleoside drug Nikkomycin Z as well as the glucosamine-6-phosphate synthase inhibitor, L-norvalyl-N3-(4-methoxyfumaroyl)-L-2,3-diaminopropionoic acid (Nva-FMDP), pointing toward its predominant role in their uptake mechanism. Altogether, the study provides an important template for future structure-function investigations of PTR transporters in Candida species. KEY POINTS: • Candida genome encodes for two distinct classes of PTR transporters. • Candida auris encodes for 3 PTR transporters with different specificities. • BNJ08_005124 in C. auris is involved in the uptake of Nikkomycin Z and Nva-FMDP.
Collapse
|
14
|
Zhang Y, Tu H, Hao Y, Li D, Yang Y, Yuan Y, Guo Z, Li L, Wang H, Cai H. Oligopeptide transporter Slc15A modulates macropinocytosis in Dictyostelium by maintaining intracellular nutrient status. J Cell Sci 2022; 135:274929. [PMID: 35267018 DOI: 10.1242/jcs.259450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 03/02/2022] [Indexed: 11/20/2022] Open
Abstract
Macropinocytosis mediates non-selective bulk uptake of extracellular fluid. It is the major route by which axenic Dictyostelium cells obtain nutrients and has emerged as a nutrient-scavenging pathway for mammalian cells. How environmental and cellular nutrient status modulates macropinocytic activity is not well understood. By developing a high-content imaging-based genetic screen in Dictyostelium, we identified Slc15A, an oligopeptide transporter localized at the plasma membrane and early macropinosome, as a novel macropinocytosis regulator. We show that deletion of slc15A, but not two other related slc15 genes, leads to reduced macropinocytosis, slower cell growth, and aberrantly increased autophagy in cells grown in nutrient-rich medium. Expression of Slc15A or supplying cells with free amino acids rescues these defects. In contrast, expression of transport-defective Slc15A or supplying cells with amino acids in their di-peptide forms fails to rescue these defects. Therefore, Slc15A modulates the level of macropinocytosis by maintaining the intracellular availability of key amino acids via oligopeptide extraction from the early macropinocytic pathway. We propose that Slc15A constitutes part of a positive feedback mechanism coupling cellular nutrient status and macropinocytosis.
Collapse
Affiliation(s)
- Yiwei Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Tu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yazhou Hao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yihong Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ye Yuan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhonglong Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Haibin Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Becerra-Rodríguez C, Taghouti G, Portier P, Dequin S, Casal M, Paiva S, Galeote V. Yeast Plasma Membrane Fungal Oligopeptide Transporters Display Distinct Substrate Preferences despite Their High Sequence Identity. J Fungi (Basel) 2021; 7:jof7110963. [PMID: 34829250 PMCID: PMC8625066 DOI: 10.3390/jof7110963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 01/10/2023] Open
Abstract
Fungal Oligopeptide Transporters (Fot) Fot1, Fot2 and Fot3 have been found in Saccharomyces cerevisiae wine strains, but not in strains from other environments. In the S. cerevisiae wine strain EC1118, Fot1 and Fot2 are responsible for a broader range of oligopeptide utilization in comparison with strains not containing any Fot. This leads to better fermentation efficiency and an increased production of desirable organoleptic compounds in wine. Despite the benefits associated with Fot activity in S. cerevisiae within the wine environment, little is known about this family of transporters in yeast. The presence of Fot1, Fot2 and Fot3 in S. cerevisiae wine strains is due to horizontal gene transfer from the yeast Torulaspora microellipsoides, which harbors Fot2Tm, FotX and FotY proteins. Sequence analyses revealed that Fot family members have a high sequence identity in these yeast species. In this work, we aimed to further characterize the different Fot family members in terms of subcellular localization, gene expression in enological fermentation and substrate specificity. Using CRISPR/Cas9, we constructed S. cerevisiae wine strains containing each different Fot as the sole oligopeptide transporter to analyze their oligopeptide preferences by phenotype microarrays. The results of oligopeptide consumption show that Fot counterparts have different di-/tripeptide specificities, suggesting that punctual sequence divergence between FOT genes can be crucial for substrate recognition, binding and transport activity. FOT gene expression levels in different S. cerevisiae wine strains during enological fermentation, together with predicted binding motifs for transcriptional regulators in nitrogen metabolism, indicate that these transporters may be under the control of the Nitrogen Catabolite Repression (NCR) system. Finally, we demonstrated that Fot1 is located in the yeast plasma membrane. This work contributes to a better understanding of this family of oligopeptide transporters, which have demonstrated a key role in the utilization of oligopeptides by S. cerevisiae in enological fermentation.
Collapse
Affiliation(s)
- Carmen Becerra-Rodríguez
- SPO, Univ. Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France; (C.B.-R.); (S.D.)
- Centre of Environmental and Molecular Biology, Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (M.C.); (S.P.)
| | - Géraldine Taghouti
- Univ. Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, F-49000 Angers, France; (G.T.); (P.P.)
| | - Perrine Portier
- Univ. Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, F-49000 Angers, France; (G.T.); (P.P.)
| | - Sylvie Dequin
- SPO, Univ. Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France; (C.B.-R.); (S.D.)
| | - Margarida Casal
- Centre of Environmental and Molecular Biology, Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (M.C.); (S.P.)
| | - Sandra Paiva
- Centre of Environmental and Molecular Biology, Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (M.C.); (S.P.)
| | - Virginie Galeote
- SPO, Univ. Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France; (C.B.-R.); (S.D.)
- Correspondence:
| |
Collapse
|
16
|
Immadisetty K, Moradi M. Mechanistic Picture for Chemomechanical Coupling in a Bacterial Proton-Coupled Oligopeptide Transporter from Streptococcus Thermophilus. J Phys Chem B 2021; 125:9738-9750. [PMID: 34424716 DOI: 10.1021/acs.jpcb.1c03982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proton-coupled oligopeptide transporters (POTs) use the proton electrochemical gradient to transport peptides across the cell membrane. Despite the significant biological and biomedical relevance of these proteins, a detailed mechanistic picture for chemomechanical couplings involved in substrate/proton transport and protein structural changes is missing. Therefore, we performed microsecond-level molecular dynamics simulations of bacterial POT PepTSt, which shares ∼80% sequence identity with the human POT, PepT1, in the substrate-binding region. Three different conformational states of PepTSt were simulated, including (i) occluded, apo, (ii) inward-facing, apo, and (iii) inward-facingoccluded, Leu-Ala bound. We propose that the interaction of R33 with E299 and E300 acts as a conformational switch (i.e., to trigger the conformational change from an inward- to outward-facing state) in the substrate transport. Additionally, we propose that E299 and E400 disengage from interacting with the substrate either through protonation or through coordination with a cation for the substrate to get transported. This study provides clues to understand the chemomechanical couplings in POTs and paves the way to decipher the molecular-level underpinnings of the structure-function relationship in this important family of transporters.
Collapse
Affiliation(s)
| | - Mahmoud Moradi
- University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
17
|
Parker JL, Deme JC, Wu Z, Kuteyi G, Huo J, Owens RJ, Biggin PC, Lea SM, Newstead S. Cryo-EM structure of PepT2 reveals structural basis for proton-coupled peptide and prodrug transport in mammals. SCIENCE ADVANCES 2021; 7:eabh3355. [PMID: 34433568 PMCID: PMC8386928 DOI: 10.1126/sciadv.abh3355] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/02/2021] [Indexed: 05/26/2023]
Abstract
The SLC15 family of proton-coupled solute carriers PepT1 and PepT2 play a central role in human physiology as the principal route for acquiring and retaining dietary nitrogen. A remarkable feature of the SLC15 family is their extreme substrate promiscuity, which has enabled the targeting of these transporters for the improvement of oral bioavailability for several prodrug molecules. Although recent structural and biochemical studies on bacterial homologs have identified conserved sites of proton and peptide binding, the mechanism of peptide capture and ligand promiscuity remains unclear for mammalian family members. Here, we present the cryo-electron microscopy structure of the outward open conformation of the rat peptide transporter PepT2 in complex with an inhibitory nanobody. Our structure, combined with molecular dynamics simulations and biochemical and cell-based assays, establishes a framework for understanding peptide and prodrug recognition within this pharmaceutically important transporter family.
Collapse
Affiliation(s)
- Joanne L Parker
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| | - Justin C Deme
- Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Zhiyi Wu
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Gabriel Kuteyi
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Jiandong Huo
- Structural Biology, The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, UK
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Protein Production UK, The Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, UK
| | - Raymond J Owens
- Structural Biology, The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, UK
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Protein Production UK, The Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, UK
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| | - Susan M Lea
- Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
18
|
Enhancement of protein thermostability by three consecutive mutations using loop-walking method and machine learning. Sci Rep 2021; 11:11883. [PMID: 34088952 PMCID: PMC8178419 DOI: 10.1038/s41598-021-91339-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/25/2021] [Indexed: 01/22/2023] Open
Abstract
We developed a method to improve protein thermostability, “loop-walking method”. Three consecutive positions in 12 loops of Burkholderia cepacia lipase were subjected to random mutagenesis to make 12 libraries. Screening allowed us to identify L7 as a hot-spot loop having an impact on thermostability, and the P233G/L234E/V235M mutant was found from 214 variants in the L7 library. Although a more excellent mutant might be discovered by screening all the 8000 P233X/L234X/V235X mutants, it was difficult to assay all of them. We therefore employed machine learning. Using thermostability data of the 214 mutants, a computational discrimination model was constructed to predict thermostability potentials. Among 7786 combinations ranked in silico, 20 promising candidates were selected and assayed. The P233D/L234P/V235S mutant retained 66% activity after heat treatment at 60 °C for 30 min, which was higher than those of the wild-type enzyme (5%) and the P233G/L234E/V235M mutant (35%).
Collapse
|
19
|
Recent advances in understanding prodrug transport through the SLC15 family of proton-coupled transporters. Biochem Soc Trans 2021; 48:337-346. [PMID: 32219385 PMCID: PMC7200629 DOI: 10.1042/bst20180302] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/15/2020] [Accepted: 03/04/2020] [Indexed: 12/28/2022]
Abstract
Solute carrier (SLC) transporters play important roles in regulating the movement of small molecules and ions across cellular membranes. In mammals, they play an important role in regulating the uptake of nutrients and vitamins from the diet, and in controlling the distribution of their metabolic intermediates within the cell. Several SLC families also play an important role in drug transport and strategies are being developed to hijack SLC transporters to control and regulate drug transport within the body. Through the addition of amino acid and peptide moieties several novel antiviral and anticancer agents have been developed that hijack the proton-coupled oligopeptide transporters, PepT1 (SCL15A1) and PepT2 (SLC15A2), for improved intestinal absorption and renal retention in the body. A major goal is to understand the rationale behind these successes and expand the library of prodrug molecules that utilise SLC transporters. Recent co-crystal structures of prokaryotic homologues of the human PepT1 and PepT2 transporters have shed important new insights into the mechanism of prodrug recognition. Here, I will review recent developments in our understanding of ligand recognition and binding promiscuity within the SLC15 family, and discuss current models for prodrug recognition.
Collapse
|
20
|
Intestinal membrane transporter-mediated approaches to improve oral drug delivery. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00515-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Luzarowski M, Vicente R, Kiselev A, Wagner M, Schlossarek D, Erban A, de Souza LP, Childs D, Wojciechowska I, Luzarowska U, Górka M, Sokołowska EM, Kosmacz M, Moreno JC, Brzezińska A, Vegesna B, Kopka J, Fernie AR, Willmitzer L, Ewald JC, Skirycz A. Global mapping of protein-metabolite interactions in Saccharomyces cerevisiae reveals that Ser-Leu dipeptide regulates phosphoglycerate kinase activity. Commun Biol 2021; 4:181. [PMID: 33568709 PMCID: PMC7876005 DOI: 10.1038/s42003-021-01684-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/08/2021] [Indexed: 01/30/2023] Open
Abstract
Protein-metabolite interactions are of crucial importance for all cellular processes but remain understudied. Here, we applied a biochemical approach named PROMIS, to address the complexity of the protein-small molecule interactome in the model yeast Saccharomyces cerevisiae. By doing so, we provide a unique dataset, which can be queried for interactions between 74 small molecules and 3982 proteins using a user-friendly interface available at https://promis.mpimp-golm.mpg.de/yeastpmi/ . By interpolating PROMIS with the list of predicted protein-metabolite interactions, we provided experimental validation for 225 binding events. Remarkably, of the 74 small molecules co-eluting with proteins, 36 were proteogenic dipeptides. Targeted analysis of a representative dipeptide, Ser-Leu, revealed numerous protein interactors comprising chaperones, proteasomal subunits, and metabolic enzymes. We could further demonstrate that Ser-Leu binding increases activity of a glycolytic enzyme phosphoglycerate kinase (Pgk1). Consistent with the binding analysis, Ser-Leu supplementation leads to the acute metabolic changes and delays timing of a diauxic shift. Supported by the dipeptide accumulation analysis our work attests to the role of Ser-Leu as a metabolic regulator at the interface of protein degradation and central metabolism.
Collapse
Affiliation(s)
- Marcin Luzarowski
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Rubén Vicente
- grid.418390.70000 0004 0491 976XDepartment of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Andrei Kiselev
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany ,grid.503344.50000 0004 0445 6769Laboratoire de Recherche en Sciences Végétales (LRSV), UPS/CNRS, UMR, Castanet Tolosan, France
| | - Mateusz Wagner
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany ,grid.8505.80000 0001 1010 5103University of Wrocław, Faculty of Biotechnology, Laboratory of Medical Biology, Wrocław, Poland
| | - Dennis Schlossarek
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Alexander Erban
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Leonardo Perez de Souza
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Dorothee Childs
- grid.4709.a0000 0004 0495 846XDepartment of Genome Biology, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Izabela Wojciechowska
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Urszula Luzarowska
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany ,grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michał Górka
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Ewelina M. Sokołowska
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Monika Kosmacz
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany ,grid.45672.320000 0001 1926 5090Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Juan C. Moreno
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany ,grid.45672.320000 0001 1926 5090Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Aleksandra Brzezińska
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Bhavana Vegesna
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Joachim Kopka
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Alisdair R. Fernie
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Lothar Willmitzer
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Jennifer C. Ewald
- grid.10392.390000 0001 2190 1447Interfaculty Institute of Cell Biology, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Aleksandra Skirycz
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany ,grid.5386.8000000041936877XBoyce Thompson Institute, Ithaca, NY USA
| |
Collapse
|
22
|
Ito K, Hosoya T, Yamazaki-Ito T, Terada Y, Kawarasaki Y. Dipeptidyl peptidase IV inhibitory dipeptides contained in hydrolysates of green tea grounds. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Keisuke Ito
- School of Food and Nutritional Sciences, University of Shizuoka
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka
| | - Takahiro Hosoya
- School of Food and Nutritional Sciences, University of Shizuoka
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka
| | - Toyomi Yamazaki-Ito
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka
| | - Yuko Terada
- School of Food and Nutritional Sciences, University of Shizuoka
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka
| | - Yasuaki Kawarasaki
- School of Food and Nutritional Sciences, University of Shizuoka
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka
| |
Collapse
|
23
|
Ito K, Koike M, Kuroda Y, Yamazaki-Ito T, Terada Y, Ishii T, Nakamura Y, Watanabe T, Kawarasaki Y. Bitterness-masking peptides for epigallocatechin gallate identified through peptide array analysis. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Keisuke Ito
- School of Food and Nutritional Sciences, University of Shizuoka
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka
| | - Mayu Koike
- School of Food and Nutritional Sciences, University of Shizuoka
| | - Yuki Kuroda
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka
| | - Toyomi Yamazaki-Ito
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka
| | - Yuko Terada
- School of Food and Nutritional Sciences, University of Shizuoka
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka
| | | | | | - Tatsuo Watanabe
- School of Food and Nutritional Sciences, University of Shizuoka
| | - Yasuaki Kawarasaki
- School of Food and Nutritional Sciences, University of Shizuoka
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka
| |
Collapse
|
24
|
Tanaka M, Ito K, Matsuura T, Kawarasaki Y, Gomi K. Identification and distinct regulation of three di/tripeptide transporters in Aspergillus oryzae. Biosci Biotechnol Biochem 2020; 85:452-463. [DOI: 10.1093/bbb/zbaa030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022]
Abstract
ABSTRACT
The uptake of di/tripeptides is mediated by the proton-dependent oligopeptide transporter (POT) family. In this study, 3 POT family transporters, designated PotA, PotB, and PotC were identified in Aspergillus oryzae. Growth comparison of deletion mutants of these transporter genes suggested that PotB and PotC are responsible for di/tripeptide uptake. PotA, which had the highest sequence similarity to yeast POT (Ptr2), contributed little to the uptake. Nitrogen starvation induced potB and potC expression, but not potA expression. When 3 dipeptides were provided as nitrogen sources, the expression profiles of these genes were different. PrtR, a transcription factor that regulates proteolytic genes, was involved in regulation of potA and potB but not in potC expression. Only potC expression levels were dramatically reduced by disruption of ubrA, an orthologue of yeast ubiquitin ligase UBR1 responsible for PTR2 expression. Expression of individual POT genes is apparently controlled by different regulatory mechanisms.
Collapse
Affiliation(s)
- Mizuki Tanaka
- Biomolecular Engineering Laboratory, School of Food and Nutritional Science, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Keisuke Ito
- Laboratory of Food Chemistry, School of Food and Nutritional Science, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Tomomi Matsuura
- Laboratory of Bioindustrial Genomics, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Japan
| | - Yasuaki Kawarasaki
- Biomolecular Engineering Laboratory, School of Food and Nutritional Science, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Katsuya Gomi
- Laboratory of Bioindustrial Genomics, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Japan
- Laboratory of Fermentation Microbiology, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Japan
| |
Collapse
|
25
|
Possible utility of peptide-transporter-targeting [ 19F]dipeptides for visualization of the biodistribution of cancers by nuclear magnetic resonance imaging. Int J Pharm 2020; 586:119575. [PMID: 32622809 DOI: 10.1016/j.ijpharm.2020.119575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/27/2020] [Accepted: 06/21/2020] [Indexed: 11/20/2022]
Abstract
Stable-isotope-labeled probes suitable for magnetic resonance imaging (MRI) would have various potential medical applications, such as tumor imaging. Here, with the aim of developing MRI probes targeting peptide transporters, we synthesized a series of [19F]dipeptides by introducing one or two fluorine atoms or a trifluoromethyl group into the benzene ring of l-phenylalanyl-ψ[CS-N]-l-alanine (Phe-ψ-Ala), which is resistant to cleavage by peptidases. The mono- and difluoro dipeptides were efficiently transported by PEPT1 and PEPT2. Moreover, (3,5)-difluoro Phe-ψ-Ala was metabolically stable in human hepatocyte culture, and had a low distribution volume in mice. An acute toxicity study in mice revealed no apparent effect on body weight or behavior. The biodistribution and biodynamics of this compound could be clearly visualized by 19F-MRI in vivo, although specific signal enhancement was observed only in the bladder, but not in the tumor of tumor-xenografted mice. Although there was no specific signal enhancement of the tested compound at the tumor, the present study provides some challenging points regarding 19F-MRI probes for future investigation.
Collapse
|
26
|
Becerra-Rodríguez C, Marsit S, Galeote V. Diversity of Oligopeptide Transport in Yeast and Its Impact on Adaptation to Winemaking Conditions. Front Genet 2020; 11:602. [PMID: 32587604 PMCID: PMC7298112 DOI: 10.3389/fgene.2020.00602] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
Nitrogen is an essential nutrient for yeasts and its relative abundance is an important modulator of fermentation kinetics. The main sources of nitrogen in food are ammonium and free amino acids, however, secondary sources such as oligopeptides are also important contributors to the nitrogen supply. In yeast, oligopeptide uptake is driven by different families of proton–coupled transporters whose specificity depends on peptide length. Proton-dependent Oligopeptide Transporters (POT) are specific to di- and tri-peptides, whereas the Oligopeptide Transport (OPT) family members import tetra- and pentapeptides. Recently, the novel family of Fungal Oligopeptide Transporters (FOT) has been identified in Saccharomyces cerevisiae wine strains as a result of a horizontal gene transfer from Torulaspora microellipsoides. In natural grape must fermentations with S. cerevisiae, Fots have a broader range of oligopeptide utilization in comparison with non-Fot strains, leading to higher biomass production and better fermentation efficiency. In this review we present the current knowledge on the diversity of oligopeptide transporters in yeast, also discussing how the consumption of oligopeptides provides an adaptive advantage to yeasts within the wine environment.
Collapse
Affiliation(s)
| | - Souhir Marsit
- Institut de Biologie Intégrative et des Systèmes, Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, (PROTEO), Département de Biologie, Université Laval, Québec City, QC, Canada
| | - Virginie Galeote
- SPO, INRAE, Université de Montpellier, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
27
|
Tyr-Trp administration facilitates brain norepinephrine metabolism and ameliorates a short-term memory deficit in a mouse model of Alzheimer's disease. PLoS One 2020; 15:e0232233. [PMID: 32365077 PMCID: PMC7197849 DOI: 10.1371/journal.pone.0232233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
The physiological actions of orally ingested peptides on the brain remain poorly understood. This study examined the effects of 39 orally administered synthetic Tyr-containing dipeptides on the enhancement of brain norepinephrine metabolism in mice by comparing the concentration of 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG). Although Tyr-Tyr administration increased blood and cerebral cortex (Cx) Tyr concentrations the most, Tyr-Trp increased Cx MHPG concentration the most. The oral administration of Tyr-Trp ameliorated a short-term memory deficit of a mouse model of cognitive dysfunction induced by amyloid beta peptide 25–35. Gene expression profiling of mouse brain using a microarray indicated that Tyr-Trp administration led to a wide variety of changes in mRNA levels, including the upregulation of genes encoding molecules involved in catecholamine metabolism. A comparative metabolome analysis of the Cx of mice given Tyr-Trp or Tyr-Tyr demonstrated that Tyr-Trp administration yielded higher concentrations of Trp and kynurenine pathway metabolites than Tyr-Tyr administration, as well as higher L-dopa levels, which is the initial product of catecholamine metabolism. Catecholamines were not significantly increased in the Cx of the Tyr-Tyr group compared with the Tyr-Trp group, despite a marked increase in Tyr. Presumably, Tyr-Trp administration enhances catecholamine synthesis and metabolism via the upregulation of genes involved in Tyr and Trp metabolism as well as metabolites of Tyr and Trp. These findings strongly suggest that orally ingested Tyr-Trp modulates the brain metabolome involved in catecholamine metabolism and contributes to higher brain function.
Collapse
|
28
|
Ohara-Nemoto Y, Sarwar MT, Shimoyama Y, Kobayakawa T, Nemoto TK. Preferential dipeptide incorporation of Porphyromonas gingivalis mediated by proton-dependent oligopeptide transporter (Pot). FEMS Microbiol Lett 2020; 367:6041718. [PMID: 33338236 DOI: 10.1093/femsle/fnaa204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
Multiple dipeptidyl-peptidases (DPPs) are present in the periplasmic space of Porphyromonas gingivalis, an asaccharolytic periodontopathic bacterium. Dipeptides produced by DPPs are presumed to be transported into the bacterial cells and metabolized to generate energy and cellular components. The present study aimed to identify a transporter responsible for dipeptide uptake in the bacterium. A real-time metabolic analysis demonstrated that P. gingivalis preferentially incorporated Gly-Xaa dipeptides, and then, single amino acids, tripeptides and longer oligopeptides to lesser extents. Heterologous expression of the P. gingivalis serine/threonine transporter (SstT; PGN_1460), oligopeptide transporter (Opt; PGN_1518) and proton-dependent oligopeptide transporter (Pot; PGN_0135) genes demonstrated that Escherichia coli expressing Pot exclusively incorporated Gly-Gly, while SstT managed Ser uptake and Opt was responsible for Gly-Gly-Gly uptake. Dipeptide uptake was significantly decreased in a P. gingivalis Δpot strain and further suppressed in a Δpot-Δopt double-deficient strain. In addition, the growth of the Δpot strain was markedly attenuated and the Δpot-Δopt strain scarcely grew, whereas the ΔsstT strain grew well almost like wild type. Consequently, these results demonstrate that predominant uptake of dipeptide in P. gingivalis is mostly managed by Pot. We thus propose that Pot is a potential therapeutic target of periodontal disease and P. gingivalis-related systemic diseases.
Collapse
Affiliation(s)
- Yuko Ohara-Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Mohammad Tanvir Sarwar
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Yu Shimoyama
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, 1-1-1 Idai-dori, Yahaba-cho, Iwate 028-3694, Japan
| | - Takeshi Kobayakawa
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Takayuki K Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| |
Collapse
|
29
|
Ano Y, Yoshino Y, Uchida K, Nakayama H. Preventive Effects of Tryptophan-Methionine Dipeptide on Neural Inflammation and Alzheimer's Pathology. Int J Mol Sci 2019; 20:ijms20133206. [PMID: 31261895 PMCID: PMC6651344 DOI: 10.3390/ijms20133206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 12/11/2022] Open
Abstract
Preventive approaches for age-related memory decline and dementia have become a high priority in the aging society because of the lack of therapeutic approaches. Recent epidemiological studies have reported that fermented dairy products can help prevent dementia. Previously, we identified tryptophan-tyrosine (WY) and tryptophan-methionine (WM) peptides as the suppressants of activation of the primary microglia and showed that WY peptide consumption suppresses inflammation in the brains of Alzheimer's disease model mice. However, the effects of the WM peptide on inflammation in the brain and Alzheimer's pathology have not been investigated. Here, we evaluated the effect of WM peptide consumption on Alzheimer's disease model (5×FAD) mice. In 5×FAD mice, intake of WM peptide suppressed the production of inflammatory cytokines, activation of microglia, and infiltration of activated microglia around β amyloid (Aβ) depositions. WM peptide intake reduced Aβ deposition in the cortex and hippocampus and then improved the object recognition memory. Taken together with previous reports, the current findings indicate that ingestion of tryptophan-related peptides or food material rich in tryptophan-related peptides, thereby regulating microglial activity, represents a potential preventive approach for cognitive decline and dementia related to inflammation.
Collapse
Affiliation(s)
- Yasuhisa Ano
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo 113-8657, Japan.
- Research Laboratories for Health Science & Food Technologies, Kirin Holdings Co. Ltd., Kanagawa 236-0004, Japan.
| | - Yuka Yoshino
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo 113-8657, Japan
| | - Kazuyuki Uchida
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroyuki Nakayama
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
30
|
Hamada K, Naito A, Hamaguchi Y, Kanesaki Y, Kasahara K, Taguchi A, Omura N, Hayashi Y, Usui T. Ubr1p-Cup9p-Ptr2p pathway involves in the sensitivity to readthrough compounds negamycin derivatives in budding yeast. Biosci Biotechnol Biochem 2019; 83:1889-1892. [PMID: 31159660 DOI: 10.1080/09168451.2019.1625263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In this study, we found that dipeptide transporter Ptr2p is the putative transporter of read-through compounds (+)-negamycin derivatives TCP-126 and TCP-112, in budding yeast. Ptr2p expression and activity were correlated with the TCP-112 sensitivity, and dipeptide with high affinity to Ptr2p suppressed the TCP-112 activity. These results suggest that dipeptide transporter is one of the determinants of negamycin analogs sensitivity. Abbreviation: PTC: premature termination codon.
Collapse
Affiliation(s)
- Keisuke Hamada
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences , Tokyo , Japan
| | - Akari Naito
- Graduate School of Life and Environmental Sciences, University of Tsukuba , Tsukuba , Japan
| | - Yu Hamaguchi
- NODAI Genome Research Center, Tokyo University of Agriculture , Tokyo , Japan
| | - Yu Kanesaki
- NODAI Genome Research Center, Tokyo University of Agriculture , Tokyo , Japan
| | - Koji Kasahara
- Department of Molecular Microbiology, Tokyo University of Agriculture , Tokyo , Japan
| | - Akihiro Taguchi
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences , Tokyo , Japan
| | - Noriko Omura
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences , Tokyo , Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences , Tokyo , Japan
| | - Takeo Usui
- Faculty of Life and Environmental Sciences, University of Tsukuba , Tsukuba , Japan
| |
Collapse
|
31
|
Ano Y, Yoshino Y, Kutsukake T, Ohya R, Fukuda T, Uchida K, Takashima A, Nakayama H. Tryptophan-related dipeptides in fermented dairy products suppress microglial activation and prevent cognitive decline. Aging (Albany NY) 2019; 11:2949-2967. [PMID: 31121563 PMCID: PMC6555451 DOI: 10.18632/aging.101909] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/03/2019] [Indexed: 01/08/2023]
Abstract
The rapid growth in aging populations has made prevention of age-related memory decline and dementia a high priority. Several epidemiological and clinical studies have concluded that fermented dairy products can help prevent cognitive decline; furthermore, intake of Camembert cheese prevents microglial inflammation and Alzheimer's pathology in mouse models. To elucidate the molecular mechanisms underlying the preventive effects of fermented dairy products, we screened peptides from digested milk protein for their potential to regulate the activation of microglia. We identified dipeptides of tryptophan-tyrosine (WY) and tryptophan-methionine that suppressed the microglial inflammatory response and enhanced the phagocytosis of amyloid-β (Aβ). Various fermented dairy products and food materials contain the WY peptide. Orally administered WY peptide was smoothly absorbed into blood, delivered to the brain, and improved the cognitive decline induced by lipopolysaccharide via the suppression of inflammation. Intake of the WY peptide prevented microglial inflammation, hippocampal long-term potential deficit, and memory impairment in aged mice. In an Alzheimer's model using 5×FAD mice, intake of the WY peptide also suppressed microglial inflammation and accumulation of Aβ, which improved cognitive decline. The identified dipeptides regulating microglial activity could potentially be used to prevent cognitive decline and dementia related to inflammation.
Collapse
Affiliation(s)
- Yasuhisa Ano
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo 113-8657, Japan
- Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd., Yokohama-shi, Kanagawa 236-0004, Japan
| | - Yuka Yoshino
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo 113-8657, Japan
| | - Toshiko Kutsukake
- Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd., Yokohama-shi, Kanagawa 236-0004, Japan
| | - Rena Ohya
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo 113-8657, Japan
- Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd., Yokohama-shi, Kanagawa 236-0004, Japan
| | - Takafumi Fukuda
- Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd., Yokohama-shi, Kanagawa 236-0004, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo 113-8657, Japan
| | - Akihiko Takashima
- Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| | - Hiroyuki Nakayama
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
32
|
Miyabe J, Ohgaki R, Saito K, Wei L, Quan L, Jin C, Liu X, Okuda S, Nagamori S, Ohki H, Yoshino K, Inohara H, Kanai Y. Boron delivery for boron neutron capture therapy targeting a cancer-upregulated oligopeptide transporter. J Pharmacol Sci 2019; 139:215-222. [PMID: 30833090 DOI: 10.1016/j.jphs.2019.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/16/2019] [Accepted: 01/24/2019] [Indexed: 12/21/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is a radiotherapy utilizing the neutron capture and nuclear fission reaction of 10B taken up into tumor cells. The most commonly used boron agent in BNCT, p-borono-l-phenylalanine (BPA), is accumulated in tumors by amino acid transporters upregulated in tumor cells. Here, by using dipeptides of BPA and tyrosine (BPA-Tyr and Tyr-BPA), we propose a novel strategy of selective boron delivery into tumor cells via oligopeptide transporter PEPT1 upregulated in various cancers. Kinetic analyses indicated that BPA-Tyr and Tyr-BPA are transported by oligopeptide transporters, PEPT1 and PEPT2. The intrinsic oligopeptide transport activity in tumor cells clearly correlated with PEPT1 protein expression level but not with PEPT2, suggesting that PEPT1 is the predominant oligopeptide transporter at least in tumor cell lines. Furthermore, using BPA-Tyr and Tyr-BPA, boron was successfully delivered into PEPT1-expressing pancreatic cancer AsPC-1 cells via a PEPT1-mediated mechanism. Intravenous administration of BPA-Tyr into the mice bearing AsPC-1 xenograft tumors resulted in significant boron accumulation in the tumors. It is proposed that the oligopeptide transporters, especially PEPT1, are promising candidates for molecular targets of boron delivery in BNCT. The BPA-containing dipeptides would have a potential for the development of novel boron carriers targeting PEPT1.
Collapse
Affiliation(s)
- Junji Miyabe
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryuichi Ohgaki
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keijiro Saito
- Department of Chemistry, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Ling Wei
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Lili Quan
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chunhuan Jin
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Xingming Liu
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Suguru Okuda
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shushi Nagamori
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Ohki
- Department of Chemistry, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Kazuo Yoshino
- Department of Chemistry, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
33
|
Tryptophan-Tyrosine Dipeptide, the Core Sequence of β-Lactolin, Improves Memory by Modulating the Dopamine System. Nutrients 2019; 11:nu11020348. [PMID: 30736353 PMCID: PMC6412195 DOI: 10.3390/nu11020348] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/02/2019] [Accepted: 02/03/2019] [Indexed: 02/07/2023] Open
Abstract
Tryptophan-tyrosine (WY)-related peptides including the β-lactopeptide of the glycine-threonine-tryptophan-tyrosine peptide, β-lactolin, improve spatial memory. However, whether and how the WY dipeptide as the core sequence in WY-related peptides improves memory functions has not been investigated. This study assessed the pharmacological effects of the WY dipeptide on memory impairment to elucidate the mechanisms. Here, we showed that oral administration of dipeptides of WY, tryptophan-methionine (WM), tryptophan-valine, tryptophan-leucine, and tryptophan-phenylalanine improved spontaneous alternation of the Y-maze test in scopolamine-induced amnesic mice. In contrast, tyrosine-tryptophan, methionine-tryptophan, tryptophan, tyrosine, and methionine had no effect. These results indicated that the conformation of dipeptides with N-terminal tryptophan is required for their memory improving effects. WY dipeptide inhibited the monoamine oxidase B activity in vitro and increased dopamine levels in the hippocampus and frontal cortex, whereas tryptophan did not cause these effects. In addition, the treatment with SCH-23390, a dopamine D1-like receptor antagonist, and the knockdown of the hippocampal dopamine D1 receptor partially attenuated the memory improvement induced by the WY dipeptide. Importantly, WY dipeptide improved the spontaneous alternations of the Y-maze test in aged mice. These results suggest that the WY dipeptide restores memory impairments by augmenting dopaminergic activity. The development of supplements rich in these peptides might help to prevent age-related cognitive decline.
Collapse
|
34
|
Imai K, Ikeda A, Shimizu K, Honda H. Selective Elimination of Bitter Peptides by Adsorption to Heat-treated Porous Silica Gel. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2019. [DOI: 10.3136/fstr.25.179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kento Imai
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University
| | - Aya Ikeda
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University
| | - Kazunori Shimizu
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University
| | - Hiroyuki Honda
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University
- Innovative Research Center for Preventive Medical Engineering, Nagoya University
| |
Collapse
|
35
|
Alghamdi OA, King N, Jones GL, Moens PD. A new use of β-Ala-Lys (AMCA) as a transport reporter for PEPT1 and PEPT2 in renal brush border membrane vesicles from the outer cortex and outer medulla. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:960-964. [DOI: 10.1016/j.bbamem.2017.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/05/2017] [Accepted: 12/28/2017] [Indexed: 01/29/2023]
|
36
|
Kitamura K, Kinsui EZB. The benefits and risks of expressing the POT and FOT family of oligopeptide transporters in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2018; 82:540-546. [PMID: 29447073 DOI: 10.1080/09168451.2018.1433994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the yeast Saccharomyces cerevisiae, all strains possess a gene for the evolutionarily conserved POT family peptide transporter, Ptr2; however, the genes for a novel FOT family transporter were found only in some wine brewing strains. The substrate specificity of the POT and FOT family of transporters was compared. Among the naturally occurring oligopeptides that were tested, Lys-Leu and Arg-Phe were Ptr2-specific substrates. Artificial dipeptide aspartame was imported specifically through the FOT transporter, but the structurally similar Asp-Phe was a substrate of both FOT and Ptr2 transporters. Furthermore, only the FOT transporter was important for high sensitivity to an antibiotic puromycin. These results demonstrate that the POT and FOT family of transporters have distinct substrate preferences although both transporters import overlapping dipeptide substrates. Having POT and FOT transporters is advantageous for cells to acquire nutrients, but also detrimental when these cells are exposed to the toxic molecules of their substrates.
Collapse
Affiliation(s)
- Kenji Kitamura
- a Center for Gene Science , Hiroshima University , Higashi-Hiroshima , Japan
| | | |
Collapse
|
37
|
Multispecific Substrate Recognition in a Proton-Dependent Oligopeptide Transporter. Structure 2018; 26:467-476.e4. [PMID: 29429879 PMCID: PMC5845931 DOI: 10.1016/j.str.2018.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/22/2017] [Accepted: 01/10/2018] [Indexed: 12/27/2022]
Abstract
Proton-dependent oligopeptide transporters (POTs) are important for uptake of dietary di- and tripeptides in many organisms, and in humans are also involved in drug absorption. These transporters accept a wide range of substrates, but the structural basis for how different peptide side chains are accommodated has so far remained obscure. Twenty-eight peptides were screened for binding to PepTSt from Streptococcus thermophilus, and structures were determined of PepTSt in complex with four physicochemically diverse dipeptides, which bind with millimolar affinity: Ala-Leu, Phe-Ala, Ala-Gln, and Asp-Glu. The structures show that PepTSt can adapt to different peptide side chains through movement of binding site residues and water molecules, and that a good fit can be further aided by adjustment of the position of the peptide itself. Finally, structures were also determined in complex with adventitiously bound HEPES, polyethylene glycol, and phosphate molecules, which further underline the adaptability of the binding site. Dipeptides can adapt their position to best fit the PepTSt binding site The PepTSt binding site can adapt its structure to best fit the dipeptides The water network in the PepTSt binding site can adapt to best fit the dipeptides Aromatic binding site residues play a role in conferring PepTSt multispecificity
Collapse
|
38
|
Kurimoto R, Kanie K, Uto K, Kawai S, Hara M, Nagano S, Narita Y, Honda H, Naito M, Ebara M, Kato R. Combinational Effects of Polymer Viscoelasticity and Immobilized Peptides on Cell Adhesion to Cell-selective Scaffolds. ANAL SCI 2018; 32:1195-1202. [PMID: 27829625 DOI: 10.2116/analsci.32.1195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Immobilization of functional peptides on polymer material is necessary to produce cell-selective scaffolds. However, the expected effects of peptide immobilization differ considerably according to the properties of selected polymers. To understand such combinational effects of peptides and polymers, varieties of scaffolds including a combination of six types of poly(ε-caprolactone-co-D,L-lactide) and four types of cell-selective adhesion peptides were fabricated and compared. On each scaffold, the scaffold properties (i.e. mechanical) and their biological functions (i.e. fibroblast-/endothelial cell-/smooth muscle cell-selective adhesion) were measured and compared. The results showed that the cell adhesion performances of the peptides were considerably enhanced or inhibited by the combination of peptide and polymer properties. In the present study, we illustrated the combinational property effects of peptides and polymers using multi-parametric analyses. We provided an example of determining the best scaffold performance for tissue-engineered medical devices based on quantitative data-driven analyses.
Collapse
Affiliation(s)
- Rio Kurimoto
- Graduate School of Pure and Applied Sciences, University of Tsukuba
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
POT transporters represent an evolutionarily well-conserved family of proton-coupled transport systems in biology. An unusual feature of the family is their ability to couple the transport of chemically diverse ligands to an inwardly directed proton electrochemical gradient. For example, in mammals, fungi, and bacteria they are predominantly peptide transporters, whereas in plants the family has diverged to recognize nitrate, plant defense compounds, and hormones. Although recent structural and biochemical studies have identified conserved sites of proton binding, the mechanism through which transport is coupled to proton movement remains enigmatic. Here we show that different POT transporters operate through distinct proton-coupled mechanisms through changes in the extracellular gate. A high-resolution crystal structure reveals the presence of ordered water molecules within the peptide binding site. Multiscale molecular dynamics simulations confirm proton transport occurs through these waters via Grotthuss shuttling and reveal that proton binding to the extracellular side of the transporter facilitates a reorientation from an inward- to outward-facing state. Together these results demonstrate that within the POT family multiple mechanisms of proton coupling have likely evolved in conjunction with variation of the extracellular gate.
Collapse
|
40
|
|
41
|
Symmetry and Structure in the POT Family of Proton Coupled Peptide Transporters. Symmetry (Basel) 2017. [DOI: 10.3390/sym9060085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
42
|
Yazaki M, Ito Y, Yamada M, Goulas S, Teramoto S, Nakaya MA, Ohno S, Yamaguchi K. Oral Ingestion of Collagen Hydrolysate Leads to the Transportation of Highly Concentrated Gly-Pro-Hyp and Its Hydrolyzed Form of Pro-Hyp into the Bloodstream and Skin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2315-2322. [PMID: 28244315 DOI: 10.1021/acs.jafc.6b05679] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Collagen hydrolysate is a well-known dietary supplement for the treatment of skin aging; however, its mode of action remains unknown. Previous studies have shown that the oral ingestion of collagen hydrolysate leads to elevated levels of collagen-derived peptides in the blood, but whether these peptides reach the skin remains unclear. Here, we analyzed the plasma concentration of collagen-derived peptides after ingestion of high tripeptide containing collagen hydrolysate in humans. We identified 17 types of collagen-derived peptides transiently, with a particular enrichment in Gly-Pro-Hyp. This was also observed using an in vivo mouse model in the plasma and skin, albeit with a higher enrichment of Pro-Hyp in the skin. Interestingly, this Pro-Hyp enrichment in the skin was derived from Gly-Pro-Hyp hydrolysis, as the administration of pure Gly-Pro-Hyp peptide led to similar results. Therefore, we propose that functional peptides can be transferred to the skin by dietary supplements of collagen.
Collapse
Affiliation(s)
- Misato Yazaki
- Research Institute, FANCL Corporation , 12-13 Kamishinano, Totsukaku, Yokohama, Kanagawa 244-0806, Japan
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University , 3-9 Fuku-ura, Kanazawaku, Yokohama 236-0004, Japan
| | - Yukihiko Ito
- Research Institute, FANCL Corporation , 12-13 Kamishinano, Totsukaku, Yokohama, Kanagawa 244-0806, Japan
| | - Masayoshi Yamada
- Research Institute, FANCL Corporation , 12-13 Kamishinano, Totsukaku, Yokohama, Kanagawa 244-0806, Japan
| | - Spyros Goulas
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University , 3-9 Fuku-ura, Kanazawaku, Yokohama 236-0004, Japan
| | - Sachiyuki Teramoto
- Research Institute, FANCL Corporation , 12-13 Kamishinano, Totsukaku, Yokohama, Kanagawa 244-0806, Japan
| | - Masa-Aki Nakaya
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University , 3-9 Fuku-ura, Kanazawaku, Yokohama 236-0004, Japan
| | - Shigeo Ohno
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University , 3-9 Fuku-ura, Kanazawaku, Yokohama 236-0004, Japan
| | - Kohji Yamaguchi
- Research Institute, FANCL Corporation , 12-13 Kamishinano, Totsukaku, Yokohama, Kanagawa 244-0806, Japan
| |
Collapse
|
43
|
Hellwig M, Börner M, Beer F, van Pée KH, Henle T. Transformation of Free and Dipeptide-Bound Glycated Amino Acids by Two Strains ofSaccharomyces cerevisiae. Chembiochem 2016; 18:266-275. [DOI: 10.1002/cbic.201600486] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Michael Hellwig
- Chair of Food Chemistry; Technische Universität Dresden; Bergstrasse 66 01062 Dresden Germany
| | - Marie Börner
- Chair of Food Chemistry; Technische Universität Dresden; Bergstrasse 66 01062 Dresden Germany
| | - Falco Beer
- Chair of Food Chemistry; Technische Universität Dresden; Bergstrasse 66 01062 Dresden Germany
| | - Karl-Heinz van Pée
- Chair of Biochemistry; Technische Universität Dresden; Bergstrasse 66 01062 Dresden Germany
| | - Thomas Henle
- Chair of Food Chemistry; Technische Universität Dresden; Bergstrasse 66 01062 Dresden Germany
| |
Collapse
|
44
|
Immadisetty K, Hettige J, Moradi M. What Can and Cannot Be Learned from Molecular Dynamics Simulations of Bacterial Proton-Coupled Oligopeptide Transporter GkPOT? J Phys Chem B 2016; 121:3644-3656. [PMID: 27959539 DOI: 10.1021/acs.jpcb.6b09733] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We have performed an extensive set of all-atom molecular dynamics (MD) simulations of a bacterial proton-coupled oligopeptide transporter (POT) in an explicit membrane environment. We have characterized both the local and global conformational dynamics of the transporter upon the proton and/or substrate binding, within a statistical framework. Our results reveal a clearly distinct behavior for local conformational dynamics in the absence and presence of the proton at the putative proton binding residue E310. Particularly, we find that the substrate binding conformation is drastically different in the two conditions, where the substrate binds to the protein in a lateral/vertical manner, in the presence/absence of the proton. We do not observe any statistically significant distinctive behavior in terms of the global conformational changes in different simulation conditions, within the time scales of our simulations. Our extensive simulations and analyses call into question the implicit assumption of many MD studies that local conformational changes observed in short simulations could provide clues to the global conformational changes that occur on much longer time scales. The linear regression analysis of quantities associated with the global conformational fluctuations, however, provides an indication of a mechanism involving the concerted motion of the transmembrane helices, consistent with the rocker-switch mechanism.
Collapse
Affiliation(s)
- Kalyan Immadisetty
- Department of Chemistry and Biochemistry, University of Arkansas , Fayetteville, Arkansas 72701, United States
| | - Jeevapani Hettige
- Department of Chemistry and Biochemistry, University of Arkansas , Fayetteville, Arkansas 72701, United States
| | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas , Fayetteville, Arkansas 72701, United States
| |
Collapse
|
45
|
Sánchez-Kopper A, Becker M, Pfizenmaier J, Kessler C, Karau A, Takors R. Tracking dipeptides at work-uptake and intracellular fate in CHO culture. AMB Express 2016; 6:48. [PMID: 27447702 PMCID: PMC4958091 DOI: 10.1186/s13568-016-0221-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/15/2016] [Indexed: 01/08/2023] Open
Abstract
Market demands for monoclonal antibodies (mAbs) are steadily increasing worldwide. As a result, production processes using Chinese hamster ovary cells (CHO) are in the focus of ongoing intensification studies for maximizing cell-specific and volumetric productivities. This includes the optimization of animal-derived component free (ADCF) cultivation media as part of good cell culture practice. Dipeptides are known to improve CHO culture performance. However, little or even conflicting assumptions exist about their putative import and functionality inside the cells. A set of well-known performance boosters and new dipeptide prospects was evaluated. The present study revealed that dipeptides are indeed imported in the cells, where they are decomposed to the amino acids building blocks. Subsequently, they are metabolized or, unexpectedly, secreted to the medium. Monoclonal antibody production boosting additives like l-alanine-l-glutamine (AQ) or glycyl-l-glutamine (GQ) can be assigned to fast or slow dipeptide uptake, respectively, thus pinpointing to the need to study dipeptide kinetics and to adjust their feeding individually for optimizing mAb production.
Collapse
|
46
|
Sharma N, Aduri NG, Iqbal A, Prabhala BK, Mirza O. Peptide Selectivity of the Proton-Coupled Oligopeptide Transporter from Neisseria meningitidis. J Mol Microbiol Biotechnol 2016; 26:312-9. [DOI: 10.1159/000447129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/26/2016] [Indexed: 11/19/2022] Open
Abstract
Peptide transport in living organisms is facilitated by either primary transport, hydrolysis of ATP, or secondary transport, cotransport of protons. In this study, we focused on investigating the ligand specificity of the <i>Neisseria meningitidis</i> proton-coupled oligopeptide transporter (NmPOT). It has been shown that the gene encoding this transporter is upregulated during infection. NmPOT conformed to the typical chain length preference as observed in prototypical transporters of this family. In contrast to prototypical transporters, it was unable to accommodate a positively charged peptide residue at the C-terminus position of the substrate peptide. Sequence analysis of the active site of NmPOT displayed a distinctive aromatic patch, which has not been observed in any other transporters from this family. This aromatic patch may be involved in providing NmPOT with its atypical preferences. This study provides important novel information towards understanding how these transporters recognize their substrates.
Collapse
|
47
|
Hong SM, Tanaka M, Koyanagi R, Shen W, Matsui T. Structural Design of Oligopeptides for Intestinal Transport Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2072-2079. [PMID: 26924013 DOI: 10.1021/acs.jafc.6b00279] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Glycyl-sarcosine (Gly-Sar) is a well-known model substrate for the intestinal uptake of dipeptides through peptide transporter 1 (PepT1). However, there are no other model peptides larger than tripeptides to evaluate their intestinal transport ability. In this study, we designed new oligopeptides based on the Gly-Sar structure in terms of protease resistance. Gly-Sar-Sar was found to be an appropriate transport model for tripeptides because it does not degrade during the transport across the rat intestinal membrane, while Gly-Gly-Sar was degraded to Gly-Sar during the 60 min transport. Caco-2 cell transport experiments revealed that the designed oligopeptides based on Gly-Sar-Sar showed a significantly (p < 0.05) lower transport ability by factors of 1/10-, 1/25-, and 1/40-fold for Gly-Sar-Sar, Gly-Sar-Sar-Sar, and Gly-Sar-Sar-Sar-Sar, respectively, compared to Gly-Sar (apparent permeability coefficient: 38.6 ± 11.4 cm/s). Cell experiments also showed that the designed tripeptide and Gly-Sar were transported across Caco-2 cell via PepT1, whereas the tetra- and pentapeptides were transported through the paracellular tight-junction pathway.
Collapse
Affiliation(s)
- Seong-Min Hong
- Division of Bioresources and Bioenvironmental Sciences, Faculty of Agriculture, Graduate School, Kyushu University , 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Mitsuru Tanaka
- Division of Bioresources and Bioenvironmental Sciences, Faculty of Agriculture, Graduate School, Kyushu University , 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Riho Koyanagi
- Division of Bioresources and Bioenvironmental Sciences, Faculty of Agriculture, Graduate School, Kyushu University , 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Weilin Shen
- Division of Bioresources and Bioenvironmental Sciences, Faculty of Agriculture, Graduate School, Kyushu University , 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Toshiro Matsui
- Division of Bioresources and Bioenvironmental Sciences, Faculty of Agriculture, Graduate School, Kyushu University , 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
48
|
Samsudin F, Parker JL, Sansom MSP, Newstead S, Fowler PW. Accurate Prediction of Ligand Affinities for a Proton-Dependent Oligopeptide Transporter. Cell Chem Biol 2016; 23:299-309. [PMID: 27028887 PMCID: PMC4760754 DOI: 10.1016/j.chembiol.2015.11.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/22/2015] [Accepted: 11/04/2015] [Indexed: 12/04/2022]
Abstract
Membrane transporters are critical modulators of drug pharmacokinetics, efficacy, and safety. One example is the proton-dependent oligopeptide transporter PepT1, also known as SLC15A1, which is responsible for the uptake of the β-lactam antibiotics and various peptide-based prodrugs. In this study, we modeled the binding of various peptides to a bacterial homolog, PepTSt, and evaluated a range of computational methods for predicting the free energy of binding. Our results show that a hybrid approach (endpoint methods to classify peptides into good and poor binders and a theoretically exact method for refinement) is able to accurately predict affinities, which we validated using proteoliposome transport assays. Applying the method to a homology model of PepT1 suggests that the approach requires a high-quality structure to be accurate. Our study provides a blueprint for extending these computational methodologies to other pharmaceutically important transporter families. A hierarchical computational approach determines ligand affinities to transporters Lysine-containing dipeptides proposed to bind vertically like a tripeptide Experimental structures are vital for the accurate prediction of affinities A model of prodrug interactions to human PepT1 is suggested
Collapse
Affiliation(s)
- Firdaus Samsudin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Joanne L Parker
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Philip W Fowler
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
49
|
Kevvai K, Kütt ML, Nisamedtinov I, Paalme T. Simultaneous utilization of ammonia, free amino acids and peptides during fermentative growth ofSaccharomyces cerevisiae. JOURNAL OF THE INSTITUTE OF BREWING 2016. [DOI: 10.1002/jib.298] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Kaspar Kevvai
- Competence Centre of Food and Fermentation Technologies; Tallinn Estonia
- Tallinn University of Technology; Tallinn Estonia
| | - Mary-Liis Kütt
- Competence Centre of Food and Fermentation Technologies; Tallinn Estonia
- Tallinn University of Technology; Tallinn Estonia
| | - Ildar Nisamedtinov
- Competence Centre of Food and Fermentation Technologies; Tallinn Estonia
- Tallinn University of Technology; Tallinn Estonia
- Lallemand Inc.; Montréal QC Canada
| | | |
Collapse
|
50
|
Melnykov AV. New mechanisms that regulate Saccharomyces cerevisiae short peptide transporter achieve balanced intracellular amino acid concentrations. Yeast 2015; 33:21-31. [PMID: 26537311 DOI: 10.1002/yea.3137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/20/2015] [Accepted: 09/30/2015] [Indexed: 12/25/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae is able to take up large quantities of amino acids in the form of di- and tripeptides via a short peptide transporter, Ptr2p. It is known that PTR2 can be induced by certain peptides and amino acids, and the mechanisms governing this upregulation are understood at the molecular level. We describe two new opposing mechanisms of regulation that emphasize potential toxicity of amino acids: the first is upregulation of PTR2 in a population of cells, caused by amino acid secretion that accompanies peptide uptake; the second is loss of Ptr2p activity, due to transporter internalization following peptide uptake. Our findings emphasize the importance of proper amino acid balance in the cell and extend understanding of peptide import regulation in yeast.
Collapse
Affiliation(s)
- Artem V Melnykov
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|