1
|
Jia WH, Huang CL, Zhang WL, He YQ, Xue WQ, Liao Y, Zhao ZY, Yang MX, Pei L, Jia WH, Wang TM. Integration of transcriptome-wide association study and gene-based association analysis identifies candidate genes for Hodgkin lymphoma. J Cancer Res Clin Oncol 2025; 151:171. [PMID: 40392315 PMCID: PMC12092559 DOI: 10.1007/s00432-025-06224-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 05/04/2025] [Indexed: 05/22/2025]
Abstract
BACKGROUND Genome-wide association studies (GWASs) have pinpointed many susceptibility loci for Hodgkin Lymphoma (HL), but their underlying biological mechanisms remain unclear. METHODS Utilizing GWAS data from the UK Biobank and FinnGen, along with expression quantitative trait loci (eQTL) statistics from the Genotype-Tissue Expression (GTEx) and the eQTL Catalogue, we carried out a large-scale gene-level association study using Omnibus Transcriptome Test with Expression Reference Summary data (OTTERS), and gene-based analysis with eQTL Multi-marker Analysis of Genomic Annotation (E-MAGMA). RESULTS We identified sixteen susceptibility genes for HL (FDR < 0.01), primarily immune-related, including HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DRB1, HLA-DRB5, HLA-DMA, and HLA-DPB1, alongside genes involved in apoptosis, RNA processing, transcriptional regulation, and signal transduction. We identified five novel plausible genes, including HLA-DMA, HLA-DPB1, LSM2, AAR2, and NOTCH4. CONCLUSION These findings highlight the role of the exogenous antigen presentation pathway in HL, shedding light on potential mechanisms.
Collapse
Affiliation(s)
- Wen-Hui Jia
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chang-Ling Huang
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-Li Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhi-Yang Zhao
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Meng-Xuan Yang
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lu Pei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wei-Hua Jia
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
2
|
Zhang H, Chen K, Gao T, Yan Y, Liu Y, Liu Y, Zhu K, Qi J, Zheng C, Wang T, Zeng P. Establishing a robust triangulation framework to explore the relationship between hearing loss and Parkinson's disease. NPJ Parkinsons Dis 2025; 11:5. [PMID: 39753591 PMCID: PMC11698951 DOI: 10.1038/s41531-024-00861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025] Open
Abstract
The relationship between hearing loss (HL) and Parkinson's disease (PD) remains unclear. Using individual-level and summary-level data from the UK Biobank and the largest genome-wide association studies, we examined this link through observational, Mendelian randomization and genetic pleiotropy analyses. Among 158,229 participants, PD risk rose with HL severity especially in elder and males, and hearing aids significantly reduced PD risk in males. Although our results did not support a causal association, genetic correlation analysis suggested a localized genetic overlap (17q21.31). We identified 1545 SNPs and 63 genes with pleiotropic effects on HL and PD, including 79 novel SNPs across 6 loci, with 3 showing strong co-localization. These loci were enriched in key tissues like brain, heart, liver and pancreas, linked to the dihydrolipoyl dehydrogenase complex pathway, and targeted by drugs such as Warfarin and Phenprocoumon. Overall, this study reveals the risk association, genetic basis, and pleiotropic loci connecting HL and PD.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Keying Chen
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Tongyu Gao
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Yu Yan
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Ying Liu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Yuxin Liu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Kexuan Zhu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Jike Qi
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Chu Zheng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Ting Wang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
| | - Ping Zeng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
| |
Collapse
|
3
|
Liu A, Genovese G, Zhao Y, Pirinen M, Zekavat SM, Kentistou KA, Yang Z, Yu K, Vlasschaert C, Liu X, Brown DW, Hudjashov G, Gorman BR, Dennis J, Zhou W, Momozawa Y, Pyarajan S, Tuzov V, Pajuste FD, Aavikko M, Sipilä TP, Ghazal A, Huang WY, Freedman ND, Song L, Gardner EJ, Sankaran VG, Palotie A, Ollila HM, Tukiainen T, Chanock SJ, Mägi R, Natarajan P, Daly MJ, Bick A, McCarroll SA, Terao C, Loh PR, Ganna A, Perry JRB, Machiela MJ. Genetic drivers and cellular selection of female mosaic X chromosome loss. Nature 2024; 631:134-141. [PMID: 38867047 DOI: 10.1038/s41586-024-07533-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Mosaic loss of the X chromosome (mLOX) is the most common clonal somatic alteration in leukocytes of female individuals1,2, but little is known about its genetic determinants or phenotypic consequences. Here, to address this, we used data from 883,574 female participants across 8 biobanks; 12% of participants exhibited detectable mLOX in approximately 2% of leukocytes. Female participants with mLOX had an increased risk of myeloid and lymphoid leukaemias. Genetic analyses identified 56 common variants associated with mLOX, implicating genes with roles in chromosomal missegregation, cancer predisposition and autoimmune diseases. Exome-sequence analyses identified rare missense variants in FBXO10 that confer a twofold increased risk of mLOX. Only a small fraction of associations was shared with mosaic Y chromosome loss, suggesting that distinct biological processes drive formation and clonal expansion of sex chromosome missegregation. Allelic shift analyses identified X chromosome alleles that are preferentially retained in mLOX, demonstrating variation at many loci under cellular selection. A polygenic score including 44 allelic shift loci correctly inferred the retained X chromosomes in 80.7% of mLOX cases in the top decile. Our results support a model in which germline variants predispose female individuals to acquiring mLOX, with the allelic content of the X chromosome possibly shaping the magnitude of clonal expansion.
Collapse
Affiliation(s)
- Aoxing Liu
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Giulio Genovese
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Yajie Zhao
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Seyedeh M Zekavat
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Katherine A Kentistou
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Zhiyu Yang
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | | | - Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Derek W Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Rockville, MD, USA
| | - Georgi Hudjashov
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Bryan R Gorman
- Center for Data and Computational Sciences (C-DACS), VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Saiju Pyarajan
- Center for Data and Computational Sciences (C-DACS), VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Valdislav Tuzov
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Fanny-Dhelia Pajuste
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mervi Aavikko
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Timo P Sipilä
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Awaisa Ghazal
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Eugene J Gardner
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Vijay G Sankaran
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hanna M Ollila
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Taru Tukiainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Pradeep Natarajan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Mark J Daly
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexander Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Steven A McCarroll
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Po-Ru Loh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Andrea Ganna
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - John R B Perry
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| |
Collapse
|
4
|
Lee C, An Y. Deciphering the Genetic Complexity of Classical Hodgkin Lymphoma: Insights and Effective Strategies. Curr Genomics 2024; 25:334-342. [PMID: 39323623 PMCID: PMC11420564 DOI: 10.2174/0113892029301904240513045755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 09/27/2024] Open
Abstract
Understanding the genetics of susceptibility to classical Hodgkin lymphoma (cHL) is considerably limited compared to other cancers due to the rare Hodgkin and Reed-Sternberg (HRS) tumor cells, which coexist with the predominant non-malignant microenvironment. This article offers insights into genetic abnormalities in cHL, as well as nucleotide variants and their associated target genes, elucidated through recent technological advancements. Oncogenomes in HRS cells highlight the survival and proliferation of these cells through hyperactive signaling in specific pathways (e.g., NF-kB) and their interplay with microenvironmental cells (e.g., CD4+ T cells). In contrast, the susceptibility genes identified from genome-wide association studies and expression quantitative trait locus analyses only vaguely implicate their potential roles in susceptibility to more general cancers. To pave the way for the era of precision oncology, more intensive efforts are imperative, employing the following strategies: exploring genetic heterogeneity by gender and cHL subtype, investigating colocalization with various types of expression quantitative trait loci, and leveraging single-cell analysis. These approaches provide valuable perspectives for unraveling the genetic complexities of cHL.
Collapse
Affiliation(s)
- Chaeyoung Lee
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 06978, Korea
| | - Yeeun An
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 06978, Korea
| |
Collapse
|
5
|
Gupta S, Craig JW. Classic Hodgkin lymphoma in young people. Semin Diagn Pathol 2023; 40:379-391. [PMID: 37451943 DOI: 10.1053/j.semdp.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
Classic Hodgkin lymphoma (CHL) is a unique form of lymphoid cancer featuring a heterogeneous tumor microenvironment and a relative paucity of malignant Hodgkin and Reed-Sternberg (HRS) cells with characteristic phenotype. Younger individuals (children, adolescents and young adults) are affected as often as the elderly, producing a peculiar bimodal age-incidence profile that has generated immense interest in this disease and its origins. Decades of epidemiological investigations have documented the populations most susceptible and identified multiple risk factors that can be broadly categorized as either biological or environmental in nature. Most risk factors result in overt immunodeficiency or confer more subtle alterations to baseline health, physiology or immune function. Epstein Barr virus, however, is both a risk factor and well-established driver of lymphomagenesis in a significant subset of cases. Epigenetic changes, along with the accumulation of somatic driver mutations and cytogenetic abnormalities are required for the malignant transformation of germinal center-experienced HRS cell precursors. Chromosomal instability and the influence of endogenous mutational processes are critical in this regard, by impacting genes involved in key signaling pathways that promote the survival and proliferation of HRS cells and their escape from immune destruction. Here we review the principal features, known risk factors and lymphomagenic mechanisms relevant to newly diagnosed CHL, with an emphasis on those most applicable to young people.
Collapse
Affiliation(s)
- Srishti Gupta
- Department of Pathology, University of Virginia Health System, 1215 Lee Street, 3rd Floor Hospital Expansion Room 3032, PO Box 800904, Charlottesville, VA 22908, USA
| | - Jeffrey W Craig
- Department of Pathology, University of Virginia Health System, 1215 Lee Street, 3rd Floor Hospital Expansion Room 3032, PO Box 800904, Charlottesville, VA 22908, USA.
| |
Collapse
|
6
|
Fu S, Purdue MP, Zhang H, Qin J, Song L, Berndt SI, Yu K. Improve the model of disease subtype heterogeneity by leveraging external summary data. PLoS Comput Biol 2023; 19:e1011236. [PMID: 37437002 DOI: 10.1371/journal.pcbi.1011236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/02/2023] [Indexed: 07/14/2023] Open
Abstract
Researchers are often interested in understanding the disease subtype heterogeneity by testing whether a risk exposure has the same level of effect on different disease subtypes. The polytomous logistic regression (PLR) model provides a flexible tool for such an evaluation. Disease subtype heterogeneity can also be investigated with a case-only study that uses a case-case comparison procedure to directly assess the difference between risk effects on two disease subtypes. Motivated by a large consortium project on the genetic basis of non-Hodgkin lymphoma (NHL) subtypes, we develop PolyGIM, a procedure to fit the PLR model by integrating individual-level data with summary data extracted from multiple studies under different designs. The summary data consist of coefficient estimates from working logistic regression models established by external studies. Examples of the working model include the case-case comparison model and the case-control comparison model, which compares the control group with a subtype group or a broad disease group formed by merging several subtypes. PolyGIM efficiently evaluates risk effects and provides a powerful test for disease subtype heterogeneity in situations when only summary data, instead of individual-level data, is available from external studies due to various informatics and privacy constraints. We investigate the theoretic properties of PolyGIM and use simulation studies to demonstrate its advantages. Using data from eight genome-wide association studies within the NHL consortium, we apply it to study the effect of the polygenic risk score defined by a lymphoid malignancy on the risks of four NHL subtypes. These results show that PolyGIM can be a valuable tool for pooling data from multiple sources for a more coherent evaluation of disease subtype heterogeneity.
Collapse
Affiliation(s)
- Sheng Fu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Mark P Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Han Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jing Qin
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
7
|
An Y, Lee C. Identification and Interpretation of eQTL and eGenes for Hodgkin Lymphoma Susceptibility. Genes (Basel) 2023; 14:1142. [PMID: 37372322 PMCID: PMC10298295 DOI: 10.3390/genes14061142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Genome-wide association studies (GWAS) have revealed approximately 100 genomic signals associated with Hodgkin lymphoma (HL); however, their target genes and underlying mechanisms causing HL susceptibility remain unclear. In this study, transcriptome-wide analysis of expression quantitative trait loci (eQTL) was conducted to identify target genes associated with HL GWAS signals. A mixed model, which explains polygenic regulatory effects by the genomic covariance among individuals, was implemented to discover expression genes (eGenes) using genotype data from 462 European/African individuals. Overall, 80 eGenes were identified to be associated with 20 HL GWAS signals. Enrichment analysis identified apoptosis, immune responses, and cytoskeletal processes as functions of these eGenes. The eGene of rs27524 encodes ERAP1 that can cleave peptides attached to human leukocyte antigen in immune responses; its minor allele may help Reed-Sternberg cells to escape the immune response. The eGene of rs7745098 encodes ALDH8A1 that can oxidize the precursor of acetyl-CoA for the production of ATP; its minor allele may increase oxidization activity to evade apoptosis of pre-apoptotic germinal center B cells. Thus, these minor alleles may be genetic risk factors for HL susceptibility. Experimental studies on genetic risk factors are needed to elucidate the underlying mechanisms of HL susceptibility and improve the accuracy of precision oncology.
Collapse
Affiliation(s)
| | - Chaeyoung Lee
- Department of Bioinformatics and Life Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| |
Collapse
|
8
|
Simonin M, Jardin F, Leblanc T, Latour S, Landman Parker J. An update on molecular features and therapeutic perspectives of pediatric classical Hodgkin Lymphoma. What the clinician needs to know? Eur J Med Genet 2022; 66:104672. [PMID: 36423786 DOI: 10.1016/j.ejmg.2022.104672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 11/06/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Our understanding of Hodgkin lymphoma (HL) molecular biology has been radically transformed over recent years due to the advent and the spreading of the new generation sequencing approaches. These advances offer new insights about genetic predisposition to HL in children and are currently being translated into promising and more selective drugs (brentuximab and checkpoint inhibitors) offering the perspective to reduce treatment-related toxicity. Thus, as more than 90% of pediatric patients are cured after the first line treatment, a major emphasis is placed on survivorship by reducing treatment intensity, in particular, the use of radiotherapy and chemotherapy associated with long-term toxicities. The purposes of this review are to summarize the recent advances performed in the field of molecular biology of HL, in particular the promising development of liquid biopsies. We also provide an update review of immunodeficiencies associated to HL in children recently identified. Finally, we report the recent studies supporting the efficacy of new targeted therapeutics in adult and pediatric cHL (anti-CD30 and anti-PD1).
Collapse
Affiliation(s)
- Mathieu Simonin
- Department of Pediatric Hematology and Oncology, AP-HP, Armand Trousseau Hospital, Sorbonne University, Paris, France; Laboratory of Normal and Pathological Lymphoid Differentiation, Institut Necker Enfants Malades (INEM), INERM UMR1151, Paris, France; Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR1163, Imagine Institute, Paris, France; Université de Paris, Paris, France.
| | - Fabrice Jardin
- Department of Hematology, Center Henri Becquerel, University of Rouen, INSERM UMR1245, Rouen, France
| | - Thierry Leblanc
- Department of Pediatric Hematology, AP-HP, Robert Debré Hospital, University Paris Diderot, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR1163, Imagine Institute, Paris, France; Université de Paris, Paris, France
| | - Judith Landman Parker
- Department of Pediatric Hematology and Oncology, AP-HP, Armand Trousseau Hospital, Sorbonne University, Paris, France
| |
Collapse
|
9
|
Paszkiewicz-Kozik E, Kluska A, Piątkowska M, Bałabas A, Żeber-Lubecka N, Karczmarski J, Goryca K, Kulecka M, Wojciechowska-Lampka E, Osiadacz W, Romejko-Jarosińska J, Świerkowska M, Paziewska A, Ambrożkiewicz F, Walewski J, Mikula M, Ostrowski J. Genetic associations with lymphomas in Polish patients: A pooled-DNA genome-wide association analysis. Int J Immunogenet 2022; 49:353-363. [PMID: 36036752 DOI: 10.1111/iji.12596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022]
Abstract
Several single nucleotide polymorphisms (SNPs) associated with susceptibility to Hodgkin lymphoma (HL) and diffuse large B-cell lymphoma (DLBCL) have been identified. The aim of this study was to identify susceptibility loci for HL and DLBCL in Polish patients. Altogether, DLBCL (n = 218 and HL patients (n = 224) and healthy individuals (n = 1181) were recruited. Lymphoma diagnosis was based on standard criteria. Genome-wide association study (GWAS) was performed using pooled-DNA samples on llumina Infinium Omni2.5 Exome-8 v1.3, and selected loci were replicated by TaqMan SNP genotyping of individuals. GWAS detected thirteen and seven SNPs associated with DLBCL and HL, respectively. In the replication study, six and seven SNPs reached significance after correction for multiple testing in the DLBCL and HL cohorts, respectively. One and four SNPs associated with DLBCL and HL, respectively, were localized within, and two SNPs-near the major histocompatibility complex (MHC) region. In conclusion, the majority of loci associated with HL and DLBCL aetiology in previous studies have potential roles in immune function. Our pooled-DNA GWAS enabled the identification of several susceptibility loci for DLBCL and HL in the Polish population; some of them were mapped within or adjacent to the MHC, and other associated SNPs were located outside the MHC.
Collapse
Affiliation(s)
- Ewa Paszkiewicz-Kozik
- Department of Lymphoproliferative Diseases, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anna Kluska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Piątkowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Aneta Bałabas
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Natalia Żeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Jakub Karczmarski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Krzysztof Goryca
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Maria Kulecka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.,Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Elżbieta Wojciechowska-Lampka
- Department of Lymphoproliferative Diseases, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Włodzimierz Osiadacz
- Department of Lymphoproliferative Diseases, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Joanna Romejko-Jarosińska
- Department of Lymphoproliferative Diseases, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Monika Świerkowska
- Department of Lymphoproliferative Diseases, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Agnieszka Paziewska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.,Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Filip Ambrożkiewicz
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jan Walewski
- Department of Lymphoproliferative Diseases, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.,Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
10
|
Chen C, Song N, Dong Q, Sun X, Mulder HL, Easton J, Zhang J, Yasui Y, Bhatia S, Armstrong GT, Wang H, Ness KK, Hudson MM, Robison LL, Wang Z. Association of Single-Nucleotide Variants in the Human Leukocyte Antigen and Other Loci With Childhood Hodgkin Lymphoma. JAMA Netw Open 2022; 5:e2225647. [PMID: 35939300 PMCID: PMC9361085 DOI: 10.1001/jamanetworkopen.2022.25647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IMPORTANCE Studies focusing on genetic susceptibility of childhood Hodgkin lymphoma (HL) are limited. OBJECTIVES To identify genetic variants associated with childhood-onset HL vs adult-onset HL. DESIGN, SETTING, AND PARTICIPANTS This genetic association study was performed with 3 cohorts: the St Jude Lifetime Cohort Study (SJLIFE), initiated in 2007 with ongoing follow-up, and the original and expansion cohorts of the Childhood Cancer Survivor Study (CCSS), initiated in the 1990s with ongoing follow-up. Results of these genome-wide association studies (GWASs) were combined via meta-analysis. Data were analyzed from June 2021 to June 2022. MAIN OUTCOMES AND MEASURES Childhood HL was the focused outcome. Single-nucleotide variant (SNV, formerly single-nucleotide polymorphism) array genotyping and imputation were conducted for the CCSS original cohort, and whole-genome sequencing was performed for the SJLIFE and CCSS expansion cohort. RESULTS A total of 1286 HL cases (mean diagnosis [SD] age, 14.6 [3.9] years), 6193 non-HL childhood cancer cases, and 369 noncancer controls, all of European ancestry, were included in the analysis. Using step-wise conditional logistic regression, the odds ratios (ORs) for each of the 3 independent SNVs identified in the human leukocyte antigen (HLA) locus were 1.80 (95% CI, 1.59-2.03; P = 2.14 × 10-21) for rs28383311, 1.53 (95% CI, 1.37-1.70; P = 2.05 × 10-14) for rs3129198, and 1.51 (95% CI, 1.35-1.69; P = 6.21 × 10-13) for rs3129890. Further HLA imputation revealed 9 alleles and 55 amino acid changes that potentially conferred HL susceptibility. In addition, 5 non-HLA loci were identified: (1) rs1432297 (OR, 1.29; 95% CI, 1.18-1.41; P = 2.5 × 10-8; r2 = 0.55; D' = 0.75 with previously reported rs1432295, REL); (2) rs2757647 (OR, 1.30; 95% CI, 1.18-1.42; P = 3.5 × 10-8; r2 = 0.59; D' = 0.83 with previously reported rs6928977, AHI1); (3) rs13279159 (OR, 1.33; 95% CI, 1.20-1.47; P = 1.7 × 10-8; r2 = 0.75; D' = 1.00 with previously reported rs2019960, PVT1); (4) rs3824662 (OR, 1.52; 95% CI, 1.33-1.73; P = 3.9 × 10-10; r2 = 0.91; D' = 1.00 with previously reported rs3781093, GATA3); and (5) rs117953624 (OR, 1.98; 95% CI, 1.56-2.51; P = 1.5 × 10-8; minor allele frequency, 0.02), a novel uncommon SNV mapped to PDGFD. Twelve of 18 previously reported genome-wide significant non-HLA SNVs (67%) were replicated with statistically significant results. CONCLUSIONS AND RELEVANCE In this genetic association study, a predominantly common and potentially unique genetic etiology was found between childhood-onset and adulthood-onset HL.
Collapse
Affiliation(s)
- Cheng Chen
- School of Public Health, Shanghai Jiaotong University, Shanghai, China
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Nan Song
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Qian Dong
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Xiaojun Sun
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Heather L. Mulder
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - John Easton
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Jinghui Zhang
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Yutaka Yasui
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | | | - Gregory T. Armstrong
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Hui Wang
- School of Public Health, Shanghai Jiaotong University, Shanghai, China
| | - Kirsten K. Ness
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Melissa M. Hudson
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Leslie L. Robison
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Zhaoming Wang
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, Tennessee
| |
Collapse
|
11
|
CD4+ Cytotoxic T Cells Involved in the Development of EBV-Associated Diseases. Pathogens 2022; 11:pathogens11080831. [PMID: 35894054 PMCID: PMC9330826 DOI: 10.3390/pathogens11080831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Activated cytotoxic CD4 T cells (HLA-DR+) play an important role in the control of EBV infection, especially in cells with latency I (EBNA-1). One of the evasion mechanisms of these latency cells is generated by gp42, which, via peripherally binding to the β1 domain of the β chain of MHC class II (HLA-DQ, -DR, and -DP) of the infected B lymphocyte, can block/alter the HLA class II/T-cell receptor (TCR) interaction, and confer an increased level of susceptibility towards the development of EBV-associated autoimmune diseases or cancer in genetically predisposed individuals (HLA-DRB1* and DQB1* alleles). The main developments predisposing the factors of these diseases are: EBV infection; HLA class II risk alleles; sex; and tissue that is infiltrated with EBV-latent cells, forming ectopic lymphoid structures. Therefore, there is a need to identify treatments for eliminating cells with EBV latency, because the current treatments (e.g., antivirals and rituximab) are ineffective.
Collapse
|
12
|
HLA Expression in Relation to HLA Type in Classic Hodgkin Lymphoma Patients. Cancers (Basel) 2021; 13:cancers13225833. [PMID: 34830986 PMCID: PMC8616181 DOI: 10.3390/cancers13225833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Classic Hodgkin lymphoma (cHL) is a B-cell malignancy with involvement of Epstein–Barr virus (EBV) in about 30% of the European population. The risk to develop cHL is strongly linked to genetic variants in the human leukocyte antigen (HLA) genomic region and to certain HLA alleles. This may be caused by the function of HLA alleles, or by genetic linkage to non-HLA genes. HLA can present EBV-derived and tumour-cell specific antigens and this may lead to anti-tumour immune responses. However, the tumour cells downregulate HLA expression in a proportion of the cases, which may result in immune escape. In this study, we tested whether the loss of HLA expression is related to the presence of certain protective HLA alleles. We found that loss and retention of HLA expression is indeed associated with presence of known susceptibility HLA alleles. These findings suggest that HLA itself is involved in development of cHL. Abstract Several human leukocyte antigen (HLA) alleles are strongly associated with susceptibility to classic Hodgkin lymphoma (cHL), also in subgroups stratified for presence of the Epstein–Barr virus (EBV). We tested the hypothesis that the pressure on cHL tumour cells to lose HLA expression is associated with HLA susceptibility alleles. A meta-analysis was carried out to identify consistent protective and risk HLA alleles in a combined cohort of 839 cHL patients from the Netherlands and the United Kingdom. Tumour cell HLA expression was studied in 338 cHL cases from these two cohorts and correlated to the presence of specific susceptibility HLA alleles. Carriers of the HLA-DRB1*07 protective allele frequently lost HLA class II expression in cHL overall. Patients carrying the HLA-DRB1*15/16 (DR2) risk allele retained HLA class II expression in EBV− cHL and patients with the HLA-B*37 risk allele retained HLA class I expression more frequently than non-carriers in EBV+ cHL. The other susceptibility alleles showed no significant differences in expression. Thus, HLA expression by tumour cells is associated with a subset of the protective and risk alleles. This strongly suggests that HLA associations in cHL are related to peptide binding capacities of specific HLA alleles.
Collapse
|
13
|
Thorball CW, Oudot-Mellakh T, Ehsan N, Hammer C, Santoni FA, Niay J, Costagliola D, Goujard C, Meyer L, Wang SS, Hussain SK, Theodorou I, Cavassini M, Rauch A, Battegay M, Hoffmann M, Schmid P, Bernasconi E, Günthard HF, Mohammadi P, McLaren PJ, Rabkin CS, Besson C, Fellay J. Genetic variation near CXCL12 is associated with susceptibility to HIV-related non-Hodgkin lymphoma. Haematologica 2021; 106:2233-2241. [PMID: 32675224 PMCID: PMC8327743 DOI: 10.3324/haematol.2020.247023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 11/14/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection is associated with an increased risk of non-Hodgkin lymphoma (NHL). Even in the era of suppressive antiretroviral treatment, HIV-infected individuals remain at higher risk of developing NHL compared to the general population. In order to identify potential genetic risk loci, we performed case-control genome-wide association studies and a meta-analysis across three cohorts of HIV-infected patients of European ancestry, including a total of 278 cases and 1,924 matched controls. We observed a significant association with NHL susceptibility in the C-X-C motif chemokine ligand 12 (CXCL12) region on chromosome 10. A fine mapping analysis identified rs7919208 as the most likely causal variant (P=4.77e-11), with the G>A polymorphism creating a new transcription factor binding site for BATF and JUND. These results suggest a modulatory role of CXCL12 regulation in the increased susceptibility to NHL observed in the HIV-infected population.
Collapse
Affiliation(s)
- Christian W Thorball
- Ecole Polytechnique Federale de Lausanne, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tiphaine Oudot-Mellakh
- Centre de genetique moleculaire et chromosomique, GH La Pitié Salpetriere, Paris, France
| | - Nava Ehsan
- Scripps Research Translational Institute, La Jolla, CA, USA
| | - Christian Hammer
- Dept. of Cancer Immunology and Human Genetics, Genentech, South San Francisco, CA, USA
| | - Federico A Santoni
- Dept. of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Switzerland
| | - Jonathan Niay
- Centre de genetique moleculaire et chromosomique, GH La Pitié Salpetriere, Paris, France
| | | | - Cécile Goujard
- Paris-Sud University and Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | | | - Sophia S Wang
- Division of Health Analytics, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Shehnaz K Hussain
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ioannis Theodorou
- Centre de genetique moleculaire et chromosomique, GH La Pitié Salpetriere, Paris, France
| | - Matthias Cavassini
- Service of Infectious Diseases, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Andri Rauch
- Dept. of Infectious Diseases, Bern University Hospital, University of Bern, Switzerland
| | - Manuel Battegay
- Dept. of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Switzerland
| | - Matthias Hoffmann
- Division of Infectious Diseases and Hospital Epidemiology, Kantonsspital Olten, Switzerland
| | - Patrick Schmid
- Division of Infectious Diseases, Cantonal Hospital of St. Gallen, St. Gallen, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Regional Hospital of Lugano, Lugano, Switzerland
| | | | | | - Paul J McLaren
- JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, Canada
| | - Charles S Rabkin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Caroline Besson
- Department of Hematology and Oncology, Hospital of Versailles, Le Chesnay, France
| | - Jacques Fellay
- Ecole Polytechnique Federale de Lausanne and University of Lausanne, Switzerland
| |
Collapse
|
14
|
Roessner PM, Llaó Cid L, Lupar E, Roider T, Bordas M, Schifflers C, Arseni L, Gaupel AC, Kilpert F, Krötschel M, Arnold SJ, Sellner L, Colomer D, Stilgenbauer S, Dietrich S, Lichter P, Izcue A, Seiffert M. EOMES and IL-10 regulate antitumor activity of T regulatory type 1 CD4 + T cells in chronic lymphocytic leukemia. Leukemia 2021; 35:2311-2324. [PMID: 33526861 PMCID: PMC8324479 DOI: 10.1038/s41375-021-01136-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 11/19/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
The transcription factor eomesodermin (EOMES) promotes interleukin (IL)-10 expression in CD4+ T cells, which has been linked to immunosuppressive and cytotoxic activities. We detected cytotoxic, programmed cell death protein-1 (PD-1) and EOMES co-expressing CD4+ T cells in lymph nodes (LNs) of patients with chronic lymphocytic leukemia (CLL) or diffuse large B-cell lymphoma. Transcriptome and flow cytometry analyses revealed that EOMES does not only drive IL-10 expression, but rather controls a unique transcriptional signature in CD4+ T cells, that is enriched in genes typical for T regulatory type 1 (TR1) cells. The TR1 cell identity of these CD4+ T cells was supported by their expression of interferon gamma and IL-10, as well as inhibitory receptors including PD-1. TR1 cells with cytotoxic capacity accumulate also in Eµ-TCL1 mice that develop CLL-like disease. Whereas wild-type CD4+ T cells control TCL1 leukemia development after adoptive transfer in leukopenic Rag2-/- mice, EOMES-deficient CD4+ T cells failed to do so. We further show that TR1 cell-mediated control of TCL1 leukemia requires IL-10 receptor (IL-10R) signaling, as Il10rb-deficient CD4+ T cells showed impaired antileukemia activity. Altogether, our data demonstrate that EOMES is indispensable for the development of IL-10-expressing, cytotoxic TR1 cells, which accumulate in LNs of CLL patients and control TCL1 leukemia in mice in an IL-10R-dependent manner.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- Cell Differentiation
- Female
- Gene Expression Regulation, Leukemic
- Humans
- Interferon-gamma
- Interleukin-10/genetics
- Interleukin-10/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/prevention & control
- Mice
- Mice, Inbred C57BL
- Prognosis
- Signal Transduction
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Regulatory/immunology
- Th1 Cells/immunology
- Transcriptome
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Philipp M Roessner
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laura Llaó Cid
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Ekaterina Lupar
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Cellzome, Heidelberg, Germany
| | - Tobias Roider
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Marie Bordas
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Christoph Schifflers
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cell Biology Research Unit (URBC)-Namur Research Institute of Life Science (Narilis), University of Namur, Namur, Belgium
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lavinia Arseni
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ann-Christin Gaupel
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabian Kilpert
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Essen University Hospital, Institute of Human Genetics, Genome Informatics, Essen, Germany
| | - Marit Krötschel
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany
- BioMed X Institute, Heidelberg, Germany
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Leopold Sellner
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hematopathology Unit, Hospital Clinic, CIBERONC, Barcelona, Spain
| | | | - Sascha Dietrich
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana Izcue
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Freiburg, Germany
- Institute of Molecular Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Martina Seiffert
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
15
|
Osman Y, Elsharkawy T, Hashim TM, Alratroot JA, Alsuwat HS, Otaibi WMA, Hegazi FM, AbdulAzeez S, Borgio JF. Functional multigenic variations associated with hodgkin lymphoma. Int J Lab Hematol 2021; 43:1472-1482. [PMID: 34216518 DOI: 10.1111/ijlh.13644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 11/27/2022]
Abstract
INTRODUCTION The current study aimed to describe genotypes associated with Hodgkin lymphoma (HL) in a cohort of Saudi and non-Saudi patients and discuss their possible susceptibility to HL. METHODS We studied clinical, histopathological, and laboratory findings of HL patients admitted over 12 years duration, at King Fahd University Hospital, KSA. The genomic DNAs of HL patients (n = 61) and normal control subjects (n = 36) were extracted, and genotyping was performed using the Illumina human exome bead chip. Set of HL patients and set of normal controls were included in this study. RESULTS A total of 35 DNA variants were found to be highly significant with the P-value <9.90 × 10-11 among 243 345 exonic biomarkers and obeying the Hardy-Weinberg equilibrium. Nine, MEGF11-rs150945752 (P-value 1.20 × 10-12 ), CACNA1I- s58055559 (P-value 1.93 × 10-12 ), DECR2-rs146760080 (P-value 2.19 × 10-12 ), STAB1-rs143894786 (P-value 2.45 × 10-12 ), ZNF526-rs144433879 (P-value 2.76 × 10-12 ), CPLANE1-rs200612080 (P-value 3.77 × 10-12 ), DLK1-rs1058009 (P-value 5.95 × 10-12 ), RTN4RL2-rs61745214 (P-value 7.71 × 10-12 ), and PGRMC1-rs145582672 (P-value 8.56 × 10-12 ), exonic variants on chromosomes 15, 22, and 16 were highly associated with HL cases. THE HIGHLY SIGNIFICANT HAPLOTYPES AT CHROMOSOME 3: rs143894786G; rs149982219G with P-value = 3.43 × 10-14 was found to be the risk haplotype for the HL patients. The opposite alleles at chromosome 3: rs143894786A; rs149982219G is protective with P-value = 2.46 × 10-12 . Maximum number of SNPs at the chromosome 19: rs144433879C; rs181265966G; rs201144421C; rs145591797G; rs200560875G; rs77270337G (risk P-value = 2.24 × 10-12 ) and its opposite allele rs144433879A; rs181265966A; rs201144421T; rs145591797A; rs200560875A; rs77270337A (protective P-value = 2.60 × 10-9 ) were found to be associated haplotype with the HL and controls, respectively, in Saudi population. CONCLUSION Our study concludes that the HL is genetically heterogeneous with multigene causation.
Collapse
Affiliation(s)
- Yasser Osman
- Pathology Department, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Tarek Elsharkawy
- Pathology Department, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Tariq Mohammad Hashim
- Pathology Department, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | | - Hind Saleh Alsuwat
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Waad Mohammed Al Otaibi
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fatma Mohammed Hegazi
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sayed AbdulAzeez
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - J Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
16
|
Waller RG, Klein RJ, Vijai J, McKay JD, Clay-Gilmour A, Wei X, Madsen MJ, Sborov DW, Curtin K, Slager SL, Offit K, Vachon CM, Lipkin SM, Dumontet C, Camp NJ. Sequencing at lymphoid neoplasm susceptibility loci maps six myeloma risk genes. Hum Mol Genet 2021; 30:1142-1153. [PMID: 33751038 PMCID: PMC8188404 DOI: 10.1093/hmg/ddab066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/14/2022] Open
Abstract
Inherited genetic risk factors play a role in multiple myeloma (MM), yet considerable missing heritability exists. Rare risk variants at genome-wide association study (GWAS) loci are a new avenue to explore. Pleiotropy between lymphoid neoplasms (LNs) has been suggested in family history and genetic studies, but no studies have interrogated sequencing for pleiotropic genes or rare risk variants. Sequencing genetically enriched cases can help discover rarer variants. We analyzed exome sequencing in familial or early-onset MM cases to identify rare, functionally relevant variants near GWAS loci for a range of LNs. A total of 149 distinct and significant LN GWAS loci have been published. We identified six recurrent, rare, potentially deleterious variants within 5 kb of significant GWAS single nucleotide polymorphisms in 75 MM cases. Mutations were observed in BTNL2, EOMES, TNFRSF13B, IRF8, ACOXL and TSPAN32. All six genes replicated in an independent set of 255 early-onset MM or familial MM or precursor cases. Expansion of our analyses to the full length of these six genes resulted in a list of 39 rare and deleterious variants, seven of which segregated in MM families. Three genes also had significant rare variant burden in 733 sporadic MM cases compared with 935 control individuals: IRF8 (P = 1.0 × 10-6), EOMES (P = 6.0 × 10-6) and BTNL2 (P = 2.1 × 10-3). Together, our results implicate six genes in MM risk, provide support for genetic pleiotropy between LN subtypes and demonstrate the utility of sequencing genetically enriched cases to identify functionally relevant variants near GWAS loci.
Collapse
MESH Headings
- Acyl-CoA Oxidase/genetics
- Butyrophilins/genetics
- Female
- Genetic Predisposition to Disease
- Genome-Wide Association Study
- Hodgkin Disease/genetics
- Hodgkin Disease/pathology
- Humans
- Interferon Regulatory Factors/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocytes/pathology
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Multiple Myeloma/genetics
- Multiple Myeloma/pathology
- Polymorphism, Single Nucleotide/genetics
- Risk Factors
- T-Box Domain Proteins/genetics
- Tetraspanins/genetics
- Transmembrane Activator and CAML Interactor Protein/genetics
- Exome Sequencing
Collapse
Affiliation(s)
| | - Robert J Klein
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute for Data Science and Genomic Technology, New York, NY 10029-5674, USA
| | - Joseph Vijai
- Department of Medicine, Clinical Genetics Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - James D McKay
- Genetic Cancer Susceptibility, International Agency for Research on Cancer, 69372 Lyon Cedex 08, France
| | - Alyssa Clay-Gilmour
- Department of Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Xiaomu Wei
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Michael J Madsen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Douglas W Sborov
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Karen Curtin
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Susan L Slager
- Department of Health Sciences, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Kenneth Offit
- Department of Medicine, Clinical Genetics Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Celine M Vachon
- Department of Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Steven M Lipkin
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Charles Dumontet
- INSERM 1052, CNRS 5286, University of Lyon, 69361 Lyon Cedex 07, France
| | - Nicola J Camp
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
17
|
Llaó-Cid L, Roessner PM, Chapaprieta V, Öztürk S, Roider T, Bordas M, Izcue A, Colomer D, Dietrich S, Stilgenbauer S, Hanna B, Martín-Subero JI, Seiffert M. EOMES is essential for antitumor activity of CD8 + T cells in chronic lymphocytic leukemia. Leukemia 2021; 35:3152-3162. [PMID: 33731848 PMCID: PMC8550953 DOI: 10.1038/s41375-021-01198-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/30/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
Genome-wide association studies identified a single-nucleotide polymorphism (SNP) affecting the transcription factor Eomesodermin (EOMES) associated with a significantly increased risk to develop chronic lymphocytic leukemia (CLL). Epigenetic analyses, RNA sequencing, and flow cytometry revealed that EOMES is not expressed in CLL cells, but in CD8+ T cells for which EOMES is a known master regulator. We thus hypothesized that the increased CLL risk associated with the EOMES SNP might be explained by its negative impact on CD8+ T-cell-mediated immune control of CLL. Flow cytometry analyses revealed a higher EOMES expression in CD8+ T cells of CLL patients compared to healthy individuals, and an accumulation of PD-1+ EOMES+ CD8+ T cells in lymph nodes rather than blood or bone marrow in CLL. This was in line with an observed expansion of EOMES+ CD8+ T cells in the spleen of leukemic Eµ-TCL1 mice. As EOMES expression was highest in CD8+ T cells that express inhibitory receptors, an involvement of EOMES in T-cell exhaustion and dysfunction seems likely. Interestingly, Eomes-deficiency in CD8+ T cells resulted in their impaired expansion associated with decreased CLL control in mice. Overall, these observations suggest that EOMES is essential for CD8+ T-cell expansion and/or maintenance, and therefore involved in adaptive immune control of CLL.
Collapse
Affiliation(s)
- Laura Llaó-Cid
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Philipp M Roessner
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vicente Chapaprieta
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Selcen Öztürk
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Roider
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Marie Bordas
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Ana Izcue
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Freiburg, Germany.,Institute of Molecular Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Hematopathology Section, Hospital Clinic, Barcelona, Spain.,Departament de Fonaments Clínics, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Sascha Dietrich
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, University of Ulm, Ulm, Germany.,Department of Internal Medicine I, Saarland University, Homburg, Germany
| | - Bola Hanna
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - José Ignacio Martín-Subero
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Departament de Fonaments Clínics, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Martina Seiffert
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
18
|
Jiang P, Veenstra RN, Seitz A, Nolte IM, Hepkema BG, Visser L, van den Berg A, Diepstra A. Interaction between ERAP Alleles and HLA Class I Types Support a Role of Antigen Presentation in Hodgkin Lymphoma Development. Cancers (Basel) 2021; 13:cancers13030414. [PMID: 33499248 PMCID: PMC7865538 DOI: 10.3390/cancers13030414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Hodgkin lymphoma (HL) is a common lymphoma in young adults derived from B cells. Emerging evidence suggests that antigen presentation by the malignant B cells is critically involved in HL pathogenesis. In fact, genetic variants of the antigen presenting Human Leukocyte Antigens (HLA) are strongly associated with HL susceptibility. Interestingly, the endoplasmic reticulum aminopeptidase (ERAP)1 and ERAP2 genes, that code for enzymes that process antigens, also appear to be associated. In this study, we show that genetic variants of ERAP genes strongly affect expression levels of ERAP1 and ERAP2. In addition, we find that certain ERAP variants interact with specific HLA class I types in HL patients. This suggests that mechanisms that determine the repertoire of antigens that are presented to the immune system, affect the chance of developing HL. Our findings therefore support a prominent role of antigen presentation in HL susceptibility. Abstract Genetic variants in the HLA region are the strongest risk factors for developing Hodgkin lymphoma (HL), suggesting an important role for antigen presentation. This is supported by another HL-associated genomic region which contains the loci of two enzymes that process endogenous proteins to peptides to be presented by HLA class I, i.e., endoplasmic reticulum aminopeptidase 1 (ERAP1) and ERAP2. We hypothesized that ERAP and HLA class I type interact in HL susceptibility, as shown previously for several autoimmune diseases. We detected ERAP1 and ERAP2 expression in tumor cells and cells in the microenvironment in primary HL tissue samples. Seven ERAP SNPs and ERAP1 haplotypes showed strong associations with RNA and protein levels of ERAP1 and ERAP2 in LCLs and HL cell lines. Analysis of HLA class I types, ERAP SNPs and ERAP haplotypes by direct genotyping or imputation from genome-wide association data in 390 HL patients revealed significant interactions between HLA-A11, rs27038 and the rs27038 associated ERAP haplotype, as well as between HLA-Cw2 and rs26618. In conclusion, our results show that ERAP and HLA class I interact in genetic susceptibility to HL, providing further evidence that antigen presentation is an important process in HL susceptibility and pathogenesis.
Collapse
Affiliation(s)
- Peijia Jiang
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands; (P.J.); (R.N.V.); (A.S.); (L.V.); (A.v.d.B.)
- Department of Laboratory Medicine, Shenyang Huanggu National Defense Hospital, Shenyang 110032, China
| | - Rianne N. Veenstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands; (P.J.); (R.N.V.); (A.S.); (L.V.); (A.v.d.B.)
| | - Annika Seitz
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands; (P.J.); (R.N.V.); (A.S.); (L.V.); (A.v.d.B.)
| | - Ilja M. Nolte
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands;
| | - Bouke G. Hepkema
- Department of Laboratory Medicine, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands;
| | - Lydia Visser
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands; (P.J.); (R.N.V.); (A.S.); (L.V.); (A.v.d.B.)
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands; (P.J.); (R.N.V.); (A.S.); (L.V.); (A.v.d.B.)
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands; (P.J.); (R.N.V.); (A.S.); (L.V.); (A.v.d.B.)
- Correspondence:
| |
Collapse
|
19
|
Srivastava A, Giangiobbe S, Kumar A, Paramasivam N, Dymerska D, Behnisch W, Witzens-Harig M, Lubinski J, Hemminki K, Försti A, Bandapalli OR. Identification of Familial Hodgkin Lymphoma Predisposing Genes Using Whole Genome Sequencing. Front Bioeng Biotechnol 2020; 8:179. [PMID: 32211398 PMCID: PMC7067901 DOI: 10.3389/fbioe.2020.00179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/21/2020] [Indexed: 12/18/2022] Open
Abstract
Hodgkin lymphoma (HL) is a lymphoproliferative malignancy of B-cell origin that accounts for 10% of all lymphomas. Despite evidence suggesting strong familial clustering of HL, there is no clear understanding of the contribution of genes predisposing to HL. In this study, whole genome sequencing (WGS) was performed on 7 affected and 9 unaffected family members from three HL-prone families and variants were prioritized using our Familial Cancer Variant Prioritization Pipeline (FCVPPv2). WGS identified a total of 98,564, 170,550, and 113,654 variants which were reduced by pedigree-based filtering to 18,158, 465, and 26,465 in families I, II, and III, respectively. In addition to variants affecting amino acid sequences, variants in promoters, enhancers, transcription factors binding sites, and microRNA seed sequences were identified from upstream, downstream, 5′ and 3′ untranslated regions. A panel of 565 cancer predisposing and other cancer-related genes and of 2,383 potential candidate HL genes were also screened in these families to aid further prioritization. Pathway analysis of segregating genes with Combined Annotation Dependent Depletion Tool (CADD) scores >20 was performed using Ingenuity Pathway Analysis software which implicated several candidate genes in pathways involved in B-cell activation and proliferation and in the network of “Cancer, Hematological disease and Immunological Disease.” We used the FCVPPv2 for further in silico analyses and prioritized 45 coding and 79 non-coding variants from the three families. Further literature-based analysis allowed us to constrict this list to one rare germline variant each in families I and II and two in family III. Functional studies were conducted on the candidate from family I in a previous study, resulting in the identification and functional validation of a novel heterozygous missense variant in the tumor suppressor gene DICER1 as potential HL predisposition factor. We aim to identify the individual genes responsible for predisposition in the remaining two families and will functionally validate these in further studies.
Collapse
Affiliation(s)
- Aayushi Srivastava
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Sara Giangiobbe
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Abhishek Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nagarajan Paramasivam
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Dagmara Dymerska
- Department of Genetics and Pathology, International Hereditary Cancer Centre, Pomeranian Medical University, Szczecin, Poland
| | - Wolfgang Behnisch
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | | | - Jan Lubinski
- Department of Genetics and Pathology, International Hereditary Cancer Centre, Pomeranian Medical University, Szczecin, Poland
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Pilsen, Czechia
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Obul Reddy Bandapalli
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
20
|
Grytten N, Myhr KM, Celius EG, Benjaminsen E, Kampman M, Midgard R, Vatne A, Aarseth JH, Riise T, Torkildsen Ø. Risk of cancer among multiple sclerosis patients, siblings, and population controls: A prospective cohort study. Mult Scler 2019; 26:1569-1580. [DOI: 10.1177/1352458519877244] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Risk of cancer in multiple sclerosis (MS) patients compared to their siblings is unknown. Objective: The objective was to prospectively investigate the risk of cancer among MS patients compared to siblings without MS and to population controls. Methods: We retrieved data on MS patients born between 1930 and 1979 from the Norwegian Multiple Sclerosis Registry and population studies and on cancer diagnosis from the Cancer Registry of Norway. We used adjusted Cox proportional hazard regression to estimate cancer risk among 6883 MS patients, 8918 siblings without MS, and 37,919 population controls. Results: During 65 years of follow-up, cancer risk among MS patients was higher than that among population controls (hazard ratio (HR) = 1.14, 95% confidence interval (CI): 1.05–1.23) in respiratory organs (HR = 1.66, 95% CI: 1.26–2.19), urinary organs (HR = 1.51, 95% CI: 1.12–2.04), and the central nervous system (HR = 1.52, 95% CI: 1.11–2. 09). Siblings had higher risk of hematological cancers compared with MS patients (HR = 1.82, 95% CI: 1.21–2.73) and population controls (HR = 1.72, 95% CI: 1.36–2.18). Conclusion: MS patients were associated with increased risk of cancer compared to population controls. Siblings had increased risk of hematological cancer. This indicates that MS and hematological cancer could share a common etiology.
Collapse
Affiliation(s)
- Nina Grytten
- Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Kjell-Morten Myhr
- Department of Clinical Medicine, University of Bergen, Bergen, Norway/Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Elisabeth G Celius
- Department of Neurology, Oslo University Hospital, Ullevål, Oslo, Norway/Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Margitta Kampman
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway
| | - Rune Midgard
- Department of Neurology, Molde Hospital, Molde, Norway/Norwegian University of Science and Technology, Trondheim, Norway
| | - Anita Vatne
- Department of Rehabilitation, Hospital of Southern Norway, Kristiansand, Norway
| | - Jan H Aarseth
- Norwegian MS Registry and Biobank, Haukeland University Hospital, Bergen, Norway
| | - Trond Riise
- Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway/Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Øivind Torkildsen
- Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway/Department of Clinical Medicine, University of Bergen, Bergen, Norway/Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
21
|
The Unsolved Puzzle of c-Rel in B Cell Lymphoma. Cancers (Basel) 2019; 11:cancers11070941. [PMID: 31277480 PMCID: PMC6678315 DOI: 10.3390/cancers11070941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 01/04/2023] Open
Abstract
Aberrant constitutive activation of Rel/NF-κB transcription factors is a hallmark of numerous cancers. Of the five Rel family members, c-Rel has the strongest direct links to tumorigenesis. c-Rel is the only member that can malignantly transform lymphoid cells in vitro. Furthermore, c-Rel is implicated in human B cell lymphoma through the frequent occurrence of REL gene locus gains and amplifications. In normal physiology, high c-Rel expression predominates in the hematopoietic lineage and a diverse range of stimuli can trigger enhanced expression and activation of c-Rel. Both expression and activation of c-Rel are tightly regulated on multiple levels, indicating the necessity to keep its functions under control. In this review we meta-analyze and integrate studies reporting gene locus aberrations to provide an overview on the frequency of REL gains in human B cell lymphoma subtypes, namely follicular lymphoma, diffuse large B cell lymphoma, primary mediastinal B cell lymphoma, and classical Hodgkin lymphoma. We also summarize current knowledge on c-Rel expression and protein localization in these human B cell lymphomas and discuss the co-amplification of BCL11A with REL. In addition, we highlight and illustrate key pathways of c-Rel activation and regulation with a specific focus on B cell biology.
Collapse
|
22
|
Sud A, Thomsen H, Orlando G, Försti A, Law PJ, Broderick P, Cooke R, Hariri F, Pastinen T, Easton DF, Pharoah PDP, Dunning AM, Peto J, Canzian F, Eeles R, Kote-Jarai ZS, Muir K, Pashayan N, Campa D, Hoffmann P, Nöthen MM, Jöckel KH, von Strandmann EP, Swerdlow AJ, Engert A, Orr N, Hemminki K, Houlston RS. Genome-wide association study implicates immune dysfunction in the development of Hodgkin lymphoma. Blood 2018; 132:2040-2052. [PMID: 30194254 PMCID: PMC6236462 DOI: 10.1182/blood-2018-06-855296] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/19/2018] [Indexed: 02/08/2023] Open
Abstract
To further our understanding of inherited susceptibility to Hodgkin lymphoma (HL), we performed a meta-analysis of 7 genome-wide association studies totaling 5325 HL cases and 22 423 control patients. We identify 5 new HL risk loci at 6p21.31 (rs649775; P = 2.11 × 10-10), 6q23.3 (rs1002658; P = 2.97 × 10-8), 11q23.1 (rs7111520; P = 1.44 × 10-11), 16p11.2 (rs6565176; P = 4.00 × 10-8), and 20q13.12 (rs2425752; P = 2.01 × 10-8). Integration of gene expression, histone modification, and in situ promoter capture Hi-C data at the 5 new and 13 known risk loci implicates dysfunction of the germinal center reaction, disrupted T-cell differentiation and function, and constitutive NF-κB activation as mechanisms of predisposition. These data provide further insights into the genetic susceptibility and biology of HL.
Collapse
Affiliation(s)
- Amit Sud
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Hauke Thomsen
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Giulia Orlando
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Philip J Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Peter Broderick
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Rosie Cooke
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Fadi Hariri
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, McGill University, Montreal, QC, Canada
| | - Tomi Pastinen
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, McGill University, Montreal, QC, Canada
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology, and
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, and
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, and
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center, Heidelberg, Germany
| | - Rosalind Eeles
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - ZSofia Kote-Jarai
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Kenneth Muir
- Institute of Population Health, University of Manchester, Manchester, United Kingdom
- Division of Health Sciences, Warwick Medical School, Warwick University, Coventry, United Kingdom
| | - Nora Pashayan
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Department of Applied Health Research, University College London, London, United Kingdom
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | - Per Hoffmann
- Human Genomic Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Human Genetics and
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics and
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | | | - Elke Pogge von Strandmann
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University, Marburg, Germany
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
- Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom; and
| | - Andreas Engert
- Department of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Nick Orr
- Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom; and
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
23
|
Lagou V, Garcia-Perez JE, Smets I, Van Horebeek L, Vandebergh M, Chen L, Mallants K, Prezzemolo T, Hilven K, Humblet-Baron S, Moisse M, Van Damme P, Boeckxstaens G, Bowness P, Dubois B, Dooley J, Liston A, Goris A. Genetic Architecture of Adaptive Immune System Identifies Key Immune Regulators. Cell Rep 2018; 25:798-810.e6. [PMID: 30332657 PMCID: PMC6205839 DOI: 10.1016/j.celrep.2018.09.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/16/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
The immune system is highly diverse, but characterization of its genetic architecture has lagged behind the vast progress made by genome-wide association studies (GWASs) of emergent diseases. Our GWAS for 54 functionally relevant phenotypes of the adaptive immune system in 489 healthy individuals identifies eight genome-wide significant associations explaining 6%-20% of variance. Coding and splicing variants in PTPRC and COMMD10 are involved in memory T cell differentiation. Genetic variation controlling disease-relevant T helper cell subsets includes RICTOR and STON2 associated with Th2 and Th17, respectively, and the interferon-lambda locus controlling regulatory T cell proliferation. Early and memory B cell differentiation stages are associated with variation in LARP1B and SP4. Finally, the latrophilin family member ADGRL2 correlates with baseline pro-inflammatory interleukin-6 levels. Suggestive associations reveal mechanisms of autoimmune disease associations, in particular related to pro-inflammatory cytokine production. Pinpointing these key human immune regulators offers attractive therapeutic perspectives.
Collapse
Affiliation(s)
- Vasiliki Lagou
- KU Leuven Department of Neurosciences, Laboratory for Neuroimmunology, 3000 Leuven, Belgium; VIB Center for Brain & Disease Research, Laboratory for Translational Immunology, 3000 Leuven, Belgium; KU Leuven Department of Immunology and Microbiology, Laboratory for Translational Immunology, 3000 Leuven, Belgium; Leuven Brain Institute (LBI), Leuven, Belgium
| | - Josselyn E Garcia-Perez
- VIB Center for Brain & Disease Research, Laboratory for Translational Immunology, 3000 Leuven, Belgium; KU Leuven Department of Immunology and Microbiology, Laboratory for Translational Immunology, 3000 Leuven, Belgium; Leuven Brain Institute (LBI), Leuven, Belgium
| | - Ide Smets
- KU Leuven Department of Neurosciences, Laboratory for Neuroimmunology, 3000 Leuven, Belgium; Leuven Brain Institute (LBI), Leuven, Belgium; Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Lies Van Horebeek
- KU Leuven Department of Neurosciences, Laboratory for Neuroimmunology, 3000 Leuven, Belgium; Leuven Brain Institute (LBI), Leuven, Belgium
| | - Marijne Vandebergh
- KU Leuven Department of Neurosciences, Laboratory for Neuroimmunology, 3000 Leuven, Belgium; Leuven Brain Institute (LBI), Leuven, Belgium
| | - Liye Chen
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Klara Mallants
- KU Leuven Department of Neurosciences, Laboratory for Neuroimmunology, 3000 Leuven, Belgium; Leuven Brain Institute (LBI), Leuven, Belgium
| | - Teresa Prezzemolo
- VIB Center for Brain & Disease Research, Laboratory for Translational Immunology, 3000 Leuven, Belgium; KU Leuven Department of Immunology and Microbiology, Laboratory for Translational Immunology, 3000 Leuven, Belgium; Leuven Brain Institute (LBI), Leuven, Belgium
| | - Kelly Hilven
- KU Leuven Department of Neurosciences, Laboratory for Neuroimmunology, 3000 Leuven, Belgium; Leuven Brain Institute (LBI), Leuven, Belgium
| | - Stephanie Humblet-Baron
- VIB Center for Brain & Disease Research, Laboratory for Translational Immunology, 3000 Leuven, Belgium; KU Leuven Department of Immunology and Microbiology, Laboratory for Translational Immunology, 3000 Leuven, Belgium; Leuven Brain Institute (LBI), Leuven, Belgium
| | - Matthieu Moisse
- Leuven Brain Institute (LBI), Leuven, Belgium; VIB Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium; KU Leuven Department of Neurosciences, Experimental Neurology, 3000 Leuven, Belgium
| | - Philip Van Damme
- Leuven Brain Institute (LBI), Leuven, Belgium; Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium; VIB Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium; KU Leuven Department of Neurosciences, Experimental Neurology, 3000 Leuven, Belgium
| | - Guy Boeckxstaens
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for GI Disorders (TARGID), 3000 Leuven, Belgium; Department of Gastroenterology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Paul Bowness
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Bénédicte Dubois
- KU Leuven Department of Neurosciences, Laboratory for Neuroimmunology, 3000 Leuven, Belgium; Leuven Brain Institute (LBI), Leuven, Belgium; Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - James Dooley
- VIB Center for Brain & Disease Research, Laboratory for Translational Immunology, 3000 Leuven, Belgium; KU Leuven Department of Immunology and Microbiology, Laboratory for Translational Immunology, 3000 Leuven, Belgium; Leuven Brain Institute (LBI), Leuven, Belgium
| | - Adrian Liston
- VIB Center for Brain & Disease Research, Laboratory for Translational Immunology, 3000 Leuven, Belgium; KU Leuven Department of Immunology and Microbiology, Laboratory for Translational Immunology, 3000 Leuven, Belgium; Leuven Brain Institute (LBI), Leuven, Belgium.
| | - An Goris
- KU Leuven Department of Neurosciences, Laboratory for Neuroimmunology, 3000 Leuven, Belgium; Leuven Brain Institute (LBI), Leuven, Belgium.
| |
Collapse
|
24
|
Grover NS, Dittus CE, Ma AD, Park SI. Hodgkin Lymphoma With Multiple Autoimmune Disorders: Case Report and Review of the Literature. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2018; 18:e365-e368. [PMID: 29980411 DOI: 10.1016/j.clml.2018.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/05/2018] [Accepted: 06/11/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Natalie S Grover
- Division of Hematology/Oncology, University of North Carolina, Chapel Hill, NC.
| | | | - Alice D Ma
- Division of Hematology/Oncology, University of North Carolina, Chapel Hill, NC
| | | |
Collapse
|
25
|
Are EBV-related and EBV-unrelated Hodgkin lymphomas different with regard to susceptibility to checkpoint blockade? Blood 2018; 132:17-22. [DOI: 10.1182/blood-2018-02-833806] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022] Open
Abstract
Abstract
Epstein-Barr virus (EBV)–related and EBV-unrelated classical Hodgkin lymphomas (cHLs) are morphologically and phenotypically indistinguishable. However, the tumor microenvironment of EBV-related cHLs contains higher numbers of macrophages and higher expression levels of PD-L1 than that of EBV-unrelated cHLs. Moreover, viral oncoprotein LMP1 may sustain an immunosuppressive microenvironment by inducing/enhancing production of immunosuppressive cytokines and the expression of PD-1. The presence of enhanced immunosuppressive features in EBV-related cHL should make EBV-related cHL patients more susceptible to checkpoint blockade.
Collapse
|
26
|
Lawrie A, Han S, Sud A, Hosking F, Cezard T, Turner D, Clark C, Murray GI, Culligan DJ, Houlston RS, Vickers MA. Combined linkage and association analysis of classical Hodgkin lymphoma. Oncotarget 2018; 9:20377-20385. [PMID: 29755658 PMCID: PMC5945548 DOI: 10.18632/oncotarget.24872] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 03/01/2018] [Indexed: 12/29/2022] Open
Abstract
The heritability of classical Hodgkin lymphoma (cHL) has yet to be fully deciphered. We report a family with five members diagnosed with nodular sclerosis cHL. Genetic analysis of the family provided evidence of linkage at chromosomes 2q35-37, 3p14-22 and 21q22, with logarithm of odds score >2. We excluded the possibility of common genetic variation influencing cHL risk at regions of linkage, by analysing GWAS data from 2,201 cHL cases and 12,460 controls. Whole exome sequencing of affected family members identified the shared missense mutations p.(Arg76Gln) in FAM107A and p.(Thr220Ala) in SLC26A6 at 3p21 as being predicted to impact on protein function. FAM107A expression was shown to be low or absent in lymphoblastoid cell lines and SLC26A6 expression lower in lymphoblastoid cell lines derived from p.(Thr220Ala) mutation carriers. Expression of FAM107A and SLC26A6 was low or absent in Hodgkin Reed-Sternberg (HRS) cell lines and in HRS cells in Hodgkin lymphoma tissue. No sequence variants were detected in KLHDC8B, a gene previously suggested as a cause of familial cHL linked to 3p21. Our findings provide evidence for candidate gene susceptibility to familial cHL.
Collapse
Affiliation(s)
- Alastair Lawrie
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Shuo Han
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- Current address: Clinical Trials Manager, MD Anderson Cancer Centre Investigational Cancer Therapeutics, Houston, TX, USA
| | - Amit Sud
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Fay Hosking
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Timothee Cezard
- The Genepool, University of Edinburgh, Edinburgh, United Kingdom
| | - David Turner
- Scottish National Blood Transfusion Service, Edinburgh, United Kingdom
| | - Caroline Clark
- Department of Medical Genetics, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| | - Graeme I. Murray
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Dominic J. Culligan
- Department of Haematology, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| | - Richard S. Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Mark A. Vickers
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- Scottish National Blood Transfusion Service, Edinburgh, United Kingdom
| |
Collapse
|
27
|
|
28
|
Sud A, Thomsen H, Law PJ, Försti A, Filho MIDS, Holroyd A, Broderick P, Orlando G, Lenive O, Wright L, Cooke R, Easton D, Pharoah P, Dunning A, Peto J, Canzian F, Eeles R, Kote-Jarai ZS, Muir K, Pashayan N, Hoffmann P, Nöthen MM, Jöckel KH, Strandmann EPV, Lightfoot T, Kane E, Roman E, Lake A, Montgomery D, Jarrett RF, Swerdlow AJ, Engert A, Orr N, Hemminki K, Houlston RS. Genome-wide association study of classical Hodgkin lymphoma identifies key regulators of disease susceptibility. Nat Commun 2017; 8:1892. [PMID: 29196614 PMCID: PMC5711884 DOI: 10.1038/s41467-017-00320-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/20/2017] [Indexed: 02/08/2023] Open
Abstract
Several susceptibility loci for classical Hodgkin lymphoma have been reported. However, much of the heritable risk is unknown. Here, we perform a meta-analysis of two existing genome-wide association studies, a new genome-wide association study, and replication totalling 5,314 cases and 16,749 controls. We identify risk loci for all classical Hodgkin lymphoma at 6q22.33 (rs9482849, P = 1.52 × 10-8) and for nodular sclerosis Hodgkin lymphoma at 3q28 (rs4459895, P = 9.43 × 10-17), 6q23.3 (rs6928977, P = 4.62 × 10-11), 10p14 (rs3781093, P = 9.49 × 10-13), 13q34 (rs112998813, P = 4.58 × 10-8) and 16p13.13 (rs34972832, P = 2.12 × 10-8). Additionally, independent loci within the HLA region are observed for nodular sclerosis Hodgkin lymphoma (rs9269081, HLA-DPB1*03:01, Val86 in HLA-DRB1) and mixed cellularity Hodgkin lymphoma (rs1633096, rs13196329, Val86 in HLA-DRB1). The new and established risk loci localise to areas of active chromatin and show an over-representation of transcription factor binding for determinants of B-cell development and immune response.
Collapse
Affiliation(s)
- Amit Sud
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Hauke Thomsen
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre, Heidelberg, 69120, Germany
| | - Philip J Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre, Heidelberg, 69120, Germany
- Centre for Primary Health Care Research, Lund University, Malmö, 221 00, Sweden
| | | | - Amy Holroyd
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Peter Broderick
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Giulia Orlando
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Oleg Lenive
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Lauren Wright
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Rosie Cooke
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Douglas Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Paul Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Alison Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Rosalind Eeles
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
- Royal Marsden NHS Foundation Trust, London, SM2 5NG, UK
| | - ZSofia Kote-Jarai
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Kenneth Muir
- Institute of Population Health, University of Manchester, Manchester, M1 3BB, UK
- Division of Health Sciences, Warwick Medical School, Warwick University, Warwick, CV4 7AL, UK
| | - Nora Pashayan
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
- Department of Applied Health Research, University College London, London, WC1E 7HB, UK
| | - Per Hoffmann
- Department of Biomedicine, Division of Medical Genetics, University of Basel, Basel, 4031, Switzerland
- Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, 53127, Germany
| | | | | | - Tracy Lightfoot
- Department of Health Sciences, University of York, York, YO10 5DD, UK
| | - Eleanor Kane
- Department of Health Sciences, University of York, York, YO10 5DD, UK
| | - Eve Roman
- Department of Health Sciences, University of York, York, YO10 5DD, UK
| | - Annette Lake
- MRC University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, UK
| | - Dorothy Montgomery
- MRC University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, UK
| | - Ruth F Jarrett
- MRC University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, UK
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Andreas Engert
- Department of Internal Medicine, University Hospital of Cologne, Cologne, 50937, Germany
| | - Nick Orr
- Division of Molecular Pathology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre, Heidelberg, 69120, Germany
- Centre for Primary Health Care Research, Lund University, Malmö, 221 00, Sweden
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK.
- Division of Molecular Pathology, The Institute of Cancer Research, London, SW7 3RP, UK.
| |
Collapse
|
29
|
Sud A, Kinnersley B, Houlston RS. Genome-wide association studies of cancer: current insights and future perspectives. Nat Rev Cancer 2017; 17:692-704. [PMID: 29026206 DOI: 10.1038/nrc.2017.82] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genome-wide association studies (GWAS) provide an agnostic approach for investigating the genetic basis of complex diseases. In oncology, GWAS of nearly all common malignancies have been performed, and over 450 genetic variants associated with increased risks have been identified. As well as revealing novel pathways important in carcinogenesis, these studies have shown that common genetic variation contributes substantially to the heritable risk of many common cancers. The clinical application of GWAS is starting to provide opportunities for drug discovery and repositioning as well as for cancer prevention. However, deciphering the functional and biological basis of associations is challenging and is in part a barrier to fully unlocking the potential of GWAS.
Collapse
Affiliation(s)
- Amit Sud
- Division of Genetics and Epidemiology, The Institute of Cancer Research
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research
- Division of Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK
| |
Collapse
|
30
|
|
31
|
Park SL, Cheng I, Haiman CA. Genome-Wide Association Studies of Cancer in Diverse Populations. Cancer Epidemiol Biomarkers Prev 2017. [PMID: 28637795 DOI: 10.1158/1055-9965.epi-17-0169] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genome-wide association studies (GWAS) of cancer have identified more than 700 risk loci, of which approximately 80% were first discovered in European ancestry populations, approximately 15% in East Asians, 3% in multiethnic scans, and less than 1% in African and Latin American populations. These percentages closely mirror the distribution of samples included in the discovery phase of cancer GWAS to date (84% European, 11% East Asian, 4% African, and 1% Latin American ancestry). GWAS in non-European ancestry populations have provided insight into ancestry-specific variation in cancer and have pointed to regions of susceptibility that are of particular importance in certain populations. Uncovering and characterizing cancer risk loci in diverse populations is critical for understanding underlying biological mechanisms and developing future genetic risk prediction models in non-European ancestry populations. New GWAS and continued collaborations will be required to eliminate population inequalities in the number of studies, sample sizes, and variant content on GWAS arrays, and to better align genetic research in cancer to the global distribution of race/ethnicity Cancer Epidemiol Biomarkers Prev; 27(4); 405-17. ©2018 AACRSee all articles in this CEBP Focus section, "Genome-Wide Association Studies in Cancer."
Collapse
Affiliation(s)
- Sungshim L Park
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Iona Cheng
- Cancer Prevention Institute of California, Fremont, California.,Stanford Cancer Institute, Palo Alto, California
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
32
|
Zhai K, Chang J, Hu J, Wu C, Lin D. Germline variation in the 3'-untranslated region of the POU2AF1 gene is associated with susceptibility to lymphoma. Mol Carcinog 2017; 56:1945-1952. [PMID: 28345816 DOI: 10.1002/mc.22652] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 03/05/2017] [Accepted: 03/23/2017] [Indexed: 01/06/2023]
Abstract
Genetic variations in certain genes may alter the susceptibility to lymphoma. We searched electronic databases and selected candidate single-nucleotide polymorphisms (SNPs) located within 3'-untranslated regions (3'-UTRs) that might affect miRNA-binding ability in the 50 most dysregulated genes in lymphoma for further study. We found that rs1042752-located in the 3'-UTR of POU2AF1, which plays a vital role in lymphomagenesis-was significantly associated with lymphoma risk in a case-control study with 793 patients and 939 controls. Compared with individuals with the rs1042752TT genotype, those with the rs1042752CC genotype had a higher risk of lymphoma (OR = 2.14, 95% CI: 1.55-2.95, P < 0.001), even in stratified analysis for non-Hodgkin lymphoma (OR = 4.58, 95% CI: 2.38-8.81, P < 0.001), B-cell lymphoma (OR = 4.89, 95% CI: 2.46-9.73, P < 0.001), T-cell lymphoma (OR = 4.20, 95% CI: 1.76-10.05, P = 0.001), and Hodgkin lymphoma (OR = 3.62, 95% CI: 1.25-10.46, P = 0.018). Similar results were also observed in a recessive genetic model. Database findings suggested that rs1042752 might affect the interaction of POU2AF1 mRNA with hsa-miR-633. Functional assays confirmed that rs1042752C altered the binding site of hsa-miR-633 and increased POU2AF1 expression in Ramos, HuT 102, and Jurkat E6-1 cell lines. These findings demonstrate for the first time that functional polymorphism in the 3'-UTR of POU2AF1 is associated with susceptibility, and that SNP interaction with hsa-miR-633 affects gene expression and increases the risk of lymphoma.
Collapse
Affiliation(s)
- Kan Zhai
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jiang Chang
- State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment and Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan) and School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinlong Hu
- Department of Oncology, People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, Zhengzhou, China
| | - Chen Wu
- Department of Etiology and Carcinogenesis, Chinese Academy of Medical Science and Peking Union Medical College, Cancer Institute and Hospital, Beijing, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, Chinese Academy of Medical Science and Peking Union Medical College, Cancer Institute and Hospital, Beijing, China
| |
Collapse
|
33
|
Huang D, Ovcharenko I. Epigenetic and genetic alterations and their influence on gene regulation in chronic lymphocytic leukemia. BMC Genomics 2017; 18:236. [PMID: 28302063 PMCID: PMC5353786 DOI: 10.1186/s12864-017-3617-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/10/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND To understand the changes of gene regulation in carcinogenesis, we explored signals of DNA methylation - a stable epigenetic mark of gene regulatory elements - and designed a computational model to profile loss and gain of regulatory elements (REs) during carcinogenesis. We also utilized sequencing data to analyze the allele frequency of single nucleotide polymorphisms (SNPs) and detected the cancer-associated SNPs, i.e., the SNPs displaying the significant allele frequency difference between cancer and normal samples. RESULTS After applying this model to chronic lymphocytic leukemia (CLL) data, we identified REs differentially activated (dREs) between normal and CLL cells, consisting of 6,802 dREs gained and 4,606 dREs lost in CLL. The identified regulatory perturbations coincide with changes in the expression of target genes. In particular, the genes encoding DNA methyltransferases harbor multiple lost-in-cancer dREs and zero gained-in-cancer dREs, indicating that the damaged regulation of these genes might be one of the key causes of tumor formation. dREs display a significantly elevated density of the genome-wide association study (GWAS) SNPs associated with CLL and CLL-related traits. We observed that most of dRE GWAS SNPs associated with CLL and CLL-related traits (83%) display a significant haplotype association among the identified cancer-associated alleles and the risk alleles that have been reported in GWAS. Also dREs are enriched for the binding sites of the well-established B-cell and CLL transcription factors (TFs) NF-kB, AP2, P53, E2F1, PAX5, and SP1. We also identified CLL-associated SNPs and demonstrated that the mutations at these SNPs change the binding sites of key TFs much more frequently than expected. CONCLUSIONS Through exploring sequencing data measuring DNA methylation, we identified the epigenetic alterations (more specifically, DNA methylation) and genetic mutations along non-coding genomic regions CLL, and demonstrated that these changes play a critical role in carcinogenesis through damaging the regulation of key genes and alternating the binding of key TFs in B and CLL cells.
Collapse
Affiliation(s)
- Di Huang
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ivan Ovcharenko
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
34
|
Sud A, Hemminki K, Houlston RS. Candidate gene association studies and risk of Hodgkin lymphoma: a systematic review and meta-analysis. Hematol Oncol 2017; 35:34-50. [PMID: 26053036 PMCID: PMC6175040 DOI: 10.1002/hon.2235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/18/2015] [Accepted: 04/13/2015] [Indexed: 12/12/2022]
Abstract
To evaluate the contribution of association studies of candidate polymorphisms to inherited predisposition to Hodgkin lymphoma (HL), we conducted a systematic review and meta-analysis of published case-control studies. Of the variants examined more than once in candidate gene association studies, we identified 21 studies that reported on 12 polymorphic variants in 10 genes. Data were also extracted from a published genome wide association study to allow analysis of an additional 47 variants in a further 30 genes. Promising associations were seen in nine of the variants (p < 0.05). Given that the estimated false positive report probabilities (FPRPs) for all associations are high (i.e. FPRP > 0.2), these findings should be interpreted with caution. While studies of candidate polymorphisms may be an attractive means of identifying risk factors for HL, future studies should employ sample sizes adequately powered to identify variants having only modest effects on HL risk. Furthermore, because of aetiological heterogeneity within HL, stratification of genotyping according to age, tumour Epstein-Barr virus status and histology is essential. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Amit Sud
- Division of Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
| | - Kari Hemminki
- German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
| |
Collapse
|
35
|
Law PJ, Sud A, Mitchell JS, Henrion M, Orlando G, Lenive O, Broderick P, Speedy HE, Johnson DC, Kaiser M, Weinhold N, Cooke R, Sunter NJ, Jackson GH, Summerfield G, Harris RJ, Pettitt AR, Allsup DJ, Carmichael J, Bailey JR, Pratt G, Rahman T, Pepper C, Fegan C, von Strandmann EP, Engert A, Försti A, Chen B, Filho MIDS, Thomsen H, Hoffmann P, Noethen MM, Eisele L, Jöckel KH, Allan JM, Swerdlow AJ, Goldschmidt H, Catovsky D, Morgan GJ, Hemminki K, Houlston RS. Genome-wide association analysis of chronic lymphocytic leukaemia, Hodgkin lymphoma and multiple myeloma identifies pleiotropic risk loci. Sci Rep 2017; 7:41071. [PMID: 28112199 PMCID: PMC5253627 DOI: 10.1038/srep41071] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/14/2016] [Indexed: 02/08/2023] Open
Abstract
B-cell malignancies (BCM) originate from the same cell of origin, but at different maturation stages and have distinct clinical phenotypes. Although genetic risk variants for individual BCMs have been identified, an agnostic, genome-wide search for shared genetic susceptibility has not been performed. We explored genome-wide association studies of chronic lymphocytic leukaemia (CLL, N = 1,842), Hodgkin lymphoma (HL, N = 1,465) and multiple myeloma (MM, N = 3,790). We identified a novel pleiotropic risk locus at 3q22.2 (NCK1, rs11715604, P = 1.60 × 10-9) with opposing effects between CLL (P = 1.97 × 10-8) and HL (P = 3.31 × 10-3). Eight established non-HLA risk loci showed pleiotropic associations. Within the HLA region, Ser37 + Phe37 in HLA-DRB1 (P = 1.84 × 10-12) was associated with increased CLL and HL risk (P = 4.68 × 10-12), and reduced MM risk (P = 1.12 × 10-2), and Gly70 in HLA-DQB1 (P = 3.15 × 10-10) showed opposing effects between CLL (P = 3.52 × 10-3) and HL (P = 3.41 × 10-9). By integrating eQTL, Hi-C and ChIP-seq data, we show that the pleiotropic risk loci are enriched for B-cell regulatory elements, as well as an over-representation of binding of key B-cell transcription factors. These data identify shared biological pathways influencing the development of CLL, HL and MM. The identification of these risk loci furthers our understanding of the aetiological basis of BCMs.
Collapse
Affiliation(s)
- Philip J. Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Amit Sud
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Jonathan S. Mitchell
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Marc Henrion
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Giulia Orlando
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Oleg Lenive
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Peter Broderick
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Helen E. Speedy
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - David C. Johnson
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Martin Kaiser
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Niels Weinhold
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Rosie Cooke
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Nicola J. Sunter
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Graham H. Jackson
- Department of Haematology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Geoffrey Summerfield
- Department of Haematology, Queen Elizabeth Hospital, Gateshead, Newcastle upon Tyne, UK
| | - Robert J. Harris
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Andrew R. Pettitt
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - David J. Allsup
- Queens Centre for Haematology and Oncology, Castle Hill Hospital, Hull and East Yorkshire NHS Trust, UK
| | - Jonathan Carmichael
- Queens Centre for Haematology and Oncology, Castle Hill Hospital, Hull and East Yorkshire NHS Trust, UK
| | - James R. Bailey
- Queens Centre for Haematology and Oncology, Castle Hill Hospital, Hull and East Yorkshire NHS Trust, UK
| | - Guy Pratt
- Department of Haematology, Birmingham Heartlands Hospital, Birmingham, UK
| | - Thahira Rahman
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Chris Pepper
- Department of Haematology, School of Medicine, Cardiff University, Cardiff, UK
| | - Chris Fegan
- Cardiff and Vale National Health Service Trust, Heath Park, Cardiff, UK
| | | | - Andreas Engert
- Department of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre, Heidelberg, Germany
- Centre for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Bowang Chen
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre, Heidelberg, Germany
| | | | - Hauke Thomsen
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre, Heidelberg, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Germany
- Division of Medical Genetics, Department of Biomedicine, University of Basel, Switzerland
| | - Markus M. Noethen
- Institute of Human Genetics, University of Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Germany
| | | | | | - James M. Allan
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Anthony J. Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Hartmut Goldschmidt
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- National Center of Tumor Diseases, Heidelberg, Germany
| | - Daniel Catovsky
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Gareth J. Morgan
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre, Heidelberg, Germany
- Centre for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Richard S. Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| |
Collapse
|
36
|
Mancini I, Ricaño-Ponce I, Pappalardo E, Cairo A, Gorski MM, Casoli G, Ferrari B, Alberti M, Mikovic D, Noris M, Wijmenga C, Peyvandi F. Immunochip analysis identifies novel susceptibility loci in the human leukocyte antigen region for acquired thrombotic thrombocytopenic purpura. J Thromb Haemost 2016; 14:2356-2367. [PMID: 27762046 DOI: 10.1111/jth.13548] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/28/2016] [Indexed: 12/11/2022]
Abstract
Essentials Genetic predisposition to acquired thrombotic thrombocytopenic purpura (aTTP) is mainly unknown. Genetic risk factors for aTTP were studied by Immunochip analysis and replication study. Human leukocyte antigen (HLA) variant rs6903608 conferred a 2.5-fold higher risk of developing aTTP. rs6903608 and HLA-DQB1*05:03 may explain most of the HLA association signal in aTTP. Click to hear Dr Cataland's presentation on acquired thrombotic thrombocytopenic purpura SUMMARY: Background Acquired thrombotic thrombocytopenic purpura (TTP) is a rare, life-threatening thrombotic microangiopathy associated with the development of autoantibodies against the von Willebrand factor-cleaving protease ADAMTS-13. Similarly to what has been found for other autoimmune disorders, there is evidence of a genetic contribution, including the association of the human leukocyte antigen (HLA) class II complex with disease risk. Objective To identify novel genetic risk factors in acquired TTP. Patients/Methods We undertook a case-control genetic association study in 190 European-origin TTP patients and 1255 Italian healthy controls by using the Illumina Immunochip. Replication analysis in 88 Italian cases and 456 controls was performed with single-nucleotide polymorphism (SNP) TaqMan assays. Results and conclusion We identified one common variant (rs6903608) located within the HLA class II locus that was independently associated with acquired TTP at genome-wide significance and conferred a 2.6-fold increased risk of developing a TTP episode (95% confidence interval [CI] 2.02-3.27, P = 1.64 × 10-14 ). We also found five non-HLA variants mapping to chromosomes 2, 6, 8 and X that were suggestively associated with the disease: rs9490550, rs115265285, rs5927472, rs7823314, and rs1334768 (nominal P-values ranging from 1.59 × 10-5 to 7.60 × 10-5 ). Replication analysis confirmed the association of HLA variant rs6903608 with acquired TTP (pooled P = 3.95 × 10-19 ). Imputation of classic HLA genes followed by stepwise conditional analysis revealed that the combination of rs6903608 and HLA-DQB1*05:03 may explain most of the HLA association signal in acquired TTP. Our results refined the association of the HLA class II locus with acquired TTP, confirming its importance in the etiology of this autoimmune disease.
Collapse
Affiliation(s)
- I Mancini
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, and Fondazione Luigi Villa, Milan, Italy
| | - I Ricaño-Ponce
- Genetics Department, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - E Pappalardo
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, and Fondazione Luigi Villa, Milan, Italy
| | - A Cairo
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - M M Gorski
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, and Fondazione Luigi Villa, Milan, Italy
| | - G Casoli
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - B Ferrari
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - M Alberti
- IRCCS - Istituto di Ricerche Farmacologiche 'Mario Negri', Clinical Research Center for Rare Diseases, Aldo e Cele Daccò, Bergamo, Italy
| | - D Mikovic
- Hemostasis Department and Hemophilia Center, Blood Transfusion Institute of Serbia, Belgrade, Serbia
| | - M Noris
- IRCCS - Istituto di Ricerche Farmacologiche 'Mario Negri', Clinical Research Center for Rare Diseases, Aldo e Cele Daccò, Bergamo, Italy
| | - C Wijmenga
- Genetics Department, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - F Peyvandi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, and Fondazione Luigi Villa, Milan, Italy
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
37
|
Rotunno M, McMaster ML, Boland J, Bass S, Zhang X, Burdett L, Hicks B, Ravichandran S, Luke BT, Yeager M, Fontaine L, Hyland PL, Goldstein AM, Chanock SJ, Caporaso NE, Tucker MA, Goldin LR. Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene. Haematologica 2016; 101:853-60. [PMID: 27365461 PMCID: PMC5004465 DOI: 10.3324/haematol.2015.135475] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/07/2016] [Indexed: 01/30/2023] Open
Abstract
Hodgkin lymphoma shows strong familial aggregation but no major susceptibility genes have been identified to date. The goal of this study was to identify high-penetrance variants using whole exome sequencing in 17 Hodgkin lymphoma prone families with three or more affected cases or obligate carriers (69 individuals), followed by targeted sequencing in an additional 48 smaller HL families (80 individuals). Alignment and variant calling were performed using standard methods. Dominantly segregating, rare, coding or potentially functional variants were further prioritized based on predicted deleteriousness, conservation, and potential importance in lymphoid malignancy pathways. We selected 23 genes for targeted sequencing. Only the p.A1065T variant in KDR (kinase insert domain receptor) also known as VEGFR2 (vascular endothelial growth factor receptor 2) was replicated in two independent Hodgkin lymphoma families. KDR is a type III receptor tyrosine kinase, the main mediator of vascular endothelial growth factor induced proliferation, survival, and migration. Its activity is associated with several diseases including lymphoma. Functional experiments have shown that p.A1065T, located in the activation loop, can promote constitutive autophosphorylation on tyrosine in the absence of vascular endothelial growth factor and that the kinase activity was abrogated after exposure to kinase inhibitors. A few other promising mutations were identified but appear to be "private". In conclusion, in the largest sequenced cohort of Hodgkin lymphoma families to date, we identified a causal mutation in the KDR gene. While independent validation is needed, this mutation may increase downstream tumor cell proliferation activity and might be a candidate for targeted therapy.
Collapse
Affiliation(s)
- Melissa Rotunno
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Mary L McMaster
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Joseph Boland
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Sara Bass
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Xijun Zhang
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Laurie Burdett
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Belynda Hicks
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Sarangan Ravichandran
- Advanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Brian T Luke
- Advanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | - Paula L Hyland
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Alisa M Goldstein
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Neil E Caporaso
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Margaret A Tucker
- Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Lynn R Goldin
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
38
|
Thomsen H, Inacio da Silva Filho M, Fuchs M, Ponader S, Pogge von Strandmann E, Eisele L, Herms S, Hoffmann P, Engert A, Hemminki K, Försti A. Evidence of Inbreeding in Hodgkin Lymphoma. PLoS One 2016; 11:e0154259. [PMID: 27123581 PMCID: PMC4849743 DOI: 10.1371/journal.pone.0154259] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/10/2016] [Indexed: 02/05/2023] Open
Abstract
Genome-wide association studies (GWASs) have identified several, mainly co-dominantly acting, single-nucleotide polymorphisms (SNPs) associated with Hodgkin lymphoma (HL). We searched for recessively acting disease loci by performing an analysis of runs of homozygosity (ROH) based on windows of homozygous SNP-blocks and by calculating genomic inbreeding coefficients on a SNP-wise basis. We used data from a previous GWAS with 906 cases and 1217 controls from a population with a long history of no matings between relatives. Ten recurrent ROHs were identified among 25 055 ROHs across all individuals but their association with HL was not genome-wide significant. All recurrent ROHs showed significant evidence for natural selection. As a novel finding genomic inbreeding among cases was significantly higher than among controls (P = 2.11*10-14) even after correcting for covariates. Higher inbreeding among the cases was mainly based on a group of individuals with a higher average length of ROHs per person. This result suggests a correlation of higher levels of inbreeding with higher cancer incidence and might reflect the existence of recessive alleles causing HL. Genomic inbreeding may result in a higher expression of deleterious recessive genes within a population.
Collapse
Affiliation(s)
- Hauke Thomsen
- German Cancer Research Center (DKFZ), Division of Molecular Genetic Epidemiology (C050), Heidelberg, 69120, Germany
| | - Miguel Inacio da Silva Filho
- German Cancer Research Center (DKFZ), Division of Molecular Genetic Epidemiology (C050), Heidelberg, 69120, Germany
| | - Michael Fuchs
- Department of Internal Medicine I, University Hospital of Cologne, Cologne, 50924, Germany
| | - Sabine Ponader
- Department of Internal Medicine I, University Hospital of Cologne, Cologne, 50924, Germany
| | | | - Lewin Eisele
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University Duisburg-Essen, Essen, 45122, Germany
| | - Stefan Herms
- Institute of Human Genetics and Department of Genomics, University of Bonn, Bonn, 53127, Germany
- Department of Biomedicine, Division of Medical Genetics, Basel, University of Basel, 4058, Switzerland
| | - Per Hoffmann
- Institute of Human Genetics and Department of Genomics, University of Bonn, Bonn, 53127, Germany
- Department of Biomedicine, Division of Medical Genetics, Basel, University of Basel, 4058, Switzerland
| | - Andreas Engert
- Department of Internal Medicine I, University Hospital of Cologne, Cologne, 50924, Germany
| | - Kari Hemminki
- German Cancer Research Center (DKFZ), Division of Molecular Genetic Epidemiology (C050), Heidelberg, 69120, Germany
- Center for Primary Health Care Research, Lund University, Malmö, 20502, Sweden
| | - Asta Försti
- German Cancer Research Center (DKFZ), Division of Molecular Genetic Epidemiology (C050), Heidelberg, 69120, Germany
- Center for Primary Health Care Research, Lund University, Malmö, 20502, Sweden
| |
Collapse
|
39
|
McAulay KA, Jarrett RF. Human leukocyte antigens and genetic susceptibility to lymphoma. ACTA ACUST UNITED AC 2016; 86:98-113. [PMID: 26189878 DOI: 10.1111/tan.12604] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Familial aggregation, coupled with ethnic variation in incidence, suggests that inherited susceptibility plays a role in the development of lymphoma, and the search for genetic risk factors has highlighted the contribution of the human leukocyte antigen (HLA) complex. In a landmark study published almost 50 years ago, Hodgkin lymphoma (HL) was the first disease to be associated with HLA variation. It is now clear that Epstein-Barr virus (EBV)-positive and -negative HL are strongly associated with specific HLA polymorphisms but these differ by EBV status of the tumours. HLA class I alleles are consistently associated with EBV-positive HL while a polymorphism in HLA class II is the strongest predictor of risk of EBV-negative HL. Recent investigations, particularly genome-wide association studies (GWAS), have also revealed associations between HLA and common types of non-Hodgkin lymphoma (NHL). Follicular lymphoma is strongly associated with two distinct haplotypes in HLA class II whereas diffuse large B-cell lymphoma is most strongly associated with HLA-B*08. Although chronic lymphocytic leukaemia is associated with variation in HLA class II, the strongest signals in GWAS are from non-HLA polymorphisms, suggesting that inherited susceptibility is explained by co-inheritance of multiple low risk variants. Associations between B-cell derived lymphoma and HLA variation suggest that antigen presentation, or lack of, plays an important role in disease pathogenesis but the precise mechanisms have yet to be elucidated.
Collapse
Affiliation(s)
- K A McAulay
- MRC - University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - R F Jarrett
- MRC - University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
40
|
Berndt SI, Camp NJ, Skibola CF, Vijai J, Wang Z, Gu J, Nieters A, Kelly RS, Smedby KE, Monnereau A, Cozen W, Cox A, Wang SS, Lan Q, Teras LR, Machado M, Yeager M, Brooks-Wilson AR, Hartge P, Purdue MP, Birmann BM, Vajdic CM, Cocco P, Zhang Y, Giles GG, Zeleniuch-Jacquotte A, Lawrence C, Montalvan R, Burdett L, Hutchinson A, Ye Y, Call TG, Shanafelt TD, Novak AJ, Kay NE, Liebow M, Cunningham JM, Allmer C, Hjalgrim H, Adami HO, Melbye M, Glimelius B, Chang ET, Glenn M, Curtin K, Cannon-Albright LA, Diver WR, Link BK, Weiner GJ, Conde L, Bracci PM, Riby J, Arnett DK, Zhi D, Leach JM, Holly EA, Jackson RD, Tinker LF, Benavente Y, Sala N, Casabonne D, Becker N, Boffetta P, Brennan P, Foretova L, Maynadie M, McKay J, Staines A, Chaffee KG, Achenbach SJ, Vachon CM, Goldin LR, Strom SS, Leis JF, Weinberg JB, Caporaso NE, Norman AD, De Roos AJ, Morton LM, Severson RK, Riboli E, Vineis P, Kaaks R, Masala G, Weiderpass E, Chirlaque MD, Vermeulen RCH, Travis RC, Southey MC, Milne RL, Albanes D, Virtamo J, Weinstein S, Clavel J, Zheng T, Holford TR, Villano DJ, Maria A, Spinelli JJ, Gascoyne RD, et alBerndt SI, Camp NJ, Skibola CF, Vijai J, Wang Z, Gu J, Nieters A, Kelly RS, Smedby KE, Monnereau A, Cozen W, Cox A, Wang SS, Lan Q, Teras LR, Machado M, Yeager M, Brooks-Wilson AR, Hartge P, Purdue MP, Birmann BM, Vajdic CM, Cocco P, Zhang Y, Giles GG, Zeleniuch-Jacquotte A, Lawrence C, Montalvan R, Burdett L, Hutchinson A, Ye Y, Call TG, Shanafelt TD, Novak AJ, Kay NE, Liebow M, Cunningham JM, Allmer C, Hjalgrim H, Adami HO, Melbye M, Glimelius B, Chang ET, Glenn M, Curtin K, Cannon-Albright LA, Diver WR, Link BK, Weiner GJ, Conde L, Bracci PM, Riby J, Arnett DK, Zhi D, Leach JM, Holly EA, Jackson RD, Tinker LF, Benavente Y, Sala N, Casabonne D, Becker N, Boffetta P, Brennan P, Foretova L, Maynadie M, McKay J, Staines A, Chaffee KG, Achenbach SJ, Vachon CM, Goldin LR, Strom SS, Leis JF, Weinberg JB, Caporaso NE, Norman AD, De Roos AJ, Morton LM, Severson RK, Riboli E, Vineis P, Kaaks R, Masala G, Weiderpass E, Chirlaque MD, Vermeulen RCH, Travis RC, Southey MC, Milne RL, Albanes D, Virtamo J, Weinstein S, Clavel J, Zheng T, Holford TR, Villano DJ, Maria A, Spinelli JJ, Gascoyne RD, Connors JM, Bertrand KA, Giovannucci E, Kraft P, Kricker A, Turner J, Ennas MG, Ferri GM, Miligi L, Liang L, Ma B, Huang J, Crouch S, Park JH, Chatterjee N, North KE, Snowden JA, Wright J, Fraumeni JF, Offit K, Wu X, de Sanjose S, Cerhan JR, Chanock SJ, Rothman N, Slager SL. Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia. Nat Commun 2016; 7:10933. [PMID: 26956414 PMCID: PMC4786871 DOI: 10.1038/ncomms10933] [Show More Authors] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 02/03/2016] [Indexed: 01/07/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a common lymphoid malignancy with strong heritability. To further understand the genetic susceptibility for CLL and identify common loci associated with risk, we conducted a meta-analysis of four genome-wide association studies (GWAS) composed of 3,100 cases and 7,667 controls with follow-up replication in 1,958 cases and 5,530 controls. Here we report three new loci at 3p24.1 (rs9880772, EOMES, P=2.55 × 10(-11)), 6p25.2 (rs73718779, SERPINB6, P=1.97 × 10(-8)) and 3q28 (rs9815073, LPP, P=3.62 × 10(-8)), as well as a new independent SNP at the known 2q13 locus (rs9308731, BCL2L11, P=1.00 × 10(-11)) in the combined analysis. We find suggestive evidence (P<5 × 10(-7)) for two additional new loci at 4q24 (rs10028805, BANK1, P=7.19 × 10(-8)) and 3p22.2 (rs1274963, CSRNP1, P=2.12 × 10(-7)). Pathway analyses of new and known CLL loci consistently show a strong role for apoptosis, providing further evidence for the importance of this biological pathway in CLL susceptibility.
Collapse
Affiliation(s)
- Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Nicola J. Camp
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, Huntsman Cancer Institute and University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Christine F. Skibola
- Department of Epidemiology, School of Public Health and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35233, USA
- Division of Environmental Health Sciences, University of California Berkeley School of Public Health, Berkeley, California 94720, USA
| | - Joseph Vijai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Zhaoming Wang
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, Maryland 20877, USA
| | - Jian Gu
- Department of Epidemiology, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Alexandra Nieters
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, 79108 Baden-Württemberg, Germany
| | - Rachel S. Kelly
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Karin E. Smedby
- Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Alain Monnereau
- Epidemiology of Childhood and Adolescent Cancers Group, INSERM, Center of Research in Epidemiology and Statistics Sorbonne Paris Cité (CRESS), F-94807 Paris, France
- Université Paris Descartes, 75270 Paris, France
- Registre des hémopathies malignes de la Gironde, Institut Bergonié, 33076 Bordeaux Cedex, France
| | - Wendy Cozen
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
- Norris Comprehensive Cancer Center, USC Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Angela Cox
- Department of Oncology, University of Sheffield, Sheffield, South Yorkshire S10 1NS, UK
| | - Sophia S. Wang
- Division of Cancer Etiology, City of Hope Beckman Research Institute, Duarte, California 91030, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Lauren R. Teras
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia 30303, USA
| | - Moara Machado
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, Maryland 20877, USA
| | - Angela R. Brooks-Wilson
- Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada V5Z1L3
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada V5A1S6
| | - Patricia Hartge
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | - Brenda M. Birmann
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Claire M. Vajdic
- Centre for Big Data Research in Health, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Pierluigi Cocco
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06520, USA
| | - Graham G. Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Anne Zeleniuch-Jacquotte
- Department of Population Health, New York University School of Medicine, New York, New York 10016, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016, USA
- Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York 10016, USA
| | | | | | - Laurie Burdett
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, Maryland 20877, USA
| | - Amy Hutchinson
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, Maryland 20877, USA
| | - Yuanqing Ye
- Department of Epidemiology, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Timothy G. Call
- Division of Hematology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Tait D. Shanafelt
- Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Anne J. Novak
- Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Neil E. Kay
- Division of Hematology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Mark Liebow
- Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Julie M. Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Cristine Allmer
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Henrik Hjalgrim
- Department of Epidemiology Research, Division of Health Surveillance and Research, Statens Serum Institut, 2300 Copenhagen, Denmark
| | - Hans-Olov Adami
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Mads Melbye
- Department of Epidemiology Research, Division of Health Surveillance and Research, Statens Serum Institut, 2300 Copenhagen, Denmark
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Bengt Glimelius
- Department of Immunology, Genetics and Pathology, Uppsala University, 75105 Uppsala, Sweden
| | - Ellen T. Chang
- Center for Epidemiology and Computational Biology, Health Sciences, Exponent, Inc., Menlo Park, California 94025, USA
- Division of Epidemiology, Department of Health Research and Policy, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Martha Glenn
- Department of Internal Medicine, Huntsman Cancer Institute, Salt Lake City, Utah 84112, USA
| | - Karen Curtin
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84108, USA
| | - Lisa A. Cannon-Albright
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84108, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah 84148, USA
| | - W Ryan Diver
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia 30303, USA
| | - Brian K. Link
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | - George J. Weiner
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Lucia Conde
- Department of Epidemiology, School of Public Health and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35233, USA
- Division of Environmental Health Sciences, University of California Berkeley School of Public Health, Berkeley, California 94720, USA
| | - Paige M. Bracci
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California 94118, USA
| | - Jacques Riby
- Department of Epidemiology, School of Public Health and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35233, USA
- Division of Environmental Health Sciences, University of California Berkeley School of Public Health, Berkeley, California 94720, USA
| | - Donna K. Arnett
- Department of Epidemiology, School of Public Health and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35233, USA
| | - Degui Zhi
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama 35233, USA
| | - Justin M. Leach
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama 35233, USA
| | - Elizabeth A. Holly
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California 94118, USA
| | - Rebecca D. Jackson
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University, Columbus, Ohio 43210, USA
| | - Lesley F. Tinker
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98117, USA
| | - Yolanda Benavente
- Cancer Epidemiology Research Programme, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona 08908, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 08036 Barcelona, Spain
| | - Núria Sala
- Unit of Nutrition, Environment and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
- Translational Research Laboratory, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Delphine Casabonne
- Unit of Infections and Cancer (UNIC), Cancer Epidemiology Research Programme, Institut Catala d'Oncologia, IDIBELL, 08908L'Hospitalet de Llobregat, 08908 Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Nikolaus Becker
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden-Württemberg, Germany
| | - Paolo Boffetta
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Paul Brennan
- International Agency for Research on Cancer (IARC), 69372 Lyon, France
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute and MF MU, 656 53 Brno, Czech Republic
| | - Marc Maynadie
- EA 4184, Registre des Hémopathies Malignes de Côte d'Or, University of Burgundy and Dijon University Hospital, 21070 Dijon, France
| | - James McKay
- International Agency for Research on Cancer (IARC), 69372 Lyon, France
| | - Anthony Staines
- School of Nursing and Human Sciences, Dublin City University, Dublin 9, Ireland
| | - Kari G. Chaffee
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Sara J. Achenbach
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Celine M. Vachon
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Lynn R. Goldin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Sara S. Strom
- Department of Epidemiology, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jose F. Leis
- Division of Hematology/Oncology, Mayo Clinic, Phoenix, Arizona 85054, USA
| | - J. Brice Weinberg
- Department of Medicine, Duke University and VA Medical Centers, Durham, North Carolina 27710, USA
| | - Neil E. Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Aaron D. Norman
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Anneclaire J. De Roos
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98117, USA
- Department of Environmental and Occupational Health, Drexel University School of Public Health, Philadelphia, Pennsylvania 19104, USA
| | - Lindsay M. Morton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Richard K. Severson
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, Michigan 48201, USA
| | - Elio Riboli
- School of Public Health, Imperial College London, London W2 1PG, UK
| | - Paolo Vineis
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK
- Human Genetics Foundation, 10126 Turin, Italy
| | - Rudolph Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden-Württemberg, Germany
| | - Giovanna Masala
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), 50139 Florence, Italy
| | - Elisabete Weiderpass
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, N-9037 Tromsø, Norway
- Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, N-0304 Oslo, Norway
- Genetic Epidemiology Group, Folkhälsan Research Center, FI-00250 Helsinki, Finland
| | - María- Dolores Chirlaque
- CIBER de Epidemiología y Salud Pública (CIBERESP), 08036 Barcelona, Spain
- Department of Epidemiology, Murcia Regional Health Authority, E30008 Murcia, Spain
| | - Roel C. H. Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, 3508, TD, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Ruth C. Travis
- Cancer Epidemiology Unit, University of Oxford, Oxford OX3 7LF, UK
| | - Melissa C. Southey
- Genetic Epidemiology Laboratory, Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Roger L. Milne
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Jarmo Virtamo
- Chronic Disease Prevention Unit, National Institute for Health and Welfare, FI-00271 Helsinki, Finland
| | - Stephanie Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Jacqueline Clavel
- Epidemiology of Childhood and Adolescent Cancers Group, INSERM, Center of Research in Epidemiology and Statistics Sorbonne Paris Cité (CRESS), F-94807 Paris, France
- Université Paris Descartes, 75270 Paris, France
| | - Tongzhang Zheng
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06520, USA
| | - Theodore R. Holford
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut 06520, USA
| | - Danylo J. Villano
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Ann Maria
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - John J. Spinelli
- Cancer Control Research, BC Cancer Agency, Vancouver, British Columbia, Canada V5Z1L3
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z3
| | - Randy D. Gascoyne
- Center for Lymphoid Cancer, BC Cancer Agency, Vancouver, British Columbia, Canada V5Z1L3
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z3
| | - Joseph M. Connors
- Center for Lymphoid Cancer, BC Cancer Agency, Vancouver, British Columbia, Canada V5Z1L3
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z3
| | - Kimberly A. Bertrand
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Edward Giovannucci
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Anne Kricker
- Sydney School of Public Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jenny Turner
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- Department of Histopathology, Douglass Hanly Moir Pathology, Sydney, New South Wales 2113, Australia
| | - Maria Grazia Ennas
- Department of Biomedical Science, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Giovanni M. Ferri
- Interdisciplinary Department of Medicine, University of Bari, 70124 Bari, Italy
| | - Lucia Miligi
- Environmental and Occupational Epidemiology Unit, Cancer Prevention and Research Institute (ISPO), 50139 Florence, Italy
| | - Liming Liang
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Baoshan Ma
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
- College of Information Science and Technology, Dalian Maritime University, Dalian, Liaoning Province 116026, China
| | - Jinyan Huang
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Simon Crouch
- Department of Health Sciences, University of York, York YO10 5DD, UK
| | - Ju-Hyun Park
- Department of Statistics, Dongguk University, Seoul 100-715, Republic of Korea
| | - Nilanjan Chatterjee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Kari E. North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - John A. Snowden
- Department of Oncology, University of Sheffield, Sheffield, South Yorkshire S10 1NS, UK
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, South Yorkshire S10 2TN, UK
| | - Josh Wright
- Department of Oncology, University of Sheffield, Sheffield, South Yorkshire S10 1NS, UK
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, South Yorkshire S10 2TN, UK
| | - Joseph F. Fraumeni
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Xifeng Wu
- Department of Epidemiology, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Silvia de Sanjose
- Cancer Epidemiology Research Programme, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona 08908, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 08036 Barcelona, Spain
| | - James R. Cerhan
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Susan L. Slager
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
41
|
Delahaye-Sourdeix M, Urayama KY, Gaborieau V, Veenstra R, Foll M, Chabrier A, Benavente Y, Nieters A, Becker N, Foretova L, Maynadié M, Staines A, Smedby KE, Glimelius I, Lightfoot T, Cocco P, Galan P, Vatten LJ, Duell EJ, Kiemeney L, Roman E, de Sanjosé S, Lathrop M, Melbye M, Brennan P, Diepstra A, van den Berg A, Hjalgrim H, Jarrett RF, McKay JD. A Novel Risk Locus at 6p21.3 for Epstein-Barr Virus-Positive Hodgkin Lymphoma. Cancer Epidemiol Biomarkers Prev 2015; 24:1838-43. [PMID: 26404960 DOI: 10.1158/1055-9965.epi-15-0534] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/26/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND A proportion of the genetic variants involved in susceptibility to Hodgkin lymphoma differ by the tumor's Epstein-Barr virus (EBV) status, particularly within the MHC region. METHODS We have conducted an SNP imputation study of the MHC region, considering tumor EBV status in 1,200 classical Hodgkin lymphoma (cHL) cases and 5,726 control subjects of European origin. Notable findings were genotyped in an independent study population of 468 cHL cases and 551 controls. RESULTS We identified and subsequently replicated a novel association between a common genetic variant rs6457715 and cHL. Although strongly associated with EBV-positive cHL [OR, 2.33; 95% confidence interval (CI), 1.83-2.97; P = 7 × 10(-12)], there was little evidence for association between rs6457715 and the EBV-negative subgroup of cHL (OR, 1.06; 95% CI, 0.92-1.21), indicating that this association was specific to the EBV-positive subgroup (Phet < P = 10(-8)). Furthermore, the association was limited to EBV-positive cHL subgroups within mixed cell (MCHL) and nodular sclerosis subtypes (NSHL), suggesting that the association is independent of histologic subtype of cHL. CONCLUSIONS rs6457715, located near the HLA-DPB1 gene, is associated with EBV-positive cHL and suggests this region as a novel susceptibility locus for cHL. IMPACT This expands the number of genetic variants that are associated with cHL and provides additional evidence for a critical and specific role of EBV in the etiology of this disease.
Collapse
Affiliation(s)
| | - Kevin Y Urayama
- Department of Human Genetics and Disease Diversity, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Rianne Veenstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Matthieu Foll
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Amelie Chabrier
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Yolanda Benavente
- Unit of Infections and Cancer, Cancer Epidemiology Research Programme, IDIBELL, Catalan Institute of Oncology, Barcelona, Spain. CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Alexandra Nieters
- Centre of Chronic Immunodeficiency Freiburg, University Medical Centre Freiburg, Freiburg, Germany
| | - Nikolaus Becker
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Marc Maynadié
- Registry of Hematological Malignancies, University of Burgundy, University Hospital of Dijon, Dijon, France
| | - Anthony Staines
- School of Nursing, Dublin City University, Glasnevin, Dublin, Ireland
| | - Karin Ekstrom Smedby
- Department of Medicine Solna, Clinical Epidemiology Unit, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Ingrid Glimelius
- Clinical Epidemiology Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden. Department of Radiology, Oncology, and Clinical Immunology, Uppsala University, Uppsala, Sweden
| | - Tracy Lightfoot
- Epidemiology and Genetics Unit, Department of Health Sciences, University of York, York, United Kingdom
| | - Pierluigi Cocco
- Department of Public Health, Occupational Health Section, University of Cagliari, Cagliari, Italy
| | - Pilar Galan
- Sorbonne Paris Cité Epidemiology and Biostatistics Research Center (CRESS), Nutritional Epidemiology Research Team (EREN), Inserm U1153, Inra U1125, Cnam, University Paris 13, University Paris 5, University Paris 7, Bobigny, France
| | - Lars J Vatten
- Norwegian University of Science and Technology, Trondheim, Norway
| | - Eric J Duell
- Unit of Infections and Cancer, Cancer Epidemiology Research Programme, IDIBELL, Catalan Institute of Oncology, Barcelona, Spain
| | - Lambertus Kiemeney
- Radboud University Medical Centre, Radboud Institute for Health Sciences, Nijmegen, the Netherlands
| | - Eve Roman
- Epidemiology and Genetics Unit, Department of Health Sciences, University of York, York, United Kingdom
| | - Silvia de Sanjosé
- Unit of Infections and Cancer, Cancer Epidemiology Research Programme, IDIBELL, Catalan Institute of Oncology, Barcelona, Spain. CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mark Lathrop
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Mads Melbye
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Paul Brennan
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Henrik Hjalgrim
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Ruth F Jarrett
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - James D McKay
- International Agency for Research on Cancer (IARC), Lyon, France.
| |
Collapse
|
42
|
Thomsen H, da Silva Filho MI, Försti A, Fuchs M, Ponader S, von Strandmann EP, Eisele L, Herms S, Hofmann P, Sundquist J, Engert A, Hemminki K. Response. J Neurosurg Spine 2015; 23:824. [PMID: 26958672 PMCID: PMC4795060 DOI: 10.1038/ejhg.2014.184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 08/06/2014] [Accepted: 08/10/2014] [Indexed: 02/08/2023]
Abstract
Genome-wide association studies (GWASs) have identified several single-nucleotide polymorphisms (SNPs) influencing the risk of Hodgkin's lymphoma (HL) and demonstrated the association of common genetic variation for this type of cancer. Such evidence for inherited genetic risk is also provided by the family history and the very high concordance between monozygotic twins. However, little is known about the genetic and environmental contributions. A common measure for describing the phenotypic variation due to genetics is the heritability. Using GWAS data on 906 HL cases by considering all typed SNPs simultaneously, we have calculated that the common variance explained by SNPs accounts for >35% of the total variation on the liability scale in HL (95% confidence interval 6–62%). These findings are consistent with similar heritability estimates of ∼0.40 (95% confidence interval 0.17–0.58) based on Swedish population data. Our estimates support the underlying polygenic basis for susceptibility to HL, and show that heritability based on the population data is somehow larger than heritability based on the genomic data because of the possibility of some missing heritability in the GWAS data. Besides that there is still major evidence for multiple loci causing HL on chromosomes other than chromosome 6 that need to be detected. Because of limited findings in prior GWASs, it seems worth checking for more loci causing susceptibility to HL.
Collapse
Affiliation(s)
- Hauke Thomsen
- German Cancer Research Center (DKFZ), Division of Molecular Genetic Epidemiology, Heidelberg, Germany
| | | | - Asta Försti
- German Cancer Research Center (DKFZ), Division of Molecular Genetic Epidemiology, Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Michael Fuchs
- Department of Internal Medicine I, University Hospital of Cologne, Cologne, Germany
| | - Sabine Ponader
- Department of Internal Medicine I, University Hospital of Cologne, Cologne, Germany
| | | | - Lewin Eisele
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Stefan Herms
- Institute of Human Genetics and Department of Genomics, University of Bonn, Bonn, Germany
- Division of Medical Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Per Hofmann
- Institute of Human Genetics and Department of Genomics, University of Bonn, Bonn, Germany
- Division of Medical Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jan Sundquist
- Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Andreas Engert
- Department of Internal Medicine I, University Hospital of Cologne, Cologne, Germany
| | - Kari Hemminki
- German Cancer Research Center (DKFZ), Division of Molecular Genetic Epidemiology, Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| |
Collapse
|
43
|
Familial predisposition and genetic risk factors for lymphoma. Blood 2015; 126:2265-73. [PMID: 26405224 DOI: 10.1182/blood-2015-04-537498] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/11/2015] [Indexed: 02/06/2023] Open
Abstract
Our understanding of familial predisposition to lymphoma (collectively defined as non-Hodgkin lymphoma [NHL], Hodgkin lymphoma [HL], and chronic lymphocytic leukemia [CLL]) outside of rare hereditary syndromes has progressed rapidly during the last decade. First-degree relatives of NHL, HL, and CLL patients have an ∼1.7-fold, 3.1-fold, and 8.5-fold elevated risk of developing NHL, HL, and CLL, respectively. These familial risks are elevated for multiple lymphoma subtypes and do not appear to be confounded by nongenetic risk factors, suggesting at least some shared genetic etiology across the lymphoma subtypes. However, a family history of a specific subtype is most strongly associated with risk for that subtype, supporting subtype-specific genetic factors. Although candidate gene studies have had limited success in identifying susceptibility loci, genome-wide association studies (GWAS) have successfully identified 67 single nucleotide polymorphisms from 41 loci, predominately associated with specific subtypes. In general, these GWAS-discovered loci are common (minor allele frequency >5%), have small effect sizes (odds ratios, 0.60-2.0), and are of largely unknown function. The relatively low incidence of lymphoma, modest familial risk, and the lack of a screening test and associated intervention, all argue against active clinical surveillance for lymphoma in affected families at this time.
Collapse
|
44
|
Sud A, Cooke R, Swerdlow AJ, Houlston RS. Genome-wide homozygosity signature and risk of Hodgkin lymphoma. Sci Rep 2015; 5:14315. [PMID: 26391888 PMCID: PMC4585760 DOI: 10.1038/srep14315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/25/2015] [Indexed: 12/11/2022] Open
Abstract
Recent studies have reported that regions of homozygosity (ROH) in the genome are detectable in outbred populations and can be associated with an increased risk of malignancy. To examine whether homozygosity is associated with an increased risk of developing Hodgkin lymphoma (HL) we analysed 589 HL cases and 5,199 controls genotyped for 484,072 tag single nucleotide polymorphisms (SNPs). Across the genome the cumulative distribution of ROH was not significantly different between cases and controls. Seven ROH at 4q22.3, 4q32.2, 7p12.3-14.1, 7p22.2, 10p11.22-23, 19q13.12-2 and 19p13.2 were associated with HL risk at P < 0.01. Intriguingly 4q22.3 harbours an ROH to which the nuclear factor NF-kappa-B p105 subunit (NFKB1) maps (P = 0.002). The ROH at 19q13.12-2 has previously been implicated in B-cell precursor acute lymphoblastic leukaemia. Aside from these observations which require validation, it is unlikely that levels of measured homozygosity caused by autozygosity, uniparental isodisomy or hemizygosity play a major role in defining HL risk in predominantly outbred populations.
Collapse
Affiliation(s)
- Amit Sud
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Rosie Cooke
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Anthony J. Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Richard S. Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| |
Collapse
|
45
|
Risk of familial classical Hodgkin lymphoma by relationship, histology, age, and sex: a joint study from five Nordic countries. Blood 2015; 126:1990-5. [PMID: 26311361 DOI: 10.1182/blood-2015-04-639781] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/14/2015] [Indexed: 12/22/2022] Open
Abstract
We aimed to provide the familial risk of classical Hodgkin lymphoma (HL) by relationship, histology, age at diagnosis, and sex. A cohort of 57,475 first-degree relatives of 13,922 HL patients diagnosed between 1955 and 2009 in 5 European countries was observed for HL incidence. The overall lifetime cumulative risk (CR) of HL in first-degree relatives of a patient with HL was 0.6%, which represents a threefold (standardized incidence ratio [SIR], 3.3; 95% confidence interval [CI], 2.8-3.9) increased risk over the general population risk. The risk in siblings (6.0-fold; 95% CI, 4.8- to 7.4-fold) was significantly higher than in parents and/or children (2.1-fold; 95% CI, 1.6- to 2.6-fold). Very high lifetime risk of HL was found for those with multiple affected first-degree relatives (13-fold; 95% CI, 2.8- to 39-fold) and for same-sex twins (57-fold; 95% CI, 21- to 125-fold). We found high familial risks between some concordant histologic subtypes of HL such as lymphocyte-rich (81-fold; 95% CI, 30- to 177-fold) and nodular sclerosis (4.6-fold; 95% CI, 2.9- to 7.0-fold) and also between some discordant subtypes. The familial risk in sisters (9.4-fold; 95% CI, 5.9- to 14-fold) was higher than in brothers (4.5-fold; 95% CI, 2.9- to 6.7-fold) or unlike-sex siblings (5.9-fold; 95% CI, 4.3- to 8.1-fold). The lifetime risk of HL was higher when first-degree relatives were diagnosed at early ages (before age 30 years). This study provides tangible absolute risk estimates for relatives of HL patients, which can be used as a sex-, age-, and family history-based risk calculator for classical HL by oncologists and genetic counselors.
Collapse
|
46
|
Tapper W, Jones AV, Kralovics R, Harutyunyan AS, Zoi K, Leung W, Godfrey AL, Guglielmelli P, Callaway A, Ward D, Aranaz P, White HE, Waghorn K, Lin F, Chase A, Joanna Baxter E, Maclean C, Nangalia J, Chen E, Evans P, Short M, Jack A, Wallis L, Oscier D, Duncombe AS, Schuh A, Mead AJ, Griffiths M, Ewing J, Gale RE, Schnittger S, Haferlach T, Stegelmann F, Döhner K, Grallert H, Strauch K, Tanaka T, Bandinelli S, Giannopoulos A, Pieri L, Mannarelli C, Gisslinger H, Barosi G, Cazzola M, Reiter A, Harrison C, Campbell P, Green AR, Vannucchi A, Cross NC. Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms. Nat Commun 2015; 6:6691. [PMID: 25849990 PMCID: PMC4396373 DOI: 10.1038/ncomms7691] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 02/20/2015] [Indexed: 12/21/2022] Open
Abstract
Clonal proliferation in myeloproliferative neoplasms (MPN) is driven by somatic mutations in JAK2, CALR or MPL, but the contribution of inherited factors is poorly characterized. Using a three-stage genome-wide association study of 3,437 MPN cases and 10,083 controls, we identify two SNPs with genome-wide significance in JAK2(V617F)-negative MPN: rs12339666 (JAK2; meta-analysis P=1.27 × 10(-10)) and rs2201862 (MECOM; meta-analysis P=1.96 × 10(-9)). Two additional SNPs, rs2736100 (TERT) and rs9376092 (HBS1L/MYB), achieve genome-wide significance when including JAK2(V617F)-positive cases. rs9376092 has a stronger effect in JAK2(V617F)-negative cases with CALR and/or MPL mutations (Breslow-Day P=4.5 × 10(-7)), whereas in JAK2(V617F)-positive cases rs9376092 associates with essential thrombocythemia (ET) rather than polycythemia vera (allelic χ(2) P=7.3 × 10(-7)). Reduced MYB expression, previously linked to development of an ET-like disease in model systems, associates with rs9376092 in normal myeloid cells. These findings demonstrate that multiple germline variants predispose to MPN and link constitutional differences in MYB expression to disease phenotype.
Collapse
Affiliation(s)
- William Tapper
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury SP2 8BJ, UK
| | - Amy V. Jones
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury SP2 8BJ, UK
| | - Robert Kralovics
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Ashot S. Harutyunyan
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Katerina Zoi
- Haematology Research Laboratory, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - William Leung
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury SP2 8BJ, UK
| | - Anna L. Godfrey
- Department of Haematology, Addenbrooke’s Hospital, Cambridge CB2 0XY, UK
- Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Paola Guglielmelli
- Laboratorio Congiunto MMPC, Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Alison Callaway
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury SP2 8BJ, UK
| | - Daniel Ward
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury SP2 8BJ, UK
| | - Paula Aranaz
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury SP2 8BJ, UK
| | - Helen E. White
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury SP2 8BJ, UK
| | - Katherine Waghorn
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury SP2 8BJ, UK
| | - Feng Lin
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury SP2 8BJ, UK
| | - Andrew Chase
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury SP2 8BJ, UK
| | - E. Joanna Baxter
- Department of Haematology, Addenbrooke’s Hospital, Cambridge CB2 0XY, UK
- Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Cathy Maclean
- Department of Haematology, Addenbrooke’s Hospital, Cambridge CB2 0XY, UK
- Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Jyoti Nangalia
- Department of Haematology, Addenbrooke’s Hospital, Cambridge CB2 0XY, UK
- Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Edwin Chen
- Department of Haematology, Addenbrooke’s Hospital, Cambridge CB2 0XY, UK
- Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Paul Evans
- Haematological Malignancy Diagnostic Service, St James's Institute of Oncology, Bexley Wing, St James's University Hospital, Leeds LS9 7TF, UK
| | - Michael Short
- Haematological Malignancy Diagnostic Service, St James's Institute of Oncology, Bexley Wing, St James's University Hospital, Leeds LS9 7TF, UK
| | - Andrew Jack
- Haematological Malignancy Diagnostic Service, St James's Institute of Oncology, Bexley Wing, St James's University Hospital, Leeds LS9 7TF, UK
| | - Louise Wallis
- Department of Haematology, Royal Bournemouth Hospital, Bournemouth BH7 7DW, UK
| | - David Oscier
- Department of Haematology, Royal Bournemouth Hospital, Bournemouth BH7 7DW, UK
| | - Andrew S. Duncombe
- Department of Haematology, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Anna Schuh
- Oxford Biomedical Research Centre, Molecular Diagnostic Laboratory, Oxford University Hospitals NHS Trust, Oxford OX3 7LE, UK
| | - Adam J. Mead
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Michael Griffiths
- School of Cancer Sciences, University of Birmingham,, Birmingham B15 2TT, UK
- West Midlands Regional Genetics Laboratory, Birmingham Women's NHS Foundation Trust, Birmingham B15 2TG, UK
| | - Joanne Ewing
- Birmingham Heartlands Hospital, Birmingham B9 5SS, UK
| | - Rosemary E. Gale
- Department of Haematology, UCL Cancer Institute, London WC1 E6BT, UK
| | | | | | - Frank Stegelmann
- Department of Internal Medicine III, University Hospital of Ulm, Ulm 89081, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm 89081, Germany
| | - Harald Grallert
- Institute of Epidemiology II, Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
- German Center for Diabetes Research, Neuherberg 85764, Germany
| | - Konstantin Strauch
- Institute of Epidemiology II, Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, 80539 Munich, Germany
| | - Toshiko Tanaka
- Longitudinal Study Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland 21224-6825, USA
| | | | - Andreas Giannopoulos
- Haematology Research Laboratory, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Lisa Pieri
- Laboratorio Congiunto MMPC, Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Carmela Mannarelli
- Laboratorio Congiunto MMPC, Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Heinz Gisslinger
- Medical University of Vienna, Department of Internal Medicine I, Division of Hematology and Blood Coagulation, Vienna 1090, Austria
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, IRCCS Policlinico San Matteo Foundation, Pavia 27100, Italy
| | - Mario Cazzola
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Andreas Reiter
- III. Medizinische Klinik, Universitätsmedizin Mannheim, Mannheim 68167, Germany
| | - Claire Harrison
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, Guy's Hospital, London SE1 9RT, UK
| | - Peter Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Anthony R. Green
- Department of Haematology, Addenbrooke’s Hospital, Cambridge CB2 0XY, UK
- Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Alessandro Vannucchi
- Laboratorio Congiunto MMPC, Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Nicholas C.P. Cross
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury SP2 8BJ, UK
| |
Collapse
|
47
|
Chang ET, Boffetta P, Adami HO, Mandel JS. A critical review of the epidemiology of Agent Orange or 2,3,7,8-tetrachlorodibenzo-p-dioxin and lymphoid malignancies. Ann Epidemiol 2015; 25:275-292.e30. [DOI: 10.1016/j.annepidem.2015.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/06/2015] [Accepted: 01/09/2015] [Indexed: 12/20/2022]
|
48
|
Johnson PCD, McAulay KA, Montgomery D, Lake A, Shield L, Gallagher A, Little AM, Shah A, Marsh SGE, Taylor GM, Jarrett RF. Modeling HLA associations with EBV-positive and -negative Hodgkin lymphoma suggests distinct mechanisms in disease pathogenesis. Int J Cancer 2015; 137:1066-75. [PMID: 25648508 PMCID: PMC4737225 DOI: 10.1002/ijc.29467] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/08/2015] [Indexed: 01/08/2023]
Abstract
HLA genotyping and genome wide association studies provide strong evidence for associations between Human Leukocyte Antigen (HLA) alleles and classical Hodgkin lymphoma (cHL). Analysis of these associations is complicated by the extensive linkage disequilibrium within the major histocompatibility region and recent data suggesting that associations with EBV‐positive and EBV‐negative cHL are largely distinct. To distinguish independent and therefore potentially causal associations from associations confounded by linkage disequilibrium, we applied a variable selection regression modeling procedure to directly typed HLA class I and II genes and selected SNPs from EBV‐stratified patient subgroups. In final models, HLA‐A*01:01 and B*37:01 were associated with an increased risk of EBV‐positive cHL whereas DRB1*15:01 and DPB1*01:01 were associated with decreased risk. Effects were independent of a prior history of infectious mononucleosis. For EBV‐negative cHL the class II SNP rs6903608 remained the strongest predictor of disease risk after adjusting for the effects of common HLA alleles. Associations with “all cHL” and differences by case EBV status reflected the subgroup analysis. In conclusion, this study extends previous findings by identifying novel HLA associations with EBV‐stratified subgroups of cHL, highlighting those alleles likely to be biologically relevant and strengthening evidence implicating genetic variation associated with the SNP rs6903608. What's new? Strong evidence exists for associations between HLA alleles and classical Hodgkin lymphoma (cHL). Analysis is however complicated by the linkage disequilibrium within the MHC region and data suggesting that associations with Epstein‐Barr virus (EBV)‐positive and negative cHL are distinct. In the largest study to date to investigate associations between EBV‐stratified cHL subgroups and directly typed HLA alleles, the authors extend associations with EBV‐positive cHL to novel HLA class II alleles, which are associated with decreased disease risk. For EBV‐negative disease, the class II SNP rs6903608 remains the strongest predictor of risk after adjusting for the effects of common HLA alleles.
Collapse
Affiliation(s)
- Paul C D Johnson
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Karen A McAulay
- MRC - University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Dorothy Montgomery
- MRC - University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Annette Lake
- MRC - University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Lesley Shield
- MRC - University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Alice Gallagher
- MRC - University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ann-Margaret Little
- Histocompatibility and Immunogenetics Laboratory, Gartnavel General Hospital, Glasgow, United Kingdom
| | - Anila Shah
- Anthony Nolan, Royal Free Hospital, Hampstead, London, United Kingdom
| | - Steven G E Marsh
- Anthony Nolan, Royal Free Hospital, Hampstead, London, United Kingdom.,Cancer Institute, University College London, Royal Free Campus, London, United Kingdom
| | - G Malcolm Taylor
- Immunogenetics Group, University of Manchester, St Mary's Hospital, Manchester, United Kingdom
| | - Ruth F Jarrett
- MRC - University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
49
|
Kushekhar K, van den Berg A, Nolte I, Hepkema B, Visser L, Diepstra A. Genetic associations in classical hodgkin lymphoma: a systematic review and insights into susceptibility mechanisms. Cancer Epidemiol Biomarkers Prev 2014; 23:2737-47. [PMID: 25205514 DOI: 10.1158/1055-9965.epi-14-0683] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Both targeted and genome-wide studies have revealed genetic associations for susceptibility, prognosis, and treatment-induced secondary malignancies and toxicities in classical Hodgkin lymphoma (cHL). This review gives a systematic and comprehensive overview of significant associations and places them into a biologic context. The strongest susceptibility polymorphisms have been found for the human leukocyte antigen (HLA) genes. These associations are specific for cHL overall or for subgroups based on tumor cell Epstein-Barr virus (EBV) status. These findings strongly suggest that EBV-specific immune responses influence cHL susceptibility in EBV(+) cHL and that immune responses targeting other tumor-associated antigens are important in EBV(-) cHL. Accordingly, most of the numerous other susceptibility loci map to genes that affect functionality of the immune system, underscoring the crucial role of the immune system in cHL development. The number of association studies on cHL prognosis is limited with one consistent association for the drug-metabolizing UGT1A1 gene. PRDM1 is associated with radiation-induced secondary malignancies and a small number of genes are associated with treatment-related toxicities. In conclusion, most loci showing genetic associations in cHL harbor genes with a potential functional relevance for cHL susceptibility.
Collapse
Affiliation(s)
- Kushi Kushekhar
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Ilja Nolte
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Bouke Hepkema
- Department of Laboratory Medicine, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Lydia Visser
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands.
| |
Collapse
|
50
|
Cozen W, Timofeeva MN, Li D, Diepstra A, Hazelett D, Delahaye-Sourdeix M, Edlund CK, Franke L, Rostgaard K, Van Den Berg DJ, Cortessis VK, Smedby KE, Glaser SL, Westra HJ, Robison LL, Mack TM, Ghesquieres H, Hwang AE, Nieters A, de Sanjose S, Lightfoot T, Becker N, Maynadie M, Foretova L, Roman E, Benavente Y, Rand KA, Nathwani BN, Glimelius B, Staines A, Boffetta P, Link BK, Kiemeney L, Ansell SM, Bhatia S, Strong LC, Galan P, Vatten L, Habermann TM, Duell EJ, Lake A, Veenstra RN, Visser L, Liu Y, Urayama KY, Montgomery D, Gaborieau V, Weiss LM, Byrnes G, Lathrop M, Cocco P, Best T, Skol AD, Adami HO, Melbye M, Cerhan JR, Gallagher A, Taylor GM, Slager SL, Brennan P, Coetzee GA, Conti DV, Onel K, Jarrett RF, Hjalgrim H, van den Berg A, McKay JD. A meta-analysis of Hodgkin lymphoma reveals 19p13.3 TCF3 as a novel susceptibility locus. Nat Commun 2014; 5:3856. [PMID: 24920014 PMCID: PMC4055950 DOI: 10.1038/ncomms4856] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 04/11/2014] [Indexed: 12/20/2022] Open
Abstract
Recent genome-wide association studies (GWAS) of Hodgkin lymphoma (HL) have identified associations with genetic variation at both HLA and non-HLA loci; however, much of heritable HL susceptibility remains unexplained. Here we perform a meta-analysis of three HL GWAS totaling 1,816 cases and 7,877 controls followed by replication in an independent set of 1,281 cases and 3,218 controls to find novel risk loci. We identify a novel variant at 19p13.3 associated with HL (rs1860661; odds ratio (OR)=0.81, 95% confidence interval (95% CI) = 0.76-0.86, P(combined) = 3.5 × 10(-10)), located in intron 2 of TCF3 (also known as E2A), a regulator of B- and T-cell lineage commitment known to be involved in HL pathogenesis. This meta-analysis also notes associations between previously published loci at 2p16, 5q31, 6p31, 8q24 and 10p14 and HL subtypes. We conclude that our data suggest a link between the 19p13.3 locus, including TCF3, and HL risk.
Collapse
Affiliation(s)
- W Cozen
- 1] USC Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089-9175, USA [2]
| | - M N Timofeeva
- 1] International Agency for Research on Cancer (IARC), 69372 Lyon, France [2] Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, UK [3]
| | | | - A Diepstra
- 1] University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands [2]
| | - D Hazelett
- 1] USC Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089-9175, USA [2]
| | - M Delahaye-Sourdeix
- 1] International Agency for Research on Cancer (IARC), 69372 Lyon, France [2]
| | - C K Edlund
- USC Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089-9175, USA
| | - L Franke
- University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands
| | - K Rostgaard
- Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - D J Van Den Berg
- USC Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089-9175, USA
| | - V K Cortessis
- USC Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089-9175, USA
| | - K E Smedby
- Karolinska Institutet and Karolinska University Hospital, S-221 00 Stockholm, Sweden
| | - S L Glaser
- Cancer Prevention Institute of California, Fremont, California 94538, USA
| | - H-J Westra
- University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands
| | - L L Robison
- St Jude Children's Hospital, Cordova, Tennessee 38105, USA
| | - T M Mack
- USC Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089-9175, USA
| | - H Ghesquieres
- Centre Léon Bérard, UMR CNRS 5239-Université Lyon 1, 69008 Lyon, France
| | - A E Hwang
- USC Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089-9175, USA
| | - A Nieters
- University Medical Centre Freiburg, D-79085 Freiburg, Germany
| | - S de Sanjose
- IDIBELL Institut Català d'Oncologia, 8907 Barcelona, Spain
| | | | - N Becker
- German Cancer Research Centre, D-69120 Heidelberg, Germany
| | - M Maynadie
- CHU de Dijon, EA 4184, University of Burgundy, 21070 Dijon, France
| | - L Foretova
- Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - E Roman
- University of York, YO10 5DD York, UK
| | - Y Benavente
- IDIBELL Institut Català d'Oncologia, 8907 Barcelona, Spain
| | - K A Rand
- USC Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089-9175, USA
| | - B N Nathwani
- City of Hope National Medical Center, Duarte, California 91010, USA
| | | | - A Staines
- School of Nursing and Human Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - P Boffetta
- Icahn School of Medicine at Mount Sinai, New York City, New York 10029-6574, USA
| | - B K Link
- University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | - L Kiemeney
- Radboud University Nijmegen Medical Centre, 6500HB Nijmegen, The Netherlands
| | - S M Ansell
- Mayo Clinic, Rochester, Minnesota 55905, USA
| | - S Bhatia
- City of Hope National Medical Center, Duarte, California 91010, USA
| | - L C Strong
- MD Anderson Cancer Center, University of Texas, Houston, Texas 77030, USA
| | - P Galan
- INSERM U557 (UMR Inserm; INRA; CNAM, Université Paris 13), 93017 Paris, France
| | - L Vatten
- Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | | | - E J Duell
- IDIBELL Institut Català d'Oncologia, 8907 Barcelona, Spain
| | - A Lake
- MRC University of Glasgow Centre for Virus Research, Garscube Estate, University of Glasgow, G12 8QQ Glasgow, Scotland, UK
| | - R N Veenstra
- University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands
| | - L Visser
- University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands
| | - Y Liu
- University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands
| | - K Y Urayama
- Department of Human Genetics and Disease Diversity, Tokyo Medical and Dental University, Tokyo 104-0044, Japan
| | - D Montgomery
- MRC University of Glasgow Centre for Virus Research, Garscube Estate, University of Glasgow, G12 8QQ Glasgow, Scotland, UK
| | - V Gaborieau
- International Agency for Research on Cancer (IARC), 69372 Lyon, France
| | - L M Weiss
- Clarient Pathology Services, Aliso Viejo, California 92656, USA
| | - G Byrnes
- International Agency for Research on Cancer (IARC), 69372 Lyon, France
| | - M Lathrop
- Genome Quebec, Montreal, Canada H3A 0G1
| | - P Cocco
- Institute of Occupational Health, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| | - T Best
- The University of Chicago, Chicago, Illinois 60637-5415, USA
| | - A D Skol
- The University of Chicago, Chicago, Illinois 60637-5415, USA
| | - H-O Adami
- 1] Karolinska Institutet and Karolinska University Hospital, S-221 00 Stockholm, Sweden [2] Harvard University School of Public Health, Boston, Massachusetts 02115, USA
| | - M Melbye
- Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - J R Cerhan
- Mayo Clinic, Rochester, Minnesota 55905, USA
| | - A Gallagher
- MRC University of Glasgow Centre for Virus Research, Garscube Estate, University of Glasgow, G12 8QQ Glasgow, Scotland, UK
| | - G M Taylor
- School of Cancer Sciences, University of Manchester, St Mary's Hospital, M13 0JH Manchester, UK
| | - S L Slager
- Mayo Clinic, Rochester, Minnesota 55905, USA
| | - P Brennan
- International Agency for Research on Cancer (IARC), 69372 Lyon, France
| | - G A Coetzee
- USC Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089-9175, USA
| | - D V Conti
- USC Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089-9175, USA
| | - K Onel
- 1] The University of Chicago, Chicago, Illinois 60637-5415, USA [2]
| | - R F Jarrett
- 1] MRC University of Glasgow Centre for Virus Research, Garscube Estate, University of Glasgow, G12 8QQ Glasgow, Scotland, UK [2]
| | - H Hjalgrim
- 1] Statens Serum Institut, DK-2300 Copenhagen, Denmark [2]
| | - A van den Berg
- 1] University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands [2]
| | - J D McKay
- 1] International Agency for Research on Cancer (IARC), 69372 Lyon, France [2]
| |
Collapse
|