1
|
Li B, Tian J, Zhang F, Wu C, Li Z, Wang D, Zhuang J, Chen S, Song W, Tang Y, Ping Y, Liu B. Self-assembled aldehyde dehydrogenase-activatable nano-prodrug for cancer stem cell-enriched tumor detection and treatment. Nat Commun 2024; 15:9417. [PMID: 39482286 PMCID: PMC11528051 DOI: 10.1038/s41467-024-53771-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024] Open
Abstract
Cancer stem cells, characterized by high tumorigenicity and drug-resistance, are often responsible for tumor progression and metastasis. Aldehyde dehydrogenases, often overexpressed in cancer stem cells enriched tumors, present a potential target for specific anti-cancer stem cells treatment. In this study, we report a self-assembled nano-prodrug composed of aldehyde dehydrogenases activatable photosensitizer and disulfide-linked all-trans retinoic acid for diagnosis and targeted treatment of cancer stem cells enriched tumors. The disulfide-linked all-trans retinoic acid can load with photosensitizer and self-assemble into a stable nano-prodrug, which can be disassembled into all-trans retinoic acid and photosensitizer in cancer stem cells by high level of glutathione. As for the released photosensitizer, overexpressed aldehyde dehydrogenase catalyzes the oxidation of aldehydes to carboxyl under cancer stem cells enriched microenvironment, activating the generation of reactive oxygen species and fluorescence emission. This generation of reactive oxygen species leads to direct killing of cancer stem cells and is accompanied by a noticeable fluorescence enhancement for real-time monitoring of the cancer stem cells enriched microenvironment. Moreover, the released all-trans retinoic acid, as a differentiation agent, reduce the cancer stem cells stemness and improve the cancer stem cells enriched microenvironment, offering a synergistic effect for enhanced anti-cancer stem cells treatment of photosensitizer in inhibition of in vivo tumor growth and metastasis.
Collapse
Affiliation(s)
- Bowen Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Jianwu Tian
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Fu Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chongzhi Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhiyao Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dandan Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Jiahao Zhuang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Siqin Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Wentao Song
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yufu Tang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| |
Collapse
|
2
|
Sasaki N, Asano Y, Sorayama Y, Kamimura C, Kitano S, Irie S, Katayama R, Shimoda H, Matsusaki M. Promoting biological similarity by collagen microfibers in 3D colorectal cancer-stromal tissue: Replicating mechanical properties and cancer stem cell markers. Acta Biomater 2024; 185:161-172. [PMID: 38972624 DOI: 10.1016/j.actbio.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
The extracellular matrix (ECM) of cancer tissues is rich in dense collagen, contributing to the stiffening of these tissues. Increased stiffness has been reported to promote cancer cell proliferation, invasion, metastasis, and prevent drug delivery. Replicating the structure and mechanical properties of cancer tissue in vitro is essential for developing cancer treatment drugs that target these properties. In this study, we recreated specific characteristics of cancer tissue, such as collagen density and high elastic modulus, using a colorectal cancer cell line as a model. Using our original material, collagen microfibers (CMFs), and a constructed three-dimensional (3D) cancer-stromal tissue model, we successfully reproduced an ECM highly similar to in vivo conditions. Furthermore, our research demonstrated that cancer stem cell markers expressed in the 3D cancer-stromal tissue model more closely mimic in vivo conditions than traditional two-dimensional cell cultures. We also found that CMFs might affect an impact on how cancer cells express these markers. Our 3D CMF-based model holds promise for enhancing our understanding of colorectal cancer and advancing therapeutic approaches. STATEMENT OF SIGNIFICANCE: Reproducing the collagen content and stiffness of cancer tissue is crucial in comprehending the properties of cancer and advancing anticancer drug development. Nonetheless, the use of collagen as a scaffold material has posed challenges due to its poor solubility, hindering the replication of a cancer microenvironment. In this study, we have successfully recreated cancer tissue-specific characteristics such as collagen density, stiffness, and the expression of cancer stem cell markers in three-dimensional (3D) colorectal cancer stromal tissue, utilizing a proprietary material known as collagen microfiber (CMF). CMF proves to be an ideal scaffold material for replicating cancer stromal tissue, and these 3D tissues constructed with CMFs hold promise in contributing to our understanding of cancer and the development of therapeutic drugs.
Collapse
Affiliation(s)
- Naoko Sasaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshiya Asano
- Department of Neuroanatomy, Cell Biology and Histology, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Yukiko Sorayama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chihiro Kamimura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shiro Kitano
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; TOPPAN HOLDINGS INC. TOPPAN Technical Research Institute, 4-2-3, Takanodaiminami, Sugito-cho, Kitakatsushika-gun, Saitama 345-8508, Japan
| | - Shinji Irie
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; TOPPAN HOLDINGS INC. TOPPAN Technical Research Institute, 4-2-3, Takanodaiminami, Sugito-cho, Kitakatsushika-gun, Saitama 345-8508, Japan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Hiroshi Shimoda
- Department of Neuroanatomy, Cell Biology and Histology, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki, 036-8562, Japan; Department of Anatomical Science, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Michiya Matsusaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
3
|
Miki K, Oe M, Suzuki K, Miki K, Mu H, Kato Y, Iwatake M, Yukawa H, Baba Y, Ueda Y, Mori Y, Ohe K. Dual-responsive near-infrared turn-on fluorescent probe for cancer stem cell-specific visualization. J Mater Chem B 2024; 12:6959-6967. [PMID: 38913327 DOI: 10.1039/d4tb00897a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Aldehyde dehydrogenase 1A1 (ALDH1A1) stands out as one of the most reliable intracellular biomarkers for stem cells because it is expressed in both cancer stem cells (CSCs) and normal somatic stem cells (NSCs). Although several turn-on fluorescent probes for ALDH1A1 have been developed to visualize CSCs in cancer cells, the discrimination of CSCs from NSCs is difficult. We here report an AND-type dual-responsive fluorescent probe, CHO_βgal, the near-infrared fluorescence of which can be turned on after responding to both ALDH1A1 and β-galactosidase. The AND-type dual responsiveness enables CSCs to be clearly visualized, whereas NSCs are non-emissive in microscopy. CSC-positive metastasis model lungs were successfully discriminated from normal lungs in ex vivo staining experiments using CHO_βgal, whereas the single-input ALDH1A1-responsive probe failed to achieve this discrimination owing to pronounced false-positive fluorescence output from lung NSCs. In tissue slice staining experiments, even in the presence of adjacent normal tissues, the peripheral region-specific localization of CSCs was clear. The versatility of CHO_βgal holds promise not only as a fundamental in vitro research tool for visualizing CSCs but also as a valuable asset in practical tissue staining diagnosis, significantly contributing to the assessment of cancer malignancy.
Collapse
Affiliation(s)
- Koji Miki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Masahiro Oe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Kanae Suzuki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Koki Miki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Huiying Mu
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Yoshimi Kato
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mayumi Iwatake
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hiroshi Yukawa
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Chiba 265-8522, Japan
| | - Yoshinobu Baba
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Yoshifumi Ueda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kouichi Ohe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| |
Collapse
|
4
|
Son J, Du W, Esposito M, Shariati K, Ding H, Kang Y, Accili D. Genetic and pharmacologic inhibition of ALDH1A3 as a treatment of β-cell failure. Nat Commun 2023; 14:558. [PMID: 36732513 PMCID: PMC9895451 DOI: 10.1038/s41467-023-36315-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Type 2 diabetes (T2D) is associated with β-cell dedifferentiation. Aldehyde dehydrogenase 1 isoform A3 (ALHD1A3) is a marker of β-cell dedifferentiation and correlates with T2D progression. However, it is unknown whether ALDH1A3 activity contributes to β-cell failure, and whether the decrease of ALDH1A3-positive β-cells (A+) following pair-feeding of diabetic animals is due to β-cell restoration. To tackle these questions, we (i) investigated the fate of A+ cells during pair-feeding by lineage-tracing, (ii) somatically ablated ALDH1A3 in diabetic β-cells, and (iii) used a novel selective ALDH1A3 inhibitor to treat diabetes. Lineage tracing and functional characterization show that A+ cells can be reconverted to functional, mature β-cells. Genetic or pharmacological inhibition of ALDH1A3 in diabetic mice lowers glycemia and increases insulin secretion. Characterization of β-cells following ALDH1A3 inhibition shows reactivation of differentiation as well as regeneration pathways. We conclude that ALDH1A3 inhibition offers a therapeutic strategy against β-cell dysfunction in diabetes.
Collapse
Affiliation(s)
- Jinsook Son
- Department of Medicine and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
| | - Wen Du
- Department of Medicine and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Mark Esposito
- Kayothera Inc, Seattle, WA, USA
- Department of Molecular Biology, Princeton University, 08544, Princeton, NJ, USA
| | - Kaavian Shariati
- Department of Medicine and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Hongxu Ding
- Department of Pharmacy Practice & Science, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, 08544, Princeton, NJ, USA
| | - Domenico Accili
- Department of Medicine and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
5
|
Liu B, Fang X, Kwong DLW, Zhang Y, Verhoeft K, Gong L, Zhang B, Chen J, Yu Q, Luo J, Tang Y, Huang T, Ling F, Fu L, Yan Q, Guan XY. Targeting TROY-mediated P85a/AKT/TBX3 signaling attenuates tumor stemness and elevates treatment response in hepatocellular carcinoma. J Exp Clin Cancer Res 2022; 41:182. [PMID: 35610614 PMCID: PMC9131684 DOI: 10.1186/s13046-022-02401-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 12/11/2022] Open
Abstract
Background Previous in vitro hepatocyte differentiation model showed that TROY was specifically expressed in liver progenitor cells and a small proportion of hepatocellular carcinoma cells, suggesting that TROY may participate in hepatocellular carcinoma (HCC) stemness regulation. Here, we aim to investigate the role and mechanism of TROY in HCC pathogenesis. Method Bioinformatics analysis of the TCGA dataset has been used to identify the function and mechanism of TROY. Spheroid, apoptosis, and ALDH assay were performed to evaluate the stemness functions. Validation of the downstream pathway was based on Western blot, co-immunoprecipitation, and double immunofluorescence. Results HCC tissue microarray study found that a high frequency of TROY-positive cells was detected in 53/130 (40.8%) of HCC cases, which was significantly associated with poor prognosis and tumor metastasis. Functional studies revealed that TROY could promote self-renewal, drug resistance, tumorigenicity, and metastasis of HCC cells. Mechanism study found that TROY could interact with PI3K subunit p85α, inducing its polyubiquitylation and degradation. The degradation of p85α subsequently activate PI3K/AKT/TBX3 signaling and upregulated pluripotent genes expression including SOX2, NANOG, and OCT4, and promoted EMT in HCC cells. Interestingly, immune cell infiltration analysis found that upregulation of TROY in HCC tissues was induced by TGF-β1 secreted from CAFs. PI3K inhibitor wortmannin could effectively impair tumor stemness to sorafenib. Conclusion We demonstrated that TROY is an HCC CSC marker and plays an important role in HCC stemness regulation. Targeting TROY-positive CSCs with PI3K inhibitor wortmannin combined with chemo- or targeted drugs might be a novel therapeutic strategy for HCC patients. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02401-6.
Collapse
|
6
|
Pereira R, Flaherty RL, Edwards RS, Greenwood HE, Shuhendler AJ, Witney TH. A prodrug strategy for the in vivo imaging of aldehyde dehydrogenase activity. RSC Chem Biol 2022; 3:561-570. [PMID: 35656483 PMCID: PMC9092432 DOI: 10.1039/d2cb00040g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/04/2022] [Indexed: 11/21/2022] Open
Abstract
Therapy resistance is one of the biggest challenges facing clinical oncology. Despite a revolution in new anti-cancer drugs targeting multiple components of the tumour microenvironment, acquired or innate resistance frequently blunts the efficacy of these treatments. Non-invasive identification of drug-resistant tumours will enable modification of the patient treatment pathway through the selection of appropriate second-line treatments. Here, we have designed a prodrug radiotracer for the non-invasive imaging of aldehyde dehydrogenase 1A1 (ALDH1A1) activity. Elevated ALDH1A1 activity is a marker of drug-resistant cancer cells, modelled here with matched cisplatin-sensitive and -resistant human SKOV3 ovarian cancer cells. The aromatic aldehyde of our prodrug radiotracer was intracellularly liberated by esterase cleavage of the geminal diacetate and specifically trapped by ALDH through its conversion to the charged carboxylic acid. Through this mechanism of action, ALDH-specific retention of our prodrug radiotracer in the drug-resistant tumour cells was twice as high as the drug-sensitive cells. Acylal masking of the aldehyde afforded a modest protection from oxidation in the blood, which was substantially improved in carrier-added experiments. In vivo positron emission tomography imaging of tumour-bearing mice produced high tumour-to-background images and radiotracer uptake in high ALDH-expressing organs but was unable to differentiate between drug-sensitive and drug-resistant tumours. Alternative strategies to protect the labile aldehyde are currently under investigation.
Collapse
Affiliation(s)
- Raul Pereira
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital London SE1 7EH UK +44 (0)20 7188 7188, ext. 883496
| | - Renée L Flaherty
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital London SE1 7EH UK +44 (0)20 7188 7188, ext. 883496
| | - Richard S Edwards
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital London SE1 7EH UK +44 (0)20 7188 7188, ext. 883496
| | - Hannah E Greenwood
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital London SE1 7EH UK +44 (0)20 7188 7188, ext. 883496
| | - Adam J Shuhendler
- Department of Chemistry & Biomolecular Sciences, University of Ottawa Ottawa ON Canada
- University of Ottawa Heart Institute Ottawa ON Canada
| | - Timothy H Witney
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital London SE1 7EH UK +44 (0)20 7188 7188, ext. 883496
| |
Collapse
|
7
|
Optical substrates for drug-metabolizing enzymes: Recent advances and future perspectives. Acta Pharm Sin B 2022; 12:1068-1099. [PMID: 35530147 PMCID: PMC9069481 DOI: 10.1016/j.apsb.2022.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023] Open
Abstract
Drug-metabolizing enzymes (DMEs), a diverse group of enzymes responsible for the metabolic elimination of drugs and other xenobiotics, have been recognized as the critical determinants to drug safety and efficacy. Deciphering and understanding the key roles of individual DMEs in drug metabolism and toxicity, as well as characterizing the interactions of central DMEs with xenobiotics require reliable, practical and highly specific tools for sensing the activities of these enzymes in biological systems. In the last few decades, the scientists have developed a variety of optical substrates for sensing human DMEs, parts of them have been successfully used for studying target enzyme(s) in tissue preparations and living systems. Herein, molecular design principals and recent advances in the development and applications of optical substrates for human DMEs have been reviewed systematically. Furthermore, the challenges and future perspectives in this field are also highlighted. The presented information offers a group of practical approaches and imaging tools for sensing DMEs activities in complex biological systems, which strongly facilitates high-throughput screening the modulators of target DMEs and studies on drug/herb‒drug interactions, as well as promotes the fundamental researches for exploring the relevance of DMEs to human diseases and drug treatment outcomes.
Collapse
|
8
|
Abstract
Live cell discrimination is the first and essential step to understand complex biosystems. Conventional cell discrimination involving various antibodies relies on selective surface biomarkers. Compared to antibodies, the fluorescent probe strategy allows the utilisation of intracellular biomarkers, providing broader options with unique chemical principles to achieve the live cell distinction. In general, fluorescent probes can be retained in cells by interacting with biomolecules, accumulating via transporters, and participating in metabolism. Based on the target difference, fluorescent probe strategy can be divided into several categories: protein-oriented live cell distinction (POLD), carbohydrate-oriented live cell distinction (COLD), DNA-oriented live cell distinction (DOLD), gating-oriented live cell distinction (GOLD), metabolism-oriented live cell distinction (MOLD) and lipid-oriented live cell distinction (LOLD). In this review, we will outline the concepts and mechanisms of different strategies, introduce their applications in cell-type discrimination, and discuss their advantages and challenges in this area. We expect this tutorial will provide a new perspective on the mechanisms of fluorescent probe strategy and facilitate the development of cell-type-specific probes.
Collapse
Affiliation(s)
- Xiao Liu
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea. .,Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Young-Tae Chang
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea. .,Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| |
Collapse
|
9
|
Chen S, Fang Y, Sun L, He R, He B, Zhang S. Long Non-Coding RNA: A Potential Strategy for the Diagnosis and Treatment of Colorectal Cancer. Front Oncol 2021; 11:762752. [PMID: 34778084 PMCID: PMC8578871 DOI: 10.3389/fonc.2021.762752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC), being one of the most commonly diagnosed cancers worldwide, endangers human health. Because the pathological mechanism of CRC is not fully understood, there are many challenges in the prevention, diagnosis, and treatment of this disease. Long non-coding RNAs (lncRNAs) have recently drawn great attention for their potential roles in the different stages of CRC formation, invasion, and progression, including regulation of molecular signaling pathways, apoptosis, autophagy, angiogenesis, tumor metabolism, immunological responses, cell cycle, and epithelial-mesenchymal transition (EMT). This review aims to discuss the potential mechanisms of several oncogenic lncRNAs, as well as several suppressor lncRNAs, in CRC occurrence and development to aid in the discovery of new methods for CRC diagnosis, treatment, and prognosis assessment.
Collapse
Affiliation(s)
- Shanshan Chen
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Fang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.,The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lingyu Sun
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.,The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruonan He
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Beihui He
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Zhang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
10
|
Mauri F, Schepkens C, Lapouge G, Drogat B, Song Y, Pastushenko I, Rorive S, Blondeau J, Golstein S, Bareche Y, Miglianico M, Nkusi E, Rozzi M, Moers V, Brisebarre A, Raphaël M, Dubois C, Allard J, Durdu B, Ribeiro F, Sotiriou C, Salmon I, Vakili J, Blanpain C. NR2F2 controls malignant squamous cell carcinoma state by promoting stemness and invasion and repressing differentiation. NATURE CANCER 2021; 2:1152-1169. [PMID: 35122061 PMCID: PMC7615150 DOI: 10.1038/s43018-021-00287-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 10/08/2021] [Indexed: 02/07/2023]
Abstract
The nongenetic mechanisms required to sustain malignant tumor state are poorly understood. During the transition from benign tumors to malignant carcinoma, tumor cells need to repress differentiation and acquire invasive features. Using transcriptional profiling of cancer stem cells from benign tumors and malignant skin squamous cell carcinoma (SCC), we identified the nuclear receptor NR2F2 as uniquely expressed in malignant SCC. Using genetic gain of function and loss of function in vivo, we show that NR2F2 is essential for promoting the malignant tumor state by controlling tumor stemness and maintenance in mouse and human SCC. We demonstrate that NR2F2 promotes tumor cell proliferation, epithelial-mesenchymal transition and invasive features, while repressing tumor differentiation and immune cell infiltration by regulating a common transcriptional program in mouse and human SCCs. Altogether, we identify NR2F2 as a key regulator of malignant cancer stem cell functions that promotes tumor renewal and restricts differentiation to sustain a malignant tumor state.
Collapse
Affiliation(s)
- Federico Mauri
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Corentin Schepkens
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Gaëlle Lapouge
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Benjamin Drogat
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Yura Song
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ievgenia Pastushenko
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Sandrine Rorive
- Centre Universitaire Inter Régional d'Expertise en Anatomie Pathologique Hospitalière (CurePath), Jumet, Belgium
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jeremy Blondeau
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Sophie Golstein
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Yacine Bareche
- Breast Cancer Translational Research Laboratory, J.-C. Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Erwin Nkusi
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Milena Rozzi
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Virginie Moers
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Audrey Brisebarre
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Maylis Raphaël
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Christine Dubois
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Justine Allard
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Benoit Durdu
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Floriane Ribeiro
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory, J.-C. Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Isabelle Salmon
- Centre Universitaire Inter Régional d'Expertise en Anatomie Pathologique Hospitalière (CurePath), Jumet, Belgium
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jalal Vakili
- ChromaCure SA, Grandbonpré 11/5, Mont-Saint-Guibert, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- WELBIO, Université Libre de Bruxelles (ULB), Bruxelles, Belgium.
| |
Collapse
|
11
|
Oe M, Miki K, Ueda Y, Mori Y, Okamoto A, Funakoshi Y, Minami H, Ohe K. Deep-Red/Near-Infrared Turn-On Fluorescence Probes for Aldehyde Dehydrogenase 1A1 in Cancer Stem Cells. ACS Sens 2021; 6:3320-3329. [PMID: 34445866 DOI: 10.1021/acssensors.1c01136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Accumulating evidence supports that cancer stem cells (CSCs) are responsible for cancer proliferation, metastasis, and therapy resistance; therefore, an effective strategy to identify and isolate CSCs is required urgently. Because of their low invasiveness and high signal/noise ratio, "turn-on" fluorescence probes working in the deep-red/near-infrared (DR/NIR) region are one of the most attractive yet undeveloped tools for CSC detection. Herein, we report DR/NIR turn-on fluorescence probes, CS5-A and CS7-A, targeted to aldehyde dehydrogenase 1A1 as an intracellular CSC marker. In contrast to the conventional "always-on" green-fluorescent ALDEFLUOR, we succeeded in generating high-contrast (signal/noise ratio > 8.3) and wash-free in vitro CSC imaging with the DR probe C5S-A. This probe can facilitate CSC isolation with minimal contamination by autofluorescence from other tissues through fluorescence-activated cell sorting. Furthermore, the NIR absorbance/emission and turn-on properties of C7S-A allow simple and rapid CSC detection in vivo within 15 min.
Collapse
Affiliation(s)
- Masahiro Oe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Koji Miki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshifumi Ueda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Aoi Okamoto
- Division of Breast and Endocrine Surgery, Department of Surgery, Kobe University Hospital and Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yohei Funakoshi
- Division of Breast and Endocrine Surgery, Department of Surgery, Kobe University Hospital and Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Hironobu Minami
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Cancer Center, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Kouichi Ohe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
12
|
Insulin-Like Growth Factor Binding Protein-3 Exerts Its Anti-Metastatic Effect in Aerodigestive Tract Cancers by Disrupting the Protein Stability of Vimentin. Cancers (Basel) 2021; 13:cancers13051041. [PMID: 33801272 PMCID: PMC7958122 DOI: 10.3390/cancers13051041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Local invasion and distal metastasis are the main causes of cancer-related death and the poor prognosis of patients with aerodigestive tract cancers. Therefore, understanding the biology of invasion and metastasis is important for the development of effective therapeutic strategies. The present study shows that insulin-like growth factor binding protein-3 (IGFBP-3) inhibits the migration and invasion of non-small cell lung cancer (NSCLC) and head and neck squamous cell carcinoma (HNSCC) cells in vitro and the development of metastasized tumors in vivo. Mechanistic studies suggest vimentin as a cellular target for the antimetastatic effect of IGFBP-3. These results contribute to a better understanding on the regulation of metastasis of cancer cells, providing the rationale to utilize IGFBP-3 as an effective therapeutic strategy targeting migration and metastasis of aerodigestive tract cancers. Abstract The proapoptotic, antiangiogenic, and antimetastatic activities of insulin-like growth factor binding protein-3 (IGFBP-3) through IGF-dependent or -independent mechanisms have been suggested in various types of human cancers. However, a mechanistic explanation of and downstream targets involved in the antimetastatic effect of IGFBP-3 is still lacking. In this study, by applying various in vitro and in vivo models, we show that IGFBP-3 suppresses migration and invasion of human head and neck squamous carcinoma (HNSCC) and non-small cell lung cancer (NSCLC) cells. Silencing IGFBP-3 expression elevated the migration and invasion of NSCLC and HNSCC cells in vitro and their local invasion and metastasis in vivo, whereas overexpression of IGFBP-3 decreased such prometastatic changes. Local invasion of 4-nitroquinoline-1-oxide (4-NQO)-induced HNSCC tumors was consistently significantly potentiated in Igfbp3 knockout mice compared with that in wild-type mice. Mechanistically, IGFBP-3 disrupted the protein stability of vimentin via direct binding and promoting its association with the E3 ligase FBXL14, causing proteasomal degradation. The C-terminal domain of IGFBP-3 and the head domain of vimentin are essential for their interaction. These results provide a molecular framework for IGFBP-3′s IGF-independent antimetastatic and antitumor activities.
Collapse
|
13
|
Yagishita A, Ueno T, Tsuchihara K, Urano Y. Amino BODIPY-Based Blue Fluorescent Probes for Aldehyde Dehydrogenase 1-Expressing Cells. Bioconjug Chem 2021; 32:234-238. [PMID: 33502173 DOI: 10.1021/acs.bioconjchem.0c00565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aldehyde dehydrogenase 1 (ALDH1) plays an important role as a stem cell marker. In the field of stem cell biology, a green fluorescent ALDH1 probe has been principally used, but there is a need for more options in probe color. We designed and synthesized two blue fluorescent ALDH1 probes using 8-amino BODIPY and aminomethylbenzaldehyde. These probes can be simultaneously used with other color probes. Here, we demonstrate successful examples of the simultaneous use of these probes with green fluorescent protein.
Collapse
Affiliation(s)
- Atsushi Yagishita
- Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8583, Japan
| | | | - Katsuya Tsuchihara
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | | |
Collapse
|
14
|
PGC7 promotes tumor oncogenic dedifferentiation through remodeling DNA methylation pattern for key developmental transcription factors. Cell Death Differ 2021; 28:1955-1970. [PMID: 33500560 PMCID: PMC8185079 DOI: 10.1038/s41418-020-00726-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 12/14/2020] [Accepted: 12/27/2020] [Indexed: 12/21/2022] Open
Abstract
Poorly differentiated tumors usually exhibit phenotypes similar to that of their developmental precursor cells. Tumor cells that acquire the lineage progenitor cells feature usually exploit developmental signaling to potentiate cancer progression. However, the underlying molecular events remain elusive. In this study, based on analysis of an in vitro hepatocyte differentiation model, the maternal factor PGC7 (also known as DPPA3, STELLA) was found closely associated with liver development and tumor differentiation in hepatocellular carcinoma (HCC). Expression of PGC7 decreased during hepatocyte maturation and increased progressively from well-differentiated HCCs to poorly differentiated HCCs. Whole-genome methylation sequencing found that PGC7 could induce promoter demethylation of genes related to development. Pathway-based network analysis indicated that downstream targets of PGC7 might form networks associated with developmental transcription factor activation. Overexpression of PGC7 conferred progenitor-like features of HCC cells both in vitro and in vivo. Mechanism studies revealed that PGC7 could impede nuclear translocation of UHRF1, and thus facilitate promoter demethylation of GLI1 and MYCN, both of which are important regulators of HCC self-renewal and differentiation. Depletion or inhibition of GLI1 effectively downregulated MYCN, abolished the effect of PGC7, and sensitized HCC cells to sorafenib treatment. In addition, we found a significant correlation of PGC7 with GLI1/MYCN and lineage differentiation markers in clinical HCC patients. PGC7 expression might drive HCC toward a “dedifferentiated” progenitor lineage through facilitating promoter demethylation of key developmental transcription factors; further inhibition of PGC7/GLI1/MYCN might reverse poorly differentiated HCCs and provide novel therapeutic strategies.
Collapse
|
15
|
Kim JJ, Lee YA, Su D, Lee J, Park SJ, Kim B, Jane Lee JH, Liu X, Kim SS, Bae MA, Lee JS, Hong SC, Wang L, Samanta A, Kwon HY, Choi SY, Kim JY, Yu YH, Ha HH, Wang Z, Tam WL, Lim B, Kang NY, Chang YT. A Near-Infrared Probe Tracks and Treats Lung Tumor Initiating Cells by Targeting HMOX2. J Am Chem Soc 2019; 141:14673-14686. [PMID: 31436967 DOI: 10.1021/jacs.9b06068] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tumor initiating cells (TIC) are resistant to conventional anticancer therapy and associated with metastasis and relapse in cancer. Although various TIC markers and their antibodies have been proposed, it is limited to the use of antibodies for in vivo imaging or treatment of TIC. In this study, we discovered heme oxygenase 2 (HMOX2) as a novel biomarker for TIC and developed a selective small molecule probe TiNIR (tumor initiating cell probe with near infrared). TiNIR detects and enriches the functionally active TIC in human lung tumors, and through the photoacoustic property, TiNIR also visualizes lung TIC in the patient-derived xenograft (PDX) model. Furthermore, we demonstrate that TiNIR inhibits tumor growth by blocking the function of HMOX2, resulting in significantly increased survival rates of the cancer model mice. The novel therapeutic target HMOX2 and its fluorescent ligand TiNIR will open a new path for the molecular level of lung TIC diagnosis and treatment.
Collapse
Affiliation(s)
- Jong-Jin Kim
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science , Technology and Research (A*STAR) , Singapore 138667 , Singapore.,Center for Self-assembly and Complexity , Institute for Basic Science (IBS) , Pohang 37673 , Republic of Korea
| | - Yong-An Lee
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science , Technology and Research (A*STAR) , Singapore 138667 , Singapore.,Genome Institute of Singapore, Agency for Science , Technology and Research (A*STAR) , 60 Biopolis Street , Singapore 138672 , Singapore
| | - Dongdong Su
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science , Technology and Research (A*STAR) , Singapore 138667 , Singapore
| | - Jungyeol Lee
- New Drug Discovery Center , DGMIF , Daegu 41061 , Republic of Korea
| | - Sung-Jin Park
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science , Technology and Research (A*STAR) , Singapore 138667 , Singapore
| | - Beomsue Kim
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science , Technology and Research (A*STAR) , Singapore 138667 , Singapore
| | - Jia Hui Jane Lee
- Genome Institute of Singapore, Agency for Science , Technology and Research (A*STAR) , 60 Biopolis Street , Singapore 138672 , Singapore.,School of Biological Sciences , Nanyang Technological University , Singapore 637551 , Singapore
| | - Xiao Liu
- Center for Self-assembly and Complexity , Institute for Basic Science (IBS) , Pohang 37673 , Republic of Korea
| | - Seong Soon Kim
- Bio & Drug Discovery Division , Korea Research Institute of Chemical Technology , Yuseong-Gu , Gajeong-ro 141 , Daejeon 34114 , Republic of Korea
| | - Myung Ae Bae
- Bio & Drug Discovery Division , Korea Research Institute of Chemical Technology , Yuseong-Gu , Gajeong-ro 141 , Daejeon 34114 , Republic of Korea
| | - Jun-Seok Lee
- Molecular Recognition Research Center , Korea Institute of Science and Technology , 5, Hwarang-ro 14-gil , Seoul 02792 , Republic of Korea
| | - Seong Cheol Hong
- Molecular Recognition Research Center , Korea Institute of Science and Technology , 5, Hwarang-ro 14-gil , Seoul 02792 , Republic of Korea
| | - Lu Wang
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science , Technology and Research (A*STAR) , Singapore 138667 , Singapore.,Department of Chemical Biology , Max Planck Institute for Medical Research , Heidelberg 69120 , Germany
| | - Animesh Samanta
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science , Technology and Research (A*STAR) , Singapore 138667 , Singapore.,Chemical Sciences and Technology Division , CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST) , Industrial Estate P O , Pappanamcode , Thiruvananthapuram 695019 , India
| | - Haw-Young Kwon
- Center for Self-assembly and Complexity , Institute for Basic Science (IBS) , Pohang 37673 , Republic of Korea
| | | | - Jun-Young Kim
- A-fourth, SL VAXiGEN , KOREA BIO PARK , Daewangpangyo-ro 700, Bundang-gu , Seongnam-si , Gyenggi-do 13488 , Korea
| | - Young Hyun Yu
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences 11 , Sunchon National University , Suncheon 57922 , Republic of Korea
| | - Hyung-Ho Ha
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences 11 , Sunchon National University , Suncheon 57922 , Republic of Korea
| | - Zhenxun Wang
- Genome Institute of Singapore, Agency for Science , Technology and Research (A*STAR) , 60 Biopolis Street , Singapore 138672 , Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore, Agency for Science , Technology and Research (A*STAR) , 60 Biopolis Street , Singapore 138672 , Singapore.,Cancer Science Institute of Singapore , National University of Singapore , Singapore 117599 , Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine , National University of Singapore , Singapore 117597 , Singapore
| | - Bing Lim
- Genome Institute of Singapore, Agency for Science , Technology and Research (A*STAR) , 60 Biopolis Street , Singapore 138672 , Singapore.,Merck Sharp and Dohme Translational Medicine Research Centre , 8A Biomedical Grove , Singapore 138648 , Singapore
| | - Nam-Young Kang
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science , Technology and Research (A*STAR) , Singapore 138667 , Singapore.,New Drug Discovery Center , DGMIF , Daegu 41061 , Republic of Korea
| | - Young-Tae Chang
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science , Technology and Research (A*STAR) , Singapore 138667 , Singapore.,Center for Self-assembly and Complexity , Institute for Basic Science (IBS) , Pohang 37673 , Republic of Korea
| |
Collapse
|
16
|
ATP-binding Cassette Transporters Substantially Reduce Estimates of ALDH-positive Cancer Cells based on Aldefluor and AldeRed588 Assays. Sci Rep 2019; 9:6462. [PMID: 31015586 PMCID: PMC6478741 DOI: 10.1038/s41598-019-42954-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/12/2019] [Indexed: 12/18/2022] Open
Abstract
Aldehyde dehydrogenase (ALDH) assays measure the accumulated fluorescence of enzyme products. However, cancer cells frequently co-express ALDH and ATP-binding cassette (ABC) transporters, which might mediate efflux of ALDH assay reagents. We demonstrate expression of active multidrug resistance protein1 (MDR1), multidrug resistance-associated protein (MRP), and breast cancer resistance protein (BCRP) in CT26 cancer cells as well as expression of MRP and BCRP in HT29 cancer cells. Without transporter inhibition, only small portions of both cell types were estimated to be ALDH-positive based on Aldefluor and AldeRed588 assays. However, MK-571 (MRP inhibitor) and novobiocin (BCRP inhibitor) substantially increased the rate of ALDH-positive CT26 cells based on either Aldefluor or AldeRed588 assays. Verapamil (MDR inhibitor) did not influence assay results. MK-571 also substantially increased the rate of ALDH-positive HT29 cells. Limiting dilution assays demonstrated greater numbers of tumor-spheres formed by Aldefluor-positive compared to -negative CT26 cells selected in the presence of MK-571 or novobiocin but not in their absence. These results reveal that Aldefluor and AldeRed588 products are efficient substrates for MRP- and BCRP-mediated efflux and substantially reduce estimated ALDH positivity rates in cancer cells. These findings demonstrate that complete blockade of these transporters is important to ensure accurate ALDH assay results and to develop newer assay techniques.
Collapse
|
17
|
Pereira R, Gendron T, Sanghera C, Greenwood HE, Newcombe J, McCormick PN, Sander K, Topf M, Årstad E, Witney TH. Mapping Aldehyde Dehydrogenase 1A1 Activity using an [ 18 F]Substrate-Based Approach. Chemistry 2019; 25:2345-2351. [PMID: 30521138 PMCID: PMC6379060 DOI: 10.1002/chem.201805473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/05/2018] [Indexed: 12/21/2022]
Abstract
Aldehyde dehydrogenases (ALDHs) catalyze the oxidation of aldehydes to carboxylic acids. Elevated ALDH expression in human cancers is linked to metastases and poor overall survival. Despite ALDH being a poor prognostic factor, the non-invasive assessment of ALDH activity in vivo has not been possible due to a lack of sensitive and translational imaging agents. Presented in this report are the synthesis and biological evaluation of ALDH1A1-selective chemical probes composed of an aromatic aldehyde derived from N,N-diethylamino benzaldehyde (DEAB) linked to a fluorinated pyridine ring either via an amide or amine linkage. Of the focused library of compounds evaluated, N-ethyl-6-(fluoro)-N-(4-formylbenzyl)nicotinamide 4 b was found to have excellent affinity and isozyme selectivity for ALDH1A1 in vitro. Following 18 F-fluorination, [18 F]4 b was taken up by colorectal tumor cells and trapped through the conversion to its 18 F-labeled carboxylate product under the action of ALDH. In vivo positron emission tomography revealed high uptake of [18 F]4 b in the lungs and liver, with radioactivity cleared through the urinary tract. Oxidation of [18 F]4 b, however, was observed in vivo, which may limit the tissue penetration of this first-in-class radiotracer.
Collapse
Affiliation(s)
- Raul Pereira
- Centre for Advanced Biomedical ImagingUniversity College LondonPaul O'Gorman Building, 72 Huntley StreetLondonWC1E 6DDUK
- Current address: Department of Imaging Chemistry & BiologyKing's College London, St. Thomas' HospitalLondonSE1 7EHUK
| | - Thibault Gendron
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Chandan Sanghera
- Centre for Advanced Biomedical ImagingUniversity College LondonPaul O'Gorman Building, 72 Huntley StreetLondonWC1E 6DDUK
- Current address: Department of Imaging Chemistry & BiologyKing's College London, St. Thomas' HospitalLondonSE1 7EHUK
| | - Hannah E. Greenwood
- Centre for Advanced Biomedical ImagingUniversity College LondonPaul O'Gorman Building, 72 Huntley StreetLondonWC1E 6DDUK
- Current address: Department of Imaging Chemistry & BiologyKing's College London, St. Thomas' HospitalLondonSE1 7EHUK
| | - Joseph Newcombe
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
- Department of Biological Sciences, BirkbeckUniversity of LondonMalet StreetLondonWC1E 7HXUK
| | - Patrick N. McCormick
- Centre for Advanced Biomedical ImagingUniversity College LondonPaul O'Gorman Building, 72 Huntley StreetLondonWC1E 6DDUK
- Current address: Department of Imaging Chemistry & BiologyKing's College London, St. Thomas' HospitalLondonSE1 7EHUK
| | - Kerstin Sander
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Maya Topf
- Department of Biological Sciences, BirkbeckUniversity of LondonMalet StreetLondonWC1E 7HXUK
| | - Erik Årstad
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Timothy H. Witney
- Centre for Advanced Biomedical ImagingUniversity College LondonPaul O'Gorman Building, 72 Huntley StreetLondonWC1E 6DDUK
- Current address: Department of Imaging Chemistry & BiologyKing's College London, St. Thomas' HospitalLondonSE1 7EHUK
| |
Collapse
|
18
|
Anorma C, Hedhli J, Bearrood TE, Pino NW, Gardner SH, Inaba H, Zhang P, Li Y, Feng D, Dibrell SE, Kilian KA, Dobrucki LW, Fan TM, Chan J. Surveillance of Cancer Stem Cell Plasticity Using an Isoform-Selective Fluorescent Probe for Aldehyde Dehydrogenase 1A1. ACS CENTRAL SCIENCE 2018; 4:1045-1055. [PMID: 30159402 PMCID: PMC6107868 DOI: 10.1021/acscentsci.8b00313] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Indexed: 05/19/2023]
Abstract
Cancer stem cells (CSCs) are progenitor cells that contribute to treatment-resistant phenotypes during relapse. CSCs exist in specific tissue microenvironments that cell cultures and more complex models cannot mimic. Therefore, the development of new approaches that can detect CSCs and report on specific properties (e.g., stem cell plasticity) in their native environment have profound implications for studying CSC biology. Herein, we present AlDeSense, a turn-on fluorescent probe for aldehyde dehydrogenase 1A1 (ALDH1A1) and Ctrl-AlDeSense, a matching nonresponsive reagent. Although ALDH1A1 contributes to the detoxification of reactive aldehydes, it is also associated with stemness and is highly elevated in CSCs. AlDeSense exhibits a 20-fold fluorescent enhancement when treated with ALDH1A1. Moreover, we established that AlDeSense is selective against a panel of common ALDH isoforms and exhibits exquisite chemostability against a collection of biologically relevant species. Through the application of surface marker antibody staining, tumorsphere assays, and assessment of tumorigenicity, we demonstrate that cells exhibiting high AlDeSense signal intensity have properties of CSCs. Using these probes in tandem, we have identified CSCs at the cellular level via flow cytometry and confocal imaging, as well as monitored their states in animal models.
Collapse
Affiliation(s)
- Chelsea Anorma
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jamila Hedhli
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1304 W. Springfield Avenue, Urbana, Illinois 61801, United
States
- Beckman Institute
for Advanced Science and Technology, University
of Illinois at Urbana−Champaign, 405 N. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Thomas E. Bearrood
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Nicholas W. Pino
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Sarah H. Gardner
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hiroshi Inaba
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Pamela Zhang
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Yanfen Li
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1304 W. Springfield Avenue, Urbana, Illinois 61801, United
States
| | - Daven Feng
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Sara E. Dibrell
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Kristopher A. Kilian
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1304 W. Springfield Avenue, Urbana, Illinois 61801, United
States
- School
of Materials Science and Engineering, School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Lawrence W. Dobrucki
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1304 W. Springfield Avenue, Urbana, Illinois 61801, United
States
- Beckman Institute
for Advanced Science and Technology, University
of Illinois at Urbana−Champaign, 405 N. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Timothy M. Fan
- Department
of Veterinary Clinical Medicine, University
of Illinois at Urbana−Champaign, 2001 S Lincoln Avenue, Urbana, Illinois 61801, United States
| | - Jefferson Chan
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
- Beckman Institute
for Advanced Science and Technology, University
of Illinois at Urbana−Champaign, 405 N. Mathews Avenue, Urbana, Illinois 61801, United States
- E-mail:
| |
Collapse
|
19
|
Ren J, Ding L, Zhang D, Shi G, Xu Q, Shen S, Wang Y, Wang T, Hou Y. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics 2018; 8:3932-3948. [PMID: 30083271 PMCID: PMC6071523 DOI: 10.7150/thno.25541] [Citation(s) in RCA: 505] [Impact Index Per Article: 84.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in the pathology of various tumors, including colorectal cancer (CRC). The crosstalk between carcinoma- associated fibroblasts (CAFs) and cancer cells in the tumor microenvironment promotes tumor development and confers chemoresistance. In this study, we further investigated the underlying tumor-promoting roles of CAFs and the molecular mediators involved in these processes. Methods: The AOM/DSS-induced colitis-associated cancer (CAC) mouse model was established, and RNA sequencing was performed. Small interfering RNA (siRNA) sequences were used to knock down H19. Cell apoptosis was measured by flow cytometry. SW480 cells with H19 stably knocked down were used to establish a xenograft model. The indicated protein levels in xenograft tumor tissues were confirmed by immunohistochemistry assay, and cell apoptosis was analyzed by TUNEL apoptosis assay. RNA-FISH and immunofluorescence assays were performed to assess the expression of H19 in tumor stroma and cancer nests. The AldeRed ALDH detection assay was performed to detect intracellular aldehyde dehydrogenase (ALDH) enzyme activity. Isolated exosomes were identified by transmission electron microscopy, nanoparticle tracking and Western blotting. Results: H19 was highly expressed in the tumor tissues of CAC mice compared with the expression in normal colon tissues. The up-regulation of H19 was also confirmed in CRC patient samples at different tumor node metastasis (TNM) stages. Moreover, H19 was associated with the stemness of colorectal cancer stem cells (CSCs) in CRC specimens. H19 promoted the stemness of CSCs and increased the frequency of tumor-initiating cells. RNA-FISH showed higher expression of H19 in tumor stroma than in cancer nests. Of note, H19 was enriched in CAF-derived conditioned medium and exosomes, which in turn promoted the stemness of CSCs and the chemoresistance of CRC cells in vitro and in vivo. Furthermore, H19 activated the β-catenin pathway via acting as a competing endogenous RNA sponge for miR-141 in CRC, while miR-141 significantly inhibited the stemness of CRC cells. Conclusion: CAFs promote the stemness and chemoresistance of CRC by transferring exosomal H19. H19 activated the β-catenin pathway via acting as a competing endogenous RNA sponge for miR-141, while miR-141 inhibited the stemness of CRC cells. Our findings indicate that H19 expressed by CAFs of the colorectal tumor stroma contributes to tumor development and chemoresistance.
Collapse
|
20
|
Zimmermann L, Moldzio R, Vazdar K, Krewenka C, Pohl EE. Nutrient deprivation in neuroblastoma cells alters 4-hydroxynonenal-induced stress response. Oncotarget 2018; 8:8173-8188. [PMID: 28030790 PMCID: PMC5352392 DOI: 10.18632/oncotarget.14132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/21/2016] [Indexed: 01/29/2023] Open
Abstract
4-hydroxy-2-nonenal (HNE), a toxic lipid peroxidation product, is associated with oxidative damage in cells and involved in various diseases including the initiation and progression of cancer. Cancer cells have a high, adaptable metabolism with a shift from oxidative phosphorylation to glycolysis and rely on high levels of glucose and glutamine as essential nutrients for cell growth. Here we investigated whether the toxic effects of HNE on the mitochondrial membrane potential (MMP) of cancer cells depends on their metabolic state by deprivation of glucose and/or glutamine. The addition of 16 μM HNE to N18TG2 neuroblastoma cells incubated in glucose medium led to a severe reduction of MMP, which was similar to the MMP of cells fed with both glucose and glutamine. In contrast, HNE addition to cells starved in glutamine medium increased their MMP slightly for a prolonged time period and this was accompanied by increased cellular survival. We found that ß-oxidation of HNE did not cause the increased MMP, since the aldehyde dehydrogenase was distinctly more active in cells with glucose medium. However, after blocking fatty acid ß-oxidation in cells starved in glutamine medium with etomoxir, which inhibits carnitine palmitoyltransferase 1, HNE addition induced a strong reduction of MMP similar to cells in glucose medium. Surprisingly, the effect of more toxic 4-oxo-2-nonenal was less pronounced. Our results suggest that in contrast to cells fed with glucose, glutamine-fed cancer cells are capable of ß-oxidizing fatty acids to maintain their MMP to combat the toxic effects of HNE.
Collapse
Affiliation(s)
- Lars Zimmermann
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Rudolf Moldzio
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Katarina Vazdar
- Division of Organic Chemistry and Biochemistry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Christopher Krewenka
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Elena E Pohl
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
21
|
Stallcop LE, Álvarez-García YR, Reyes-Ramos AM, Ramos-Cruz KP, Morgan MM, Shi Y, Li L, Beebe DJ, Domenech M, Warrick JW. Razor-printed sticker microdevices for cell-based applications. LAB ON A CHIP 2018; 18:451-462. [PMID: 29318250 PMCID: PMC5821501 DOI: 10.1039/c7lc00724h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Tape-based razor-printing is a flexible and affordable ultra-rapid prototyping approach for microscale device fabrication. However, integration of this prototyping approach into cell-based assay development has been limited to proof of principle demonstrations. This is in large part due to lack of an established or well-characterized option for biocompatible adhesive tape. Without such an option, integration of these areas will remain unexplored. Therefore, to address this critical hurdle, we characterized microscale devices made using a potentially biocompatible double-sided adhesive, ARCare 90106. We validated tape-based device performance against 96-well plates and PDMS microdevices with respect to cell viability, hydrophobic small molecule sequestration, the potential for leaching compounds, use in fluorescence microscopy, and outgassing (bubble formation). Results supported the tape as a promising tool for future cell-based assay development. Therefore, we subsequently demonstrated specific strengths enabled by the ultra-rapid (<1 h per prototype) and affordable (∼$1200 cutting plotter, <$0.05 per prototype) approach. Specifically, data demonstrate the ability to integrate disparate materials for advanced sticker-device functionality such as bonding of polystyrene devices to glass substrates for microscopy applications, inclusion of membranes, and incorporation of different electrospun biomaterials into a single device. Likewise, the approach allowed rapid adoption by uninitiated users. Overall, this study provides a necessary and unique contribution to the largely separate fields of tape-based razor-printing and cell-based microscale assay development by addressing a critical barrier to widespread integration and adoption while also demonstrating the potential for new and future applications.
Collapse
Affiliation(s)
- Loren E Stallcop
- Dept. of Materials Science - Madison, Univ. of Wisconsin - Madison, WI, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Maity S, Sadlowski CM, George Lin JM, Chen CH, Peng LH, Lee ES, Vegesna GK, Lee C, Kim SH, Mochly-Rosen D, Kumar S, Murthy N. Thiophene bridged aldehydes (TBAs) image ALDH activity in cells via modulation of intramolecular charge transfer. Chem Sci 2017; 8:7143-7151. [PMID: 29081945 PMCID: PMC5635522 DOI: 10.1039/c7sc03017g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/01/2017] [Indexed: 12/15/2022] Open
Abstract
Aldehyde dehydrogenases (ALDHs) catalyze the oxidation of an aldehyde to a carboxylic acid and are implicated in the etiology of numerous diseases. However, despite their importance, imaging ALDH activity in cells is challenging due to a lack of fluorescent imaging probes. In this report, we present a new family of fluorescent probes composed of an oligothiophene flanked by an aldehyde and an electron donor, termed thiophene-bridged aldehydes (TBAs), which can image ALDH activity in cells. The TBAs image ALDH activity via a fluorescence sensing mechanism based on the modulation of intramolecular charge transfer (ICT) and this enables the TBAs and their ALDH-mediated oxidized products, thiophene-bridged carboxylates (TBCs), to have distinguishable fluorescence spectra. Herein, we show that the TBAs can image ALDH activity in cells via fluorescence microscopy, flow cytometry, and in a plate reader. Using TBA we were able to develop a cell-based high throughput assay for ALDH inhibitors, for the first time, and screened a large, 1460-entry electrophile library against A549 cells. We identified α,β-substituted acrylamides as potent electrophile fragments that can inhibit ALDH activity in cells. These inhibitors sensitized drug-resistant glioblastoma cells to the FDA approved anti-cancer drug, temozolomide. The TBAs have the potential to make the analysis of ALDH activity in cells routinely possible given their ability to spectrally distinguish between an aldehyde and a carboxylic acid.
Collapse
Affiliation(s)
- Santanu Maity
- Department of Bioengineering , University of California , 140 Hearst Memorial Mining Building , Berkeley , CA 94720 , USA .
| | - Corinne M Sadlowski
- Department of Bioengineering , University of California , 140 Hearst Memorial Mining Building , Berkeley , CA 94720 , USA .
| | - Jung-Ming George Lin
- Department of Bioengineering , University of California , 140 Hearst Memorial Mining Building , Berkeley , CA 94720 , USA .
- The UC Berkeley-UCSF Graduate Program in Bioengineering , UC Berkeley , Berkeley , California , USA
| | - Che-Hong Chen
- Department of Chemical and Systems Biology , Stanford University , School of Medicine , Stanford , CA 94305-5174 , USA
| | - Li-Hua Peng
- Department of Bioengineering , University of California , 140 Hearst Memorial Mining Building , Berkeley , CA 94720 , USA .
| | - Eun-Soo Lee
- Korea Research Institute of Standards and Science , 267 Gajeong-ro, Yuseong-gu , Daejeon , Republic of Korea
| | - Giri K Vegesna
- Department of Bioengineering , University of California , 140 Hearst Memorial Mining Building , Berkeley , CA 94720 , USA .
| | - Charles Lee
- Department of Bioengineering , University of California , 140 Hearst Memorial Mining Building , Berkeley , CA 94720 , USA .
| | - Se-Hwa Kim
- Korea Research Institute of Standards and Science , 267 Gajeong-ro, Yuseong-gu , Daejeon , Republic of Korea
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology , Stanford University , School of Medicine , Stanford , CA 94305-5174 , USA
| | - Sanjay Kumar
- Department of Bioengineering , University of California , 140 Hearst Memorial Mining Building , Berkeley , CA 94720 , USA .
- The UC Berkeley-UCSF Graduate Program in Bioengineering , UC Berkeley , Berkeley , California , USA
| | - Niren Murthy
- Department of Bioengineering , University of California , 140 Hearst Memorial Mining Building , Berkeley , CA 94720 , USA .
- The UC Berkeley-UCSF Graduate Program in Bioengineering , UC Berkeley , Berkeley , California , USA
| |
Collapse
|
23
|
Chemosensitization and inhibition of pancreatic cancer stem cell proliferation by overexpression of microRNA-205. Cancer Lett 2017; 402:1-8. [PMID: 28536008 DOI: 10.1016/j.canlet.2017.05.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/26/2017] [Accepted: 05/14/2017] [Indexed: 12/23/2022]
Abstract
Treatment of pancreatic cancer with gemcitabine (GEM) is limited due to its rapid plasma metabolism and development of chemoresistance. MicroRNA (miRNA) regulates cancer stem cell (CSC) maintenance and induces chemoresistance in cancer cells. In this study, we observed differential downregulation of miR-205 (miR-205-5p) in human pancreatic cancer tissues and cells. Compared to GEM-sensitive MIA PaCa-2 cells, miR-205 was highly downregulated in GEM-resistant MIA PaCa-2R cells. Lentivirus-mediated overexpression of miR-205 inhibits MIA PaCa-2R cell proliferation after GEM-treatment. Further investigation confirmed that miR-205 alone significantly reduces the proliferation of CSCs and tumor growth in mouse models. However, miR-205 in combination with GEM was more efficient in reducing the proliferation of CSCs and 3D spheroids. Moreover, miR-205 overexpressing MIA PaCa-2R cells induced orthotopic tumor growth was significantly inhibited after intravenous administration of GEM-conjugated methoxy poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate)-graft-gemcitabine-graft-dodecanol (mPEG-b-PCC-g-GEM-g-DC) (mPEG-b-PCC-g-GEM-g-DC) polymeric micelles. Also, a reduction in CSCs, EMT and chemoresistance markers was observed in miR-205 overexpressing MIA PaCa-2R cells. Immunohistochemical analysis of orthotopic tumors showed a decrease in drug resistance protein caveolin-1 and cell proliferation marker Ki-67 in combination treatment. Overall, our findings suggest that miR-205 resensitizes GEM-resistant pancreatic cancer cells to GEM and acts as a tumor suppressor miRNA.
Collapse
|
24
|
Dollé L, Boulter L, Leclercq IA, van Grunsven LA. Next generation of ALDH substrates and their potential to study maturational lineage biology in stem and progenitor cells. Am J Physiol Gastrointest Liver Physiol 2015; 308:G573-8. [PMID: 25656041 PMCID: PMC4385895 DOI: 10.1152/ajpgi.00420.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/03/2015] [Indexed: 01/31/2023]
Abstract
High aldehyde dehydrogenase (ALDH) activity is a feature of stem cells from normal and cancerous tissues and a reliable universal marker used to isolate them. There are numerous ALDH isoforms with preferred substrate specificity variably expressed depending on tissue, cell type, and organelle and cell status. On the other hand, a given substrate may be metabolized by several enzyme isoforms. Currently ALDH activity is evidenced by using Aldefluor, a fluorescent substrate likely to be metabolized by numerous ALDH isoforms. Therefore, isolation techniques based on ALDH activity detection select a heterogeneous population of stem or progenitor cells. Despite active research in the field, the precise role(s) of different ALDH isoforms in stem cells remains enigmatic. Understanding the metabolic role of different ALDH isoform in the control of stem cell phenotype and cell fate during development, tissue homeostasis, or repair, as well as carcinogenesis, should open perspectives to significant discoveries in tissue biology. In this perspective, novel ALDH substrates are being developed. Here we describe how new substrates could be instrumental for better isolation of cell population with stemness potential and for defining hierarchy of cell populations in tissue. Finally, we speculate on other potential applications.
Collapse
Affiliation(s)
- Laurent Dollé
- Liver Cell Biology Lab, Vrije Universiteit Brussel (VUB), Brussels, Belgium;
| | - Luke Boulter
- 2MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, Edinburgh, United Kingdom; and
| | - Isabelle A. Leclercq
- 3Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Brussels, Belgium
| | - Leo A. van Grunsven
- 1Liver Cell Biology Lab, Vrije Universiteit Brussel (VUB), Brussels, Belgium;
| |
Collapse
|
25
|
Luo M, Gates KS, Henzl MT, Tanner JJ. Diethylaminobenzaldehyde is a covalent, irreversible inactivator of ALDH7A1. ACS Chem Biol 2015; 10:693-7. [PMID: 25554827 DOI: 10.1021/cb500977q] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
There is growing interest in aldehyde dehydrogenases (ALDHs) because of their overexpression in cancer stem cells and the ability to mediate resistance to cancer drugs. Here, we report the first crystal structure of an aldehyde dehydrogenase complexed with the inhibitor 4-diethylaminobenzaldehyde (DEAB). Contrary to the widely held belief that DEAB is a reversible inhibitor of ALDHs, we show that DEAB irreversibly inactivates ALDH7A1 via formation of a stable, covalent acyl-enzyme species.
Collapse
Affiliation(s)
- Min Luo
- Department
of Chemistry, University of Missouri−Columbia, Columbia, Missouri 65211, United States
| | - Kent S. Gates
- Department
of Chemistry, University of Missouri−Columbia, Columbia, Missouri 65211, United States
| | - Michael T. Henzl
- Department
of Biochemistry, University of Missouri−Columbia, Columbia, Missouri 65211, United States
| | - John J. Tanner
- Department
of Chemistry, University of Missouri−Columbia, Columbia, Missouri 65211, United States
- Department
of Biochemistry, University of Missouri−Columbia, Columbia, Missouri 65211, United States
| |
Collapse
|