1
|
Biffoli F, Bonechi M, Pagliai M, Innocenti M, Giovanardi R, Fontanesi C. Introducing the new concept of a chiral-polaron giant-IRAV signature, optical-active giant-response in vibrational circular dichroism. Phys Chem Chem Phys 2024; 26:25156-25168. [PMID: 39314050 DOI: 10.1039/d4cp02876g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of compounds of primary importance in the field of organic semiconductors, with applications in both organic electronics and photovoltaics. This paper delves into two strictly related topics. First, the theoretical rationalization of the physical factors underlying the emergence of the polaron "giant-response infrared active vibrations (IRAVs)" signature in positively charged PAHs. Results are presented concerning the tight comparison between the experimental results and theoretical results obtained within different DFT paradigms (BLYP, B3LYP, CAM-B3LYP and LC-BLYP) and the pure Hartree-Fock Hamiltonian. This allowed the rationalization of the emergence of the giant IRAV response as essentially propelled by long-range electronic interactions. Moreover, the role of vibrational modes and molecular dimensions (topology) is addressed. Second, the analysis is extended to chiral [4]helicene. This allows the introduction of a new concept yet to be explored experimentally: the chiral-polaron giant-IRAV signature in vibrational circular dichroism (VCD) spectra.
Collapse
Affiliation(s)
- Fabio Biffoli
- Department of Chemistry, "Ugo Schiff", University of Firenze, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- Materia Firenze Lab s.r.l., Gruppo Materia Firenze, Via delle Fonti 8/E, 50018 Scandicci (FI), Italy
| | - Marco Bonechi
- Department of Chemistry, "Ugo Schiff", University of Firenze, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze (FI), Italy
| | - Marco Pagliai
- Department of Chemistry, "Ugo Schiff", University of Firenze, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Massimo Innocenti
- Department of Chemistry, "Ugo Schiff", University of Firenze, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze (FI), Italy
- National Research Council-Organometallic Compounds Chemistry Institute (CNR-ICCOM), Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
- Center for Colloid and Surface Science (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Roberto Giovanardi
- Department of Engineering "Enzo Ferrari", (DIEF), University of Modena and Reggio Emilia, Via vivarelli 10, 41125 Modena, Italy.
| | - Claudio Fontanesi
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze (FI), Italy
- Department of Engineering "Enzo Ferrari", (DIEF), University of Modena and Reggio Emilia, Via vivarelli 10, 41125 Modena, Italy.
| |
Collapse
|
2
|
Nicolaidou E, Parker AW, Sazanovich IV, Towrie M, Hayes SC. Unraveling Excited State Dynamics of a Single-Stranded DNA-Assembled Conjugated Polyelectrolyte. J Phys Chem Lett 2023; 14:9794-9803. [PMID: 37883808 PMCID: PMC10641883 DOI: 10.1021/acs.jpclett.3c01803] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Conformational templating of conjugated polyelectrolytes with single-stranded DNAs (ssDNAs) has the prospect of tailoring excited state dynamics for specific optoelectronic applications. We use ultrafast time-resolved infrared spectroscopy to study the photophysics of a cationic polythiophene assembled with different ssDNAs, inducing distinct conformations (flexible disordered structures vs more rigid complexes with increased backbone planarity). Intrachain polarons are always produced upon selective excitation of the polymer, the extent being dependent on backbone torsional order. Polaron formation and decay were monitored through evolution of IR-active vibrational modes that interfere with mid-IR polaron electronic absorption giving rise to Fano-antiresonances. Selective UV excitation of ssDNAs revealed that stacking interactions between thiophene rings and nucleic acid bases can promote the formation of an intermolecular charge transfer complex. The findings inform designers of functional conjugated polymers by identifying that involvement of the scaffold in the photophysics needs to be considered when developing such structures for optoelectronic applications.
Collapse
Affiliation(s)
- Eliana Nicolaidou
- Department
of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Anthony W. Parker
- Central
Laser Facility, Research Complex at Harwell, Science and Technology
Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Igor V. Sazanovich
- Central
Laser Facility, Research Complex at Harwell, Science and Technology
Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Michael Towrie
- Central
Laser Facility, Research Complex at Harwell, Science and Technology
Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Sophia C. Hayes
- Department
of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| |
Collapse
|
3
|
Ferreira AA, Turchetti DA, Santana AJ, Akcelrud LC, Paula KD, Mascarenhas YP. Synthesis, structural characterization, and optical properties of a novel hybrid nanocomposite of poly(9,9′-dihexyfluorene) and europium oxide nanoparticles. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2022. [DOI: 10.1080/1023666x.2022.2088069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- André A. Ferreira
- São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Denis A. Turchetti
- Paulo Scarpa Laboratory of Polymer (LaPPS), Department of Chemistry, Federal University of Paraná, Curitiba, Brazil
| | - Alisson J. Santana
- Paulo Scarpa Laboratory of Polymer (LaPPS), Department of Chemistry, Federal University of Paraná, Curitiba, Brazil
| | - Leni C. Akcelrud
- Paulo Scarpa Laboratory of Polymer (LaPPS), Department of Chemistry, Federal University of Paraná, Curitiba, Brazil
| | - Karina de Paula
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | | |
Collapse
|
4
|
Bauch F, Dong CD, Schumacher S. Protonation-induced charge transfer and polaron formation in organic semiconductors doped by Lewis acids. RSC Adv 2022; 12:13999-14006. [PMID: 35558852 PMCID: PMC9090442 DOI: 10.1039/d2ra02032g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022] Open
Abstract
Lewis-acid doping of organic semiconductors (OSCs) opens up new ways of p-type doping and has recently become of significant interest. As for the mechanistic understanding, it was recently proposed that upon protonation of the OSC backbone, electron transfer occurs between the protonated polymer chain and a neutral chain nearby, inducing a positive charge carrier in the latter [B. Yurash, D. X. Cao, V. Brus et al., Nat. Mater., 2019, 18, 1327–1334]. To further clarify the underlying microscopic processes on a molecular level, in the present work, we theoretically analyze the influence of protons on the electronic properties of the widely used PCPDT-BT copolymer as a typical example. While we find that single protonation leads to formation of a localized polaron, double protonation leads to the release of a more delocalized polaron via an intrachain electron transfer. We also demonstrate the possibility of an interchain electron transfer. The vertical excitation spectra simulated for an ensemble of protonated polymers with different amounts of protons enable a detailed interpretation of the experimental observations and contribute to a molecular-level interpretation of the Lewis-acid doping process. Lewis-acid doping of organic semiconductors (OSCs) opens up new ways of p-type doping and has recently become of significant interest.![]()
Collapse
Affiliation(s)
- Fabian Bauch
- Department of Physics and Center for Optoelectronics and Photonics Paderborn (CeOPP), Paderborn University Warburger Strasse 100 33098 Paderborn Germany
| | - Chuan-Ding Dong
- Department of Physics and Center for Optoelectronics and Photonics Paderborn (CeOPP), Paderborn University Warburger Strasse 100 33098 Paderborn Germany
| | - Stefan Schumacher
- Department of Physics and Center for Optoelectronics and Photonics Paderborn (CeOPP), Paderborn University Warburger Strasse 100 33098 Paderborn Germany .,Wyant College of Optical Sciences, University of Arizona Tucson AZ 85721 USA
| |
Collapse
|
5
|
Abstract
Double doping, in which a single dopant molecule induces two charge carriers in an organic semiconductor (OSC), was recently experimentally observed and promises to enhance the efficiency of molecular doping. Here we present a theoretical investigation of p-type molecular double doping in a CN6-CP:bithiophene-thienothiophene OSC system. Our analysis is based on density functional theory (DFT) calculations for the electronic ground state. In a molecular complex with two OSC oligomers and one CN6-CP dopant molecule, we explicitly demonstrate double integer charge transfer and find the formation of two individual polarons on the OSC molecules and a dianion dopant molecule. We show that the vibrational modes and related infrared absorption spectrum of this complex can be traced back to those of the charged dopant and OSC molecules in their isolated forms. The near-infrared optical absorption spectrum calculated by time-dependent DFT shows features of both typical intramolecular polaron excitations and weak intermolecular charge transfer excitations associated with the doping-induced polaron states.
Collapse
Affiliation(s)
- Thomas Bathe
- Department of Physics and Center for Optoelectronics and Photonics Paderborn (CeOPP), Paderborn University, Warburger Strasse 100, 33098 Paderborn, Germany
| | - Chuan-Ding Dong
- Department of Physics and Center for Optoelectronics and Photonics Paderborn (CeOPP), Paderborn University, Warburger Strasse 100, 33098 Paderborn, Germany
| | - Stefan Schumacher
- Department of Physics and Center for Optoelectronics and Photonics Paderborn (CeOPP), Paderborn University, Warburger Strasse 100, 33098 Paderborn, Germany.,Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
6
|
Vauthey E. Watching Excited-State Symmetry Breaking in Multibranched Push-Pull Molecules. J Phys Chem Lett 2022; 13:2064-2071. [PMID: 35212550 DOI: 10.1021/acs.jpclett.2c00259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The emissive properties of symmetric molecules containing several donor-acceptor branches are often similar to those of the single-branched analogues. This is due to the at least partial localization of the excitation on one branch. Detailed understanding of this excited-state symmetry breaking (ES-SB) requires the ability to monitor this process in real time. Over the past few years, several spectroscopic approaches were shown to enable visualization of ES-SB and of its dynamics. They include the detection of new vibrational or electronic absorption bands associated with transitions that are forbidden in the symmetric excited state. Alternatively, ES-SB can be detected by observing transitions that become weaker or vanish upon localization of the excitation. Herein, we discuss these different approaches as well as their merits and weaknesses.
Collapse
Affiliation(s)
- Eric Vauthey
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland
| |
Collapse
|
7
|
Yan J, Wilson RW, Buck JT, Grills DC, Reinheimer EW, Mani T. IR linewidth and intensity amplifications of nitrile vibrations report nuclear-electronic couplings and associated structural heterogeneity in radical anions. Chem Sci 2021; 12:12107-12117. [PMID: 34667576 PMCID: PMC8457396 DOI: 10.1039/d1sc03455c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/06/2021] [Indexed: 11/21/2022] Open
Abstract
Conjugated molecular chains have the potential to act as "molecular wires" that can be employed in a variety of technologies, including catalysis, molecular electronics, and quantum information technologies. Their successful application relies on a detailed understanding of the factors governing the electronic energy landscape and the dynamics of electrons in such molecules. We can gain insights into the energetics and dynamics of charges in conjugated molecules using time-resolved infrared (TRIR) detection combined with pulse radiolysis. Nitrile ν(C[triple bond, length as m-dash]N) bands can act as IR probes for charges, based on IR frequency shifts, because of their exquisite sensitivity to the degree of electron delocalization and induced electric field. Here, we show that the IR intensity and linewidth can also provide unique and complementary information on the nature of charges. Quantifications of IR intensity and linewidth in a series of nitrile-functionalized oligophenylenes reveal that the C[triple bond, length as m-dash]N vibration is coupled to the nuclear and electronic structural changes, which become more prominent when an excess charge is present. We synthesized a new series of ladder-type oligophenylenes that possess planar aromatic structures, as revealed by X-ray crystallography. Using these, we demonstrate that C[triple bond, length as m-dash]N vibrations can report charge fluctuations associated with nuclear movements, namely those driven by motions of flexible dihedral angles. This happens only when a charge has room to fluctuate in space.
Collapse
Affiliation(s)
- Juchao Yan
- Department of Physical Sciences, Eastern New Mexico University Portales NM 88130 USA
| | - Reid W Wilson
- Department of Chemistry, University of Connecticut Storrs CT 06269-3060 USA
| | - Jason T Buck
- Department of Chemistry, University of Connecticut Storrs CT 06269-3060 USA
| | - David C Grills
- Chemistry Division, Brookhaven National Laboratory Upton NY 11973-5000 USA
| | - Eric W Reinheimer
- Rigaku Americas Corporation 9009 New Trails Drive, The Woodlands TX 77381 USA
| | - Tomoyasu Mani
- Department of Chemistry, University of Connecticut Storrs CT 06269-3060 USA
| |
Collapse
|
8
|
Ferreira A, Turchetti D, Santana A, Akcelrud L, Mascarenhas Y. Structural and morphological characterization of the crystallites from semicrystalline regions of poly (9,9′-dihexylfluorene). INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2021. [DOI: 10.1080/1023666x.2021.1968121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- André Ferreira
- Department of Materials Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Denis Turchetti
- Department of Chemistry, Paulo Scarpa Laboratory of Polymer (LaPPS), Federal University of Paraná, Curitiba, Brazil
| | - Alisson Santana
- Department of Chemistry, Paulo Scarpa Laboratory of Polymer (LaPPS), Federal University of Paraná, Curitiba, Brazil
| | - Leni Akcelrud
- Department of Chemistry, Paulo Scarpa Laboratory of Polymer (LaPPS), Federal University of Paraná, Curitiba, Brazil
| | - Yvonne Mascarenhas
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
9
|
Stallhofer K, Nuber M, Cortecchia D, Bruno A, Kienberger R, Deschler F, Soci C, Iglev H. Picosecond Charge Localization Dynamics in CH 3NH 3PbI 3 Perovskite Probed by Infrared-Activated Vibrations. J Phys Chem Lett 2021; 12:4428-4433. [PMID: 33950674 DOI: 10.1021/acs.jpclett.1c00935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hybrid metal halide perovskites exhibit well-defined semiconducting properties and efficient optoelectronic performance considering their soft crystal structure and low-energy lattice motions. The response of such a crystal lattice to light-induced charges is a fundamental question, for which experimental insight into ultrafast time scales is still sought. Here, we use infrared-activated vibrations (IRAV) of the organic components within the hybrid perovskite lattice as a sensitive probe for local structural reorganizations after photoexcitation, with femtosecond resolution. We find that the IRAV signal response shows a delayed rise of about 3 ps and subsequent decay of pronounced monomolecular character, distinguishing it from absorption associated with free carriers. We interpret our results as a two-step carrier localization process. Initially, carriers localize transiently in local energy minima formed by lattice fluctuations. A subpopulation of these can then fall into deeper trapped states over picoseconds, likely due to local reorganization of the organic molecules surrounding the carriers.
Collapse
Affiliation(s)
- Klara Stallhofer
- Physik-Department, Lehrstuhl für Laser- und Röntgenphysik, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Matthias Nuber
- Physik-Department, Lehrstuhl für Laser- und Röntgenphysik, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Daniele Cortecchia
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798
- Energy Research Institute @ NTU (ERI@N), Nanyang Technological University, 50 Nanyang Drive, Singapore 637553
| | - Annalisa Bruno
- Energy Research Institute @ NTU (ERI@N), Nanyang Technological University, 50 Nanyang Drive, Singapore 637553
| | - Reinhard Kienberger
- Physik-Department, Lehrstuhl für Laser- und Röntgenphysik, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Felix Deschler
- Physik-Department, Walter Schottky Institut, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Cesare Soci
- Energy Research Institute @ NTU (ERI@N), Nanyang Technological University, 50 Nanyang Drive, Singapore 637553
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Hristo Iglev
- Physik-Department, Lehrstuhl für Laser- und Röntgenphysik, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
10
|
Taylor JO, Pižl M, Kloz M, Rebarz M, McCusker CE, McCusker JK, Záliš S, Hartl F, Vlček A. Optical and Infrared Spectroelectrochemical Studies of CN-Substituted Bipyridyl Complexes of Ruthenium(II). Inorg Chem 2021; 60:3514-3523. [PMID: 33645219 DOI: 10.1021/acs.inorgchem.0c03579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ruthenium(II) polypyridyl complexes [Ru(CN-Me-bpy)x(bpy)3-x]2+ (CN-Me-bpy = 4,4'-dicyano-5,5'-dimethyl-2,2'-bipyridine, bpy = 2,2'-bipyridine, and x = 1-3, abbreviated as 12+, 22+, and 32+) undergo four (12+) or five (22+ and 32+) successive one-electron reduction steps between -1.3 and -2.75 V versus ferrocenium/ferrocene (Fc+/Fc) in tetrahydrofuran. The CN-Me-bpy ligands are reduced first, with successive one-electron reductions in 22+ and 32+ being separated by 150-210 mV; reduction of the unsubstituted bpy ligand in 12+ and 22+ occurs only when all CN-Me-bpy ligands have been converted to their radical anions. Absorption spectra of the first three reduction products of each complex were measured across the UV, visible, near-IR (NIR), and mid-IR regions and interpreted with the help of density functional theory calculations. Reduction of the CN-Me-bpy ligand shifts the ν(C≡N) IR band by ca. -45 cm-1, enhances its intensity ∼35 times, and splits the symmetrical and antisymmetrical modes. Semireduced complexes containing two and three CN-derivatized ligands 2+, 3+, and 30 show distinct ν(C≡N) features due to the presence of both CN-Me-bpy and CN-Me-bpy•-, confirming that each reduction is localized on a single ligand. NIR spectra of 10, 1-, and 2- exhibit a prominent band attributable to the CN-Me-bpy•- moiety between 6000 and 7500 cm-1, whereas bpy•--based absorption occurs between 4500 and 6000 cm-1; complexes 2+, 3+, and 30 also exhibit a band at ca. 3300 cm-1 due to a CN-Me-bpy•- → CN-Me-bpy interligand charge-transfer transition. In the UV-vis region, the decrease of π → π* intraligand bands of the neutral ligands and the emergence of the corresponding bands of the radical anions are most diagnostic. The first reduction product of 12+ is spectroscopically similar to the lowest triplet metal-to-ligand charge-transfer excited state, which shows pronounced NIR absorption, and its ν(C≡N) IR band is shifted by -38 cm-1 and 5-7-fold-enhanced relative to the ground state.
Collapse
Affiliation(s)
- James O Taylor
- Department of Chemistry, University of Reading, Whiteknights Park, Reading RG6 6DX, United Kingdom
| | - Martin Pižl
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-18223 Prague, Czech Republic.,Department of Inorganic Chemistry, University of Chemistry and Technology, Prague, CZ-16628 Prague, Czech Republic
| | - Miroslav Kloz
- ELI Beamlines, Institute of Physics, Czech Academy of Sciences, CZ-18200 Prague, Czech Republic
| | - Mateusz Rebarz
- ELI Beamlines, Institute of Physics, Czech Academy of Sciences, CZ-18200 Prague, Czech Republic
| | - Catherine E McCusker
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - James K McCusker
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Stanislav Záliš
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-18223 Prague, Czech Republic
| | - František Hartl
- Department of Chemistry, University of Reading, Whiteknights Park, Reading RG6 6DX, United Kingdom
| | - Antonín Vlček
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, E1 4NS London, United Kingdom.,J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-18223 Prague, Czech Republic
| |
Collapse
|
11
|
Nançoz C, Rumble C, Rosspeintner A, Vauthey E. Bimolecular photoinduced electron transfer in non-polar solvents beyond the diffusion limit. J Chem Phys 2020; 152:244501. [PMID: 32610996 DOI: 10.1063/5.0012363] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Electron transfer (ET) quenching dynamics in non-polar solvents are investigated using ultrafast spectroscopy with a series of six fluorophore/quencher pairs, covering a driving force range of more than 1.3 eV. The intrinsic ET rate constants, k0, deduced from the quenching dynamics in the static regime, are of the order of 1012-1013 M-1 s-1, i.e., at least as large as in acetonitrile, and do not exhibit any marked dependence on the driving force. A combination of transient electronic and vibrational absorption spectroscopy measurements reveals that the primary product of static quenching is a strongly coupled exciplex that decays within a few picoseconds. More weakly coupled exciplexes with a longer lifetime are generated subsequently, during the dynamic, diffusion-controlled, stage of the quenching. The results suggest that static ET quenching in non-polar solvents should be viewed as an internal conversion from a locally excited state to a charge-transfer state of a supermolecule rather than as a non-adiabatic ET process.
Collapse
Affiliation(s)
- Christoph Nançoz
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland
| | - Christopher Rumble
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland
| | - Arnulf Rosspeintner
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland
| |
Collapse
|
12
|
Dereka B, Svechkarev D, Rosspeintner A, Aster A, Lunzer M, Liska R, Mohs AM, Vauthey E. Solvent tuning of photochemistry upon excited-state symmetry breaking. Nat Commun 2020; 11:1925. [PMID: 32317631 PMCID: PMC7174366 DOI: 10.1038/s41467-020-15681-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/20/2020] [Indexed: 12/29/2022] Open
Abstract
The nature of the electronic excited state of many symmetric multibranched donor–acceptor molecules varies from delocalized/multipolar to localized/dipolar depending on the environment. Solvent-driven localization breaks the symmetry and traps the exciton in one branch. Using a combination of ultrafast spectroscopies, we investigate how such excited-state symmetry breaking affects the photochemical reactivity of quadrupolar and octupolar A–(π-D)2,3 molecules with photoisomerizable A–π–D branches. Excited-state symmetry breaking is identified by monitoring several spectroscopic signatures of the multipolar delocalized exciton, including the S2 ← S1 electronic transition, whose energy reflects interbranch coupling. It occurs in all but nonpolar solvents. In polar media, it is rapidly followed by an alkyne–allene isomerization of the excited branch. In nonpolar solvents, slow and reversible isomerization corresponding to chemically-driven symmetry breaking, is observed. These findings reveal that the photoreactivity of large conjugated molecules can be tuned by controlling the localization of the excitation. Symmetric multibranched donor-acceptor molecules are promising photoactive materials for diverse applications. Here the authors show that, in octupolar and quadrupolar dyes, excited-state symmetry breaking occurs efficiently in polar solvents only and results in a concentration of the excitation that may trigger fast photochemical reactions.
Collapse
Affiliation(s)
- Bogdan Dereka
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211, Geneva, Switzerland.,Department of Chemistry and Institute for Biophysical Dynamics, James Franck Institute, The University of Chicago, 929 E. 57th St., Chicago, IL, 60637, USA
| | - Denis Svechkarev
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198-6858, USA
| | - Arnulf Rosspeintner
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211, Geneva, Switzerland
| | - Alexander Aster
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211, Geneva, Switzerland
| | - Markus Lunzer
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163/MC, 1060, Vienna, Austria
| | - Robert Liska
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163/MC, 1060, Vienna, Austria
| | - Aaron M Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198-6858, USA.,Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-6858, USA
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211, Geneva, Switzerland.
| |
Collapse
|
13
|
Kendrick WJ, Jirásek M, Peeks MD, Greetham GM, Sazanovich IV, Donaldson PM, Towrie M, Parker AW, Anderson HL. Mechanisms of IR amplification in radical cation polarons. Chem Sci 2020; 11:2112-2120. [PMID: 34123299 PMCID: PMC8150116 DOI: 10.1039/c9sc05717j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/12/2019] [Indexed: 12/30/2022] Open
Abstract
Break down of the Born-Oppenheimer approximation is caused by mixing of electronic and vibrational transitions in the radical cations of some conjugated polymers, resulting in unusually intense vibrational bands known as infrared active vibrations (IRAVs). Here, we investigate the mechanism of this amplification, and show that it provides insights into intramolecular charge migration. Spectroelectrochemical time-resolved infrared (TRIR) and two-dimensional infrared (2D-IR) spectroscopies were used to investigate the radical cations of two butadiyne-linked conjugated porphyrin oligomers, a linear dimer and a cyclic hexamer. The 2D-IR spectra reveal strong coupling between all the IRAVs and the electronic π-π* polaron band. Intramolecular vibrational energy redistribution (IVR) and vibrational relaxation occur within ∼0.1-7 ps. TRIR spectra show that the transient ground state bleach (GSB) and excited state absorption (ESA) signals have anisotropies of 0.31 ± 0.07 and 0.08 ± 0.04 for the linear dimer and cyclic hexamer cations, respectively. The small TRIR anisotropy for the cyclic hexamer radical cation indicates that the vibrationally excited polaron migrates round the nanoring on a time scale faster than the measurement, i.e. within 0.5 ps, at 298 K. Density functional theory (DFT) calculations qualitatively reproduce the emergence of the IRAVs. The first singlet (S1) excited states of the neutral porphyrin oligomers exhibit similar IRAVs to the radical cations, implying that the excitons have similar electronic structures to polarons. Our results show that IRAVs originate from the strong coupling of charge redistribution to nuclear motion, and from the similar energies of electronic and vibrational transitions.
Collapse
Affiliation(s)
- William J Kendrick
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Oxford OX1 3TA UK
| | - Michael Jirásek
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Oxford OX1 3TA UK
| | - Martin D Peeks
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Oxford OX1 3TA UK
| | - Gregory M Greetham
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council Didcot OX11 0QX UK
| | - Igor V Sazanovich
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council Didcot OX11 0QX UK
| | - Paul M Donaldson
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council Didcot OX11 0QX UK
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council Didcot OX11 0QX UK
| | - Anthony W Parker
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council Didcot OX11 0QX UK
| | - Harry L Anderson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Oxford OX1 3TA UK
| |
Collapse
|
14
|
Paz Y. Transient IR spectroscopy as a tool for studying photocatalytic materials. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:503004. [PMID: 31469092 DOI: 10.1088/1361-648x/ab3eda] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Over the years, a considerable amount of attention has been given to the thermodynamics of photocatalysts, i.e. to the location of their valence and conduction bands on the energy scale. The kinetics of the photoinduced charge carriers at short times (i.e. prior to their surface redox reactions) is no less important. While significant work on the transient electronic spectra of photocatalysts has been performed, the transient vibrational spectra of this class of materials was hardly studied. This manuscript aims to increase the scientific awareness to the potential of transient IR spectroscopy (TRIR) as a complementary tool for understanding the first, crucial, steps of photocatalytic processes in solid photocatalysts. This was done herein first by describing the various techniques currently in use for measuring transient IR signals of photo-excited systems and discussing their pros and cons. Then, a variety of examples is given, representing different types of photocatalysts such as oxides (TiO2, NaTaO3, BiOCl, BiVO4), photosensitized oxides (dye-sensitized TiO2), organic polymers (graphitic carbon nitride) and organo-metalic photocatalysts (rhenium bipyridyl complexes). These examples span from materials with no IR fingerprint signals (TiO2) to materials having a distinct spectrum showing well-defined, localized, relatively narrow, vibrational bands (carbon nitride). In choosing the given-above examples, care was made to represent the several pump & probe techniques that are applied when studying transient IR spectroscopy, namely dispersive, transient 2D-IR spectroscopy and step-scan IR spectroscopy. It is hoped that this short review will contribute to expanding the use of TRIR as a viable and important technique among the arsenal of tools struggling to solve the mysteries behind photocatalysis.
Collapse
Affiliation(s)
- Yaron Paz
- Department of Chemical Engineering, Technion, Haifa, Israel
| |
Collapse
|
15
|
Tang CG, Syafiqah MN, Koh QM, Zhao C, Zaini J, Seah QJ, Cass MJ, Humphries MJ, Grizzi I, Burroughes JH, Png RQ, Chua LL, Ho PKH. Multivalent anions as universal latent electron donors. Nature 2019; 573:519-525. [PMID: 31554981 DOI: 10.1038/s41586-019-1575-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 07/08/2019] [Indexed: 11/09/2022]
Abstract
Electrodes with low work functions are required to efficiently inject electrons into semiconductor devices. However, when the work function drops below about 4 electronvolts, the electrode suffers oxidation in air, which prevents its fabrication in ambient conditions. Here we show that multivalent anions such as oxalate, carbonate and sulfite can act as powerful latent electron donors when dispersed as small ion clusters in a matrix, while retaining their ability to be processed in solution in ambient conditions. The anions in these clusters can even n-dope the semiconductor core of π-conjugated polyelectrolytes that have low electron affinities, through a ground-state doping mechanism that is further amplified by a hole-sensitized or photosensitized mechanism in the device. A theoretical analysis of donor levels of these anions reveals that they are favourably upshifted from ionic lattices by a decrease in the Coulomb stabilization of small ion clusters, and by irreversibility effects. We attain an ultralow effective work function of 2.4 electronvolts with the polyfluorene core. We realize high-performance, solution-processed, white-light-emitting diodes and organic solar cells using polymer electron injection layers with these universal anion donors, demonstrating a general approach to chemically designed and ambient-processed Ohmic electron contacts for semiconductor devices.
Collapse
Affiliation(s)
- Cindy G Tang
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - Mazlan Nur Syafiqah
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Qi-Mian Koh
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Chao Zhao
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - Jamal Zaini
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Qiu-Jing Seah
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | | | | | - Ilaria Grizzi
- Cambridge Display Technology Limited, Godmanchester, UK
| | | | - Rui-Qi Png
- Department of Physics, National University of Singapore, Singapore, Singapore.
| | - Lay-Lay Chua
- Department of Physics, National University of Singapore, Singapore, Singapore. .,Department of Chemistry, National University of Singapore, Singapore, Singapore.
| | - Peter K H Ho
- Department of Physics, National University of Singapore, Singapore, Singapore
| |
Collapse
|
16
|
Duva G, Beyer P, Scholz R, Belova V, Opitz A, Hinderhofer A, Gerlach A, Schreiber F. Ground-state charge-transfer interactions in donor:acceptor pairs of organic semiconductors - a spectroscopic study of two representative systems. Phys Chem Chem Phys 2019; 21:17190-17199. [PMID: 31364636 DOI: 10.1039/c9cp02939g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We investigate blended donor:acceptor (D:A) thin films of the two donors diindenoperylene (DIP) and poly(3-hexylthiophene) (P3HT) mixed with the strong acceptor 1,3,4,5,7,8-hexafluorotetracyanonaphthoquinodimethane (F6TCNNQ) using Polarization-Modulation Infrared Reflection-Absorption Spectroscopy (PMIRRAS). For DIP:F6TCNNQ thin films we first carry out a comprehensive study of the structure as a function of the D : A mixing ratio, which guides the analysis of the PMIRRAS spectra. In particular, from the red-shift of the nitrile (C[triple bond, length as m-dash]N) stretching of F6TCNNQ in the different mixtures with DIP, we quantify the average ground-state charge-transfer (GS-CT) to be ρavg = (0.84 ± 0.04) e. The PMIRRAS data for P3HT:F6TCNNQ blended films reveal nearly the same shift of the CT-affected C[triple bond, length as m-dash]N stretching peak for this system. This points towards a very similar CT strength for the two systems. We extend the analysis to the relative intensity of the C[triple bond, length as m-dash]N to the C[double bond, length as m-dash]C stretching modes of F6TCNNQ in the mixtures with DIP and P3HT, respectively, and support it with DFT calculations for the isolated F6TCNNQ. Such comparison allows to identify the vibrational signatures of the acceptor mono-anion in P3HT:F6TCNNQ, thus indicating a much stronger, integer CT-type interactions for this system, in agreement with available optical spectroscopy data. Our findings stress the importance of a simultaneous analysis of C[triple bond, length as m-dash]N and C[double bond, length as m-dash]C stretching vibrations in F6TCNNQ, or similar quinoid systems, for a reliable picture of the nature of GS-CT interactions.
Collapse
Affiliation(s)
- Giuliano Duva
- University of Tübingen, Institute for Applied Physics, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | - Paul Beyer
- Humboldt-Universität zu Berlin, Department of Physics, Newtonstraße 15, 12489 Berlin, Germany
| | - Reinhard Scholz
- Dresden Integrated Center for Applied Physics and Photonic Materials, Nöthnitzer Str. 61, 01187 Dresden, Germany
| | - Valentina Belova
- University of Tübingen, Institute for Applied Physics, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | - Andreas Opitz
- Humboldt-Universität zu Berlin, Department of Physics, Newtonstraße 15, 12489 Berlin, Germany
| | - Alexander Hinderhofer
- University of Tübingen, Institute for Applied Physics, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | - Alexander Gerlach
- University of Tübingen, Institute for Applied Physics, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | - Frank Schreiber
- University of Tübingen, Institute for Applied Physics, Auf der Morgenstelle 10, 72076 Tübingen, Germany. and Center for Light-Matter Interactions, Sensors & Analytics (LISA+), Auf der Morgenstelle 15, 72076 Tübingen, Germany
| |
Collapse
|
17
|
Leone G, Groppo E, Zanchin G, Martino GA, Piovano A, Bertini F, Martí-Rujas J, Parisini E, Ricci G. Concerted Electron Transfer in Iminopyridine Chromium Complexes: Ligand Effects on the Polymerization of Various (Di)olefins. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Giuseppe Leone
- CNR-Istituto per lo Studio delle Macromolecole (ISMAC), via A. Corti 12, I-20133 Milano, Italy
| | - Elena Groppo
- Dipartimento di Chimica, NIS Interdepartmental Research Center and INSTM Reference Center, Università degli Studi di Torino, Via G. Quarello 15A, I-10135 Torino, Italy
| | - Giorgia Zanchin
- CNR-Istituto per lo Studio delle Macromolecole (ISMAC), via A. Corti 12, I-20133 Milano, Italy
| | - Giorgia A. Martino
- Dipartimento di Chimica, NIS Interdepartmental Research Center and INSTM Reference Center, Università degli Studi di Torino, Via G. Quarello 15A, I-10135 Torino, Italy
| | - Alessandro Piovano
- Dipartimento di Chimica, NIS Interdepartmental Research Center and INSTM Reference Center, Università degli Studi di Torino, Via G. Quarello 15A, I-10135 Torino, Italy
| | - Fabio Bertini
- CNR-Istituto per lo Studio delle Macromolecole (ISMAC), via A. Corti 12, I-20133 Milano, Italy
| | - Javier Martí-Rujas
- Center for Nano Science and Technology at Polimi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, I-20133 Milano, Italy
| | - Emilio Parisini
- Center for Nano Science and Technology at Polimi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, I-20133 Milano, Italy
| | - Giovanni Ricci
- CNR-Istituto per lo Studio delle Macromolecole (ISMAC), via A. Corti 12, I-20133 Milano, Italy
| |
Collapse
|
18
|
Probe exciplex structure of highly efficient thermally activated delayed fluorescence organic light emitting diodes. Nat Commun 2018; 9:3111. [PMID: 30082702 PMCID: PMC6079109 DOI: 10.1038/s41467-018-05527-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/11/2018] [Indexed: 11/08/2022] Open
Abstract
The lack of structural information impeded the access of efficient luminescence for the exciplex type thermally activated delayed fluorescence (TADF). We report here the pump-probe Step-Scan Fourier transform infrared spectra of exciplex composed of a carbazole-based electron donor (CN-Cz2) and 1,3,5-triazine-based electron acceptor (PO-T2T) codeposited as the solid film that gives intermolecular charge transfer (CT), TADF, and record-high exciplex type cyan organic light emitting diodes (external quantum efficiency: 16%). The transient infrared spectral assignment to the CT state is unambiguous due to its distinction from the local excited state of either the donor or the acceptor chromophore. Importantly, a broad absorption band centered at ~2060 cm-1 was observed and assigned to a polaron-pair absorption. Time-resolved kinetics lead us to conclude that CT excited states relax to a ground-state intermediate with a time constant of ~3 µs, followed by a structural relaxation to the original CN-Cz2:PO-T2T configuration within ~14 µs.
Collapse
|
19
|
Kraack JP, Sévery L, Tilley SD, Hamm P. Plasmonic Substrates Do Not Promote Vibrational Energy Transfer at Solid-Liquid Interfaces. J Phys Chem Lett 2018; 9:49-56. [PMID: 29235870 DOI: 10.1021/acs.jpclett.7b02855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Intermolecular vibrational energy transfer in monolayers of isotopically mixed rhenium carbonyl complexes at solid-liquid interfaces is investigated with the help of ultrafast 2D Attenuated Total Reflectance Infrared (2D ATR IR) spectroscopy in dependence of plasmonic surface enhancement effects. Dielectric and plasmonic materials are used to demonstrate that plasmonic effects have no impact on the vibrational energy transfer rate in a regime of moderate IR surface enhancement (enhancement factors up to ca. 30). This result can be explained with the common image-dipole picture. The vibrational energy transfer rate thus can be used as a direct observable to determine intermolecular distances on surfaces, regardless of their plasmonic properties.
Collapse
Affiliation(s)
- Jan Philip Kraack
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Laurent Sévery
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - S David Tilley
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
20
|
Kraack JP. Ultrafast structural molecular dynamics investigated with 2D infrared spectroscopy methods. Top Curr Chem (Cham) 2017; 375:86. [PMID: 29071445 DOI: 10.1007/s41061-017-0172-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/02/2017] [Indexed: 12/23/2022]
Abstract
Ultrafast, multi-dimensional infrared (IR) spectroscopy has been advanced in recent years to a versatile analytical tool with a broad range of applications to elucidate molecular structure on ultrafast timescales, and it can be used for samples in a many different environments. Following a short and general introduction on the benefits of 2D IR spectroscopy, the first part of this chapter contains a brief discussion on basic descriptions and conceptual considerations of 2D IR spectroscopy. Outstanding classical applications of 2D IR are used afterwards to highlight the strengths and basic applicability of the method. This includes the identification of vibrational coupling in molecules, characterization of spectral diffusion dynamics, chemical exchange of chemical bond formation and breaking, as well as dynamics of intra- and intermolecular energy transfer for molecules in bulk solution and thin films. In the second part, several important, recently developed variants and new applications of 2D IR spectroscopy are introduced. These methods focus on (i) applications to molecules under two- and three-dimensional confinement, (ii) the combination of 2D IR with electrochemistry, (iii) ultrafast 2D IR in conjunction with diffraction-limited microscopy, (iv) several variants of non-equilibrium 2D IR spectroscopy such as transient 2D IR and 3D IR, and (v) extensions of the pump and probe spectral regions for multi-dimensional vibrational spectroscopy towards mixed vibrational-electronic spectroscopies. In light of these examples, the important open scientific and conceptual questions with regard to intra- and intermolecular dynamics are highlighted. Such questions can be tackled with the existing arsenal of experimental variants of 2D IR spectroscopy to promote the understanding of fundamentally new aspects in chemistry, biology and materials science. The final part of the chapter introduces several concepts of currently performed technical developments, which aim at exploiting 2D IR spectroscopy as an analytical tool. Such developments embrace the combination of 2D IR spectroscopy and plasmonic spectroscopy for ultrasensitive analytics, merging 2D IR spectroscopy with ultra-high-resolution microscopy (nanoscopy), future variants of transient 2D IR methods, or 2D IR in conjunction with microfluidics. It is expected that these techniques will allow for groundbreaking research in many new areas of natural sciences.
Collapse
Affiliation(s)
- Jan Philip Kraack
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
21
|
Peeks MD, Tait CE, Neuhaus P, Fischer GM, Hoffmann M, Haver R, Cnossen A, Harmer JR, Timmel CR, Anderson HL. Electronic Delocalization in the Radical Cations of Porphyrin Oligomer Molecular Wires. J Am Chem Soc 2017; 139:10461-10471. [PMID: 28678489 PMCID: PMC5543395 DOI: 10.1021/jacs.7b05386] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The radical cations of a family of π-conjugated porphyrin arrays have been investigated: linear chains of N = 1-6 porphyrins, a 6-porphyrin nanoring and a 12-porphyrin nanotube. The radical cations were generated in solution by chemical and electrochemical oxidation, and probed by vis-NIR-IR and EPR spectroscopies. The cations exhibit strong NIR bands at ∼1000 nm and 2000-5000 nm, which shift to longer wavelength with increasing oligomer length. Analysis of the NIR and IR spectra indicates that the polaron is delocalized over 2-3 porphyrin units in the linear oligomers. Some of the IR vibrational bands are strongly intensified on oxidation, and Fano-type antiresonances are observed when activated vibrations overlap with electronic transitions. The solution-phase EPR spectra of the radical cations have Gaussian lineshapes with linewidths proportional to N-0.5, demonstrating that at room temperature the spin hops rapidly over the whole chain on the time scale of the hyperfine coupling (ca. 100 ns). Direct measurement of the hyperfine couplings through electron-nuclear double resonance (ENDOR) in frozen solution (80 K) indicates distribution of the spin over 2-3 porphyrin units for all the oligomers, except the 12-porphyrin nanotube, in which the spin is spread over about 4-6 porphyrins. These experimental studies of linear and cyclic cations give a consistent picture, which is supported by DFT calculations and multiparabolic modeling with a reorganization energy of 1400-2000 cm-1 and coupling of 2000 cm-1 for charge transfer between neighboring sites, placing the system in the Robin-Day class III.
Collapse
Affiliation(s)
- Martin D Peeks
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford , Oxford OX1 3TA, United Kingdom
| | - Claudia E Tait
- Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford , Oxford OX1 3QR, United Kingdom
| | - Patrik Neuhaus
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford , Oxford OX1 3TA, United Kingdom
| | - Georg M Fischer
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford , Oxford OX1 3TA, United Kingdom
| | - Markus Hoffmann
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford , Oxford OX1 3TA, United Kingdom
| | - Renée Haver
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford , Oxford OX1 3TA, United Kingdom
| | - Arjen Cnossen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford , Oxford OX1 3TA, United Kingdom
| | - Jeffrey R Harmer
- Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford , Oxford OX1 3QR, United Kingdom
| | - Christiane R Timmel
- Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford , Oxford OX1 3QR, United Kingdom
| | - Harry L Anderson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford , Oxford OX1 3TA, United Kingdom
| |
Collapse
|
22
|
Kraack JP, Kaech A, Hamm P. Molecule-specific interactions of diatomic adsorbates at metal-liquid interfaces. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:044009. [PMID: 28396878 PMCID: PMC5367089 DOI: 10.1063/1.4978894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/06/2017] [Indexed: 05/15/2023]
Abstract
Ultrafast vibrational dynamics of small molecules on platinum (Pt) layers in water are investigated using 2D attenuated total reflectance IR spectroscopy. Isotope combinations of carbon monoxide and cyanide are used to elucidate inter-adsorbate and substrate-adsorbate interactions. Despite observed cross-peaks in the CO spectra, we conclude that the molecules are not vibrationally coupled. Rather, strong substrate-adsorbate interactions evoke rapid (∼2 ps) vibrational relaxation from the adsorbate into the Pt layer, leading to thermal cross-peaks. In the case of CN, vibrational relaxation is significantly slower (∼10 ps) and dominated by adsorbate-solvent interactions, while the coupling to the substrate is negligible.
Collapse
Affiliation(s)
- Jan Philip Kraack
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich , Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
23
|
Kraack JP, Hamm P. Surface-Sensitive and Surface-Specific Ultrafast Two-Dimensional Vibrational Spectroscopy. Chem Rev 2016; 117:10623-10664. [DOI: 10.1021/acs.chemrev.6b00437] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jan Philip Kraack
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
24
|
Kraack JP, Hamm P. Vibrational ladder-climbing in surface-enhanced, ultrafast infrared spectroscopy. Phys Chem Chem Phys 2016; 18:16088-93. [PMID: 27265518 DOI: 10.1039/c6cp02589g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In a recent work (J. Phys. Chem. C 2016, 120, 3350-3359), we have introduced the concept of surface-enhanced, two-dimensional attenuated total reflectance (2D ATR IR) spectroscopy with modest enhancement factors (<50) using small plasmonic noble metal nanoparticles at solid-liquid interfaces. Here, we show that employment of almost continuous noble metal layers results in significantly stronger enhancement factors in 2D ATR IR signals (>450), which allows for multi-quantum IR excitation of adsorbed molecules, a process known as "vibrational ladder-climbing", even for weakly absorbing (ε < 200 M(-1) cm(-1)) nitrile IR labels. We show that it is possible to deposit up to four quanta of vibrational energy in the respective functional group. Based on these results, optical near-fields of plasmonic nanostructures may pave the way for future investigations involving ultrafast dynamics of highly excited vibrational states or surface-sensitive coherent control experiments of ground-state reactions at solid-liquid interfaces.
Collapse
Affiliation(s)
- Jan Philip Kraack
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| | | |
Collapse
|
25
|
Photogenerated Intrinsic Free Carriers in Small-molecule Organic Semiconductors Visualized by Ultrafast Spectroscopy. Sci Rep 2015; 5:17076. [PMID: 26611323 PMCID: PMC4661463 DOI: 10.1038/srep17076] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/08/2015] [Indexed: 11/09/2022] Open
Abstract
Confirmation of direct photogeneration of intrinsic delocalized free carriers in small-molecule organic semiconductors has been a long-sought but unsolved issue, which is of fundamental significance to its application in photo-electric devices. Although the excitonic description of photoexcitation in these materials has been widely accepted, this concept is challenged by recently reported phenomena. Here we report observation of direct delocalized free carrier generation upon interband photoexcitation in highly crystalline zinc phthalocyanine films prepared by the weak epitaxy growth method using ultrafast spectroscopy. Transient absorption spectra spanning the visible to mid-infrared region revealed the existence of short-lived free electrons and holes with a diffusion length estimated to cross at least 11 molecules along the π−π stacking direction that subsequently localize to form charge transfer excitons. The interband transition was evidenced by ultraviolet-visible absorption, photoluminescence and electroluminescence spectroscopy. Our results suggest that delocalized free carriers photogeneration can also be achieved in organic semiconductors when the molecules are packed properly.
Collapse
|
26
|
Mani T, Grills DC, Newton MD, Miller JR. Electron Localization of Anions Probed by Nitrile Vibrations. J Am Chem Soc 2015; 137:10979-91. [DOI: 10.1021/jacs.5b04648] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tomoyasu Mani
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - David C. Grills
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Marshall D. Newton
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - John R. Miller
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| |
Collapse
|
27
|
How intermolecular geometrical disorder affects the molecular doping of donor–acceptor copolymers. Nat Commun 2015; 6:6460. [DOI: 10.1038/ncomms7460] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/30/2015] [Indexed: 12/25/2022] Open
|
28
|
Mani T, Grills DC, Miller JR. Vibrational Stark Effects To Identify Ion Pairing and Determine Reduction Potentials in Electrolyte-Free Environments. J Am Chem Soc 2015; 137:1136-40. [DOI: 10.1021/ja512302c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Tomoyasu Mani
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - David C. Grills
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - John R. Miller
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| |
Collapse
|
29
|
Mani T, Miller JR. Role of Bad Dihedral Angles: Methylfluorenes Act as Energy Barriers for Excitons and Polarons of Oligofluorenes. J Phys Chem A 2014; 118:9451-9. [DOI: 10.1021/jp5080626] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tomoyasu Mani
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - John R. Miller
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| |
Collapse
|