1
|
Cao N, Guo R, Song P, Wang S, Liu G, Shi J, Wang L, Li M, Zuo X, Yang X, Fan C, Li M, Zhang Y. DNA Framework-Programmed Nanoscale Enzyme Assemblies. NANO LETTERS 2024; 24:4682-4690. [PMID: 38563501 DOI: 10.1021/acs.nanolett.4c01137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Multienzyme assemblies mediated by multivalent interaction play a crucial role in cellular processes. However, the three-dimensional (3D) programming of an enzyme complex with defined enzyme activity in vitro remains unexplored, primarily owing to limitations in precisely controlling the spatial topological configuration. Herein, we introduce a nanoscale 3D enzyme assembly using a tetrahedral DNA framework (TDF), enabling the replication of spatial topological configuration and maintenance of an identical edge-to-edge distance akin to natural enzymes. Our results demonstrate that 3D nanoscale enzyme assemblies in both two-enzyme systems (glucose oxidase (GOx)/horseradish peroxidase (HRP)) and three-enzyme systems (amylglucosidase (AGO)/GOx/HRP) lead to enhanced cascade catalytic activity compared to the low-dimensional structure, resulting in ∼5.9- and ∼7.7-fold enhancements over homogeneous diffusional mixtures of free enzymes, respectively. Furthermore, we demonstrate the enzyme assemblies for the detection of the metabolism biomarkers creatinine and creatine, achieving a low limit of detection, high sensitivity, and broad detection range.
Collapse
Affiliation(s)
- Nan Cao
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruiyan Guo
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Ping Song
- State Key Laboratory of Oncogenes and Related Genes School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shaopeng Wang
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Liu
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Jiye Shi
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Min Li
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaolei Zuo
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiurong Yang
- Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yueyue Zhang
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
2
|
Banerjee R, Srinivas V, Lebrette H. Ferritin-Like Proteins: A Conserved Core for a Myriad of Enzyme Complexes. Subcell Biochem 2022; 99:109-153. [PMID: 36151375 DOI: 10.1007/978-3-031-00793-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ferritin-like proteins share a common fold, a four α-helix bundle core, often coordinating a pair of metal ions. Although conserved, the ferritin fold permits a diverse set of reactions, and is central in a multitude of macromolecular enzyme complexes. Here, we emphasize this diversity through three members of the ferritin-like superfamily: the soluble methane monooxygenase, the class I ribonucleotide reductase and the aldehyde deformylating oxygenase. They all rely on dinuclear metal cofactors to catalyze different challenging oxygen-dependent reactions through the formation of multi-protein complexes. Recent studies using cryo-electron microscopy, serial femtosecond crystallography at an X-ray free electron laser source, or single-crystal X-ray diffraction, have reported the structures of the active protein complexes, and revealed unprecedented insights into the molecular mechanisms of these three enzymes.
Collapse
Affiliation(s)
- Rahul Banerjee
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Vivek Srinivas
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Hugo Lebrette
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France.
| |
Collapse
|
3
|
Jones JC, Banerjee R, Shi K, Semonis MM, Aihara H, Pomerantz WCK, Lipscomb JD. Soluble Methane Monooxygenase Component Interactions Monitored by 19F NMR. Biochemistry 2021; 60:1995-2010. [PMID: 34100595 PMCID: PMC8345336 DOI: 10.1021/acs.biochem.1c00293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Soluble methane monooxygenase (sMMO) is a multicomponent metalloenzyme capable of catalyzing the fissure of the C-H bond of methane and the insertion of one atom of oxygen from O2 to yield methanol. Efficient multiple-turnover catalysis occurs only in the presence of all three sMMO protein components: hydroxylase (MMOH), reductase (MMOR), and regulatory protein (MMOB). The complex series of sMMO protein component interactions that regulate the formation and decay of sMMO reaction cycle intermediates is not fully understood. Here, the two tryptophan residues in MMOB and the single tryptophan residue in MMOR are converted to 5-fluorotryptophan (5FW) by expression in defined media containing 5-fluoroindole. In addition, the mechanistically significant N-terminal region of MMOB is 19F-labeled by reaction of the K15C variant with 3-bromo-1,1,1-trifluoroacetone (BTFA). The 5FW and BTFA modifications cause minimal structural perturbation, allowing detailed studies of the interactions with sMMOH using 19F NMR. Resonances from the 275 kDa complexes of sMMOH with 5FW-MMOB and BTFA-K15C-5FW-MMOB are readily detected at 5 μM labeled protein concentration. This approach shows directly that MMOR and MMOB competitively bind to sMMOH with similar KD values, independent of the oxidation state of the sMMOH diiron cluster. These findings suggest a new model for regulation in which the dynamic equilibration of MMOR and MMOB with sMMOH allows a transient formation of key reactive complexes that irreversibly pull the reaction cycle forward. The slow kinetics of exchange of the sMMOH:MMOB complex is proposed to prevent MMOR-mediated reductive quenching of the high-valent reaction cycle intermediate Q before it can react with methane.
Collapse
Affiliation(s)
- Jason C. Jones
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rahul Banerjee
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Manny M. Semonis
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William C. K. Pomerantz
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Abstract
Methanotrophic bacteria represent a potential route to methane utilization and mitigation of methane emissions. In the first step of their metabolic pathway, aerobic methanotrophs use methane monooxygenases (MMOs) to activate methane, oxidizing it to methanol. There are two types of MMOs: a particulate, membrane-bound enzyme (pMMO) and a soluble, cytoplasmic enzyme (sMMO). The two MMOs are completely unrelated, with different architectures, metal cofactors, and mechanisms. The more prevalent of the two, pMMO, is copper-dependent, but the identity of its copper active site remains unclear. By contrast, sMMO uses a diiron active site, the catalytic cycle of which is well understood. Here we review the current state of knowledge for both MMOs, with an emphasis on recent developments and emerging hypotheses. In addition, we discuss obstacles to developing expression systems, which are needed to address outstanding questions and to facilitate future protein engineering efforts.
Collapse
Affiliation(s)
- Christopher W Koo
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL 60208, USA.
| | | |
Collapse
|
5
|
Ramu R, Wanna WH, Janmanchi D, Tsai YF, Liu CC, Mou CY, Yu SSF. Mechanistic study for the selective oxidation of benzene and toluene catalyzed by Fe(ClO4)2 in an H2O2-H2O-CH3CN system. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Ross MO, Rosenzweig AC. A tale of two methane monooxygenases. J Biol Inorg Chem 2017; 22:307-319. [PMID: 27878395 PMCID: PMC5352483 DOI: 10.1007/s00775-016-1419-y] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/15/2016] [Indexed: 11/24/2022]
Abstract
Methane monooxygenase (MMO) enzymes activate O2 for oxidation of methane. Two distinct MMOs exist in nature, a soluble form that uses a diiron active site (sMMO) and a membrane-bound form with a catalytic copper center (pMMO). Understanding the reaction mechanisms of these enzymes is of fundamental importance to biologists and chemists, and is also relevant to the development of new biocatalysts. The sMMO catalytic cycle has been elucidated in detail, including O2 activation intermediates and the nature of the methane-oxidizing species. By contrast, many aspects of pMMO catalysis remain unclear, most notably the nuclearity and molecular details of the copper active site. Here, we review the current state of knowledge for both enzymes, and consider pMMO O2 activation intermediates suggested by computational and synthetic studies in the context of existing biochemical data. Further work is needed on all fronts, with the ultimate goal of understanding how these two remarkable enzymes catalyze a reaction not readily achieved by any other metalloenzyme or biomimetic compound.
Collapse
Affiliation(s)
- Matthew O Ross
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
7
|
In-crystal reaction cycle of a toluene-bound diiron hydroxylase. Nature 2017; 544:191-195. [PMID: 28346937 DOI: 10.1038/nature21681] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/31/2017] [Indexed: 02/06/2023]
Abstract
Electrophilic aromatic substitution is one of the most important and recognizable classes of organic chemical transformation. Enzymes create the strong electrophiles that are needed for these highly energetic reactions by using O2, electrons, and metals or other cofactors. Although the nature of the oxidants that carry out electrophilic aromatic substitution has been deduced from many approaches, it has been difficult to determine their structures. Here we show the structure of a diiron hydroxylase intermediate formed during a reaction with toluene. Density functional theory geometry optimizations of an active site model reveal that the intermediate is an arylperoxo Fe2+/Fe3+ species with delocalized aryl radical character. The structure suggests that a carboxylate ligand of the diiron centre may trigger homolytic cleavage of the O-O bond by transferring a proton from a metal-bound water. Our work provides the spatial and electronic constraints needed to propose a comprehensive mechanism for diiron enzyme arene hydroxylation that accounts for many prior experimental results.
Collapse
|
8
|
Wang VCC, Maji S, Chen PPY, Lee HK, Yu SSF, Chan SI. Alkane Oxidation: Methane Monooxygenases, Related Enzymes, and Their Biomimetics. Chem Rev 2017; 117:8574-8621. [PMID: 28206744 DOI: 10.1021/acs.chemrev.6b00624] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Methane monooxygenases (MMOs) mediate the facile conversion of methane into methanol in methanotrophic bacteria with high efficiency under ambient conditions. Because the selective oxidation of methane is extremely challenging, there is considerable interest in understanding how these enzymes carry out this difficult chemistry. The impetus of these efforts is to learn from the microbes to develop a biomimetic catalyst to accomplish the same chemical transformation. Here, we review the progress made over the past two to three decades toward delineating the structures and functions of the catalytic sites in two MMOs: soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO). sMMO is a water-soluble three-component protein complex consisting of a hydroxylase with a nonheme diiron catalytic site; pMMO is a membrane-bound metalloenzyme with a unique tricopper cluster as the site of hydroxylation. The metal cluster in each of these MMOs harnesses O2 to functionalize the C-H bond using different chemistry. We highlight some of the common basic principles that they share. Finally, the development of functional models of the catalytic sites of MMOs is described. These efforts have culminated in the first successful biomimetic catalyst capable of efficient methane oxidation without overoxidation at room temperature.
Collapse
Affiliation(s)
- Vincent C-C Wang
- Institute of Chemistry, Academia Sinica , 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Suman Maji
- School of Chemical Engineering and Physical Sciences, Lovely Professional University , Jalandhar-Delhi G. T. Road (NH-1), Phagwara, Punjab India 144411
| | - Peter P-Y Chen
- Department of Chemistry, National Chung Hsing University , 250 Kuo Kuang Road, Taichung 402, Taiwan
| | - Hung Kay Lee
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | - Steve S-F Yu
- Institute of Chemistry, Academia Sinica , 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Sunney I Chan
- Institute of Chemistry, Academia Sinica , 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan.,Department of Chemistry, National Taiwan University , No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.,Noyes Laboratory, 127-72, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
9
|
Shimada S, Shinzawa-Itoh K, Baba J, Aoe S, Shimada A, Yamashita E, Kang J, Tateno M, Yoshikawa S, Tsukihara T. Complex structure of cytochrome c-cytochrome c oxidase reveals a novel protein-protein interaction mode. EMBO J 2016; 36:291-300. [PMID: 27979921 PMCID: PMC5286356 DOI: 10.15252/embj.201695021] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/21/2016] [Accepted: 11/16/2016] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial cytochrome c oxidase (CcO) transfers electrons from cytochrome c (Cyt.c) to O2 to generate H2O, a process coupled to proton pumping. To elucidate the mechanism of electron transfer, we determined the structure of the mammalian Cyt.c–CcO complex at 2.0‐Å resolution and identified an electron transfer pathway from Cyt.c to CcO. The specific interaction between Cyt.c and CcO is stabilized by a few electrostatic interactions between side chains within a small contact surface area. Between the two proteins are three water layers with a long inter‐molecular span, one of which lies between the other two layers without significant direct interaction with either protein. Cyt.c undergoes large structural fluctuations, using the interacting regions with CcO as a fulcrum. These features of the protein–protein interaction at the docking interface represent the first known example of a new class of protein–protein interaction, which we term “soft and specific”. This interaction is likely to contribute to the rapid association/dissociation of the Cyt.c–CcO complex, which facilitates the sequential supply of four electrons for the O2 reduction reaction.
Collapse
Affiliation(s)
- Satoru Shimada
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Akoh, Hyogo, Japan
| | - Kyoko Shinzawa-Itoh
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Akoh, Hyogo, Japan
| | - Junpei Baba
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Akoh, Hyogo, Japan
| | - Shimpei Aoe
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Akoh, Hyogo, Japan
| | - Atsuhiro Shimada
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Akoh, Hyogo, Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Jiyoung Kang
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Akoh, Hyogo, Japan
| | - Masaru Tateno
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Akoh, Hyogo, Japan
| | - Shinya Yoshikawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Akoh, Hyogo, Japan
| | - Tomitake Tsukihara
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Akoh, Hyogo, Japan .,Institute for Protein Research, Osaka University, Suita, Osaka, Japan.,JST, CREST, Kawaguchi, Saitama, Japan
| |
Collapse
|
10
|
Atkinson JT, Campbell I, Bennett GN, Silberg JJ. Cellular Assays for Ferredoxins: A Strategy for Understanding Electron Flow through Protein Carriers That Link Metabolic Pathways. Biochemistry 2016; 55:7047-7064. [DOI: 10.1021/acs.biochem.6b00831] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joshua T. Atkinson
- Systems,
Synthetic, and Physical Biology Graduate Program, Rice University, MS-180, 6100 Main Street, Houston, Texas 77005, United States
| | - Ian Campbell
- Biochemistry
and Cell Biology Graduate Program, Rice University, MS-140, 6100
Main Street, Houston, Texas 77005, United States
| | - George N. Bennett
- Department
of Biosciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
- Department
of Chemical and Biomolecular Engineering, Rice University, MS-362,
6100 Main Street, Houston, Texas 77005, United States
| | - Jonathan J. Silberg
- Department
of Biosciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
- Department
of Bioengineering, Rice University, MS-142, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
11
|
Lawton TJ, Rosenzweig AC. Biocatalysts for methane conversion: big progress on breaking a small substrate. Curr Opin Chem Biol 2016; 35:142-149. [PMID: 27768948 PMCID: PMC5161620 DOI: 10.1016/j.cbpa.2016.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 01/08/2023]
Abstract
Nature utilizes two groups of enzymes to catalyze methane conversions, methyl-coenzyme M reductases (MCRs) and methane monooxygenases (MMOs). These enzymes have been difficult to incorporate into industrial processes due to their complexity, poor stability, and lack of recombinant tractability. Despite these issues, new ways of preparing and stabilizing these enzymes have recently been discovered, and new mechanistic insight into how MCRs and MMOs break the C-H bond in nature's most inert hydrocarbon have been obtained. This review focuses on recent findings in the methane biocatalysis field, and discusses the impact of these finding on designing MMO and MCR-based biotechnologies.
Collapse
Affiliation(s)
- Thomas J Lawton
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
12
|
Rokob TA. Pathways for Arene Oxidation in Non-Heme Diiron Enzymes: Lessons from Computational Studies on Benzoyl Coenzyme A Epoxidase. J Am Chem Soc 2016; 138:14623-14638. [PMID: 27682344 DOI: 10.1021/jacs.6b06987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxygenation of aromatic rings using O2 is catalyzed by several non-heme carboxylate-bridged diiron enzymes. In order to provide a general mechanistic description for these reactions, computational studies were carried out at the ONIOM(B3LYP/BP86/Amber) level on the non-heme diiron enzyme benzoyl coenzyme A epoxidase, BoxB. The calculations revealed four possible pathways for attacking the aromatic ring: (a) electrophilic (2e-) attack by a bis(μ-oxo)-diiron(IV) species (Q pathway); (b) electrophilic (2e-) attack via the σ* orbital of a μ-η2:η2-peroxo-diiron(III) intermediate (Pσ* pathway); (c) radical (1e-) attack via the π*-orbital of a superoxo-diiron(II,III) species (Pπ* pathway); (d) radical (1e-) attack of a partially quenched bis(μ-oxo)-diiron(IV) intermediate (Q' pathway). The results allowed earlier work of de Visser on olefin epoxidation by diiron complexes and QM-cluster studies of Liao and Siegbahn on BoxB to be put into a broader perspective. Parallels with epoxidation using organic peracids were also examined. Specifically for the BoxB enzyme, the Q pathway was found to be the most preferred, but the corresponding bis(μ-oxo)-diiron(IV) species is significantly destabilized and not expected to be directly observable. Epoxidation via the Pσ* pathway represents an energetically somewhat higher lying alternative; possible strategies for experimental discrimination are discussed. The selectivity toward epoxidation is shown to stem from a combination of inherent electronic properties of the thioacyl substituent and enzymatic constraints. Possible implications of the results for toluene monooxygenases are considered as well.
Collapse
Affiliation(s)
- Tibor András Rokob
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar Tudósok körútja 2, 1117 Budapest, Hungary
| |
Collapse
|
13
|
Bouhajja E, McGuire M, Liles MR, Bataille G, Agathos SN, George IF. Identification of novel toluene monooxygenase genes in a hydrocarbon-polluted sediment using sequence- and function-based screening of metagenomic libraries. Appl Microbiol Biotechnol 2016; 101:797-808. [PMID: 27785541 DOI: 10.1007/s00253-016-7934-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/06/2016] [Accepted: 10/12/2016] [Indexed: 11/25/2022]
Abstract
The microbial potential for toluene degradation within sediments from a tar oil-contaminated site in Flingern, Germany, was assessed using a metagenomic approach. High molecular weight environmental DNA from contaminated sediments was extracted, purified, and cloned into fosmid and BAC vectors and transformed into Escherichia coli. The fosmid library was screened by hybridization with a PCR amplicon of the α-subunit of the toluene 4-monooxygenase gene to identify genes and pathways encoding toluene degradation. Fourteen clones were recovered from the fosmid library, among which 13 were highly divergent from known tmoA genes and several had the closest relatives among Acinetobacter species. The BAC library was transferred to the heterologous hosts Cupriavidus metallidurans (phylum Proteobacteria) and Edaphobacter aggregans (phylum Acidobacteria). The resulting libraries were screened for expression of toluene degradation in the non-degradative hosts. From expression in C. metallidurans, three novel toluene monooxygenase-encoding operons were identified that were located on IncP1 plasmids. The E. aggregans-hosted BAC library led to the isolation of a cloned genetic locus putatively derived from an Acidobacteria taxon that contained genes involved in aerobic and anaerobic toluene degradation. These data suggest the important role of plasmids in the spread of toluene degradative capacity and indicate putative novel tmoA genes present in this hydrocarbon-polluted environment.
Collapse
Affiliation(s)
- E Bouhajja
- Earth and Life Institute, Laboratoire de Génie Biologique, Université catholique de Louvain, Place Croix du Sud 2, boite L7.05.19, 1348, Louvain-la-Neuve, Belgium
| | - M McGuire
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, Alabama, 36849, USA
| | - M R Liles
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, Alabama, 36849, USA
| | - G Bataille
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Place Croix du Sud 4-5, Bte L.7.07.04, 1348, Louvain-la-Neuve, Belgium
| | - S N Agathos
- Earth and Life Institute, Laboratoire de Génie Biologique, Université catholique de Louvain, Place Croix du Sud 2, boite L7.05.19, 1348, Louvain-la-Neuve, Belgium.,School of Life Sciences and Biotechnology, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | - I F George
- Laboratoire d'Ecologie des Systèmes Aquatiques, Université libre de Bruxelles, Campus de la Plaine CP 221, Boulevard du Triomphe, 1050, Brussels, Belgium.
| |
Collapse
|
14
|
Kurt C, Sönmez B, Vardar N, Yanık-Yıldırım KC, Vardar-Schara G. Cavity residue leucine 95 and channel residues glutamine 204, aspartic acid 211, and phenylalanine 269 of toluene o-xylene monooxygenase influence catalysis. Appl Microbiol Biotechnol 2016; 100:7599-609. [PMID: 27311562 DOI: 10.1007/s00253-016-7658-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 10/21/2022]
Abstract
Structural analysis of toluene-o-xylene monooxygenase (ToMO) hydroxylase revealed the presence of three hydrophobic cavities, a channel, and a pore leading from the protein surface to the active site. Here, saturation mutagenesis was used to investigate the catalytic roles of alpha-subunit (TouA) second cavity residue L95 and TouA channel residues Q204, D211, and F269. By testing the substrates toluene, phenol, nitrobenzene, and/or naphthalene, these positions were found to influence the catalytic activity of ToMO. Several regiospecific variants were identified from TouA positions Q204, F269, and L95. For example, TouA variant Q204H had the regiospecificity of nitrobenzene changed significantly from 30 to 61 % p-nitrophenol. Interestingly, a combination of mutations at Q204H and A106V altered the regiospecificity of nitrobenzene back to 27 % p-nitrophenol. TouA variants F269Y, F269P, Q204E, and L95D improved the meta-hydroxylating capability of nitrobenzene by producing 87, 85, 82, and 77 % m-nitrophenol, respectively. For naphthalene oxidation, TouA variants F269V, Q204A, Q204S/S222N, and F269T had the regiospecificity changed from 16 to 9, 10, 23, and 25 % 2-naphthol, respectively. Here, two additional TouA residues, S222 and A106, were also identified that may have important roles in catalysis. Most of the isolated variants from D211 remained active, whereas having a hydrophobic residue at this position appeared to diminish the catalytic activity toward naphthalene. The mutational effects on the ToMO regiospecificity described here suggest that it is possible to further fine tune and engineer the reactivity of multicomponent diiron monooxygenases toward different substrates at positions that are relatively distant from the active site.
Collapse
Affiliation(s)
- Cansu Kurt
- Department of Genetics and Biongineering, Fatih University, Buyukcekmece, 34500, Istanbul, Turkey
| | - Burcu Sönmez
- Department of Genetics and Biongineering, Fatih University, Buyukcekmece, 34500, Istanbul, Turkey
| | - Nurcan Vardar
- Department of Genetics and Biongineering, Fatih University, Buyukcekmece, 34500, Istanbul, Turkey
| | - K Cansu Yanık-Yıldırım
- Department of Genetics and Biongineering, Fatih University, Buyukcekmece, 34500, Istanbul, Turkey
| | - Gönül Vardar-Schara
- Department of Genetics and Biongineering, Fatih University, Buyukcekmece, 34500, Istanbul, Turkey.
| |
Collapse
|
15
|
The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part III. {[Fe2S2](Cys)3(X)} (X=Asp, Arg, His) and {[Fe2S2](Cys)2(His)2} proteins. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Acheson JF, Moseson H, Fox BG. Structure of T4moF, the Toluene 4-Monooxygenase Ferredoxin Oxidoreductase. Biochemistry 2015; 54:5980-8. [PMID: 26309236 DOI: 10.1021/acs.biochem.5b00692] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 1.6 Å crystal structure of toluene 4-monooxygenase reductase T4moF is reported. The structure includes ferredoxin, flavin, and NADH binding domains. The position of the ferredoxin domain relative to the other two domains represents a new configuration for the iron-sulfur flavoprotein family. Close contacts between the C8 methyl group of FAD and [2Fe-2S] ligand Cys36-O represent a plausible pathway for electron transfer between the redox cofactors. Energy-minimized docking of NADH and calculation of hingelike motions between domains suggest how simple coordinated shifts of residues at the C-terminus of the enzyme could expose the N5 position of FAD for productive interaction with the nicotinamide ring. The domain configuration revealed by the T4moF structure provides an excellent steric and electrostatic match to the obligate electron acceptor, Rieske-type [2Fe-2S] ferredoxin T4moC. Protein-protein docking and energy minimization of the T4moFC complex indicate that T4moF [2Fe-2S] ligand Cys41 and T4moC [2Fe-2S] ligand His67, along with other electrostatic interactions between the protein partners, form the functional electron transfer interface.
Collapse
Affiliation(s)
- Justin F Acheson
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Hannah Moseson
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Brian G Fox
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
17
|
Wang W, Liang AD, Lippard SJ. Coupling Oxygen Consumption with Hydrocarbon Oxidation in Bacterial Multicomponent Monooxygenases. Acc Chem Res 2015; 48:2632-9. [PMID: 26293615 PMCID: PMC4624108 DOI: 10.1021/acs.accounts.5b00312] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A fundamental goal in catalysis is the coupling of multiple reactions to yield a desired product. Enzymes have evolved elegant approaches to address this grand challenge. A salient example is the biological conversion of methane to methanol catalyzed by soluble methane monooxygenase (sMMO), a member of the bacterial multicomponent monooxygenase (BMM) superfamily. sMMO is a dynamic protein complex of three components: a hydroxylase, a reductase, and a regulatory protein. The active site, a carboxylate-rich non-heme diiron center, is buried inside the 251 kDa hydroxylase component. The enzyme processes four substrates: O2, protons, electrons, and methane. To couple O2 activation to methane oxidation, timely control of substrate access to the active site is critical. Recent studies of sMMO, as well as its homologues in the BMM superfamily, have begun to unravel the mechanism. The emerging and unifying picture reveals that each substrate gains access to the active site along a specific pathway through the hydroxylase. Electrons and protons are delivered via a three-amino-acid pore located adjacent to the diiron center; O2 migrates via a series of hydrophobic cavities; and hydrocarbon substrates reach the active site through a channel or linked set of cavities. The gating of these pathways mediates entry of each substrate to the diiron active site in a timed sequence and is coordinated by dynamic interactions with the other component proteins. The result is coupling of dioxygen consumption with hydrocarbon oxidation, avoiding unproductive oxidation of the reductant rather than the desired hydrocarbon. To initiate catalysis, the reductase delivers two electrons to the diiron(III) center by binding over the pore of the hydroxylase. The regulatory component then displaces the reductase, docking onto the same surface of the hydroxylase. Formation of the hydroxylase-regulatory component complex (i) induces conformational changes of pore residues that may bring protons to the active site; (ii) connects hydrophobic cavities in the hydroxylase leading from the exterior to the diiron active site, providing a pathway for O2 and methane, in the case of sMMO, to the reduced diiron center for O2 activation and substrate hydroxylation; (iii) closes the pore, as well as a channel in the case of four-component BMM enzymes, restricting proton access to the diiron center during formation of "Fe2O2" intermediates required for hydrocarbon oxidation; and (iv) inhibits undesired electron transfer to the Fe2O2 intermediates by blocking reductase binding during O2 activation. This mechanism is quite different from that adopted by cytochromes P450, a large class of heme-containing monooxygenases that catalyze reactions very similar to those catalyzed by the BMM enzymes. Understanding the timed enzyme control of substrate access has implications for designing artificial catalysts. To achieve multiple turnovers and tight coupling, synthetic models must also control substrate access, a major challenge considering that nature requires large, multimeric, dynamic protein complexes to accomplish this feat.
Collapse
Affiliation(s)
- Weixue Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexandria D. Liang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
18
|
Rajakovich LJ, Nørgaard H, Warui DM, Chang WC, Li N, Booker SJ, Krebs C, Bollinger JM, Pandelia ME. Rapid Reduction of the Diferric-Peroxyhemiacetal Intermediate in Aldehyde-Deformylating Oxygenase by a Cyanobacterial Ferredoxin: Evidence for a Free-Radical Mechanism. J Am Chem Soc 2015; 137:11695-709. [PMID: 26284355 DOI: 10.1021/jacs.5b06345] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aldehyde-deformylating oxygenase (ADO) is a ferritin-like nonheme-diiron enzyme that catalyzes the last step in a pathway through which fatty acids are converted into hydrocarbons in cyanobacteria. ADO catalyzes conversion of a fatty aldehyde to the corresponding alk(a/e)ne and formate, consuming four electrons and one molecule of O2 per turnover and incorporating one atom from O2 into the formate coproduct. The source of the reducing equivalents in vivo has not been definitively established, but a cyanobacterial [2Fe-2S] ferredoxin (PetF), reduced by ferredoxin-NADP(+) reductase (FNR) using NADPH, has been implicated. We show that both the diferric form of Nostoc punctiforme ADO and its (putative) diferric-peroxyhemiacetal intermediate are reduced much more rapidly by Synechocystis sp. PCC6803 PetF than by the previously employed chemical reductant, 1-methoxy-5-methylphenazinium methyl sulfate. The yield of formate and alkane per reduced PetF approaches its theoretical upper limit when reduction of the intermediate is carried out in the presence of FNR. Reduction of the intermediate by either system leads to accumulation of a substrate-derived peroxyl radical as a result of off-pathway trapping of the C2-alkyl radical intermediate by excess O2, which consequently diminishes the yield of the hydrocarbon product. A sulfinyl radical located on residue Cys71 also accumulates with short-chain aldehydes. The detection of these radicals under turnover conditions provides the most direct evidence to date for a free-radical mechanism. Additionally, our results expose an inefficiency of the enzyme in processing its radical intermediate, presenting a target for optimization of bioprocesses exploiting this hydrocarbon-production pathway.
Collapse
Affiliation(s)
- Lauren J Rajakovich
- Department of Biochemistry and Molecular Biology and ‡Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Hanne Nørgaard
- Department of Biochemistry and Molecular Biology and ‡Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Douglas M Warui
- Department of Biochemistry and Molecular Biology and ‡Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Wei-chen Chang
- Department of Biochemistry and Molecular Biology and ‡Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Ning Li
- Department of Biochemistry and Molecular Biology and ‡Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Squire J Booker
- Department of Biochemistry and Molecular Biology and ‡Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Carsten Krebs
- Department of Biochemistry and Molecular Biology and ‡Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - J Martin Bollinger
- Department of Biochemistry and Molecular Biology and ‡Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Maria-Eirini Pandelia
- Department of Biochemistry and Molecular Biology and ‡Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
19
|
Liang AD, Lippard SJ. Single Turnover Reveals Oxygenated Intermediates in Toluene/o-Xylene Monooxygenase in the Presence of the Native Redox Partners. J Am Chem Soc 2015; 137:10520-3. [PMID: 26267757 DOI: 10.1021/jacs.5b07055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Toluene/o-xylene monooxygenase (ToMO) is a non-heme diiron protein that activates O2 for subsequent arene oxidation. ToMO utilizes four protein components, a catalytic hydroxylase, a regulatory protein, a Rieske protein, and a reductase. O2 activation and substrate hydroxylation in the presence of all four protein components is examined. These studies demonstrate the importance of native reductants by revealing reactivity unobserved when dithionite and mediators are used as the reductant. This reactivity is compared with that of other O2-activating diiron enzymes.
Collapse
Affiliation(s)
- Alexandria Deliz Liang
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Stephen J Lippard
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
20
|
Liang A, Lippard SJ. Component interactions and electron transfer in toluene/o-xylene monooxygenase. Biochemistry 2014; 53:7368-75. [PMID: 25402597 PMCID: PMC4255640 DOI: 10.1021/bi500892n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 10/28/2014] [Indexed: 01/19/2023]
Abstract
The multicomponent protein toluene/o-xylene monooxygenase (ToMO) activates molecular oxygen to oxidize aromatic hydrocarbons. Prior to dioxygen activation, two electrons are injected into each of two diiron(III) units of the hydroxylase, a process that involves three redox active proteins: the ToMO hydroxylase (ToMOH), Rieske protein (ToMOC), and an NADH oxidoreductase (ToMOF). In addition to these three proteins, a small regulatory protein is essential for catalysis (ToMOD). Through steady state and pre-steady state kinetics studies, we show that ToMOD attenuates electron transfer from ToMOC to ToMOH in a concentration-dependent manner. At substoichiometric concentrations, ToMOD increases the rate of turnover, which we interpret to be a consequence of opening a pathway for oxygen transport to the catalytic diiron center in ToMOH. Excess ToMOD inhibits steady state catalysis in a manner that depends on ToMOC concentration. Through rapid kinetic assays, we demonstrate that ToMOD attenuates formation of the ToMOC-ToMOH complex. These data, coupled with protein docking studies, support a competitive model in which ToMOD and ToMOC compete for the same binding site on the hydroxylase. These results are discussed in the context of other studies of additional proteins in the superfamily of bacterial multicomponent monooxygenases.
Collapse
Affiliation(s)
- Alexandria
Deliz Liang
- Department of Chemistry, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|