1
|
Mathiesen IR, Calder EDD, Kunzelmann S, Walport LJ. Discovering covalent cyclic peptide inhibitors of peptidyl arginine deiminase 4 (PADI4) using mRNA-display with a genetically encoded electrophilic warhead. Commun Chem 2024; 7:304. [PMID: 39702664 DOI: 10.1038/s42004-024-01388-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
Covalent drugs can achieve high potency with long dosing intervals. However, concerns remain about side-effects associated with off-target reactivity. Combining macrocyclic peptides with covalent warheads provides a solution to minimise off-target reactivity: the peptide enables highly specific target binding, positioning a weakly reactive warhead proximal to a suitable residue in the target. Here we demonstrate the direct discovery of covalent cyclic peptides using encoded libraries containing a weakly electrophilic cysteine-reactive fluoroamidine warhead. We combine direct incorporation of the warhead into peptide libraries using the flexible in vitro translation system with a peptide selection approach that identifies only covalent target binders. Using this approach, we identify potent and selective covalent inhibitors of the peptidyl arginine deiminase, PADI4 or PAD4, that react exclusively at the active site cysteine. We envisage this approach will enable covalent peptide inhibitor discovery for a range of related enzymes and expansion to alternative warheads in the future.
Collapse
Affiliation(s)
- Isabel R Mathiesen
- Protein-Protein Interaction Laboratory, The Francis Crick Institute, London, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Ewen D D Calder
- Protein-Protein Interaction Laboratory, The Francis Crick Institute, London, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Simone Kunzelmann
- Structural Biology Scientific Technology Platform, The Francis Crick Institute, London, UK
| | - Louise J Walport
- Protein-Protein Interaction Laboratory, The Francis Crick Institute, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK.
| |
Collapse
|
2
|
Feng Q, Guo Q, Yu W, Li P, Yao C, Wang L, Song G. PADI4 negatively regulates RIG-I-mediated antiviral response through deacetylation of IFN-β promoter via HDAC1. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167092. [PMID: 38382623 DOI: 10.1016/j.bbadis.2024.167092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/03/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
The production of type I interferon (IFN) is precisely modulated by host to protect against viral infection efficiently without obvious immune disorders. Elucidating the tight control towards type I IFN production would be helpful to get insight into natural immunity and inflammatory diseases. As yet, however, the mechanisms that regulate IFN-β production, especially the epigenetic regulatory mechanisms, remain poorly explored. This study elucidated the potential function of Peptidylarginine deiminases (PADIs)-mediated citrullination in innate immunity. We identified PADI4, a PADIs family member that can act as an epigenetic coactivator, could repress IFN-β production upon RNA virus infection. Detailed experiments showed that PADI4 deficiency increased IFN-β production and promoted antiviral immune activities against RNA viruses. Mechanistically, the increased PADI4 following viral infection translocated to nucleus and recruited HDAC1 upon binding to Ifnb1 promoter, which then led to the deacetylation of histone H3 and histone H4 for repressing Ifnb1 transcription. Taken together, we identify a novel non-classical role for PADI4 in the regulation of IFN-β production, suggesting its potential as treatment target in inflammatory or autoimmune diseases.
Collapse
Affiliation(s)
- Qingwen Feng
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, China
| | - Qingwei Guo
- Department of Hematology, Children's Hospital Affiliated to Shandong University, Jinan 250000, Shandong, China
| | - Weijie Yu
- Qingdao Institute for Food and Drug Control, Qingdao 266071, Shandong, China
| | - Peng Li
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, China
| | - Chengfang Yao
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, China
| | - Lin Wang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, China
| | - Guanhua Song
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250000, China; Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, China.
| |
Collapse
|
3
|
Wang Y, Song X, Song Y, Fang K, Chang X. Investigating the cell membrane localization of PADI4 in breast cancer cells and inhibition of anti-PADI4 monoclonal antibody. J Cancer Res Clin Oncol 2023; 149:17253-17268. [PMID: 37804426 PMCID: PMC10657297 DOI: 10.1007/s00432-023-05433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/14/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Peptidyl arginine deiminase 4 (PADI4) is a post-translational modification enzymecan that converts arginine in protein into citrulline in the presence of calcium ions, which is called citrullination. PADI4 has been reported to be expressed in the cytoplasm and nucleus in a variety of malignant tumors. Based on the GeneCards database and our previous research, it is speculated that PADI4 may also be expressed on the cell membrane. This study aimed to confirm the membrane expression of PADI4 and the effect of anti-PADI4 antibodies on cell membrane PADI4. This may be another mechanism of action of anti-PADI4 monoclonal antibodies in the treatment of breast cancer. METHODS The subcellular localizations of PADI4 in MDA-MB-231 and MCF-7 breast cancer cells were determined by immunofluorescence, immunoelectron microscopy, and Western blot analysis. The tumor cells were treated with PADI4 antibody, and cell proliferation, migration, colony formation, apoptosis, glycolysis, and epithelial-mesenchymal transition (EMT) were measured as well as the expression of some essential tumor genes. RESULTS PADI4 was not only localized in the nucleus and cytoplasm of breast cancer cells but was also detected on the cell membrane. Following PADI4 antibody treatment, cell proliferation, migration, colony formation, EMT, and ATP production through glycolysis were decreased, and the mRNA expression of MYC proto-oncogene (MYC), FAT atypical cadherin 1 (FAT1), nuclear factor kappa B subunit 1 (NFκB), and tumor necrosis factor (TNF-α) in breast cancer cells was downregulated, while the mRNA expression of tumor protein p63 (TP63) was upregulated. CONCLUSIONS PADI4 is expressed on the cell membrane in breast cancer cells. Anti-PADI4 antibodies can affect the biological functions of cell membrane PADI4, including proliferation, migration, apoptosis, and glycolysis, thereby inhibiting tumor progression.
Collapse
Affiliation(s)
- Yan Wang
- Medical Research Center of The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 266000, Shandong, People's Republic of China
| | - Xianqin Song
- Medical Research Center of The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 266000, Shandong, People's Republic of China
| | - Yu Song
- Medical Research Center of The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 266000, Shandong, People's Republic of China
| | - Kehua Fang
- Clinical Laboratory of The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 266000, Shandong, People's Republic of China.
| | - Xiaotian Chang
- Medical Research Center of The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 266000, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Singh AK, Khan S, Moore D, Andrews S, Christophorou MA. Transcriptomic analysis of PADI4 target genes during multi-lineage differentiation of embryonic stem cells. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220236. [PMID: 37778387 PMCID: PMC10542446 DOI: 10.1098/rstb.2022.0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/08/2023] [Indexed: 10/03/2023] Open
Abstract
During mammalian embryo development, pluripotent epiblast cells diversify into the three primary germ layers, which will later give rise to all fetal and adult tissues. These processes involve profound transcriptional and epigenetic changes that require precise coordination. Peptidylarginine deiminase IV (PADI4) is a transcriptional regulator that is strongly associated with inflammation and carcinogenesis but whose physiological roles are less well understood. We previously found that Padi4 expression is associated with pluripotency. Here, we examined the role of PADI4 in maintaining the multi-lineage differentiation potential of mouse embryonic stem (ES) cells. Using bulk and single-cell transcriptomic analyses of embryoid bodies (EBs) derived from Padi4 knock-out (Padi4-KO) mouse ES cells, we find that PADI4 loss impairs mesoderm diversification and differentiation of cardimyocytes and endothelial cells. Additionally, Padi4 deletion leads to concerted downregulation of genes associated with polarized growth, sterol metabolism and the extracellular matrix (ECM). This study indicates a requirement for Padi4 in the specification of the mesodermal lineage and reports the Padi4 associated transcriptome, providing a platform for understanding the physiological functions of Padi4 in development and homeostasis. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.
Collapse
Affiliation(s)
| | - Soumen Khan
- Epigenetics, Babraham Institute, Cambridge CB22 3AT, UK
| | - Daniel Moore
- Epigenetics, Babraham Institute, Cambridge CB22 3AT, UK
| | - Simon Andrews
- Bioinformatics Facility, Babraham Institute, Cambridge CB22 3AT, UK
| | | |
Collapse
|
5
|
Harada K, Carr SM, Shrestha A, La Thangue NB. Citrullination and the protein code: crosstalk between post-translational modifications in cancer. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220243. [PMID: 37778382 PMCID: PMC10542456 DOI: 10.1098/rstb.2022.0243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/05/2023] [Indexed: 10/03/2023] Open
Abstract
Post-translational modifications (PTMs) of proteins are central to epigenetic regulation and cellular signalling, playing an important role in the pathogenesis and progression of numerous diseases. Growing evidence indicates that protein arginine citrullination, catalysed by peptidylarginine deiminases (PADs), is involved in many aspects of molecular and cell biology and is emerging as a potential druggable target in multiple diseases including cancer. However, we are only just beginning to understand the molecular activities of PADs, and their underlying mechanistic details in vivo under both physiological and pathological conditions. Many questions still remain regarding the dynamic cellular functions of citrullination and its interplay with other types of PTMs. This review, therefore, discusses the known functions of PADs with a focus on cancer biology, highlighting the cross-talk between citrullination and other types of PTMs, and how this interplay regulates downstream biological events. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.
Collapse
Affiliation(s)
- Koyo Harada
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Simon M. Carr
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Amit Shrestha
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Nicholas B. La Thangue
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| |
Collapse
|
6
|
Liu Y, Ma YH, Yang JW, Man JW, Wang HB, Li Y, Liang C, Cao JL, Chen SY, Li KP, Yang L. Rethinking neutrophil extracellular traps. Int Immunopharmacol 2023; 124:110834. [PMID: 37625368 DOI: 10.1016/j.intimp.2023.110834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Neutrophils are a major subset of leukocytes in human circulating blood. In some circumstances, neutrophils release neutrophil extracellular traps (NETs). lnitially, NETs were considered to have a strong antibacterial capacity. However, currently, NETs have been shown to have a pivotal impact on various diseases. Different stimulators induce the production of different types of NETs, and their biological functions and modes of clearance do not appear to be the same. In this review, we will discuss several important issues related to NETs in order to better understand the relationship between NETs and diseases, as well as how to utilize the characteristics of NETs for disease treatment.
Collapse
Affiliation(s)
- Yi Liu
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Yu-Hua Ma
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Jian-Wei Yang
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Jiang-Wei Man
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Hua-Bin Wang
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Yi Li
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Cheng Liang
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Jin-Long Cao
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Si-Yu Chen
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Kun-Peng Li
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Li Yang
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China.
| |
Collapse
|
7
|
Nakamura A, Sakai S, Taketomi Y, Tsuyama J, Miki Y, Hara Y, Arai N, Sugiura Y, Kawaji H, Murakami M, Shichita T. PLA2G2E-mediated lipid metabolism triggers brain-autonomous neural repair after ischemic stroke. Neuron 2023; 111:2995-3010.e9. [PMID: 37490917 DOI: 10.1016/j.neuron.2023.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 03/08/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023]
Abstract
The brain is generally resistant to regeneration after damage. The cerebral endogenous mechanisms triggering brain self-recovery have remained unclarified to date. We here discovered that the secreted phospholipase PLA2G2E from peri-infarct neurons generated dihomo-γ-linolenic acid (DGLA) as necessary for triggering brain-autonomous neural repair after ischemic brain injury. Pla2g2e deficiency diminished the expression of peptidyl arginine deiminase 4 (Padi4), a global transcriptional regulator in peri-infarct neurons. Single-cell RNA sequencing (scRNA-seq) and epigenetic analysis demonstrated that neuronal PADI4 had the potential for the transcriptional activation of genes associated with recovery processes after ischemic stroke through histone citrullination. Among various DGLA metabolites, we identified 15-hydroxy-eicosatrienoic acid (15-HETrE) as the cerebral metabolite that induced PADI4 in peri-infarct-surviving neurons. Administration of 15-HETrE enhanced functional recovery after ischemic stroke. Thus, our research clarifies the promising potential of brain-autonomous neural repair triggered by the specialized lipids that initiate self-recovery processes after brain injury.
Collapse
Affiliation(s)
- Akari Nakamura
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Neuroinflammation and Repair, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Core Research for Evolutionary Medical Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan
| | - Seiichiro Sakai
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Neuroinflammation and Repair, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Core Research for Evolutionary Medical Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Jun Tsuyama
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Neuroinflammation and Repair, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Core Research for Evolutionary Medical Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Science Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yuichiro Hara
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Nobutaka Arai
- Laboratory for Neuropathology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hideya Kawaji
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takashi Shichita
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Neuroinflammation and Repair, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Core Research for Evolutionary Medical Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan.
| |
Collapse
|
8
|
Ganesan A, Dermadi D, Kalesinskas L, Donato M, Sowers R, Utz PJ, Khatri P. Inferring direction of associations between histone modifications using a neural processes-based framework. iScience 2023; 26:105756. [PMID: 36619977 PMCID: PMC9813700 DOI: 10.1016/j.isci.2022.105756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/19/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022] Open
Abstract
Current technologies do not allow predicting interactions between histone post-translational modifications (HPTMs) at a system-level. We describe a computational framework, imputation-followed-by-inference, to predict directed association between two HPTMs using EpiTOF, a mass cytometry-based platform that allows profiling multiple HPTMs at a single-cell resolution. Using EpiTOF profiles of >55,000,000 peripheral mononuclear blood cells from 158 healthy human subjects, we show that neural processes (NP) have significantly higher accuracy than linear regression and k-nearest neighbors models to impute the abundance of an HPTM. Next, we infer the direction of association to show we recapitulate known HPTM associations and identify several previously unidentified ones in healthy individuals. Using this framework in an influenza vaccine cohort, we identify changes in associations between 6 pairs of HPTMs 30 days following vaccination, of which several have been shown to be involved in innate memory. These results demonstrate the utility of our framework in identifying directed interactions between HPTMs.
Collapse
Affiliation(s)
- Ananthakrishnan Ganesan
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Institute for Computational and Mathematical Engineering, School of Engineering, Stanford University, Stanford, CA 94305, USA
- Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Denis Dermadi
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Laurynas Kalesinskas
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Michele Donato
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Rosalie Sowers
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Paul J. Utz
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Division of Immunology and Rheumatology, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Zhu C, Liu C, Chai Z. Role of the PADI family in inflammatory autoimmune diseases and cancers: A systematic review. Front Immunol 2023; 14:1115794. [PMID: 37020554 PMCID: PMC10067674 DOI: 10.3389/fimmu.2023.1115794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/08/2023] [Indexed: 04/07/2023] Open
Abstract
The peptidyl arginine deiminase (PADI) family is a calcium ion-dependent group of isozymes with sequence similarity that catalyze the citrullination of proteins. Histones can serve as the target substrate of PADI family isozymes, and therefore, the PADI family is involved in NETosis and the secretion of inflammatory cytokines. Thus, the PADI family is associated with the development of inflammatory autoimmune diseases and cancer, reproductive development, and other related diseases. In this review, we systematically discuss the role of the PADI family in the pathogenesis of various diseases based on studies from the past decade to provide a reference for future research.
Collapse
Affiliation(s)
- Changhui Zhu
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Chunyan Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- *Correspondence: Chunyan Liu, ; Zhengbin Chai,
| | - Zhengbin Chai
- Department of Clinical Laboratory Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan, China
- *Correspondence: Chunyan Liu, ; Zhengbin Chai,
| |
Collapse
|
10
|
Zhu D, Lu Y, Wang Y, Wang Y. PAD4 and Its Inhibitors in Cancer Progression and Prognosis. Pharmaceutics 2022; 14:2414. [PMID: 36365233 PMCID: PMC9699117 DOI: 10.3390/pharmaceutics14112414] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 07/24/2023] Open
Abstract
The systemic spread of malignancies and the risk of cancer-associated thrombosis are major clinical challenges in cancer therapy worldwide. As an important post-translational modification enzyme, peptidyl arginine deiminase 4 (PAD4) could mediate the citrullination of protein in different components (including nucleus and cytoplasm, etc.) of a variety of cells (tumor cells, neutrophils, macrophages, etc.), thus participating in gene regulation, neutrophil extracellular trap (NET) and macrophage extracellular trap (MET). Thereby, PAD4 plays an important role in enhancing the growth of primary tumors and facilitating the distant metastasis of cancer cells. In addition, it is related to the formation of cancer-associated thrombosis. Therefore, the development of PAD4-specific inhibitors may be a promising strategy for treating cancer, and it may improve patient prognosis. In this review, we describe PAD4 involvement in gene regulation, protein citrullination, and NET formation. We also discuss its potential role in cancer and cancer-associated thrombosis, and we summarize the development and application of PAD4 inhibitors.
Collapse
Affiliation(s)
- Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Yanming Wang
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| |
Collapse
|
11
|
Sauter C, Simonet J, Guidez F, Dumétier B, Pernon B, Callanan M, Bastie JN, Aucagne R, Delva L. Protein Arginine Methyltransferases as Therapeutic Targets in Hematological Malignancies. Cancers (Basel) 2022; 14:5443. [PMID: 36358861 PMCID: PMC9657843 DOI: 10.3390/cancers14215443] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 08/02/2023] Open
Abstract
Arginine methylation is a common post-translational modification affecting protein activity and the transcription of target genes when methylation occurs on histone tails. There are nine protein arginine methyltransferases (PRMTs) in mammals, divided into subgroups depending on the methylation they form on a molecule of arginine. During the formation and maturation of the different types of blood cells, PRMTs play a central role by controlling cell differentiation at the transcriptional level. PRMT enzymatic activity is necessary for many cellular processes in hematological malignancies, such as the activation of cell cycle and proliferation, inhibition of apoptosis, DNA repair processes, RNA splicing, and transcription by methylating histone tails' arginine. Chemical tools have been developed to inhibit the activity of PRMTs and have been tested in several models of hematological malignancies, including primary samples from patients, xenografts into immunodeficient mice, mouse models, and human cell lines. They show a significant effect by reducing cell viability and increasing the overall survival of mice. PRMT5 inhibitors have a strong therapeutic potential, as phase I clinical trials in hematological malignancies that use these molecules show promising results, thus, underlining PRMT inhibitors as useful therapeutic tools for cancer treatment in the future.
Collapse
Affiliation(s)
- Camille Sauter
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - John Simonet
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Fabien Guidez
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Baptiste Dumétier
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Baptiste Pernon
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Mary Callanan
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
- Unit for Innovation in Genetics and Epigenetic in Oncology (IGEO)/CRIGEN Core Facility, University Hospital François Mitterrand, 21000 Dijon, France
| | - Jean-Noël Bastie
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
- Department of Clinical Hematology, University Hospital François Mitterrand, 21000 Dijon, France
| | - Romain Aucagne
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
- Unit for Innovation in Genetics and Epigenetic in Oncology (IGEO)/CRIGEN Core Facility, University Hospital François Mitterrand, 21000 Dijon, France
| | - Laurent Delva
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
| |
Collapse
|
12
|
Young C, Russell JR, Van De Lagemaat LN, Lawson H, Mapperley C, Kranc KR, Christophorou MA. Intrinsic function of the peptidylarginine deiminase PADI4 is dispensable for normal haematopoiesis. Biol Open 2022; 11:bio059143. [PMID: 35603697 PMCID: PMC9212077 DOI: 10.1242/bio.059143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
Peptidylarginine deiminases (PADIs) are strongly associated with the development of autoimmunity, neurodegeneration and cancer but their physiological roles are ill-defined. The nuclear deiminase PADI4 regulates pluripotency in the mammalian pre-implantation embryo but its function in tissue development is unknown. PADI4 is primarily expressed in the bone marrow, as part of a self-renewal-associated gene signature. It has been shown to regulate the proliferation of multipotent haematopoietic progenitors and proposed to impact on the differentiation of haematopoietic stem cells (HSCs), suggesting that it controls haematopoietic development or regeneration. Using conditional in vivo models of steady state and acute Padi4 ablation, we examined the role of PADI4 in the development and function of the haematopoietic system. We found that PADI4 loss does not significantly affect HSC self-renewal or differentiation potential upon injury or serial transplantation, nor does it lead to HSC exhaustion or premature ageing. Thus PADI4 is dispensable for cell-autonomous HSC maintenance, differentiation and haematopoietic regeneration. This work represents the first study of PADI4 in tissue development and indicates that pharmacological PADI4 inhibition may be tolerated without adverse effects.
Collapse
Affiliation(s)
- Christine Young
- MRC Human Genetics Unit, The Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - John R. Russell
- MRC Human Genetics Unit, The Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Louie N. Van De Lagemaat
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M6BQ, United Kingdom
| | - Hannah Lawson
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M6BQ, United Kingdom
| | - Christopher Mapperley
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M6BQ, United Kingdom
| | - Kamil R. Kranc
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M6BQ, United Kingdom
| | - Maria A. Christophorou
- MRC Human Genetics Unit, The Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
- Epiegetics, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| |
Collapse
|
13
|
Christophorou MA. The virtues and vices of protein citrullination. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220125. [PMID: 35706669 PMCID: PMC9174705 DOI: 10.1098/rsos.220125] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/16/2022] [Indexed: 05/03/2023]
Abstract
The post-translational modification of proteins expands the regulatory scope of the proteome far beyond what is achievable through genome regulation. The field of protein citrullination has seen significant progress in the last two decades. The small family of peptidylarginine deiminase (PADI or PAD) enzymes, which catalyse citrullination, have been implicated in virtually all facets of molecular and cell biology, from gene transcription and epigenetics to cell signalling and metabolism. We have learned about their association with a remarkable array of disease states and we are beginning to understand how they mediate normal physiological functions. However, while the biochemistry of PADI activation has been worked out in exquisite detail in vitro, we still lack a clear mechanistic understanding of the processes that regulate PADIs within cells, under physiological and pathophysiological conditions. This review summarizes and discusses the current knowledge, highlights some of the unanswered questions of immediate importance and gives a perspective on the outlook of the citrullination field.
Collapse
|
14
|
Chang XT, Wu H, Li HL, Li HL, Zheng YB. PADI4 promotes epithelial-mesenchymal transition(EMT) in gastric cancer via the upregulation of interleukin 8. BMC Gastroenterol 2022; 22:25. [PMID: 35045833 PMCID: PMC8767667 DOI: 10.1186/s12876-022-02097-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/03/2022] [Indexed: 01/04/2023] Open
Abstract
Abstract
Background
Gastric cancer (GC) is one of the deadliest tumours due to its ability to metastasize. The Epithelial–to-mesenchymal transition plays a crucial role in promoting the GC metastasis, which increases the migration and metastasis of tumour cells. Peptidyl arginine deiminase IV (PADI4) is a susceptibility gene for gastric carcinoma. The aim of this study was to evaluate the functional roles of PADI4 in gastric cancer.
Methods
The expression of PADI4 was examined by qRT-PCR, western blot and immunohistochemistry. In addition, the functional roles of PADI4 were explored by over-expression PADI4 plasmids in gastric cancer cells.
Results
We found that the expression of PADI4 was up-regulated in GC. PADI4 overexpression in GC cells increased the proliferation, migration, metastasis, clone forming ability, and tumorigenic ability, but reduced the apoptosis ability. The Multi-Analyte ELISArray Kit results showed that interleukin 8 (IL-8) is upregulated in PADI4-overexpressing gastric cells. Using short interfering RNA (siRNA) to silence the expression of IL-8, we demonstrated that IL-8 silencing significantly inhibited the increased migratory capacity in PADI4-overexpressing GC cells.
Conclusions
Our data suggest that PADI4 accelerate metastasis by promoting IL-8 expression in gastric cancer cells, indicating that it is a new PADI4/IL-8 signalling pathway in metastatic GC.
Collapse
|
15
|
Vikhe Patil K, Mak KHM, Genander M. A Hairy Cituation - PADIs in Regeneration and Alopecia. Front Cell Dev Biol 2021; 9:789676. [PMID: 34966743 PMCID: PMC8710808 DOI: 10.3389/fcell.2021.789676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/23/2021] [Indexed: 02/04/2023] Open
Abstract
In this Review article, we focus on delineating the expression and function of Peptidyl Arginine Delminases (PADIs) in the hair follicle stem cell lineage and in inflammatory alopecia. We outline our current understanding of cellular processes influenced by protein citrullination, the PADI mediated posttranslational enzymatic conversion of arginine to citrulline, by exploring citrullinomes from normal and inflamed tissues. Drawing from other stem cell lineages, we detail the potential function of PADIs and specific citrullinated protein residues in hair follicle stem cell activation, lineage specification and differentiation. We highlight PADI3 as a mediator of hair shaft differentiation and display why mutations in PADI3 are linked to human alopecia. Furthermore, we propose mechanisms of PADI4 dependent fine-tuning of the hair follicle lineage progression. Finally, we discuss citrullination in the context of inflammatory alopecia. We present how infiltrating neutrophils establish a citrullination-driven self-perpetuating proinflammatory circuitry resulting in T-cell recruitment and activation contributing to hair follicle degeneration. In summary, we aim to provide a comprehensive perspective on how citrullination modulates hair follicle regeneration and contributes to inflammatory alopecia.
Collapse
Affiliation(s)
- Kim Vikhe Patil
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kylie Hin-Man Mak
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Genander
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
SLUG and Truncated TAL1 Reduce Glioblastoma Stem Cell Growth Downstream of Notch1 and Define Distinct Vascular Subpopulations in Glioblastoma Multiforme. Cancers (Basel) 2021; 13:cancers13215393. [PMID: 34771555 PMCID: PMC8582547 DOI: 10.3390/cancers13215393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Glioblastoma multiforme is the most aggressive form of brain tumor and is still incurable. These neoplasms are particularly difficult to treat efficiently because of their highly heterogeneous and resistant characteristics. Advances in genomics have highlighted the complex molecular landscape of these tumors and the need to further develop effective and targeted therapies for each patient. A specific population of cells with enriched stem cell properties within tumors, i.e., glioblastoma stem cells (GSC), drives this cellular heterogeneity and therapeutical resistance, and thus constitutes an attractive target for the design of innovative treatments. However, the signals driving the maintenance and resistance of these cells are still unclear. We provide new findings regarding the expression of two transcription factors in these cells and directly in glioblastoma patient samples. We show that these proteins downregulate GSC growth and ultimately participate in the progression of gliomas. The forthcoming results will contribute to a better understanding of gliomagenesis. Abstract Glioblastomas (GBM) are high-grade brain tumors, containing cells with distinct phenotypes and tumorigenic potentials, notably aggressive and treatment-resistant multipotent glioblastoma stem cells (GSC). The molecular mechanisms controlling GSC plasticity and growth have only partly been elucidated. Contact with endothelial cells and the Notch1 pathway control GSC proliferation and fate. We used three GSC cultures and glioma resections to examine the expression, regulation, and role of two transcription factors, SLUG (SNAI2) and TAL1 (SCL), involved in epithelial to mesenchymal transition (EMT), hematopoiesis, vascular identity, and treatment resistance in various cancers. In vitro, SLUG and a truncated isoform of TAL1 (TAL1-PP22) were strongly upregulated upon Notch1 activation in GSC, together with LMO2, a known cofactor of TAL1, which formed a complex with truncated TAL1. SLUG was also upregulated by TGF-β1 treatment and by co-culture with endothelial cells. In patient samples, the full-length isoform TAL1-PP42 was expressed in all glioma grades. In contrast, SLUG and truncated TAL1 were preferentially overexpressed in GBMs. SLUG and TAL1 are expressed in the tumor microenvironment by perivascular and endothelial cells, respectively, and to a minor extent, by a fraction of epidermal growth factor receptor (EGFR) -amplified GBM cells. Mechanistically, both SLUG and truncated TAL1 reduced GSC growth after their respective overexpression. Collectively, this study provides new evidence for the role of SLUG and TAL1 in regulating GSC plasticity and growth.
Collapse
|
17
|
Wang Y, Lyu Y, Tu K, Xu Q, Yang Y, Salman S, Le N, Lu H, Chen C, Zhu Y, Wang R, Liu Q, Semenza GL. Histone citrullination by PADI4 is required for HIF-dependent transcriptional responses to hypoxia and tumor vascularization. SCIENCE ADVANCES 2021; 7:7/35/eabe3771. [PMID: 34452909 PMCID: PMC8397272 DOI: 10.1126/sciadv.abe3771] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 07/08/2021] [Indexed: 05/19/2023]
Abstract
Hypoxia-inducible factors (HIFs) activate transcription of target genes by recruiting coactivators and chromatin-modifying enzymes. Peptidylarginine deiminase 4 (PADI4) catalyzes the deimination of histone arginine residues to citrulline. Here, we demonstrate that PADI4 expression is induced by hypoxia in a HIF-dependent manner in breast cancer and hepatocellular carcinoma cells. PADI4, in turn, is recruited by HIFs to hypoxia response elements (HREs) and is required for HIF target gene transcription. Hypoxia induces histone citrullination at HREs that is PADI4 and HIF dependent. RNA sequencing revealed that almost all HIF target genes in breast cancer cells are PADI4 dependent. PADI4 is required for breast and liver tumor growth and angiogenesis in mice. PADI4 expression is correlated with HIF-1α expression and vascularization in human breast cancer biopsies. Thus, HIF-dependent recruitment of PADI4 to target genes and local histone citrullination are required for transcriptional responses to hypoxia.
Collapse
Affiliation(s)
- Yufeng Wang
- Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Yajing Lyu
- Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Qiuran Xu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, Zhejiang, China
| | - Yongkang Yang
- Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shaima Salman
- Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nguyet Le
- Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Haiquan Lu
- Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chelsey Chen
- Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yayun Zhu
- Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ru Wang
- Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi, China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
| | - Gregg L Semenza
- Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Genetic Medicine, Pediatrics, Medicine, Radiation Oncology, and Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
18
|
Chaerkady R, Zhou Y, Delmar JA, Weng SHS, Wang J, Awasthi S, Sims D, Bowen MA, Yu W, Cazares LH, Sims GP, Hess S. Characterization of Citrullination Sites in Neutrophils and Mast Cells Activated by Ionomycin via Integration of Mass Spectrometry and Machine Learning. J Proteome Res 2021; 20:3150-3164. [PMID: 34008986 DOI: 10.1021/acs.jproteome.1c00028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Citrullination is an important post-translational modification implicated in many diseases including rheumatoid arthritis (RA), Alzheimer's disease, and cancer. Neutrophil and mast cells have different expression profiles for protein-arginine deiminases (PADs), and ionomycin-induced activation makes them an ideal cellular model to study proteins susceptible to citrullination. We performed high-resolution mass spectrometry and stringent data filtration to identify citrullination sites in neutrophil and mast cells treated with and without ionomycin. We identified a total of 833 validated citrullination sites on 395 proteins. Several of these citrullinated proteins are important components of pathways involved in innate immune responses. Using this benchmark primary sequence data set, we developed machine learning models to predict citrullination in neutrophil and mast cell proteins. We show that our models predict citrullination likelihood with 0.735 and 0.766 AUCs (area under the receiver operating characteristic curves), respectively, on independent validation sets. In summary, this study provides the largest number of validated citrullination sites in neutrophil and mast cell proteins. The use of our novel motif analysis approach to predict citrullination sites will facilitate the discovery of novel protein substrates of protein-arginine deiminases (PADs), which may be key to understanding immunopathologies of various diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Michael A Bowen
- Antibody Discovery and Protein Engineering (ADPE), R&D AstraZeneca, Gaithersburg, Maryland 20878, United States
| | | | | | | | | |
Collapse
|
19
|
Schneider L, Herkt S, Wang L, Feld C, Wesely J, Kuvardina ON, Meyer A, Oellerich T, Häupl B, Seifried E, Bonig H, Lausen J. PRMT6 activates cyclin D1 expression in conjunction with the transcription factor LEF1. Oncogenesis 2021; 10:42. [PMID: 34001852 PMCID: PMC8129428 DOI: 10.1038/s41389-021-00332-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/15/2021] [Accepted: 04/28/2021] [Indexed: 11/09/2022] Open
Abstract
The establishment of cell type specific gene expression by transcription factors and their epigenetic cofactors is central for cell fate decisions. Protein arginine methyltransferase 6 (PRMT6) is an epigenetic regulator of gene expression mainly through methylating arginines at histone H3. This way it influences cellular differentiation and proliferation. PRMT6 lacks DNA-binding capability but is recruited by transcription factors to regulate gene expression. However, currently only a limited number of transcription factors have been identified, which facilitate recruitment of PRMT6 to key cell cycle related target genes. Here, we show that LEF1 contributes to the recruitment of PRMT6 to the central cell cycle regulator CCND1 (Cyclin D1). We identified LEF1 as an interaction partner of PRMT6. Knockdown of LEF1 or PRMT6 reduces CCND1 expression. This is in line with our observation that knockdown of PRMT6 increases the number of cells in G1 phase of the cell cycle and decreases proliferation. These results improve the understanding of PRMT6 activity in cell cycle regulation. We expect that these insights will foster the rational development and usage of specific PRMT6 inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Lucas Schneider
- Goethe University, Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Institute Frankfurt, Frankfurt, Germany
| | - Stefanie Herkt
- Goethe University, Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Institute Frankfurt, Frankfurt, Germany
| | - Lei Wang
- Department of Eukaryotic Genetics, Institute of Industrial Genetics, University of Stuttgart, Stuttgart, Germany
| | - Christine Feld
- Department of Eukaryotic Genetics, Institute of Industrial Genetics, University of Stuttgart, Stuttgart, Germany
| | - Josephine Wesely
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,Automated Systems and Genomics, The New York Stem Cell Foundation Research Institute, New York, USA
| | - Olga N Kuvardina
- Goethe University, Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Institute Frankfurt, Frankfurt, Germany
| | - Annekarin Meyer
- Goethe University, Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Institute Frankfurt, Frankfurt, Germany
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany.,German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany.,Department of Molecular Diagnostics/Translational Proteomics, Frankfurt Cancer Institute, Frankfurt, Germany
| | - Björn Häupl
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany.,German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany.,Department of Molecular Diagnostics/Translational Proteomics, Frankfurt Cancer Institute, Frankfurt, Germany
| | - Erhard Seifried
- Goethe University, Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Institute Frankfurt, Frankfurt, Germany
| | - Halvard Bonig
- Goethe University, Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Institute Frankfurt, Frankfurt, Germany.,Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, USA
| | - Joern Lausen
- Department of Eukaryotic Genetics, Institute of Industrial Genetics, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
20
|
Chen H, Luo M, Wang X, Liang T, Huang C, Huang C, Wei L. Inhibition of PAD4 enhances radiosensitivity and inhibits aggressive phenotypes of nasopharyngeal carcinoma cells. Cell Mol Biol Lett 2021; 26:9. [PMID: 33726680 PMCID: PMC7962337 DOI: 10.1186/s11658-021-00251-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a tumor deriving from nasopharyngeal epithelium. Peptidyl-arginine deiminase 4 (PAD4) is a vital mediator of histone citrullination and plays an essential role in regulating disease process. Radiotherapy is an essential method to treat NPC. In this research, we explored the effect of PAD4 on NPC radiosensitivity. METHODS We enrolled 50 NPC patients, established mice xenograft model, and purchased cell lines for this study. Statistical analysis and a series of experiments including RT-qPCR, clonogenic survival, EdU, Transwell, and wound healing assays were done. RESULTS Our data manifested that PAD4 (mRNA and protein) presented a high expression in NPC tissues and cells. GSK484, an inhibitor of PAD4, could inhibit activity of PAD4 in NPC cell lines. PAD4 overexpression promoted the radioresistance, survival, migration, and invasion of NPC cells, whereas treatment of GSK484 exerted inhibitory effects on radioresistance and aggressive phenotype of NPC cells. Additionally, GSK484 could attenuate the effect of PAD4 of NPC cell progression. More importantly, we found that GSK484 significantly inhibited tumor size, tumor weight and tumor volume in mice following irradiation. CONCLUSIONS PAD4 inhibitor GSK484 attenuated the radioresistance and cellular progression in NPC.
Collapse
Affiliation(s)
- Hao Chen
- Department of Endoscopy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Min Luo
- Department of Endoscopy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiangping Wang
- Department of Endoscopy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ting Liang
- Department of Endoscopy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chaoyuan Huang
- Department of Endoscopy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Changjie Huang
- Department of Endoscopy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Lining Wei
- Department of Oncology, The Second Nanning People's Hospital, No.13 Dancun Road, Jiangnan District, Nanning, 530031, Guangxi, China.
| |
Collapse
|
21
|
Yang YF, Lee CY, Hsieh JY, Liu YL, Lin CL, Liu GY, Hung HC. Regulation of polyamine homeostasis through an antizyme citrullination pathway. J Cell Physiol 2021; 236:5646-5663. [PMID: 33432662 DOI: 10.1002/jcp.30252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/05/2020] [Accepted: 12/18/2020] [Indexed: 11/12/2022]
Abstract
This study reveals an uncovered mechanism for the regulation of polyamine homeostasis through protein arginyl citrullination of antizyme (AZ), a natural inhibitor of ornithine decarboxylase (ODC). ODC is critical for the cellular production of polyamines. AZ binds to ODC dimers and promotes the degradation of ODC via the 26S proteasome. This study demonstrates the protein citrullination of AZ catalyzed by peptidylarginine deiminase type 4 (PAD4) both in vitro and in cells. Upon PAD4 activation, the AZ protein was citrullinated and accumulated, leading to higher levels of ODC proteins in the cell. In the PAD4-overexpressing and activating cells, the levels of ODC enzyme activity and the product putrescine increased with the level of citrullinated AZ proteins and PAD4 activity. Suppressing cellular PAD4 activity reduces the cellular levels of ODC and downregulates cellular polyamines. Furthermore, citrullination of AZ in the C-terminus attenuates AZ function in the inhibition, binding, and degradation of ODC. This paper provides evidence to illustrate that PAD4-mediated AZ citrullination upregulates cellular ODC and polyamines by retarding ODC degradation, thus interfering with the homeostasis of cellular polyamines, which may be an important pathway regulating AZ functions that is relevant to cancer biology.
Collapse
Affiliation(s)
- Yi-Fang Yang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Yun Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Ju-Yi Hsieh
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Liang Liu
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chi-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Guang-Yaw Liu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Allergy Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Chih Hung
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Institute of Genomics & Bioinformatics, National Chung Hsing University, Taichung, Taiwan.,iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
22
|
Meyer A, Herkt S, Kunze-Schumacher H, Kohrs N, Ringleb J, Schneider L, Kuvardina ON, Oellerich T, Häupl B, Krueger A, Seifried E, Bonig H, Lausen J. The transcription factor TAL1 and miR-17-92 create a regulatory loop in hematopoiesis. Sci Rep 2020; 10:21438. [PMID: 33293632 PMCID: PMC7722897 DOI: 10.1038/s41598-020-78629-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
A network of gene regulatory factors such as transcription factors and microRNAs establish and maintain gene expression patterns during hematopoiesis. In this network, transcription factors regulate each other and are involved in regulatory loops with microRNAs. The microRNA cluster miR-17-92 is located within the MIR17HG gene and encodes six mature microRNAs. It is important for hematopoietic differentiation and plays a central role in malignant disease. However, the transcription factors downstream of miR-17-92 are largely elusive and the transcriptional regulation of miR-17-92 is not fully understood. Here we show that miR-17-92 forms a regulatory loop with the transcription factor TAL1. The miR-17-92 cluster inhibits expression of TAL1 and indirectly leads to decreased stability of the TAL1 transcriptional complex. We found that TAL1 and its heterodimerization partner E47 regulate miR-17-92 transcriptionally. Furthermore, miR-17-92 negatively influences erythroid differentiation, a process that depends on gene activation by the TAL1 complex. Our data give example of how transcription factor activity is fine-tuned during normal hematopoiesis. We postulate that disturbance of the regulatory loop between TAL1 and the miR-17-92 cluster could be an important step in cancer development and progression.
Collapse
Affiliation(s)
- Annekarin Meyer
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany
| | - Stefanie Herkt
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany
| | - Heike Kunze-Schumacher
- Institute for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Nicole Kohrs
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Paul-Ehrlich-Strasse 42-44, 60596, Frankfurt am Main, Germany
| | - Julia Ringleb
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Paul-Ehrlich-Strasse 42-44, 60596, Frankfurt am Main, Germany
| | - Lucas Schneider
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany
| | - Olga N Kuvardina
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.,German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, 60596, Frankfurt, Germany
| | - Björn Häupl
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.,German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, 60596, Frankfurt, Germany
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Erhard Seifried
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany.,Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, 98195, USA
| | - Joern Lausen
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany. .,Department of Eukaryotic Genetics, Institute of Industrial Genetics, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
23
|
Evolving insights on histone methylome regulation in human acute myeloid leukemia pathogenesis and targeted therapy. Exp Hematol 2020; 92:19-31. [PMID: 32950598 DOI: 10.1016/j.exphem.2020.09.189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/25/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive, disseminated hematological malignancy associated with clonal selection of aberrant self-renewing hematopoietic stem cells and progenitors and poorly differentiated myeloid blasts. The most prevalent form of leukemia in adults, AML is predominantly an age-related disorder and accounts for more than 10,000 deaths per year in the United States alone. In comparison to solid tumors, AML has an overall low mutational burden, albeit more than 70% of AML patients harbor somatic mutations in genes encoding epigenetic modifiers and chromatin regulators. In the past decade, discoveries highlighting the role of DNA and histone modifications in determining cellular plasticity and lineage commitment have attested to the importance of epigenetic contributions to tumor cell de-differentiation and heterogeneity, tumor initiation, maintenance, and relapse. Orchestration in histone methylation levels regulates pluripotency and multicellular development. The increasing number of reversible methylation regulators being identified, including histone methylation writer, reader, and eraser enzymes, and their implications in AML pathogenesis have widened the scope of epigenetic reprogramming, with multiple drugs currently in various stages of preclinical and clinical trials. AML methylome also determines response to conventional chemotherapy, as well as AML cell interaction within a tumor-immune microenvironment ecosystem. Here we summarize the latest developments focusing on molecular derangements in histone methyltransferases (HMTs) and histone demethylases (HDMs) in AML pathogenesis. AML-associated HMTs and HDMs, through intricate crosstalk mechanisms, maintain an altered histone methylation code conducive to disease progression. We further discuss their importance in governing response to therapy, which can be used as a biomarker for treatment efficacy. Finally we deliberate on the therapeutic potential of targeting aberrant histone methylome in AML, examine available small molecule inhibitors in combination with immunomodulating therapeutic approaches and caveats, and discuss how future studies can enable posited epigenome-based targeted therapy to become a mainstay for AML treatment.
Collapse
|
24
|
Tan Y, Zheng L, Du Y, Zhong Q, Zhu Y, Liu Z, Liu S, Zhang Q. Identification of the hub genes and pathways involved in acute myeloid leukemia using bioinformatics analysis. Medicine (Baltimore) 2020; 99:e22047. [PMID: 32871963 PMCID: PMC7458232 DOI: 10.1097/md.0000000000022047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND We identified the hub genes and pathways dysregulated in acute myeloid leukemia and the potential molecular mechanisms involved. METHODS We downloaded the GSE15061 gene expression dataset from the Gene Expression Omnibus database and used weighted gene co-expression network analysis to identify hub genes. Differential expression of the genes was evaluated using the limma package in R software. Subsequently, we built a protein-protein interaction network followed by functional enrichment analysis. Then, the prognostic significance of gene expression was explored in terms of overall survival. Finally, transcription factor-mRNA (ribonucleic acid) and microRNA-mRNA interaction analysis was also explored. RESULTS We identified 100 differentially expressed hub genes. Functional enrichment analysis indicated that the genes were principally involved in immune system regulation, host defense, and negative regulation of apoptosis and myeloid cell differentiation. We identified 4 hub genes, the expression of which was significantly correlated with overall survival. Finally, 26 key regulators for hub genes and 38 microRNA-mRNA interactions were identified. CONCLUSION We performed a comprehensive bioinformatics analysis of hub genes potentially involved in acute myeloid leukemia development. Further molecular biological experiments are required to confirm the roles played by these genes.
Collapse
|
25
|
Moshkovich N, Ochoa HJ, Tang B, Yang HH, Yang Y, Huang J, Lee MP, Wakefield LM. Peptidylarginine Deiminase IV Regulates Breast Cancer Stem Cells via a Novel Tumor Cell-Autonomous Suppressor Role. Cancer Res 2020; 80:2125-2137. [PMID: 32265227 DOI: 10.1158/0008-5472.can-19-3018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/12/2020] [Accepted: 03/30/2020] [Indexed: 12/22/2022]
Abstract
Peptidylarginine deiminases (PADI) catalyze posttranslational modification of many target proteins and have been suggested to play a role in carcinogenesis. Citrullination of histones by PADI4 was recently implicated in regulating embryonic stem and hematopoietic progenitor cells. Here, we investigated a possible role for PADI4 in regulating breast cancer stem cells. PADI4 activity limited the number of cancer stem cells (CSC) in multiple breast cancer models in vitro and in vivo. Mechanistically, PADI4 inhibition resulted in a widespread redistribution of histone H3, with increased accumulation around transcriptional start sites. Interestingly, epigenetic effects of PADI4 on the bulk tumor cell population did not explain the CSC phenotype. However, in sorted tumor cell populations, PADI4 downregulated expression of master transcription factors of stemness, NANOG and OCT4, specifically in the cancer stem cell compartment, by reducing the transcriptionally activating H3R17me2a histone mark at those loci; this effect was not seen in the non-stem cells. A gene signature reflecting tumor cell-autonomous PADI4 inhibition was associated with poor outcome in human breast cancer datasets, consistent with a tumor-suppressive role for PADI4 in estrogen receptor-positive tumors. These results contrast with known tumor-promoting effects of PADI4 on the tumor stroma and suggest that the balance between opposing tumor cell-autonomous and stromal effects may determine net outcome. Our findings reveal a novel role for PADI4 as a tumor suppressor in regulating breast cancer stem cells and provide insight into context-specific effects of PADI4 in epigenetic modulation. SIGNIFICANCE: These findings demonstrate a novel activity of the citrullinating enzyme PADI4 in suppressing breast cancer stem cells through epigenetic repression of stemness master transcription factors NANOG and OCT4.
Collapse
Affiliation(s)
- Nellie Moshkovich
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Humberto J Ochoa
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Binwu Tang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Howard H Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Yuan Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jing Huang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Maxwell P Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Lalage M Wakefield
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
26
|
CDK2 suppression synergizes with all-trans-retinoic acid to overcome the myeloid differentiation blockade of AML cells. Pharmacol Res 2020; 151:104545. [DOI: 10.1016/j.phrs.2019.104545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/03/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022]
|
27
|
Jiang N, Li QL, Pan W, Li J, Zhang MF, Cao T, Su SG, Shen H. PRMT6 promotes endometrial cancer via AKT/mTOR signaling and indicates poor prognosis. Int J Biochem Cell Biol 2019; 120:105681. [PMID: 31884111 DOI: 10.1016/j.biocel.2019.105681] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/04/2019] [Accepted: 12/19/2019] [Indexed: 12/24/2022]
Abstract
Arginine methylation plays essential roles in post-transcriptional modification and signal transduction. Dysregulation of protein arginine methyltransferases (PRMTs) has been reported in human cancers, yet the expression and biological function of PRMT6 in endometrial cancer (EMC) remains unclear. Here, we show that PRMT6 is upregulated in EMC and exhibits oncogenic activities via activation of AKT/mTOR pathway. The expression of PRMT6 in EMC is much higher than that in the adjacent nontumorous tissues. Elevated PRMT6 expression is significantly associated with higher histological tumor grade and unfavorable prognosis in two independent cohorts consisting of a total of 564 patients with EMC. In vitro data demonstrate that PRMT6 expression was identified as a downstream target of miR-372-3p. Ectopic expression of miR-372-3p downregulates PRMT6. Overexpression of PRMT6 promotes EMC cell proliferation and migration, whereas knockdown of PRMT6 leads to opposite phenotypes. Mechanistically, PRMT6 induces the phosphorylation of AKT and mTOR in EMC cells. Inhibition of AKT/mTOR signaling by MK2206 or rapamycin attenuates the PRMT6-mediated EMC progression. In clinical samples, high expression of PRMT6 was correlated to low expression of miR-372-3p and high expression of phosphorylated AKT. Collectively, our findings suggest PRMT6 may function as an oncogene to promote tumor progression, and be of prognostic value to predict disease-free survival of patients with EMC. The newly identified miR-372-3p/PRMT6/AKT/mTOR axis represents a new promising target for EMC management.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Qiu-Li Li
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Wenwei Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jinhui Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Mei-Fang Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Tiefeng Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Shu-Guang Su
- Department of Pathology, The Affiliated Hexian Memorial Hospital of Southern Medical University, Guangzhou, China.
| | - Huimin Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
28
|
Godavarthy PS, Kumar R, Herkt SC, Pereira RS, Hayduk N, Weissenberger ES, Aggoune D, Manavski Y, Lucas T, Pan KT, Voutsinas JM, Wu Q, Müller MC, Saussele S, Oellerich T, Oehler VG, Lausen J, Krause DS. The vascular bone marrow niche influences outcome in chronic myeloid leukemia via the E-selectin - SCL/TAL1 - CD44 axis. Haematologica 2019; 105:136-147. [PMID: 31018977 PMCID: PMC6939533 DOI: 10.3324/haematol.2018.212365] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
The endosteal bone marrow niche and vascular endothelial cells provide sanctuaries for leukemic cells. In murine chronic myeloid leukemia (CML) CD44 on leukemia cells and E-selectin on bone marrow endothelium are essential mediators for the engraftment of leukemic stem cells. We hypothesized that non-adhesion of CML-initiating cells to E-selectin on the bone marrow endothelium may lead to superior eradication of leukemic stem cells in CML after treatment with imatinib than imatinib alone. Indeed, here we show that treatment with the E-selectin inhibitor GMI-1271 in combination with imatinib prolongs survival of mice with CML via decreased contact time of leukemia cells with bone marrow endothelium. Non-adhesion of BCR-ABL1+ cells leads to an increase of cell cycle progression and an increase of expression of the hematopoietic transcription factor and proto-oncogene Scl/Tal1 in leukemia-initiating cells. We implicate SCL/TAL1 as an indirect phosphorylation target of BCR-ABL1 and as a negative transcriptional regulator of CD44 expression. We show that increased SCL/TAL1 expression is associated with improved outcome in human CML. These data demonstrate the BCR-ABL1-specific, cell-intrinsic pathways leading to altered interactions with the vascular niche via the modulation of adhesion molecules - which could be exploited therapeutically in the future.
Collapse
Affiliation(s)
| | - Rahul Kumar
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Stefanie C Herkt
- Institute for Transfusion Medicine DRK- Blutspendedienst Baden-Württemberg - Hessen, Frankfurt am Main, Germany
| | - Raquel S Pereira
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Nina Hayduk
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Eva S Weissenberger
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Djamel Aggoune
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Yosif Manavski
- Institute of Cardiovascular Regeneration, Center for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Tina Lucas
- Institute of Cardiovascular Regeneration, Center for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Kuan-Ting Pan
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jenna M Voutsinas
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Biostatistics, Seattle, WA, USA
| | - Qian Wu
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Biostatistics, Seattle, WA, USA
| | | | - Susanne Saussele
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Oellerich
- Department of Internal Medicine, Hematology/Oncology, Goethe University, Frankfurt am Main, Germany.,German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
| | - Vivian G Oehler
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Division of Hematology, University of Washington Medical Center, Seattle, WA, USA
| | - Joern Lausen
- Institute for Transfusion Medicine DRK- Blutspendedienst Baden-Württemberg - Hessen, Frankfurt am Main, Germany
| | - Daniela S Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany .,German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany.,Faculty of Medicine, Johann Wolfgang Goethe University, Frankfurt.,Frankfurt Cancer Institute, Frankfurt, Germany
| |
Collapse
|
29
|
Liu M, Qu Y, Teng X, Xing Y, Li D, Li C, Cai L. PADI4‑mediated epithelial‑mesenchymal transition in lung cancer cells. Mol Med Rep 2019; 19:3087-3094. [PMID: 30816464 PMCID: PMC6423585 DOI: 10.3892/mmr.2019.9968] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 02/14/2019] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is a complex disease involving multiple genetic and phenotypic alterations. As a histone modification enzyme, protein-arginine deiminase type-4 (PADI4) and its downstream signaling have been studied in the progression of a variety of types of human cancer, but data on PADI4-mediated posttranslational modification in lung cancer are lacking. The aim of present study was to evaluate the expression of PADI4 and its associated molecular signaling in lung cancer metastasis. The results of the present study indicated that PADI4 was overexpressed in lung cancer cells, while knockdown of PADI4 could lead to attenuation of the lung cancer cell invasion and migration phenotype, which was further verified by determining the epithelial-mesenchymal transition (EMT) marker proteins. Additionally, it was demonstrated that stable knockdown of PADI4 in A549 lung cancer cells resulted in a striking reduction of the EMT-associated Snail1/mothers against decapentaplegic homolog 3/4 transcriptional complex, which was consistent with alterations in migratory and invasive phenotypes of A549 lung cancer cells. Therefore, PADI4-mediated EMT transition is proposed to represent a novel mechanism underlying the epigenetic and phenotypic alterations in lung cancer cells, and the PADI4 associated signaling pathway may be a therapeutic target for treating lung cancer in a clinical setting.
Collapse
Affiliation(s)
- Meiyan Liu
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Yang Qu
- Department of Internal Medicine, The Second Hospital of Heilongjiang Province, Harbin, Heilongjiang 150010, P.R. China
| | - Xue Teng
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Ying Xing
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Dandan Li
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Chunhong Li
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Li Cai
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
30
|
Dwivedi N, Radic M. Burning controversies in NETs and autoimmunity: The mysteries of cell death and autoimmune disease. Autoimmunity 2018; 51:267-280. [PMID: 30417698 DOI: 10.1080/08916934.2018.1523395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The causes and mechanisms of autoimmune disease pose continuing challenges to the scientific community. Recent clues implicate a peculiar feature of neutrophils, their ability to release nuclear chromatin in the form of neutrophil extracellular traps (NETs), in the induction or progression of autoimmune disease. Efforts to define the beneficial versus detrimental effects of NET release have, as yet, only partially revealed mechanisms that guide this process. Evidence suggests that the process of NET release is highly regulated, but the details of regulation remain controversial and obscure. Without a better understanding of the factors that initiate and control NET formation, the judicious modification of neutrophil behaviour for medically useful purposes appears remote. We highlight gaps and inconsistencies in published work, which make NETs and their role in health and disease a puzzle that deserves more focused attention.
Collapse
Affiliation(s)
- Nishant Dwivedi
- a TIP Immunology , EMD Serono Research and Development Institute, Inc , Billerica , MA , USA
| | - Marko Radic
- b Department of Microbiology, Immunology and Biochemistry , University of Tennessee Health Science Center , Memphis , TN , USA
| |
Collapse
|
31
|
Liu C, Tang J, Li C, Pu G, Yang D, Chang X. PADI4 stimulates esophageal squamous cell carcinoma tumor growth and up-regulates CA9 expression. Mol Carcinog 2018; 58:66-75. [PMID: 30242913 PMCID: PMC6588094 DOI: 10.1002/mc.22907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/25/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022]
Abstract
An increasing amount of evidence indicates that peptidylarginine deiminase isoform 4 (PADI4) plays an important role in tumorigenesis. However, the effects of PADI4 on tumor-bearing mice are unknown, and no studies have investigated this tumorigenic pathway in an animal model. In the present study, ECA109 cells originating from esophageal squamous cell carcinoma (ESCC) were transfected with PADI4-expressing lentivirus and were injected into BALB/c nude mice. Tumor size and weight were significantly increased in the mouse tumors established with PADI4-overexpressing ECA109 cells. PCR array analysis revealed increased CA9 expression in ECA109 cells transfected with a PADI4-expressing plasmid, while decreased CA9 expression levels were detected in cells transfected with anti-PADI4 siRNA. Furthermore, up-regulation of CA9 expression was detected in mouse tumors established with PADI4-overexpressing cells. Immunohistochemistry detected the increased expression and co-localization of PADI4 and CA9 in ESCC tissues compared with adjacent non-tumor tissues and normal tissue controls. These results were verified using Western blotting. Cell proliferation significantly increased or decreased in ECA109 and EC9706 (another ESCC-originating cell line) cells transfected with a PADI4-expressing plasmid or anti-PADI4 siRNA, respectively. The above findings suggest that increased PADI4 expression in ESCC stimulates tumor growth and up-regulates CA9 expression, which is known to promote metastatic properties in tumor cells.
Collapse
Affiliation(s)
- Chunyan Liu
- Medical Research Center of Shandong Qianfoshan Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - Junyi Tang
- Medical Research Center of Shandong Qianfoshan Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - Chang Li
- Tengzhou People's Central Hospital, Tengzhou, Shandong, P. R. China
| | - Guangbo Pu
- Tengzhou People's Central Hospital, Tengzhou, Shandong, P. R. China
| | - Dongxia Yang
- Medical Research Center of Shandong Qianfoshan Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - Xiaotian Chang
- Medical Research Center of Shandong Qianfoshan Hospital, Shandong University, Jinan, Shandong, P. R. China
| |
Collapse
|
32
|
Kramer J, Désor V, Brunst S, Wittmann SK, Lausen J, Heering J, Proschak A, Proschak E. A coupled fluorescence-based assay for the detection of protein arginine N-methyltransferase 6 (PRMT6) enzymatic activity. Anal Biochem 2018; 547:7-13. [PMID: 29410016 DOI: 10.1016/j.ab.2018.01.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 01/12/2018] [Accepted: 01/25/2018] [Indexed: 01/04/2023]
Abstract
The protein arginine N-methyltransferase 6 (PRMT6) is overexpressed in a variety of different cancer types and plays a role in human immunodeficiency virus (HIV) infections. Furthermore, the PRMT6 activity might also influence the pathogenesis of neurodegenerative, inflammatory, and cardiovascular diseases, whereby it becomes an interesting target for drug development. Previously reported activity assays for PRMT6 activity are either expensive, time-consuming or use radioactive substrates. To overcome these challenges, we developed a coupled fluorescence-based activity assay using recombinant PRMT6 expressed in E. coli. In the first step of the assay, the fluorogenic substrate Nα-Benzoyl-L-arginine-7-amido-4-methylcoumarin (Bz-Arg-AMC) is methylated by PRMT6, while in a second step the remaining un-methylated substrate is cleaved by trypsin, producing the fluorescent 7-amino-4-methylcoumarin.
Collapse
Affiliation(s)
- Jan Kramer
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Straße 9, D-60438, Frankfurt am Main, Germany
| | - Veronika Désor
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Straße 9, D-60438, Frankfurt am Main, Germany
| | - Steffen Brunst
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Straße 9, D-60438, Frankfurt am Main, Germany
| | - Sandra K Wittmann
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Straße 9, D-60438, Frankfurt am Main, Germany
| | - Jörn Lausen
- Institut für Transfusionsmedizin und Immunhämatologie, Sandhofstraße 1, D-60528, Frankfurt am Main, Germany
| | - Jan Heering
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, D-60596, Frankfurt am Main, Germany
| | - Anna Proschak
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Straße 9, D-60438, Frankfurt am Main, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Straße 9, D-60438, Frankfurt am Main, Germany.
| |
Collapse
|
33
|
Zheng Y, Zhao G, Xu B, Liu C, Li C, Zhang X, Chang X. PADI4 has genetic susceptibility to gastric carcinoma and upregulates CXCR2, KRT14 and TNF-α expression levels. Oncotarget 2018; 7:62159-62176. [PMID: 27556695 PMCID: PMC5308718 DOI: 10.18632/oncotarget.11398] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 08/08/2016] [Indexed: 01/08/2023] Open
Abstract
PADI4 (peptidyl deiminase isoform 4) is overexpressed in many tumor tissues and converts arginine residues to citrulline residues. This study used an Illumina SNP microarray and a TaqMan assay to determine the possible association of the PADI4 gene with various tumor risks. Both genotyping methods demonstrated significant associations between the tag SNPs rs1635566 and rs882537 in the PADI4 locus with gastric carcinoma in two independent cohorts. Based on this genotyping result, we used the Cancer Pathway Finder, p53 Signaling, Signal Transduction and Tumor Metastasis PCR arrays to investigate the tumorigenic pathway of PADI4 in MNK-45 cells derived from gastric carcinoma. We detected significantly decreased expression levels of CXCR2, KRT14 and TNF-α in MNK-45 cells that were treated with anti-PADI4 siRNA. We also detected increased expression of these three genes in MNK-45 cells transfected with a pcDNA3.1 plasmid overexpressing PADI4. A highly similar result was also obtained for SGC 7901 cells, which also originate from gastric carcinoma. Our result indicates that the PADI4 gene has genetic susceptibility in gastric carcinoma. PADI4 contributes to gastric tumorigenesis by upregulating CXCR2, KRT14 and TNF-α expression, which are well known to activate angiogenesis, cell proliferation, cell migration and the immune microenvironment in tumors.
Collapse
Affiliation(s)
- Yabing Zheng
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - Gang Zhao
- Emergency Surgery Department of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - Bing Xu
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - Chunyan Liu
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - Chang Li
- Pathological Department of Tengzhou People's Central Hospital, Tengzhou, Shandong, P. R. China
| | - Xiaoqian Zhang
- Clinical Laboratory of PKUCare Luzhong Hospital, Zibo, Shandong, P. R. China
| | - Xiaotian Chang
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P. R. China
| |
Collapse
|
34
|
Tanikawa C, Ueda K, Suzuki A, Iida A, Nakamura R, Atsuta N, Tohnai G, Sobue G, Saichi N, Momozawa Y, Kamatani Y, Kubo M, Yamamoto K, Nakamura Y, Matsuda K. Citrullination of RGG Motifs in FET Proteins by PAD4 Regulates Protein Aggregation and ALS Susceptibility. Cell Rep 2018; 22:1473-1483. [DOI: 10.1016/j.celrep.2018.01.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/18/2017] [Accepted: 01/10/2018] [Indexed: 02/08/2023] Open
|
35
|
Abstract
PURPOSE OF REVIEW Dysregulated citrullination is a key element that drives the production and maintenance of antibodies to citrullinated proteins, a hallmark in rheumatoid arthritis (RA). This article reviews recent literature on the origin of citrullinated antigens in RA. RECENT FINDINGS The study of synovial fluid from patients with RA has provided important insights into the identity of citrullinated proteins that accumulate in the RA joint (the RA citrullinome) and mechanisms that control their generation. SUMMARY Citrullinating enzymes (peptidylarginine deiminases, PADs) are tightly controlled to limit their hyperactivation. Calcium and redox conditions are important regulators of PAD activity. Studies suggest that citrullination is dysregulated both intra- and extracellularly in RA. In neutrophils, host (i.e., perforin and the membrane attack complex) and bacterial (i.e., toxins) pore-forming proteins induce prominent calcium influx, cytolysis, and hyperactivation of PADs. These factors likely drive hypercitrullination in the RA joint and at extraarticular sites of disease initiation, respectively. As oxidizing conditions present in the extracellular environment are known to inactivate PADs, extracellular citrullination in RA probably requires the constant release of active enzymes from dying cells and may be accelerated by autoantibodies that activate PADs.
Collapse
Affiliation(s)
- Erika Darrah
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
36
|
Herkt SC, Kuvardina ON, Herglotz J, Schneider L, Meyer A, Pommerenke C, Salinas-Riester G, Seifried E, Bonig H, Lausen J. Protein arginine methyltransferase 6 controls erythroid gene expression and differentiation of human CD34 + progenitor cells. Haematologica 2017; 103:18-29. [PMID: 29025910 PMCID: PMC5777187 DOI: 10.3324/haematol.2017.174516] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/06/2017] [Indexed: 01/22/2023] Open
Abstract
Hematopoietic differentiation is driven by transcription factors, which orchestrate a finely tuned transcriptional network. At bipotential branching points lineage decisions are made, where key transcription factors initiate cell type-specific gene expression programs. These programs are stabilized by the epigenetic activity of recruited chromatin-modifying cofactors. An example is the association of the transcription factor RUNX1 with protein arginine methyltransferase 6 (PRMT6) at the megakaryocytic/erythroid bifurcation. However, little is known about the specific influence of PRMT6 on this important branching point. Here, we show that PRMT6 inhibits erythroid gene expression during megakaryopoiesis of primary human CD34+ progenitor cells. PRMT6 is recruited to erythroid genes, such as glycophorin A. Consequently, a repressive histone modification pattern with high H3R2me2a and low H3K4me3 is established. Importantly, inhibition of PRMT6 by shRNA or small molecule inhibitors leads to upregulation of erythroid genes and promotes erythropoiesis. Our data reveal that PRMT6 plays a role in the control of erythroid/megakaryocytic differentiation and open up the possibility that manipulation of PRMT6 activity could facilitate enhanced erythropoiesis for therapeutic use.
Collapse
Affiliation(s)
- Stefanie C Herkt
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main
| | - Olga N Kuvardina
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main
| | - Julia Herglotz
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main
| | - Lucas Schneider
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main
| | - Annekarin Meyer
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main
| | | | | | - Erhard Seifried
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main
| | - Jörn Lausen
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main
| |
Collapse
|
37
|
Wang L, Song G, Zhang X, Feng T, Pan J, Chen W, Yang M, Bai X, Pang Y, Yu J, Han J, Han B. PADI2-Mediated Citrullination Promotes Prostate Cancer Progression. Cancer Res 2017; 77:5755-5768. [DOI: 10.1158/0008-5472.can-17-0150] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/31/2017] [Accepted: 08/11/2017] [Indexed: 11/16/2022]
|
38
|
Zhai Q, Wang L, Zhao P, Li T. Role of citrullination modification catalyzed by peptidylarginine deiminase 4 in gene transcriptional regulation. Acta Biochim Biophys Sin (Shanghai) 2017; 49:567-572. [PMID: 28472221 DOI: 10.1093/abbs/gmx042] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/06/2017] [Indexed: 12/20/2022] Open
Abstract
Peptidylarginine deiminase 4 (PADI4), a new histone modification enzyme, which converts both arginine and monomethyl-arginine to citrulline, has gained massive attention in recent years as a potential regulator of gene transcription. Recent studies have shown that arginine residues R2, R8, R17, and R26 in the H3 tail and R3 in the H4 tail can be deiminated by PADI4. This kind of histone post-translational modification has the potential to antagonize histone methylation and coordinate with histone deacetylation to regulate gene transcription. PADI4 also deiminates non-histone proteins, such as p300, NPM1, ING4, RPS2, and DNMT3A. PADI4 has been shown to involve in cell apoptosis and differentiation. Moreover, PADI4 can interact with tumor suppressor p53 and regulate the transcriptional activity of p53. Dysregulation of PADI4 is implicated in a variety of diseases, including rheumatoid arthritis, tumor development, and multiple sclerosis. A wide variety of PADI4 inhibitors have been identified. Further understanding of PADI4 functions may lead to novel diagnostic and therapeutic approaches in these diseases. This review summarizes the recent progress in the study of the regulation mechanism of PADI4 on gene transcription and the major physiological functions of PADI4 in human diseases.
Collapse
Affiliation(s)
- Qiaoli Zhai
- Center of Translational Medicine, Central Hospital of Zibo, Shandong University, Zibo 255036, China
| | - Lianqing Wang
- Center of Translational Medicine, Central Hospital of Zibo, Shandong University, Zibo 255036, China
| | - Peiqing Zhao
- Center of Translational Medicine, Central Hospital of Zibo, Shandong University, Zibo 255036, China
| | - Tao Li
- Center of Translational Medicine, Central Hospital of Zibo, Shandong University, Zibo 255036, China
| |
Collapse
|
39
|
AML1-ETO requires enhanced C/D box snoRNA/RNP formation to induce self-renewal and leukaemia. Nat Cell Biol 2017. [PMID: 28650479 DOI: 10.1038/ncb3563] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Leukaemogenesis requires enhanced self-renewal, which is induced by oncogenes. The underlying molecular mechanisms remain incompletely understood. Here, we identified C/D box snoRNAs and rRNA 2'-O-methylation as critical determinants of leukaemic stem cell activity. Leukaemogenesis by AML1-ETO required expression of the groucho-related amino-terminal enhancer of split (AES). AES functioned by inducing snoRNA/RNP formation via interaction with the RNA helicase DDX21. Similarly, global loss of C/D box snoRNAs with concomitant loss of rRNA 2'-O-methylation resulted in decreased leukaemia self-renewal potential. Genomic deletion of either C/D box snoRNA SNORD14D or SNORD35A suppressed clonogenic potential of leukaemia cells in vitro and delayed leukaemogenesis in vivo. We further showed that AML1-ETO9a, MYC and MLL-AF9 all enhanced snoRNA formation. Expression levels of C/D box snoRNAs in AML patients correlated closely with in vivo frequency of leukaemic stem cells. Collectively, these findings indicate that induction of C/D box snoRNA/RNP function constitutes an important pathway in leukaemogenesis.
Collapse
|
40
|
Kuvardina ON, Herkt S, Meyer A, Schneider L, Yillah J, Kohrs N, Bonig H, Seifried E, Müller-Tidow C, Lausen J. Hematopoietic transcription factors and differential cofactor binding regulate PRKACB isoform expression. Oncotarget 2017; 8:71685-71698. [PMID: 29069738 PMCID: PMC5641081 DOI: 10.18632/oncotarget.17386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/27/2017] [Indexed: 01/05/2023] Open
Abstract
Hematopoietic differentiation is controlled by key transcription factors, which regulate stem cell functions and differentiation. TAL1 is a central transcription factor for hematopoietic stem cell development in the embryo and for gene regulation during erythroid/megakaryocytic differentiation. Knowledge of the target genes controlled by a given transcription factor is important to understand its contribution to normal development and disease. To uncover direct target genes of TAL1 we used high affinity streptavidin/biotin-based chromatin precipitation (Strep-CP) followed by Strep-CP on ChIP analysis using ChIP promoter arrays. We identified 451 TAL1 target genes in K562 cells. Furthermore, we analysed the regulation of one of these genes, the catalytic subunit beta of protein kinase A (PRKACB), during megakaryopoiesis of K562 and primary human CD34+ stem cell/progenitor cells. We found that TAL1 together with hematopoietic transcription factors RUNX1 and GATA1 binds to the promoter of the isoform 3 of PRKACB (Cβ3). During megakaryocytic differentiation a coactivator complex on the Cβ3 promoter, which includes WDR5 and p300, is replaced with a corepressor complex. In this manner, activating chromatin modifications are removed and expression of the PRKACB-Cβ3 isoform during megakaryocytic differentiation is reduced. Our data uncover a role of the TAL1 complex in controlling differential isoform expression of PRKACB. These results reveal a novel function of TAL1, RUNX1 and GATA1 in the transcriptional control of protein kinase A activity, with implications for cellular signalling control during differentiation and disease.
Collapse
Affiliation(s)
- Olga N Kuvardina
- Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University and German Red Cross Blood Service, Frankfurt am Main, Germany
| | - Stefanie Herkt
- Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University and German Red Cross Blood Service, Frankfurt am Main, Germany
| | - Annekarin Meyer
- Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University and German Red Cross Blood Service, Frankfurt am Main, Germany
| | - Lucas Schneider
- Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University and German Red Cross Blood Service, Frankfurt am Main, Germany
| | - Jasmin Yillah
- Georg-Speyer-Haus, Institute for Tumorbiology and experimental Therapy, Frankfurt, Germany
| | - Nicole Kohrs
- Georg-Speyer-Haus, Institute for Tumorbiology and experimental Therapy, Frankfurt, Germany
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University and German Red Cross Blood Service, Frankfurt am Main, Germany
| | - Erhard Seifried
- Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University and German Red Cross Blood Service, Frankfurt am Main, Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Jörn Lausen
- Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University and German Red Cross Blood Service, Frankfurt am Main, Germany
| |
Collapse
|
41
|
Wang W, Ji HJ, Sun NB, Chang XT, Xu B, Wang Y, Cao M, Zhu Q, Zang Q, Jiang ZM. B-cell specific Moloney leukemia virus insert site 1 and peptidyl arginine deiminase IV positively regulate carcinogenesis and progression of esophageal squamous cell carcinoma. Oncol Lett 2017; 13:4349-4356. [PMID: 28599437 DOI: 10.3892/ol.2017.6001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 02/13/2017] [Indexed: 11/06/2022] Open
Abstract
High expression of B-cell specific Moloney leukemia virus insert site 1 (Bmi-1) and peptidyl arginine deiminase IV (PADI4) is associated with esophageal carcinoma. However, few studies have investigated the association between the Bmi-1 and PADI4 genes. The aim of the present study was to evaluate the expression of Bmi-1 and PADI4 and identify the association between the Bmi-1 and PADI4 genes in esophageal squamous cell carcinoma (ESCC) tissues. Bmi-1 and PADI4 gene expression levels were measured using immunohistochemistry, western blotting and reverse transcription-quantitative polymerase chain reaction in ESCC tissues from 86 patients who had not received pre-operative chemoradiation. The results revealed that the Bmi-1 and PADI4 genes had increased expression in carcinoma tissues compared with pericarcinous tissue (P<0.05). Bmi-1 gene expression was revealed to be associated with differentiation degree, clinical stage and lymph node metastasis (P<0.05), but had no association with gender, age or depth of invasion (P>0.05). The expression of PADI4 was associated with clinical stage, depth of invasion and lymph node metastasis (P<0.05), but was not associated with gender, age or differentiation degree (P>0.05). In addition, there was a positive association between Bmi-1 and PADI4 gene expression in ESCC (P<0.05). These results indicated that Bmi-1 and PADI4 positively regulate carcinogenesis and progression of ESCC.
Collapse
Affiliation(s)
- Wei Wang
- Department of Thoracic Surgery, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| | - Huai-Jun Ji
- Division of Surgery, Graduate Department, Weifang Medical College, Weifang, Shandong 261031, P.R. China
| | - Ning-Bo Sun
- Department of Thoracic Surgery, Shengli Oilfield Central Hospital, Dongying, Shandong 257034, P.R. China
| | - Xiao-Tian Chang
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Bing Xu
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Yao Wang
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Ming Cao
- Department of Thoracic Surgery, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| | - Qiang Zhu
- Department of Thoracic Surgery, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| | - Qi Zang
- Department of Thoracic Surgery, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| | - Zhong-Min Jiang
- Department of Thoracic Surgery, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
42
|
A novel PAD4/SOX4/PU.1 signaling pathway is involved in the committed differentiation of acute promyelocytic leukemia cells into granulocytic cells. Oncotarget 2016; 7:3144-57. [PMID: 26673819 PMCID: PMC4823096 DOI: 10.18632/oncotarget.6551] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 11/20/2015] [Indexed: 12/31/2022] Open
Abstract
All-trans retinoic acid (ATRA) treatment yields cure rates > 80% through proteasomal degradation of the PML-RARα fusion protein that typically promotes acute promyelocytic leukemia (APL). However, recent evidence indicates that ATRA can also promote differentiation of leukemia cells that are PML-RARα negative, such as HL-60 cells. Here, gene expression profiling of HL-60 cells was used to investigate the alternative mechanism of impaired differentiation in APL. The expression of peptidylarginine deiminase 4 (PADI4), encoding PAD4, a protein that post-translationally converts arginine into citrulline, was restored during ATRA-induced differentiation. We further identified that hypermethylation in the PADI4 promoter was associated with its transcriptional repression in HL-60 and NB4 (PML-RARα positive) cells. Functionally, PAD4 translocated into the nucleus upon ATRA exposure and promoted ATRA-mediated differentiation. Mechanistic studies using RNAi knockdown or electroporation-mediated delivery of PADI4, along with chromatin immunoprecipitation, helped identify PU.1 as an indirect target and SOX4 as a direct target of PAD4 regulation. Indeed, PAD4 regulates SOX4-mediated PU.1 expression, and thereby the differentiation process, in a SOX4-dependent manner. Taken together, our results highlight an association between PAD4 and DNA hypermethylation in APL and demonstrate that targeting PAD4 or regulating its downstream effectors may be a promising strategy to control differentiation in the clinic.
Collapse
|
43
|
Konig MF, Andrade F. A Critical Reappraisal of Neutrophil Extracellular Traps and NETosis Mimics Based on Differential Requirements for Protein Citrullination. Front Immunol 2016; 7:461. [PMID: 27867381 PMCID: PMC5095114 DOI: 10.3389/fimmu.2016.00461] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/14/2016] [Indexed: 12/18/2022] Open
Abstract
NETosis, an antimicrobial form of neutrophil cell death, is considered a primary source of citrullinated autoantigens in rheumatoid arthritis (RA) and immunogenic DNA in systemic lupus erythematosus (SLE). Activation of the citrullinating enzyme peptidylarginine deiminase type 4 (PAD4) is believed to be essential for neutrophil extracellular trap (NET) formation and NETosis. PAD4 is therefore viewed as a promising therapeutic target to inhibit the formation of NETs in both diseases. In this review, we examine the evidence for PAD4 activation during NETosis and provide experimental data to suggest that protein citrullination is not a universal feature of NETs. We delineate two distinct biological processes, leukotoxic hypercitrullination (LTH) and defective mitophagy, which have been erroneously classified as “NETosis.” While these NETosis mimics share morphological similarities with NETosis (i.e., extracellular DNA release), they are biologically distinct. As such, these processes can be readily classified by their stimuli, activation of distinct biochemical pathways, the presence of hypercitrullination, and antimicrobial effector function. NETosis is an antimicrobial form of cell death that is NADPH oxidase-dependent and not associated with hypercitrullination. In contrast, LTH is NADPH oxidase-independent and not bactericidal. Rather, LTH represents a bacterial strategy to achieve immune evasion. It is triggered by pore-forming pathways and equivalent signals that cumulate in calcium-dependent hyperactivation of PADs, protein hypercitrullination, and neutrophil death. The generation of citrullinated autoantigens in RA is likely driven by LTH, but not NETosis. Mitochondrial DNA (mtDNA) expulsion, the result of a constitutive defect in mitophagy, represents a second NETosis mimic. In the presence of interferon-α and immune complexes, this process can generate highly interferogenic oxidized mtDNA, which has previously been mistaken for NETosis in SLE. Distinguishing NETosis from LTH and defective mitophagy is paramount to understanding the role of neutrophil damage in immunity and the pathogenesis of human diseases. This provides a framework to design specific inhibitors of these distinct biological processes in human disease.
Collapse
Affiliation(s)
- Maximilian F Konig
- Division of Rheumatology, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Felipe Andrade
- Division of Rheumatology, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| |
Collapse
|
44
|
Yang Z, Shah K, Khodadadi-Jamayran A, Jiang H. Dpy30 is critical for maintaining the identity and function of adult hematopoietic stem cells. J Exp Med 2016; 213:2349-2364. [PMID: 27647347 PMCID: PMC5068233 DOI: 10.1084/jem.20160185] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 08/11/2016] [Indexed: 12/11/2022] Open
Abstract
As the major histone H3K4 methyltransferases in mammals, the Set1/Mll complexes play important roles in animal development and are associated with many diseases, including hematological malignancies. However, the role of the H3K4 methylation activity of these complexes in fate determination of hematopoietic stem and progenitor cells (HSCs and HPCs) remains elusive. Here, we address this question by generating a conditional knockout mouse for Dpy30, which is a common core subunit of all Set1/Mll complexes and facilitates genome-wide H3K4 methylation in cells. Dpy30 loss in the adult hematopoietic system results in severe pancytopenia but striking accumulation of HSCs and early HPCs that are defective in multilineage reconstitution, suggesting a differentiation block. In mixed bone marrow chimeras, Dpy30-deficient HSCs cannot differentiate or efficiently up-regulate lineage-regulatory genes, and eventually fail to sustain for long term with significant loss of HSC signature gene expression. Our molecular analyses reveal that Dpy30 directly and preferentially controls H3K4 methylation and expression of many hematopoietic development-associated genes including several key transcriptional and chromatin regulators involved in HSC function. Collectively, our results establish a critical and selective role of Dpy30 and the H3K4 methylation activity of the Set1/Mll complexes for maintaining the identity and function of adult HSCs.
Collapse
Affiliation(s)
- Zhenhua Yang
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama School of Medicine, Birmingham, AL 35210
| | - Kushani Shah
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama School of Medicine, Birmingham, AL 35210
| | - Alireza Khodadadi-Jamayran
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama School of Medicine, Birmingham, AL 35210
| | - Hao Jiang
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama School of Medicine, Birmingham, AL 35210
| |
Collapse
|
45
|
Helmke C, Raab M, Rödel F, Matthess Y, Oellerich T, Mandal R, Sanhaji M, Urlaub H, Rödel C, Becker S, Strebhardt K. Ligand stimulation of CD95 induces activation of Plk3 followed by phosphorylation of caspase-8. Cell Res 2016; 26:914-34. [PMID: 27325299 PMCID: PMC4973331 DOI: 10.1038/cr.2016.78] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 02/25/2016] [Accepted: 04/18/2016] [Indexed: 02/07/2023] Open
Abstract
Upon interaction of the CD95 receptor with its ligand, sequential association of the adaptor molecule FADD (MORT1), pro-forms of caspases-8/10, and the caspase-8/10 regulator c-FLIP leads to the formation of a death-inducing signaling complex. Here, we identify polo-like kinase (Plk) 3 as a new interaction partner of the death receptor CD95. The enzymatic activity of Plk3 increases following interaction of the CD95 receptor with its ligand. Knockout (KO) or knockdown of caspase-8, CD95 or FADD prevents activation of Plk3 upon CD95 stimulation, suggesting a requirement of a functional DISC for Plk3 activation. Furthermore, we identify caspase-8 as a new substrate for Plk3. Phosphorylation occurs on T273 and results in stimulation of caspase-8 proapoptotic function. Stimulation of CD95 in cells expressing a non-phosphorylatable caspase-8-T273A mutant in a rescue experiment or in Plk3-KO cells generated by CRISPR/Cas9 reduces the processing of caspase-8 prominently. Low T273 phosphorylation correlates significantly with low Plk3 expression in a cohort of 95 anal tumor patients. Our data suggest a novel mechanism of kinase activation within the Plk family and propose a new model for the stimulation of the extrinsic death pathway in tumors with high Plk3 expression.
Collapse
Affiliation(s)
- Christina Helmke
- Department of Gynecology, Goethe University, 60590 Frankfurt, Germany
| | - Monika Raab
- Department of Gynecology, Goethe University, 60590 Frankfurt, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe University, 60590 Frankfurt, Germany.,German Cancer Consortium (DKTK)/German Cancer Research Center, 69120 Heidelberg, Germany
| | - Yves Matthess
- Department of Gynecology, Goethe University, 60590 Frankfurt, Germany.,German Cancer Consortium (DKTK)/German Cancer Research Center, 69120 Heidelberg, Germany
| | - Thomas Oellerich
- German Cancer Consortium (DKTK)/German Cancer Research Center, 69120 Heidelberg, Germany.,Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Ranadip Mandal
- Department of Gynecology, Goethe University, 60590 Frankfurt, Germany.,German Cancer Consortium (DKTK)/German Cancer Research Center, 69120 Heidelberg, Germany
| | - Mourad Sanhaji
- Department of Gynecology, Goethe University, 60590 Frankfurt, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Claus Rödel
- Department of Radiotherapy and Oncology, Goethe University, 60590 Frankfurt, Germany.,German Cancer Consortium (DKTK)/German Cancer Research Center, 69120 Heidelberg, Germany
| | - Sven Becker
- Department of Gynecology, Goethe University, 60590 Frankfurt, Germany
| | - Klaus Strebhardt
- Department of Gynecology, Goethe University, 60590 Frankfurt, Germany.,German Cancer Consortium (DKTK)/German Cancer Research Center, 69120 Heidelberg, Germany
| |
Collapse
|
46
|
Cantariño N, Musulén E, Valero V, Peinado MA, Perucho M, Moreno V, Forcales SV, Douet J, Buschbeck M. Downregulation of the Deiminase PADI2 Is an Early Event in Colorectal Carcinogenesis and Indicates Poor Prognosis. Mol Cancer Res 2016; 14:841-8. [PMID: 27280713 DOI: 10.1158/1541-7786.mcr-16-0034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/23/2016] [Indexed: 11/16/2022]
Abstract
UNLABELLED Peptidyl arginine deiminases (PADI) are a family of enzymes that catalyze the poorly understood posttranslational modification converting arginine residues into citrullines. In this study, the role of PADIs in the pathogenesis of colorectal cancer was investigated. Specifically, RNA expression was analyzed and its association with survival in a cohort of 98 colorectal cancer patient specimens with matched adjacent mucosa and 50 controls from donors without cancer. Key results were validated in an independent collection of tumors with matched adjacent mucosa and by mining of a publicly available expression data set. Protein expression was analyzed by immunoblotting for cell lines or IHC for patient specimens that further included 24 cases of adenocarcinoma with adjacent dysplasia and 11 cases of active ulcerative colitis. The data indicate that PADI2 is the dominantly expressed PADI enzyme in colon mucosa and is upregulated during differentiation. PADI2 expression is low or absent in colorectal cancer. Frequently, this occurs already at the stage of low-grade dysplasia. Mucosal PADI2 expression is also low in ulcerative colitis. The expression level of PADI2 in tumor and adjacent mucosa correlates with differential survival: low levels associate with poor prognosis. IMPLICATIONS Downregulation of PADI2 is an early event in the pathogenesis of colorectal cancer associated with poor prognosis and points toward a possible role of citrullination in modulating tumor cells and their microenvironment. Mol Cancer Res; 14(9); 841-8. ©2016 AACR.
Collapse
Affiliation(s)
- Neus Cantariño
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Campus Can Ruti, Badalona, Spain
| | - Eva Musulén
- Department of Pathology, Hospital Universitari Germans Trias i Pujol (HGTP), Campus Can Ruti, Badalona, Spain
| | - Vanesa Valero
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Campus Can Ruti, Badalona, Spain. Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
| | - Miquel Angel Peinado
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Campus Can Ruti, Badalona, Spain
| | - Manuel Perucho
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Campus Can Ruti, Badalona, Spain
| | - Victor Moreno
- Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, Barcelona, Spain. Department of Clinical Sciences, Faculty of Medicine, University of Barcelona (UB), Barcelona, Spain
| | - Sònia-Vanina Forcales
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Campus Can Ruti, Badalona, Spain
| | - Julien Douet
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Campus Can Ruti, Badalona, Spain. Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
| | - Marcus Buschbeck
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Campus Can Ruti, Badalona, Spain. Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain.
| |
Collapse
|
47
|
Chen YX, Wu CW, Kuo TY, Chang YL, Jen MH, Chen IWP. Large-Scale Production of Large-Size Atomically Thin Semiconducting Molybdenum Dichalcogenide Sheets in Water and Its Application for Supercapacitor. Sci Rep 2016; 6:26660. [PMID: 27225297 PMCID: PMC4881041 DOI: 10.1038/srep26660] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/03/2016] [Indexed: 11/29/2022] Open
Abstract
To progress from laboratory research to commercial applications, it is necessary to develop an effective method to prepare large quantities and high-quality of the large-size atomically thin molybdenum dichalcogenides (MoS2). Aqueous-phase processes provide a viable method for producing thin MoS2 sheets using organolithium-assisted exfoliation; unfortunately, this method is hindered by changing pristine semiconducting 2H phase to distorted metallic 1T phase. Recovery of the intrinsic 2H phase typically involves heating of the 1T MoS2 sheets on solid substrates at high temperature. This has restricted and hindered the utilization of 2H phase MoS2 sheets suspensions. Here, we demonstrate that the synergistic effect of the rigid planar structure and charged nature of organic salt such as imidazole (ImH) can be successfully used to produce atomically thin 2H-MoS2 sheets suspension in water. Moreover, lateral size and area of the exfoliated sheet can be up to 50 μm and 1000 μm2, respectively. According to the XPS measurements, nearly 100% of the 2H-MoS2 sheets was successfully prepared. A composite paper supercapacitor using the exfoliated 2H-MoS2 and carbon nanotubes delivered a superior volumetric capacitance of ~410 F/cm3. Therefore, the organic salts-assisted liquid-phase exfoliation has great potential for large-scale production of 2H-MoS2 suspensions for supercapacitor application.
Collapse
Affiliation(s)
- Yu-Xiang Chen
- Department of Applied Science, National Taitung University, 369, Sec. 2, University Rd., Taitung City 95092, Taiwan
| | - Chien-Wei Wu
- Department of Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Ting-Yang Kuo
- Department of Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Yu-Lung Chang
- Department of Applied Science, National Taitung University, 369, Sec. 2, University Rd., Taitung City 95092, Taiwan
| | - Ming-Hsing Jen
- Department of Applied Science, National Taitung University, 369, Sec. 2, University Rd., Taitung City 95092, Taiwan
| | - I-Wen Peter Chen
- Department of Applied Science, National Taitung University, 369, Sec. 2, University Rd., Taitung City 95092, Taiwan
| |
Collapse
|
48
|
Abstract
SCL, a transcription factor of the basic helix-loop-helix family, is a master regulator of hematopoiesis. Scl specifies lateral plate mesoderm to a hematopoietic fate and establishes boundaries by inhibiting the cardiac lineage. A combinatorial interaction between Scl and Vegfa/Flk1 sets in motion the first wave of primitive hematopoiesis. Subsequently, definitive hematopoietic stem cells (HSCs) emerge from the embryo proper via an endothelial-to-hematopoietic transition controlled by Runx1, acting with Scl and Gata2. Past this stage, Scl in steady state HSCs is redundant with Lyl1, a highly homologous factor. However, Scl is haploinsufficient in stress response, when a rare subpopulation of HSCs with very long term repopulating capacity is called into action. SCL activates transcription by recruiting a core complex on DNA that necessarily includes E2A/HEB, GATA1-3, LIM-only proteins LMO1/2, LDB1, and an extended complex comprising ETO2, RUNX1, ERG, or FLI1. These interactions confer multifunctionality to a complex that can control cell proliferation in erythroid progenitors or commitment to terminal differentiation through variations in single component. Ectopic SCL and LMO1/2 expression in immature thymocytes activates of a stem cell gene network and reprogram cells with a finite lifespan into self-renewing preleukemic stem cells (pre-LSCs), an initiating event in T-cell acute lymphoblastic leukemias. Interestingly, fate conversion of fibroblasts to hematoendothelial cells requires not only Scl and Lmo2 but also Gata2, Runx1, and Erg, indicating a necessary collaboration between these transcription factors for hematopoietic reprogramming. Nonetheless, full reprogramming into self-renewing multipotent HSCs may require additional factors and most likely, a permissive microenvironment.
Collapse
Affiliation(s)
- T Hoang
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada.
| | - J A Lambert
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| | - R Martin
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| |
Collapse
|
49
|
Gajzer D, Ross J, Winder L, Navada S, Zhang W, Silverman L, Chaurasia P. Epigenetic and molecular signatures of cord blood CD34+cells treated with histone deacetylase inhibitors. Vox Sang 2015; 110:79-89. [DOI: 10.1111/vox.12303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/01/2015] [Accepted: 04/27/2015] [Indexed: 12/23/2022]
Affiliation(s)
- D. Gajzer
- Division of Hematology/Medical Oncology; Department of Medicine; Tisch Cancer Institute; Icahn School of Medicine at Mount Sinai; New York NY USA
| | - J. Ross
- Division of Hematology/Medical Oncology; Department of Medicine; Tisch Cancer Institute; Icahn School of Medicine at Mount Sinai; New York NY USA
| | - L. Winder
- Division of Hematology/Medical Oncology; Department of Medicine; Tisch Cancer Institute; Icahn School of Medicine at Mount Sinai; New York NY USA
| | - S. Navada
- Division of Hematology/Medical Oncology; Department of Medicine; Tisch Cancer Institute; Icahn School of Medicine at Mount Sinai; New York NY USA
| | - W. Zhang
- Department of Medicine Bioinformatics Core; Icahn School of Medicine at Mount Sinai; New York NY USA
| | - L. Silverman
- Division of Hematology/Medical Oncology; Department of Medicine; Tisch Cancer Institute; Icahn School of Medicine at Mount Sinai; New York NY USA
| | - P. Chaurasia
- Division of Hematology/Medical Oncology; Department of Medicine; Tisch Cancer Institute; Icahn School of Medicine at Mount Sinai; New York NY USA
| |
Collapse
|
50
|
Fuhrmann J, Clancy K, Thompson PR. Chemical biology of protein arginine modifications in epigenetic regulation. Chem Rev 2015; 115:5413-61. [PMID: 25970731 PMCID: PMC4463550 DOI: 10.1021/acs.chemrev.5b00003] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Jakob Fuhrmann
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Kathleen
W. Clancy
- Department of Biochemistry and Molecular Pharmacology and Program in Chemical
Biology, University of Massachusetts Medical
School, 364 Plantation
Street, Worcester, Massachusetts 01605, United States
| | - Paul R. Thompson
- Department of Biochemistry and Molecular Pharmacology and Program in Chemical
Biology, University of Massachusetts Medical
School, 364 Plantation
Street, Worcester, Massachusetts 01605, United States
| |
Collapse
|