1
|
Probst C, Denning-Jannace CA, du Plooy LM, Giamberardino C, Asfaw Y, Franz KJ, Alspaugh JA. A cysteine-rich domain of the Cuf1 transcription factor is required for high copper stress sensing and fungal virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628380. [PMID: 39713408 PMCID: PMC11661212 DOI: 10.1101/2024.12.13.628380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The ability to sense, import but also detoxify copper (Cu) has been shown to be crucial for microbial pathogens to survive within the host. Previous studies conducted with the opportunistic human fungal pathogen Cryptococcus neoformans ( Cn ) have revealed two extreme Cu environments encountered during infection: A high Cu environment within the lung and a low Cu environment within the brain. However, how Cn senses these different host Cu microenvironments, and the consequences of a blunted Cu stress adaption for pathogenesis, are not well understood. In contrast to other fungi, Cn has a single transcription factor, Cuf1, to regulate adaptive responses to both high- and low-Cu stress. Sequence analysis of Cn Cuf1 identified three conserved cysteine (Cys)-rich regions that may play a role in Cu sensing. We mutated the 1 st Cys-rich region within the CUF1 gene to investigate its role for Cn high Cu stress sensing. Subsequent analysis of Cuf1 transcriptional activity and target gene promoter binding demonstrated that the 1 st Cys-rich region is required for Cuf1 transcriptional activity in high Cu stress. We performed an inhalational murine infection to analyze the effects of a blunted high Cu stress response on pathogenesis. No significant differences in lung fungal burden were observed based on variable Cuf1 activity. However, strains with defective high Cu stress regulation induced a markedly altered immune response in mice. Based on these findings, we hypothesize that Cuf1-driven high Cu responses are not required for initial survival but instead modulate immune recognition and inflammation within the mouse lung. Importance Copper is an essential micronutrient required for survival in all kingdoms of life as it is used as a catalytic cofactor for many essential processes in the cell. In turn, this reactivity of copper ions makes elevated levels of free copper toxic for the cell. This dual nature of copper-essential for life but toxic at elevated levels- is used by our innate immune system in a process called nutritional immunity to combat and kill invading pathogens. In this work we explore how the fungal human pathogen Cryptococcus neoformans senses high copper stress, a copper microenvironment encountered within the host lung. We identified a specific cysteine-rich region within the copper responsive transcription factor Cuf1 to be essential for high copper stress sensing. Mutation of this region led to an impaired high copper stress adaptation, which did not affect fitness of the yeast but did impact immune recognition and inflammation inside the host lung.
Collapse
|
2
|
Garg R, David MS, Yang S, Culotta VC. Metals at the Host-Fungal Pathogen Battleground. Annu Rev Microbiol 2024; 78:23-38. [PMID: 38781605 DOI: 10.1146/annurev-micro-041222-023745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Fungal infections continue to represent a major threat to public health, particularly with the emergence of multidrug-resistant fungal pathogens. As part of the innate immune response, the host modulates the availability of metals as armament against pathogenic microbes, including fungi. The transition metals Fe, Cu, Zn, and Mn are essential micronutrients for all life forms, but when present in excess, these same metals are potent toxins. The host exploits the double-edged sword of these metals, and will either withhold metal micronutrients from pathogenic fungi or attack them with toxic doses. In response to these attacks, fungal pathogens cleverly adapt by modulating metal transport, metal storage, and usage of metals as cofactors for enzymes. Here we review the current state of understanding on Fe, Cu, Zn, and Mn at the host-fungal pathogen battleground and provide perspectives for future research, including a hope for new antifungals based on metals.
Collapse
Affiliation(s)
- Ritu Garg
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - Marika S David
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - Shuyi Yang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - Valeria C Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| |
Collapse
|
3
|
Palos-Fernández R, Aguilar-Pontes MV, Puebla-Planas G, Berger H, Studt-Reinhold L, Strauss J, Di Pietro A, López-Berges MS. Copper acquisition is essential for plant colonization and virulence in a root-infecting vascular wilt fungus. PLoS Pathog 2024; 20:e1012671. [PMID: 39495784 PMCID: PMC11563359 DOI: 10.1371/journal.ppat.1012671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/14/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
Plant pathogenic fungi provoke devastating agricultural losses and are difficult to control. How these organisms acquire micronutrients during growth in the host environment remains poorly understood. Here we show that efficient regulation of copper acquisition mechanisms is crucial for plant colonization and virulence in the soilborne ascomycete Fusarium oxysporum, the causal agent of vascular wilt disease in more than 150 different crops. Using a combination of RNA-seq and ChIP-seq, we establish a direct role of the transcriptional regulator Mac1 in activation of copper deficiency response genes, many of which are induced during plant infection. Loss of Mac1 impaired growth of F. oxysporum under low copper conditions and abolishes pathogenicity on tomato plants and on the invertebrate animal host Galleria mellonella. Importantly, overexpression of two Mac1 target genes encoding a copper reductase and a copper transporter was sufficient to restore virulence in the mac1 mutant background. Our results establish a previously unrecognized role of copper reduction and uptake in fungal infection of plants and reveal new ways to protect crops from phytopathogens.
Collapse
Affiliation(s)
- Rafael Palos-Fernández
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - María Victoria Aguilar-Pontes
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - Gema Puebla-Planas
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - Harald Berger
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, BOKU University, Vienna, Austria
| | - Lena Studt-Reinhold
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, BOKU University, Vienna, Austria
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, BOKU University, Vienna, Austria
| | - Antonio Di Pietro
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - Manuel Sánchez López-Berges
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
4
|
Anne S, Friudenberg AD, Peterson RL. Characterization of a High-Affinity Copper Transporter CTR1a in the White-Nose Syndrome Causing Fungal Pathogen Pseudogymnoascus destructans. J Fungi (Basel) 2024; 10:729. [PMID: 39452681 PMCID: PMC11509074 DOI: 10.3390/jof10100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
Copper is an essential micronutrient and the ability to scavenge tightly bound or trace levels of copper ions at the host-pathogen interface is vital for fungal proliferation in animal hosts. Recent studies suggest that trace metal ion acquisition is critical for the establishment and propagation of Pseudogymnoascus destructans, the fungal pathogen responsible for white-nose syndrome (WNS), on their bat host. However, little is known about these metal acquisition pathways in P. destructans. In this study, we report the characterization of the P. destructans high-affinity copper transporter VC83_00191 (PdCTR1a), which is implicated as a virulence factor associated with the WNS disease state. Using Saccharomyces cerevisiae as a recombinant expression host, we find that PdCTR1a can efficiently traffic Cu ions into the yeast cytoplasm. Complementary studies in the native P. destructans fungus provide evidence that PdCTR1a transcripts and protein levels are dictated by Cu-bioavailability in the growth media. Our study demonstrates that PdCTR1a is a functional high-affinity copper transporter and is relevant to Cu homeostasis pathways in P. destructans.
Collapse
Affiliation(s)
- Saika Anne
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA;
| | - Alyssa D. Friudenberg
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666, USA;
| | - Ryan L. Peterson
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA;
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666, USA;
| |
Collapse
|
5
|
Moraes D, Silva-Bailão MG, Bailão AM. Molecular aspects of copper homeostasis in fungi. ADVANCES IN APPLIED MICROBIOLOGY 2024; 129:189-229. [PMID: 39389706 DOI: 10.1016/bs.aambs.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Copper homeostasis in fungi is a tightly regulated process crucial for cellular functions. Fungi acquire copper from their environment, with transporters facilitating its uptake into the cell. Once inside, copper is utilized in various metabolic pathways, including respiration and antioxidant defense. However, excessive copper can be toxic by promoting cell damage mainly due to oxidative stress and metal displacements. Fungi employ intricate regulatory mechanisms to maintain optimal copper levels. These involve transcription factors that control the expression of genes involved in copper transport, storage, and detoxification. Additionally, chaperone proteins assist in copper trafficking within the cell, ensuring its delivery to specific targets. Furthermore, efflux pumps help remove excess copper from the cell. Altogether, these mechanisms enable fungi to balance copper levels, ensuring proper cellular function while preventing toxicity. Understanding copper homeostasis in fungi is not only essential for fungal biology but also holds implications for various applications, including biotechnology and antifungal drug development.
Collapse
Affiliation(s)
- Dayane Moraes
- Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | | | | |
Collapse
|
6
|
Jia LJ, González K, Orasch T, Schmidt F, Brakhage AA. Manipulation of host phagocytosis by fungal pathogens and therapeutic opportunities. Nat Microbiol 2024; 9:2216-2231. [PMID: 39187614 DOI: 10.1038/s41564-024-01780-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
An important host defence mechanism against pathogens is intracellular killing, which is achieved through phagocytosis, a cellular process for engulfing and neutralizing extracellular particles. Phagocytosis results in the formation of matured phagolysosomes, which are specialized compartments that provide a hostile environment and are considered the end point of the degradative pathway. However, all fungal pathogens studied to date have developed strategies to manipulate phagosomal function directly and also indirectly by redirecting phagosomes from the degradative pathway to a non-degradative pathway with the expulsion and even transfer of pathogens between cells. Here, using the major human fungal pathogens Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans and Histoplasma capsulatum as examples, we discuss the processes involved in host phagosome-fungal pathogen interactions, with a focus on fungal evasion strategies. We also discuss recent approaches to targeting intraphagosomal pathogens, including the redirection of phagosomes towards degradative pathways for fungal pathogen eradication.
Collapse
Affiliation(s)
- Lei-Jie Jia
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany.
- Junior Research Group Phagosome Biology and Engineering, Leibniz-HKI, Jena, Germany.
| | - Katherine González
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Thomas Orasch
- Transfer Group Anti-infectives, Leibniz-HKI, Jena, Germany
| | - Franziska Schmidt
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany.
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
7
|
Friudenberg AD, Anne S, Peterson RL. Characterization of a High-Affinity Copper Transporter in the White-Nose Syndrome Causing Fungal Pathogen Pseudogymnoascus destructans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610057. [PMID: 39253504 PMCID: PMC11383314 DOI: 10.1101/2024.08.28.610057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Copper is an essential micronutrient and the ability to scavenge tightly bound or trace levels of copper ions at the host-pathogen interface is vital for fungal proliferation in animal hosts. Recent studies suggest that trace metal ion acquisition is critical for the establishment and propagation of Pseudogymnoascus destructans, the fungal pathogen responsible for white-nose syndrome (WNS), on their bat host. However, little is known about these metal acquisition pathways in P. destructans. In this study, we report the characterization of the P. destructans high-affinity copper transporter VC83_00191 (PdCTR1a), which is implicated as a virulence factor associated with the WNS disease state. Using Saccharomyces cerevisiae as a recombinant expression host, we find that PdCTR1a localizes to the cell surface plasma membrane and can efficiently traffic Cu-ions into the yeast cytoplasm. Complementary studies in the native P. destructans fungus provide evidence that PdCTR1a transcripts and protein levels are dictated by Cu-bioavailability in the growth media. Our study demonstrates that PdCTR1a is a functional high-affinity copper transporter and is relevant to Cu-homeostasis pathways in P. destructans.
Collapse
Affiliation(s)
- Alyssa D. Friudenberg
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, Texas, United States, 78666
| | - Saika Anne
- Department of Biology, Texas State University, 601 University Drive, San Marcos, Texas, United States, 78666
| | - Ryan L. Peterson
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, Texas, United States, 78666
- Department of Biology, Texas State University, 601 University Drive, San Marcos, Texas, United States, 78666
| |
Collapse
|
8
|
Chai Z, Li Y, Zhang J, Ding C, Tong X, Zhang Z. Sirtulin-Ypk1 regulation axis governs the TOR signaling pathway and fungal pathogenicity in Cryptococcus neoformans. Microbiol Spectr 2024; 12:e0003824. [PMID: 38912819 PMCID: PMC11302014 DOI: 10.1128/spectrum.00038-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/06/2024] [Indexed: 06/25/2024] Open
Abstract
Cryptococcus neoformans is a life-threatening fungal pathogen that is a causative agent for pulmonary infection and meningoencephalitis in both immunocompetent and immunodeficient individuals. Recent studies have elucidated the important function of the target of rapamycin (TOR) signaling pathway in the modulation of C. neoformans virulence factor production and pathogenicity in animal infection models. Herein, we discovered that Ypk1, a critical component of the TOR signaling pathway, acts as a critical modulator in fungal pathogenicity through post-translational modifications (PTMs). Mass spectrometry analysis revealed that Ypk1 is subject to protein acetylation at lysines 315 and 502, and both sites are located within kinase functional domains. Inhibition of the C. neoformans TOR pathway by rapamycin activates the deacetylation process for Ypk1. The YPK1Q strain, a hyper-acetylation of Ypk1, exhibited increased sensitivity to rapamycin, decreased capsule formation ability, reduced starvation tolerance, and diminished fungal pathogenicity, indicating that deacetylation of Ypk1 is crucial for responding to stress. Deacetylase inhibition assays have shown that sirtuin family proteins are critical to the Ypk1 deacetylation mechanism. After screening deacetylase mutants, we found that Dac1 and Dac7 directly interact with Ypk1 to facilitate the deacetylation modification process via a protein-protein interaction. These findings provide new insights into the molecular basis for regulating the TORC-Ypk1 axis and demonstrate an important function of protein acetylation in modulating fungal pathogenicity. IMPORTANCE Cryptococcus neoformans is an important opportunistic fungal pathogen in humans. While there are currently few effective antifungal treatments, the absence of novel molecular targets in fungal pathogenicity hinders the development of new drugs. There is increasing evidence that protein post-translational modifications (PTMs) can modulate the pathogenicity of fungi. In this study, we discovered that the pathogenicity of C. neoformans was significantly impacted by the dynamic acetylation changes of Ypk1, the immediate downstream target of the TOR complex. We discovered that Ypk1 is acetylated at lysines 315 and 502, both of which are within kinase functional domains. Deacetylation of Ypk1 is necessary for formation of the capsule structure, the response to the TOR pathway inhibitor rapamycin, nutrient utilization, and host infection. We also demonstrate that the sirtuin protein family is involved in the Ypk1 deacetylation mechanism. We anticipate that the sirtuin-Ypk1 regulation axis could be used as a potential target for the development of antifungal medications.
Collapse
Affiliation(s)
- Zhenghua Chai
- Department of Laboratory Medicine of Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanjian Li
- College of Sciences, Northeastern University, Shenyang, China
| | - Jing Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xiujuan Tong
- Department of Laboratory Medicine of Central Hospital of Chaoyang, Chaoyang, China
| | - Zhijie Zhang
- Department of Laboratory Medicine of Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Ortiz SC, Hull CM. Biogenesis, germination, and pathogenesis of Cryptococcus spores. Microbiol Mol Biol Rev 2024; 88:e0019623. [PMID: 38440970 PMCID: PMC10966950 DOI: 10.1128/mmbr.00196-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
SUMMARYSpores are primary infectious propagules for the majority of human fungal pathogens; however, relatively little is known about their fundamental biology. One strategy to address this deficiency has been to develop the basidiospores of Cryptococcus into a model for pathogenic spore biology. Here, we provide an update on the state of the field with a comprehensive review of the data generated from the study of Cryptococcus basidiospores from their formation (sporulation) and differentiation (germination) to their roles in pathogenesis. Importantly, we provide support for the presence of basidiospores in nature, define the key characteristics that distinguish basidiospores from yeast cells, and clarify their likely roles as infectious particles. This review is intended to demonstrate the importance of basidiospores in the field of Cryptococcus research and provide a solid foundation from which researchers who wish to study sexual spores in any fungal system can launch their studies.
Collapse
Affiliation(s)
- Sébastien C. Ortiz
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Christina M. Hull
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
10
|
Moraes D, Tristão GB, Rappleye CA, Ray SC, Ribeiro-Dias F, Gomes RS, Assunção LDP, Paccez JD, Zancopé-Oliveira RM, Silva-Bailão MG, Soares CMDA, Bailão AM. The influence of a copper efflux pump in Histoplasma capsulatum virulence. FEBS J 2024; 291:744-760. [PMID: 37950580 DOI: 10.1111/febs.16999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 11/12/2023]
Abstract
During the infectious process, pathogenic microorganisms must obtain nutrients from the host in order to survive and proliferate. These nutritional sources include the metallic nutrient copper. Despite its essentiality, copper in large amounts is toxic. Host defense mechanisms use high copper poisoning as a fungicidal strategy to control infection. Transcriptional analyses showed that yeast cultured in the presence of copper or inside macrophages (24 h) had elevated expression of CRP1, a copper efflux pump, suggesting that Histoplasma capsulatum could be exposed to a high copper environment in macrophages during the innate immune stage of infection. Accordingly, macrophages cultured in high copper are more efficient in controlling H. capsulatum growth. Also, silencing of ATP7a, a copper pump that promotes the copper influx in phagosomes, increases fungal survival in macrophages. The rich copper environment faced by the fungus is not dependent on IFN-γ, since fungal CRP1 expression is induced in untreated macrophages. Appropriately, CRP1 knockdown fungal strains are more susceptible to macrophage control than wild-type yeasts. Additionally, CRP1 silencing decreases fungal burden in mice during the phase of innate immune response (4-day postinfection) and CRP1 is required for full virulence in a macrophage cell lines (J774 A.1 and RAW 264.7), as well as primary cells (BMDM). Thus, induction of fungal copper detoxifying genes during innate immunity and the attenuated virulence of CRP1-knockdown yeasts suggest that H. capsulatum is exposed to a copper-rich environment at early infection, but circumvents this condition to establish infection.
Collapse
Affiliation(s)
- Dayane Moraes
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Gabriel Brum Tristão
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Chad A Rappleye
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Stephanie C Ray
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Fátima Ribeiro-Dias
- Laboratório de Imunidade Natural (LIN), Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Rodrigo Saar Gomes
- Laboratório de Imunidade Natural (LIN), Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Leandro do Prado Assunção
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Juliano Domiraci Paccez
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Rosely Maria Zancopé-Oliveira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Mirelle Garcia Silva-Bailão
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
11
|
Meng Y, Ni Y, Li Z, Jiang T, Sun T, Li Y, Gao X, Li H, Suo C, Li C, Yang S, Lan T, Liao G, Liu T, Wang P, Ding C. Interplay between acetylation and ubiquitination of imitation switch chromatin remodeler Isw1 confers multidrug resistance in Cryptococcus neoformans. eLife 2024; 13:e85728. [PMID: 38251723 PMCID: PMC10834027 DOI: 10.7554/elife.85728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/21/2024] [Indexed: 01/23/2024] Open
Abstract
Cryptococcus neoformans poses a threat to human health, but anticryptococcal therapy is hampered by the emergence of drug resistance, whose underlying mechanisms remain poorly understood. Herein, we discovered that Isw1, an imitation switch chromatin remodeling ATPase, functions as a master modulator of genes responsible for in vivo and in vitro multidrug resistance in C. neoformans. Cells with the disrupted ISW1 gene exhibited profound resistance to multiple antifungal drugs. Mass spectrometry analysis revealed that Isw1 is both acetylated and ubiquitinated, suggesting that an interplay between these two modification events exists to govern Isw1 function. Mutagenesis studies of acetylation and ubiquitination sites revealed that the acetylation status of Isw1K97 coordinates with its ubiquitination processes at Isw1K113 and Isw1K441 through modulating the interaction between Isw1 and Cdc4, an E3 ligase. Additionally, clinical isolates of C. neoformans overexpressing the degradation-resistant ISW1K97Q allele showed impaired drug-resistant phenotypes. Collectively, our studies revealed a sophisticated acetylation-Isw1-ubiquitination regulation axis that controls multidrug resistance in C. neoformans.
Collapse
Affiliation(s)
- Yang Meng
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Yue Ni
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Zhuoran Li
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Tianhang Jiang
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Tianshu Sun
- Department of Scientific Research, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yanjian Li
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Xindi Gao
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Hailong Li
- NHC Key Laboratory of AIDS Immunology, The First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Chenhao Suo
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Chao Li
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Sheng Yang
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Tian Lan
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Guojian Liao
- College of Pharmaceutical Sciences, Southwest UniversityChongqingChina
| | - Tongbao Liu
- Medical Research Institute, Southwest UniversityChongqingChina
| | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New OrleansNew OrleansUnited States
| | - Chen Ding
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| |
Collapse
|
12
|
Upadhya R, Probst C, Alspaugh JA, Lodge JK. Measuring Stress Phenotypes in Cryptococcus neoformans. Methods Mol Biol 2024; 2775:277-303. [PMID: 38758325 PMCID: PMC11521573 DOI: 10.1007/978-1-0716-3722-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Cryptococcus neoformans is an opportunistic human fungal pathogen capable of surviving in a wide range of environments and hosts. It has been developed as a model organism to study fungal pathogenesis due to its fully sequenced haploid genome and optimized gene deletion and mutagenesis protocols. These methods have greatly aided in determining the relationship between Cryptococcus genotype and phenotype. Furthermore, the presence of congenic mata and matα strains associated with a defined sexual cycle has helped further understand cryptococcal biology. Several in vitro stress conditions have been optimized to closely mimic the stress that yeast encounter in the environment or within the infected host. These conditions have proven to be extremely useful in elucidating the role of several genes in allowing yeast to adapt and survive in hostile external environments. This chapter describes various in vitro stress conditions that could be used to test the sensitivity of different mutant strains, as well as the protocol for preparing them. We have also included a list of mutants that could be used as a positive control strain when testing the sensitivity of the desired strain to a specific stress.
Collapse
Affiliation(s)
- Rajendra Upadhya
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| | - Corinna Probst
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - J Andrew Alspaugh
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Jennifer K Lodge
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
13
|
Moraes D, Assunção LDP, Silva KLPD, Soares CMDA, Silva-Bailão MG, Bailão AM. High copper promotes cell wall remodeling and oxidative stress in Histoplasma capsulatum, as revealed by proteomics. Fungal Biol 2023; 127:1551-1565. [PMID: 38097329 DOI: 10.1016/j.funbio.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 12/18/2023]
Abstract
Histoplasma experiences nutritional stress during infection as a result of immune cells manipulating essential nutrients, such as metal ions, carbon, nitrogen, and vitamins. Copper (Cu) is an essential metallic micronutrient for living organisms; however, it is toxic in excess. Microbial pathogens must resist copper toxicity to survive. In the case of Histoplasma, virulence is supported by high-affinity copper uptake during late infection, and copper detoxification machinery during early macrophage infection. The objective of this study was to characterize the global molecular adaptation of Histoplasma capsulatum to copper excess using proteomics. Proteomic data revealed that carbohydrate breakdown was repressed, while the lipid degradation pathways were induced. Surprisingly, the production of fatty acids/lipids was also observed, which is likely a result of Cu-mediated damage to lipids. Additionally, the data showed that the fungus increased the exposition of glycan and chitin on the cell surface in high copper. Yeast upregulated antioxidant enzymes to counteract ROS accumulation. The induction of amino acid degradation, fatty acid oxidation, citric acid cycle, and oxidative phosphorylation suggest an increase in aerobic respiration for energy generation. Thus, H. capsulatum's adaptive response to high Cu is putatively composed of metabolic changes to support lipid and cell wall remodeling and fight oxidative stress.
Collapse
Affiliation(s)
- Dayane Moraes
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas (ICB), Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Leandro do Prado Assunção
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas (ICB), Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Kassyo Lobato Potenciano da Silva
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas (ICB), Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas (ICB), Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Mirelle Garcia Silva-Bailão
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas (ICB), Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas (ICB), Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil.
| |
Collapse
|
14
|
Mohamed SH, Fu MS, Hain S, Alselami A, Vanhoffelen E, Li Y, Bojang E, Lukande R, Ballou ER, May RC, Ding C, Velde GV, Drummond RA. Microglia are not protective against cryptococcal meningitis. Nat Commun 2023; 14:7202. [PMID: 37938547 PMCID: PMC10632471 DOI: 10.1038/s41467-023-43061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/30/2023] [Indexed: 11/09/2023] Open
Abstract
Microglia provide protection against a range of brain infections including bacteria, viruses and parasites, but how these glial cells respond to fungal brain infections is poorly understood. We investigated the role of microglia in the context of cryptococcal meningitis, the most common cause of fungal meningitis in humans. Using a series of transgenic- and chemical-based microglia depletion methods we found that, contrary to their protective role during other infections, loss of microglia did not affect control of Cryptococcus neoformans brain infection which was replicated with several fungal strains. At early time points post-infection, we found that microglia depletion lowered fungal brain burdens, which was related to intracellular residence of C. neoformans within microglia. Further examination of extracellular and intracellular fungal populations revealed that C. neoformans residing in microglia were protected from copper starvation, whereas extracellular yeast upregulated copper transporter CTR4. However, the degree of copper starvation did not equate to fungal survival or abundance of metals within different intracellular niches. Taken together, these data show how tissue-resident myeloid cells may influence fungal phenotype in the brain but do not provide protection against this infection, and instead may act as an early infection reservoir.
Collapse
Affiliation(s)
- Sally H Mohamed
- Institute of Immunology & Immunotherapy, University of Birmingham, Birmingham, UK
| | - Man Shun Fu
- Institute of Immunology & Immunotherapy, University of Birmingham, Birmingham, UK
| | - Sofia Hain
- Institute of Immunology & Immunotherapy, University of Birmingham, Birmingham, UK
| | - Alanoud Alselami
- Institute of Immunology & Immunotherapy, University of Birmingham, Birmingham, UK
| | - Eliane Vanhoffelen
- Department of Imaging and Pathology, Biomedical MRI/MoSAIC, KU Leuven, Leuven, Belgium
| | - Yanjian Li
- College of Life and Health Sciences, Northeastern University, Shenyang, 110015, Liaoning, China
| | - Ebrima Bojang
- Institute of Immunology & Immunotherapy, University of Birmingham, Birmingham, UK
| | - Robert Lukande
- Department of Pathology, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Robin C May
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Birmingham, UK
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, 110015, Liaoning, China
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Biomedical MRI/MoSAIC, KU Leuven, Leuven, Belgium
| | - Rebecca A Drummond
- Institute of Immunology & Immunotherapy, University of Birmingham, Birmingham, UK.
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
15
|
Alselami A, Drummond RA. How metals fuel fungal virulence, yet promote anti-fungal immunity. Dis Model Mech 2023; 16:dmm050393. [PMID: 37905492 PMCID: PMC10629672 DOI: 10.1242/dmm.050393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Invasive fungal infections represent a significant global health problem, and present several clinical challenges, including limited treatment options, increasing rates of antifungal drug resistance and compounding comorbidities in affected patients. Metals, such as copper, iron and zinc, are critical for various biological and cellular processes across phyla. In mammals, these metals are important determinants of immune responses, but pathogenic microbes, including fungi, also require access to these metals to fuel their own growth and drive expression of major virulence traits. Therefore, host immune cells have developed strategies to either restrict access to metals to induce starvation of invading pathogens or deploy toxic concentrations within phagosomes to cause metal poisoning. In this Review, we describe the mechanisms regulating fungal scavenging and detoxification of copper, iron and zinc and the importance of these mechanisms for virulence and infection. We also outline how these metals are involved in host immune responses and the consequences of metal deficiencies or overloads on how the host controls invasive fungal infections.
Collapse
Affiliation(s)
- Alanoud Alselami
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rebecca A. Drummond
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
16
|
Stuckey PV, Santiago-Tirado FH. Fungal mechanisms of intracellular survival: what can we learn from bacterial pathogens? Infect Immun 2023; 91:e0043422. [PMID: 37506189 PMCID: PMC10501222 DOI: 10.1128/iai.00434-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Fungal infections represent a major, albeit neglected, public health threat with serious medical and economic burdens globally. With unacceptably high mortality rates, invasive fungal pathogens are responsible for millions of deaths each year, with a steadily increasing incidence primarily in immunocompromised individuals. The poor therapeutic options and rise of antifungal drug resistance pose further challenges in controlling these infections. These fungal pathogens have adapted to survive within mammalian hosts and can establish intracellular niches to promote survival within host immune cells. To do that, they have developed diverse methods to circumvent the innate immune system attack. This includes strategies such as altering their morphology, counteracting macrophage antimicrobial action, and metabolic adaptation. This is reminiscent of how bacterial pathogens have adapted to survive within host cells and cause disease. However, relative to the great deal of information available concerning intracellular bacterial pathogenesis, less is known about the mechanisms fungal pathogens employ. Therefore, here we review our current knowledge and recent advances in our understanding of how fungi can evade and persist within host immune cells. This review will focus on the major fungal pathogens, including Cryptococcus neoformans, Candida albicans, and Aspergillus fumigatus, among others. As we discover and understand the strategies used by these fungi, similarities with their bacterial counterparts are becoming apparent, hence we can use the abundant information from bacteria to guide our studies in fungi. By understanding these strategies, new lines of research will open that can improve the treatments of these devastating fungal diseases.
Collapse
Affiliation(s)
- Peter V. Stuckey
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Felipe H. Santiago-Tirado
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
17
|
Xue P, Hu G, Jung WH, Kronstad JW. Metals and the cell surface of Cryptococcus neoformans. Curr Opin Microbiol 2023; 74:102331. [PMID: 37257400 PMCID: PMC10513164 DOI: 10.1016/j.mib.2023.102331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 06/02/2023]
Abstract
Recent studies in pathogenic yeasts reinforce our appreciation of the influence of metal homeostasis on the fungal cell surface. To illustrate this influence, we focus on recent studies on Cryptococcus neoformans, a fungal pathogen with a complex surface of a cell wall with embedded melanin and an attached polysaccharide capsule. Copper and iron are essential yet toxic metals, and current efforts demonstrate the importance of these metals for modulating the surface structure of C. neoformans cells in ways that contribute to fungal-host interactions during disease in vertebrate hosts. In this review, we briefly summarize mechanisms of acquisition and regulation for copper and iron, and then discuss recent insights into the connections between the metals and the cell surface.
Collapse
Affiliation(s)
- Peng Xue
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Guanggan Hu
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - James W Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
18
|
Moraes D, Rodrigues JGC, Silva MG, Soares LW, Soares CMDA, Bailão AM, Silva-Bailão MG. Copper acquisition and detoxification machineries are conserved in dimorphic fungi. FUNGAL BIOL REV 2023. [DOI: 10.1016/j.fbr.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Cryptococcus neoformans Database in Synthetic Biology Open Language. Microbiol Resour Announc 2022; 11:e0019822. [PMID: 36000855 PMCID: PMC9476951 DOI: 10.1128/mra.00198-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cryptococcus neoformans is the etiologic agent of cryptococcosis, a lethal worldwide disease. Synthetic biology could contribute to its better understanding through engineering genetic networks. However, its major challenge is the requirement of accessible genetic parts. The database presented here provides 23 biological parts for this organism in Synthetic Biology Open Language.
Collapse
|
20
|
Altowyan MS, Khalil SMSM, Al-Wahaib D, Barakat A, Soliman SM, Ali AE, Elbadawy HA. Synthesis of a Novel Unexpected Cu(II)–Thiazolidine Complex—X-ray Structure, Hirshfeld Surface Analysis, and Biological Studies. Molecules 2022; 27:molecules27144583. [PMID: 35889457 PMCID: PMC9319961 DOI: 10.3390/molecules27144583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022] Open
Abstract
An unexpected trinuclear Cu(II)–thiazolidine complex has been synthesized by mixing CuCl2·2H2O with the Schiff base ligand, 1-(((4,5-dihydrothiazol-2-yl)ethylidene)hydrazono)methyl)phenol L, in ethanol. Unexpectedly, the reaction proceeded via the hydrolysis of the Schiff base L, followed by cyclization to afford 3-methyl-5,6-dihydrothiazolo[3,2-c][1,2,3]triazole (La), then complexation with the Cu(II) salt, forming the trinuclear [Cu3(La)4(Cl)6] complex. The complex was characterized by means of FTIR spectra, elemental analysis, and X-ray crystallography. In the trinuclear [Cu3(La)4(Cl)6] complex, there are two crystallographically independent hexa- and penta-coordinated Cu(II) sites, where the thiazolidine ligand La units act as a monodentate ligand and a linker between the Cu(II) centers. The crystal packing of the [Cu3(La)4(Cl)6] complex is primarily affected by the weak non-covalent C-H∙∙∙Cl interactions. In accordance with Hirshfeld surface analysis, the Cl∙∙∙H, H∙∙∙H, S∙∙∙H, and N∙∙∙H percentages are 31.9%, 27.2%, 13.5%, and 9.9%, respectively. X-ray photoelectron spectroscopy confirmed the oxidation state of copper as Cu(II), as well as the presence of two different coordination environments around copper centers. The complex showed interesting antibacterial activity against the Gram-positive bacteria S. subtilis, with MIC = 9.7 µg/mL compared to MIC = 4.8 µg/mL for the control, gentamycin. Moreover, the Cu(II) complex showed an equal MIC (312.5 µg/mL) against C. albicans compared to ketoconazole. It also exhibits a very promising inhibitory activity against colon carcinoma (IC50 = 3.75 ± 0.43 µg/mL).
Collapse
Affiliation(s)
- Mezna Saleh Altowyan
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Samar M. S. M. Khalil
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt; (S.M.S.M.K.); (S.M.S.)
| | - Dhuha Al-Wahaib
- Chemistry Department, Faculty of Science, Kuwait University, Kuwait City 13060, Kuwait;
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Saied M. Soliman
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt; (S.M.S.M.K.); (S.M.S.)
| | - Ali Eldissouky Ali
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt; (S.M.S.M.K.); (S.M.S.)
- Correspondence: (A.E.A.); (H.A.E.)
| | - Hemmat A. Elbadawy
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt; (S.M.S.M.K.); (S.M.S.)
- Correspondence: (A.E.A.); (H.A.E.)
| |
Collapse
|
21
|
Beattie SR, Jezewski AJ, Ristow LC, Wellington M, Krysan DJ. FKS1 Is Required for Cryptococcus neoformans Fitness In Vivo: Application of Copper-Regulated Gene Expression to Mouse Models of Cryptococcosis. mSphere 2022; 7:e0016322. [PMID: 35506343 PMCID: PMC9241531 DOI: 10.1128/msphere.00163-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/15/2022] [Indexed: 11/20/2022] Open
Abstract
There is an urgent need for new antifungals to treat cryptococcal meningoencephalitis, a leading cause of mortality in people living with HIV/AIDS. An important aspect of antifungal drug development is the validation of targets to determine whether they are required for the survival of the organism in animal models of disease. In Cryptococcus neoformans, a copper-regulated promoter (pCTR4-2) has been used previously to modulate gene expression in vivo. The premise for these experiments is that copper concentrations differ depending on the host niche. Here, we directly test this premise and confirm that the expression of CTR4, the promoter used to regulate gene expression, is much lower in the mouse lung compared to the brain. To further explore this approach, we applied it to the gene encoding 1,3-β-glucan synthase, FKS1. In vitro, reduced expression of FKS1 has little effect on growth but does activate the cell wall integrity stress response and increase susceptibility to caspofungin, a direct inhibitor of Fks1. These data suggest that compensatory pathways that reduce C. neoformans resistance do so through posttranscriptional effects. In vivo, however, a less pronounced reduction in FKS1 expression leads to a much more significant reduction in lung fungal burden (~1 log10 CFU), indicating that the compensatory responses to a reduction in FKS1 expression are not as effective in vivo as they are in vitro. In summary, use of copper-regulated expression of putative drug targets in vitro and in vivo can provide insights into the biological consequences of reduced activity of the target during infection. IMPORTANCE Conditional expression systems are widely used to genetically validate antifungal drug targets in mouse models of infection. Copper-regulated expression using the promoter of the CTR4 gene has been sporadically used for this purpose in C. neoformans. Here, we show that CTR4 expression is low in the lung and high in the brain, establishing the basic premise behind this approach. We applied the approach to the study of FKS1, the gene encoding the target of the echinocandin class of 1,3-β-glucan synthase inhibitors. Our in vitro and in vivo studies indicate that C. neoformans tolerates extremely low levels of FKS1 expression. This observation provides a potential explanation for the poor activity of 1,3-β-glucan synthase inhibitors toward C. neoformans.
Collapse
Affiliation(s)
- Sarah R. Beattie
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Andrew J. Jezewski
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Laura C. Ristow
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Melanie Wellington
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Damian J. Krysan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
22
|
Interactions between copper homeostasis and the fungal cell wall affect copper stress resistance. PLoS Pathog 2022; 18:e1010195. [PMID: 35737716 PMCID: PMC9258870 DOI: 10.1371/journal.ppat.1010195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/06/2022] [Accepted: 05/31/2022] [Indexed: 01/09/2023] Open
Abstract
Copper homeostasis mechanisms are essential for microbial adaption to changing copper levels within the host during infection. In the opportunistic fungal pathogen Cryptococcus neoformans (Cn), the Cn Cbi1/Bim1 protein is a newly identified copper binding and release protein that is highly induced during copper limitation. Recent studies demonstrated that Cbi1 functions in copper uptake through the Ctr1 copper transporter during copper limitation. However, the mechanism of Cbi1 action is unknown. The fungal cell wall is a dynamic structure primarily composed of carbohydrate polymers, such as chitin and chitosan, polymers known to strongly bind copper ions. We demonstrated that Cbi1 depletion affects cell wall integrity and architecture, connecting copper homeostasis with adaptive changes within the fungal cell wall. The cbi1Δ mutant strain possesses an aberrant cell wall gene transcriptional signature as well as defects in chitin / chitosan deposition and exposure. Furthermore, using Cn strains defective in chitosan biosynthesis, we demonstrated that cell wall chitosan modulates the ability of the fungal cell to withstand copper stress. Given the previously described role for Cbi1 in copper uptake, we propose that this copper-binding protein could be involved in shuttling copper from the cell wall to the copper transporter Ctr1 for regulated microbial copper uptake.
Collapse
|
23
|
Ženíšková K, Grechnikova M, Sutak R. Copper Metabolism in Naegleria gruberi and Its Deadly Relative Naegleria fowleri. Front Cell Dev Biol 2022; 10:853463. [PMID: 35478954 PMCID: PMC9035749 DOI: 10.3389/fcell.2022.853463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
Although copper is an essential nutrient crucial for many biological processes, an excessive concentration can be toxic and lead to cell death. The metabolism of this two-faced metal must be strictly regulated at the cell level. In this study, we investigated copper homeostasis in two related unicellular organisms: nonpathogenic Naegleria gruberi and the “brain-eating amoeba” Naegleria fowleri. We identified and confirmed the function of their specific copper transporters securing the main pathway of copper acquisition. Adjusting to different environments with varying copper levels during the life cycle of these organisms requires various metabolic adaptations. Using comparative proteomic analyses, measuring oxygen consumption, and enzymatic determination of NADH dehydrogenase, we showed that both amoebas respond to copper deprivation by upregulating the components of the branched electron transport chain: the alternative oxidase and alternative NADH dehydrogenase. Interestingly, analysis of iron acquisition indicated that this system is copper-dependent in N. gruberi but not in its pathogenic relative. Importantly, we identified a potential key protein of copper metabolism of N. gruberi, the homolog of human DJ-1 protein, which is known to be linked to Parkinson’s disease. Altogether, our study reveals the mechanisms underlying copper metabolism in the model amoeba N. gruberi and the fatal pathogen N. fowleri and highlights the differences between the two amoebas.
Collapse
|
24
|
Ke W, Xie Y, Hu Y, Ding H, Fan X, Huang J, Tian X, Zhang B, Xu Y, Liu X, Yang Y, Wang L. A forkhead transcription factor contributes to the regulatory differences of pathogenicity in closely related fungal pathogens. MLIFE 2022; 1:79-91. [PMID: 38818325 PMCID: PMC10989923 DOI: 10.1002/mlf2.12011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/21/2022] [Accepted: 02/10/2022] [Indexed: 06/01/2024]
Abstract
Cryptococcus neoformans and its sister species Cryptococcus deuterogattii are important human fungal pathogens. Despite their phylogenetically close relationship, these two Cryptococcus pathogens are greatly different in their clinical characteristics. However, the determinants underlying the regulatory differences of their pathogenicity remain largely unknown. Here, we show that the forkhead transcription factor Hcm1 promotes infection in C. neoformans but not in C. deuterogattii. Monitoring in vitro and in vivo fitness outcomes of multiple clinical isolates from the two pathogens indicates that Hcm1 mediates pathogenicity in C. neoformans through its key involvement in oxidative stress defense. By comparison, Hcm1 is not critical for antioxidation in C. deuterogattii. Furthermore, we identified SRX1, which encodes the antioxidant sulfiredoxin, as a conserved target of Hcm1 in two Cryptococcus pathogens. Like HCM1, SRX1 had a greater role in antioxidation in C. neoformans than in C. deuterogattii. Significantly, overexpression of SRX1 can largely rescue the defective pathogenicity caused by the absence of Hcm1 in C. neoformans. Conversely, Srx1 is dispensable for virulence in C. deuterogattii. Overall, our findings demonstrate that the difference in the contribution of the antioxidant sulfiredoxin to oxidative stress defense underlies the Hcm1-mediated regulatory differences of pathogenicity in two closely related pathogens.
Collapse
Affiliation(s)
- Weixin Ke
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yuyan Xie
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yue Hu
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Hao Ding
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Xin Fan
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Jingjing Huang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Peking Union Medical College Hospital, Peking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
- Graduate School, Peking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Xiuyun Tian
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Baokun Zhang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease, Department of BiotechnologyBeijing Institute of Radiation MedicineBeijingChina
| | - Yingchun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Peking Union Medical College Hospital, Peking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Xiao Liu
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Ying Yang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease, Department of BiotechnologyBeijing Institute of Radiation MedicineBeijingChina
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
25
|
Li Y, Li H, Sun T, Ding C. Pathogen-Host Interaction Repertoire at Proteome and Posttranslational Modification Levels During Fungal Infections. Front Cell Infect Microbiol 2021; 11:774340. [PMID: 34926320 PMCID: PMC8674643 DOI: 10.3389/fcimb.2021.774340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022] Open
Abstract
Prevalence of fungal diseases has increased globally in recent years, which often associated with increased immunocompromised patients, aging populations, and the novel Coronavirus pandemic. Furthermore, due to the limitation of available antifungal agents mortality and morbidity rates of invasion fungal disease remain stubbornly high, and the emergence of multidrug-resistant fungi exacerbates the problem. Fungal pathogenicity and interactions between fungi and host have been the focus of many studies, as a result, lots of pathogenic mechanisms and fungal virulence factors have been identified. Mass spectrometry (MS)-based proteomics is a novel approach to better understand fungal pathogenicities and host–pathogen interactions at protein and protein posttranslational modification (PTM) levels. The approach has successfully elucidated interactions between pathogens and hosts by examining, for example, samples of fungal cells under different conditions, body fluids from infected patients, and exosomes. Many studies conclude that protein and PTM levels in both pathogens and hosts play important roles in progression of fungal diseases. This review summarizes mass spectrometry studies of protein and PTM levels from perspectives of both pathogens and hosts and provides an integrative conceptual outlook on fungal pathogenesis, antifungal agents development, and host–pathogen interactions.
Collapse
Affiliation(s)
- Yanjian Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Hailong Li
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tianshu Sun
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
26
|
Sun T, Li Y, Li Y, Li H, Gong Y, Wu J, Ning Y, Ding C, Xu Y. Proteomic Analysis of Copper Toxicity in Human Fungal Pathogen Cryptococcus neoformans. Front Cell Infect Microbiol 2021; 11:662404. [PMID: 34485169 PMCID: PMC8415117 DOI: 10.3389/fcimb.2021.662404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/27/2021] [Indexed: 12/26/2022] Open
Abstract
Cryptococcus neoformans is an invasive human fungal pathogen that causes more than 181,000 deaths each year. Studies have demonstrated that pulmonary C. neoformans infection induces innate immune responses involving copper, and copper detoxification in C. neoformans improves its fitness and pathogenicity during pulmonary C. neoformans infection. However, the molecular mechanism by which copper inhibits C. neoformans proliferation is unclear. We used a metallothionein double-knockout C. neoformans mutant that was highly sensitive to copper to demonstrate that exogenous copper ions inhibit fungal cell growth by inducing reactive oxygen species generation. Using liquid chromatography-tandem mass spectrometry, we found that copper down-regulated factors involved in protein translation, but up-regulated proteins involved in ubiquitin-mediated protein degradation. We propose that the down-regulation of protein synthesis and the up-regulation of protein degradation are the main effects of copper toxicity. The ubiquitin modification of total protein and proteasome activity were promoted under copper stress, and inhibition of the proteasome pathway alleviated copper toxicity. Our proteomic analysis sheds new light on the antifungal mechanisms of copper.
Collapse
Affiliation(s)
- Tianshu Sun
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Yanjian Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yingxing Li
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Hailong Li
- National Health Commission Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yiyi Gong
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Jianqiang Wu
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Yating Ning
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China.,Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yingchun Xu
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China.,Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
27
|
Metal-ion promiscuity of microbial enzyme DapE at its second metal-binding site. J Biol Inorg Chem 2021; 26:569-582. [PMID: 34241683 DOI: 10.1007/s00775-021-01875-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/28/2021] [Indexed: 10/20/2022]
Abstract
Metalloenzymes are ubiquitous in nature catalyzing a number of crucial biochemical processes in animal and plant kingdoms. For better adaptation to the relative abundance of different metal ions in different cellular fluids, many of these enzymes exhibit metal promiscuity. The microbial enzyme DapE, an essential enzyme for bacterial growth and survival and a potentially safe target for antibiotics, continues to show enzyme activity when the two zinc ions in its active site are replaced by other transition metal ions. The effect of metal-ion substitution at the second metal-binding site of DapE on its substrate affinity and catalytic efficiency is investigated by QM/MM treatment of the enzyme-substrate complex, by modelling the enzyme with Mn(II), Co(II), Ni(II), or Cu(II) ion in place of Zn(II) at its second metal-binding site, while retaining Zn(II) ion at the first metal-binding site. On the basis of substrate binding energy and activation energy barrier for the chemical catalysis, it is found that Zn-Mn DapE shows poor binding affinity as well as inefficient chemical catalysis. Although Zn-Cu and Zn-Ni DapEs show activation energy barriers comparable to that of wild-type Zn-Zn DapE, their weaker substrate affinity renders these mixed-metal enzymes less efficient. On the other hand, Zn-Co DapE is found to outperform the naturally occurring Zn-Zn DapE, both in terms of substrate affinity and chemical catalysis. The observed metal promiscuity may have played an important role in the survival of bacteria even in those cellular media where Zn ions are in limited supply. Metal nonspecificity in the catalysis of DapE enzyme allows bacteria to thrive in different cellular media.
Collapse
|
28
|
Sun T, Li X, Song W, Yu S, Wang L, Ding C, Xu Y. Metabolomic alterations associated with copper stress in Cryptococcus neoformans. Future Microbiol 2021; 16:305-316. [PMID: 33635120 DOI: 10.2217/fmb-2020-0290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Copper stress is an effective host strategy in resisting the opportunistic pathogenic fungus Cryptococcus neoformans. We studied metabolic changes in C. neoformans under copper stress. Materials & methods: Wild-type and metallothionein-null C. neoformans were treated with copper on agar containing glucose, glycerol or ethanol as the carbon source and their metabolites were analyzed by untarget metabolomics strategy using gas chromatography coupled with time-of-flight mass spectrometry. Results: The metabolic profile of C. neoformans varied in the presence and absence of copper. Pathway enrichment analysis showed that the differentially abundant metabolites were related to amino acid and carbohydrate metabolism. C. neoformans grown on glycerol or ethanol resisted copper toxicity better than C. neoformans grown on glucose. Conclusion: Copper stress alters the metabolic profile of C. neoformans.
Collapse
Affiliation(s)
- Tianshu Sun
- Medical Research Center, State Key Laboratory of Complex Severe & Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Mechanisms Research & Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Xiaogang Li
- Medical Research Center, State Key Laboratory of Complex Severe & Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Mechanisms Research & Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Wei Song
- Medical Research Center, State Key Laboratory of Complex Severe & Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Shuying Yu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe & Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Mechanisms Research & Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chen Ding
- College of Life & Health Sciences, Northeastern University, Shenyang, China
| | - Yingchun Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe & Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Mechanisms Research & Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| |
Collapse
|
29
|
Smith AD, Garcia-Santamarina S, Ralle M, Loiselle DR, Haystead TA, Thiele DJ. Transcription factor-driven alternative localization of Cryptococcus neoformans superoxide dismutase. J Biol Chem 2021; 296:100391. [PMID: 33567338 PMCID: PMC7961099 DOI: 10.1016/j.jbc.2021.100391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/16/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen whose pathogenic lifestyle is linked to its ability to cope with fluctuating levels of copper (Cu), an essential metal involved in multiple virulence mechanisms, within distinct host niches. During lethal cryptococcal meningitis in the brain, C. neoformans senses a Cu-deficient environment and is highly dependent on its ability to scavenge trace levels of Cu from its host and adapt to Cu scarcity to successfully colonize this niche. In this study, we demonstrate for this critical adaptation, the Cu-sensing transcription factor Cuf1 differentially regulates the expression of the SOD1 and SOD2 superoxide dismutases in novel ways. Genetic and transcriptional analysis reveals Cuf1 specifies 5’-truncations of the SOD1 and SOD2 mRNAs through specific binding to Cu responsive elements within their respective promoter regions. This results in Cuf1-dependent repression of the highly abundant SOD1 and simultaneously induces expression of two isoforms of SOD2, the canonical mitochondrial targeted isoform and a novel alternative cytosolic isoform, from a single alternative transcript produced specifically under Cu limitation. The generation of cytosolic Sod2 during Cu limitation is required to maintain cellular antioxidant defense against superoxide stress both in vitro and in vivo. Further, decoupling Cuf1 regulation of Sod2 localization compromises the ability of C. neoformans to colonize organs in murine models of cryptococcosis. Our results provide a link between transcription factor–mediated alteration of protein localization and cell proliferation under stress, which could impact tissue colonization by a fungal pathogen.
Collapse
Affiliation(s)
- Aaron D Smith
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | | | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, USA
| | - David R Loiselle
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Timothy A Haystead
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Dennis J Thiele
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA; Department of Biochemistry, Duke University, Durham, North Carolina, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
30
|
Culbertson EM, Khan AA, Muchenditsi A, Lutsenko S, Sullivan DJ, Petris MJ, Cormack BP, Culotta VC. Changes in mammalian copper homeostasis during microbial infection. Metallomics 2021; 12:416-426. [PMID: 31976503 DOI: 10.1039/c9mt00294d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Animals carefully control homeostasis of Cu, a metal that is both potentially toxic and an essential nutrient. During infection, various shifts in Cu homeostasis can ensue. In mice infected with Candida albicans, serum Cu progressively rises and at late stages of infection, liver Cu rises, while kidney Cu declines. The basis for these changes in Cu homeostasis was poorly understood. We report here that the progressive rise in serum Cu is attributable to liver production of the multicopper oxidase ceruloplasmin (Cp). Through studies using Cp-/- mice, we find this elevated Cp helps recover serum Fe levels at late stages of infection, consistent with a role for Cp in loading transferrin with Fe. Cp also accounts for the elevation in liver Cu seen during infection, but not for the fluctuations in kidney Cu. The Cu exporting ATPase ATP7B is one candidate for kidney Cu control, but we find no change in the pattern of kidney Cu loss during infection of Atp7b-/- mice, implying alternative mechanisms. To test whether fungal infiltration of kidney tissue was required for kidney Cu loss, we explored other paradigms of infection. Infection with the intravascular malaria parasite Plasmodium berghei caused a rise in serum Cu and decrease in kidney Cu similar to that seen with C. albicans. Thus, dynamics in kidney Cu homeostasis appear to be a common feature among vastly different infection paradigms. The implications for such Cu homeostasis control in immunity are discussed.
Collapse
Affiliation(s)
- Edward M Culbertson
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Aslam A Khan
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Abigael Muchenditsi
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Svetlana Lutsenko
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David J Sullivan
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Michael J Petris
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Brendan P Cormack
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valeria C Culotta
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
31
|
Islam MT, Quispe C, Martorell M, Docea AO, Salehi B, Calina D, Reiner Ž, Sharifi-Rad J. Dietary supplements, vitamins and minerals as potential interventions against viruses: Perspectives for COVID-19. INT J VITAM NUTR RES 2021; 92:49-66. [DOI: 10.1024/0300-9831/a000694] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract. The novel coronavirus (SARS-CoV-2) causing COVID-19 disease pandemic has infected millions of people and caused more than thousands of deaths in many countries across the world. The number of infected cases is increasing day by day. Unfortunately, we do not have a vaccine and specific treatment for it. Along with the protective measures, respiratory and/or circulatory supports and some antiviral and retroviral drugs have been used against SARS-CoV-2, but there are no more extensive studies proving their efficacy. In this study, the latest publications in the field have been reviewed, focusing on the modulatory effects on the immunity of some natural antiviral dietary supplements, vitamins and minerals. Findings suggest that several dietary supplements, including black seeds, garlic, ginger, cranberry, orange, omega-3 and -6 polyunsaturated fatty acids, vitamins (e.g., A, B vitamins, C, D, E), and minerals (e.g., Cu, Fe, Mg, Mn, Na, Se, Zn) have anti-viral effects. Many of them act against various species of respiratory viruses, including severe acute respiratory syndrome-related coronaviruses. Therefore, dietary supplements, including vitamins and minerals, probiotics as well as individual nutritional behaviour can be used as adjuvant therapy together with antiviral medicines in the management of COVID-19 disease.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico (UDT), Concepción, Chile
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Romania
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Romania
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Croatia
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| |
Collapse
|
32
|
Culbertson EM, Culotta VC. Copper in infectious disease: Using both sides of the penny. Semin Cell Dev Biol 2021; 115:19-26. [PMID: 33423931 DOI: 10.1016/j.semcdb.2020.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/28/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022]
Abstract
The transition metal Cu is an essential micronutrient that serves as a co-factor for numerous enzymes involved in redox and oxygen chemistry. However, Cu is also a potentially toxic metal, especially to unicellular microbes that are in direct contact with their environment. Since 400 BCE, Cu toxicity has been leveraged for its antimicrobial properties and even today, Cu based materials are being explored as effective antimicrobials against human pathogens spanning bacteria, fungi, and viruses, including the SARS-CoV-2 agent of the 2019-2020 pandemic. Given that Cu has the double-edged property of being both highly toxic and an essential micronutrient, it plays an active and complicated role at the host-pathogen interface. Humans have evolved methods of incorporating Cu into innate and adaptive immune processes and both sides of the penny (Cu toxicity and Cu as a nutrient) are employed. Here we review the evolution of Cu in biology and its multi-faceted roles in infectious disease, from the viewpoints of the microbial pathogens as well as the animal hosts they infect.
Collapse
Affiliation(s)
- Edward M Culbertson
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Valeria C Culotta
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
33
|
Gou DH, Huang TT, Li W, Gao XD, Haikal C, Wang XH, Song DY, Liang X, Zhu L, Tang Y, Ding C, Li JY. Inhibition of copper transporter 1 prevents α-synuclein pathology and alleviates nigrostriatal degeneration in AAV-based mouse model of Parkinson's disease. Redox Biol 2020; 38:101795. [PMID: 33232911 PMCID: PMC7691620 DOI: 10.1016/j.redox.2020.101795] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
The formation of α-synuclein aggregates is a major pathological hallmark of Parkinson's disease. Copper promotes α-synuclein aggregation and toxicity in vitro. The level of copper and copper transporter 1, which is the only known high-affinity copper importer in the brain, decreases in the substantia nigra of Parkinson's disease patients. However, the relationship between copper, copper transporter 1 and α-synuclein pathology remains elusive. Here, we aim to decipher the molecular mechanisms of copper and copper transporter 1 underlying Parkinson's disease pathology. We employed yeast and mammalian cell models expressing human α-synuclein, where exogenous copper accelerated intracellular α-synuclein inclusions and silencing copper transporter 1 reduced α-synuclein aggregates in vitro, suggesting that copper transporter 1 might inhibit α-synuclein pathology. To study our hypothesis in vivo, we generated a new transgenic mouse model with copper transporter 1 conditional knocked-out specifically in dopaminergic neuron. Meanwhile, we unilaterally injected adeno-associated viral human-α-synuclein into the substantia nigra of these mice. Importantly, we found that copper transporter 1 deficiency significantly reduced S129-phosphorylation of α-synuclein, prevented dopaminergic neuronal loss, and alleviated motor dysfunction caused by α-synuclein overexpression in vivo. Overall, our data indicated that inhibition of copper transporter 1 alleviated α-synuclein mediated pathologies and provided a novel therapeutic strategy for Parkinson's disease and other synucleinopathies. Ctr1 deficiency reduces α-synuclein aggregates in vitro. Ctr1 deficiency inhibits the level of pathological α-synuclein in vivo. Ctr1 deficiency prevents nigrostriatal neurodegeneration in vivo. Ctr1 deficiency alleviates motor dysfunction caused by α-synuclein in vivo.
Collapse
Affiliation(s)
- De-Hai Gou
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Ting-Ting Huang
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Wen Li
- Institute of Health Sciences, China Medical University, Shenyang, 110122, China; Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 22184, Lund, Sweden
| | - Xin-Di Gao
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Caroline Haikal
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 22184, Lund, Sweden
| | - Xin-He Wang
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Dong-Yan Song
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Xin Liang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Lin Zhu
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Chen Ding
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China.
| | - Jia-Yi Li
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China; Institute of Health Sciences, China Medical University, Shenyang, 110122, China; Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 22184, Lund, Sweden.
| |
Collapse
|
34
|
Stanford FA, Voigt K. Iron Assimilation during Emerging Infections Caused by Opportunistic Fungi with emphasis on Mucorales and the Development of Antifungal Resistance. Genes (Basel) 2020; 11:genes11111296. [PMID: 33143139 PMCID: PMC7693903 DOI: 10.3390/genes11111296] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Iron is a key transition metal required by most microorganisms and is prominently utilised in the transfer of electrons during metabolic reactions. The acquisition of iron is essential and becomes a crucial pathogenic event for opportunistic fungi. Iron is not readily available in the natural environment as it exists in its insoluble ferric form, i.e., in oxides and hydroxides. During infection, the host iron is bound to proteins such as transferrin, ferritin, and haemoglobin. As such, access to iron is one of the major hurdles that fungal pathogens must overcome in an immunocompromised host. Thus, these opportunistic fungi utilise three major iron acquisition systems to overcome this limiting factor for growth and proliferation. To date, numerous iron acquisition pathways have been fully characterised, with key components of these systems having major roles in virulence. Most recently, proteins involved in these pathways have been linked to the development of antifungal resistance. Here, we provide a detailed review of our current knowledge of iron acquisition in opportunistic fungi, and the role iron may have on the development of resistance to antifungals with emphasis on species of the fungal basal lineage order Mucorales, the causative agents of mucormycosis.
Collapse
Affiliation(s)
- Felicia Adelina Stanford
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research, and Infection Biology–Hans Knöll Institute, Jena, Adolf-Reichwein-Straße 23, 07745 Jena, Germany;
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller University Jena, Neugasse 25, 07743 Jena, Germany
| | - Kerstin Voigt
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research, and Infection Biology–Hans Knöll Institute, Jena, Adolf-Reichwein-Straße 23, 07745 Jena, Germany;
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller University Jena, Neugasse 25, 07743 Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena Microbial Resource Collection Adolf-Reichwein-Straße 23, 07745 Jena, Germany
- Correspondence: ; Tel.: +49-3641-532-1395; Fax: +49-3641-532-2395
| |
Collapse
|
35
|
Verma DK, Peruzza L, Trusch F, Yadav MK, Ravindra, Shubin SV, Morgan KL, Mohindra V, Hauton C, van West P, Pradhan PK, Sood N. Transcriptome analysis reveals immune pathways underlying resistance in the common carp Cyprinus carpio against the oomycete Aphanomyces invadans. Genomics 2020; 113:944-956. [PMID: 33127583 DOI: 10.1016/j.ygeno.2020.10.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/30/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022]
Abstract
Infection with Aphanomyces invadans is a serious fish disease with major global impacts. Despite affecting over 160 fish species, some of the species like the common carp Cyprinus carpio are resistant to A. invadans infection. In the present study, we investigated the transcriptomes of head kidney of common carp experimentally infected with A. invadans. In time course analysis, 5288 genes were found to be differentially expressed (DEGs), of which 731 were involved in 21 immune pathways. The analysis of immune-related DEGs suggested that efficient processing and presentation of A. invadans antigens, enhanced phagocytosis, recognition of pathogen-associated molecular patterns, and increased recruitment of leukocytes to the sites of infection contribute to resistance of common carp against A. invadans. Herein, we provide a systematic understanding of the disease resistance mechanisms in common carp at molecular level as a valuable resource for developing disease management strategies for this devastating fish-pathogenic oomycete.
Collapse
Affiliation(s)
- Dev Kumar Verma
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226 002, Uttar Pradesh, India
| | - Luca Peruzza
- School of Ocean and Earth Science, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, United Kingdom; Present address: Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Franziska Trusch
- International Centre for Aquaculture Research and Development, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, United Kingdom; Present address: University of Dundee, School of Life Sciences, Department of Plant Sciences (@ James Hutton Institute), Invergowrie, Dundee DD2 5DA, Scotland, United Kingdom
| | - Manoj Kumar Yadav
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226 002, Uttar Pradesh, India
| | - Ravindra
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226 002, Uttar Pradesh, India
| | - Sergei V Shubin
- College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom
| | - Kenton L Morgan
- The Institute of Veterinary Science, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, Liverpool, United Kingdom
| | - Vindhya Mohindra
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226 002, Uttar Pradesh, India
| | - Chris Hauton
- School of Ocean and Earth Science, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, United Kingdom
| | - Pieter van West
- International Centre for Aquaculture Research and Development, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | - P K Pradhan
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226 002, Uttar Pradesh, India
| | - Neeraj Sood
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226 002, Uttar Pradesh, India.
| |
Collapse
|
36
|
Petito G, de Curcio JS, Pereira M, Bailão AM, Paccez JD, Tristão GB, de Morais COB, de Souza MV, de Castro Moreira Santos A, Fontes W, Ricart CAO, de Almeida Soares CM. Metabolic Adaptation of Paracoccidioides brasiliensis in Response to in vitro Copper Deprivation. Front Microbiol 2020; 11:1834. [PMID: 32849434 PMCID: PMC7430155 DOI: 10.3389/fmicb.2020.01834] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Copper is an essential micronutrient for the performance of important biochemical processes such as respiration detoxification, and uptake of metals like iron. Studies have shown that copper deprivation is a strategy used by the host against pathogenic fungi such as Cryptoccocus neoformans and Candida albicans during growth and development of infections in the lungs and kidneys. Although there are some studies, little is known about the impact of copper deprivation in members of the Paracoccidioides genus. Therefore, using isobaric tag labeling (iTRAQ)-Based proteomic approach and LC-MS/MS, we analyzed the impact of in vitro copper deprivation in the metabolism of Paracoccidioides brasiliensis. One hundred and sixty-four (164) differentially abundant proteins were identified when yeast cells were deprived of copper, which affected cellular respiration and detoxification processes. Changes in cellular metabolism such as increased beta oxidation and cell wall remodeling were described.
Collapse
Affiliation(s)
- Guilherme Petito
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Federal de Goiás, Goiânia, Brazil
| | - Juliana Santana de Curcio
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Juliano Domiraci Paccez
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Gabriel Brum Tristão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Marcelo Valle de Souza
- Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, Brazil
| | | | - Wagner Fontes
- Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, Brazil
| | | | | |
Collapse
|
37
|
Khemiri I, Tebbji F, Sellam A. Transcriptome Analysis Uncovers a Link Between Copper Metabolism, and Both Fungal Fitness and Antifungal Sensitivity in the Opportunistic Yeast Candida albicans. Front Microbiol 2020; 11:935. [PMID: 32508775 PMCID: PMC7248230 DOI: 10.3389/fmicb.2020.00935] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022] Open
Abstract
Copper homeostasis is an important determinant for virulence of many human pathogenic fungi such as the highly prevalent yeast Candida albicans. However, beyond the copper transporter Ctr1, little is known regarding other genes and biological processes that are affected by copper. To gain insight into the cellular processes that are modulated by copper abundance in C. albicans, we monitored the global gene expression dynamic under both copper depletion and excess using RNA-seq. Beyond copper metabolism, other different transcriptional programs related to fungal fitness such as stress responses, antifungal sensitivity, host invasion and commensalism were modulated in response to copper variations. We have also investigated the transcriptome of the mutant of the copper utilization regulator, mac1, and identified potential direct targets of this transcription factor under copper starvation. We also showed that Mac1 was required for the invasion and adhesion to host cells and antifungal tolerance. This study provides a framework for future studies to examine the link between copper metabolism and essential functions that modulate fungal virulence and fitness inside the host.
Collapse
Affiliation(s)
- Inès Khemiri
- CHU de Québec Research Center, Université Laval, Quebec City, QC, Canada
| | - Faiza Tebbji
- CHU de Québec Research Center, Université Laval, Quebec City, QC, Canada
| | - Adnane Sellam
- CHU de Québec Research Center, Université Laval, Quebec City, QC, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
38
|
Li H, Li Y, Sun T, Du W, Zhang Z, Li D, Ding C. Integrative Proteome and Acetylome Analyses of Murine Responses to Cryptococcus neoformans Infection. Front Microbiol 2020; 11:575. [PMID: 32362878 PMCID: PMC7181412 DOI: 10.3389/fmicb.2020.00575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/16/2020] [Indexed: 01/09/2023] Open
Abstract
Cryptococcus neoformans is a causative agent for pulmonary infection and meningoencephalitis. Understanding the host’s response to C. neoformans infection is critical for developing effective treatment. Even though some have elucidated the host response at the transcriptome level, little is known about how it modulates its defense machinery through the proteome mechanism or how protein posttranslational modification responds to the infection. In this work, we employed a murine infection model and mass spectrometry to systematically determine the proteome and acetylome statuses of lungs and brains in the early stage of infection. To extensively analyze the host response, we integrated the proteome data to the transcriptome results. Critical genes, including genes involved in phagosome, lysosome, and platelet activation are significantly altered in protein and gene expression during infection. In the acetylome analysis, we demonstrated that lung and brain tissues differentially regulate protein acetylation during infection. The three primary groups of proteins altered in acetylation status are histones, proteins involved in glucose and fatty acid metabolism, and proteins from the immune system. These analyses provide an integrative regulation network of the host responding to C. neoformans and shed new light on understanding the host’s regulation mechanism when responding to C. neoformans.
Collapse
Affiliation(s)
- Hailong Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yanjian Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Tianshu Sun
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China.,Central Research Laboratory, Department of Scientific Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Du
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zhijie Zhang
- Clinical Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dancheng Li
- Software College, Northeastern University, Shenyang, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, China.,Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Shenyang, China
| |
Collapse
|
39
|
Zhang Y, Zhang Y, Yu D, Peng Y, Min H, Lai Z. Copper Ions are Required for Cochliobolus heterostrophus in Appressorium Formation and Virulence on Maize. PHYTOPATHOLOGY 2020; 110:494-504. [PMID: 31464158 DOI: 10.1094/phyto-07-19-0254-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cochliobolus heterostrophus is the causal agent of southern corn leaf blight, a destructive disease on maize worldwide. However, how it regulates virulence on maize is still largely unknown. Here, we report that two copper transporter genes, ChCTR1 and ChCTR4, are required for its virulence. chctr1 and chctr4 mutants showed attenuated virulence on maize compared with the wild-type strain TM17 but development phenotypes of those mutants on media with or without infection-related stress agents were the same as the wild-type strain. Moreover, ChCTR1 and ChCTR4 play critical roles in appressorium formation and mutation of ChCTR1 or ChCTR4 suppresses the appressorium formation. Furthermore, copper-chelating agent ammonium tetrathiomolybdate suppressed the appressorium formation and virulence of C. heterostrophus on maize, whereas copper ions enhanced the appressorium formation and virulence on maize. The results indicate that copper ions are required for appressorium formation and virulence of C. heterostrophus on maize and are acquired from the environment by two copper transporters: ChCTR1 and ChCTR4.
Collapse
Affiliation(s)
- Yu Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yan Zhang
- Ecology College, Lishui University, Lishui, China
| | - Dandan Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yujiao Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Haoxuan Min
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhibing Lai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
40
|
Esposito R, Vllahu M, Morello S, Baldantoni D, Bellino A, Petrella A, Eletto D, Porta A, Tosco A. Low copper availability limits Helicobacter infection in mice. FEBS J 2019; 287:2948-2960. [PMID: 31863621 DOI: 10.1111/febs.15188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/06/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022]
Abstract
Copper is an essential element for all living organisms; however, it becomes toxic at high concentrations due to its ability to participate in many redox reactions. This vital micronutrient balance plays an important role in the battle between host and pathogen, due to its use by the host to intoxicate pathogens. In this study, we explore the effects of copper deprivation on Helicobacter infection in mice using the copper chelator tetrathiomolybdate. Our results reveal that Helicobacter infection significantly reduces copper concentration in mice stomachs without affecting its circulating levels. Moreover, in copper-deprived mice, bacteria hardly colonize the epithelium and mice show less gastric damage in comparison with the infected ones. However, when the copper chelator is administered after infection, the condition of the mouse stomachs declines. This could be explained by the lower copper availability in tetrathiomolybdate-treated mice, which would reduce macrophages' action against the pathogen. In this scenario, we observe that the protective factor trefoil factor 1 is induced upon copper-deprived conditions, probably contributing to the inefficacy of infection, whereas, when the chelator is administered after infection, the gene is already silenced by bacteria and cannot be restored. In conclusion, our data suggest that Helicobacter takes advantage of gastric copper reducing its availability for the host and that copper levels have an impact on the outcome of infection.
Collapse
Affiliation(s)
| | - Megi Vllahu
- Department of Pharmacy, University of Salerno, Fisciano, Italy.,PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, Italy
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Daniela Baldantoni
- Department of Chemistry and Biology, University of Salerno, Fisciano, Italy
| | - Alessandro Bellino
- Department of Chemistry and Biology, University of Salerno, Fisciano, Italy
| | | | - Daniela Eletto
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Amalia Porta
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | | |
Collapse
|
41
|
Unveil the transcriptional landscape at the Cryptococcus-host axis in mice and nonhuman primates. PLoS Negl Trop Dis 2019; 13:e0007566. [PMID: 31329596 PMCID: PMC6675133 DOI: 10.1371/journal.pntd.0007566] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/01/2019] [Accepted: 06/20/2019] [Indexed: 12/17/2022] Open
Abstract
Pathogens and hosts require rapid modulation of virulence and defense mechanisms at the infection axis, but monitoring such modulations is challenging. In studying the human fungal pathogen Cryptococcus neoformans, mouse and rabbit infection models are often employed to shed light on the disease mechanisms but that may not be clinically relevant. In this study, we developed an animal infection model using the non-human primate cynomolgus monkey Macaca fascicularis. In addition, we systematically profiled and compared transcriptional responses between the infected mice and the cynomolgus monkey, using simultaneous or dual RNA next-generation sequencing. We demonstrated that there are shared but distinct transcriptional profiles between the two models following C. neoformans infection. Specifically, genes involved in immune and inflammatory responses are all upregulated. Osteoclastogenesis and insulin signaling are also significantly co-regulated in both models and disrupting an osteoclastogenesis-associated gene (OC-STAMP) or the insulin-signaling process significantly altered the host tolerance to C. neoformans. Moreover, C. neoformans was shown to activate metal sequestration, dampen the sugar metabolism, and control cell morphology during infection. Taking together, we described the development of a non-human primate model of cryptococcosis that allowed us to perform an in-depth analysis and comparison of transcriptome profiles during infections of two animal models and conceptually identify host genes important in disease responses. This study provides new insights in understanding fungal pathogenesis mechanisms that potentially facilitate the identification of novel drug targets for the treatment of cryptococcal infection. The host-pathogen interaction is highly dynamic and tightly regulated, and yet is difficult to monitor. Traditional investigations provide valuable information for the understanding of pathogenic microbial biology but are time-consuming and often neglect the host immune responses. In addition, current animal models for studying pathogenic fungi are limited in mimicking the responses from humans. The development of a new Cryptococcus neoformans infection model using nonhuman primates and the utilization of simultaneous RNA sequencing analysis provide fast and clinically relevant research data allowing the identification of novel critical players from both the invading fungus and the host. The data from the current study would not only help to decipher disease mechanisms but also promote the discovery of novel antifungal drug targets.
Collapse
|
42
|
Do E, Park S, Li MH, Wang JM, Ding C, Kronstad JW, Jung WH. The mitochondrial ABC transporter Atm1 plays a role in iron metabolism and virulence in the human fungal pathogen Cryptococcus neoformans. Med Mycol 2019; 56:458-468. [PMID: 29420779 DOI: 10.1093/mmy/myx073] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/17/2017] [Indexed: 12/19/2022] Open
Abstract
Iron-sulfur clusters (ISC) are indispensable cofactors for essential enzymes in various cellular processes. In the model yeast Saccharomyces cerevisiae, the precursor of ISCs is exported from mitochondria via a mitochondrial ABC transporter Atm1 and used for cytosolic and nuclear ISC protein assembly. Although iron homeostasis has been implicated in the virulence of the human fungal pathogen Cryptococcus neoformans, the key components of the ISC biosynthesis pathway need to be fully elucidated. In the current study, a homolog of S. cerevisiae Atm1 was identified in C. neoformans, and its function was characterized. We constructed C. neoformans mutants lacking ATM1 and found that deletion of ATM1 affected mitochondrial functions. Furthermore, we observed diminished activity of the cytosolic ISC-containing protein Leu1 and the heme-containing protein catalase in the atm1 mutant. These results suggested that Atm1 is required for the biosynthesis of ISCs in the cytoplasm as well as heme metabolism in C. neoformans. In addition, the atm1 mutants were avirulent in a murine model of cryptococcosis. Overall, our results demonstrated that Atm1 plays a critical role in iron metabolism and virulence for C. neoformans.
Collapse
Affiliation(s)
- Eunsoo Do
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Korea
| | - Seho Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Korea
| | - Ming-Hui Li
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110015, China
| | - Jia-Mei Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110015, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110015, China
| | - James W Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
43
|
Li Y, Li H, Sui M, Li M, Wang J, Meng Y, Sun T, Liang Q, Suo C, Gao X, Li C, Li Z, Du W, Zhang B, Sai S, Zhang Z, Ye J, Wang H, Yue S, Li J, Zhong M, Chen C, Qi S, Lu L, Li D, Ding C. Fungal acetylome comparative analysis identifies an essential role of acetylation in human fungal pathogen virulence. Commun Biol 2019; 2:154. [PMID: 31069264 PMCID: PMC6494858 DOI: 10.1038/s42003-019-0419-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/08/2019] [Indexed: 11/09/2022] Open
Abstract
Lysine acetylation is critical in regulating important biological processes in many organisms, yet little is known about acetylome evolution and its contribution to phenotypic diversity. Here, we compare the acetylomes of baker's yeast and the three deadliest human fungal pathogens, Cryptococcus neoformans, Candida albicans, and Aspergillus fumigatus. Using mass spectrometry enriched for acetylated peptides together with public data from Saccharomyces cerevisiae, we show that fungal acetylomes are characterized by dramatic evolutionary dynamics and limited conservation in core biological processes. Notably, the levels of protein acetylation in pathogenic fungi correlate with their pathogenicity. Using gene knockouts and pathogenicity assays in mice, we identify deacetylases with critical roles in virulence and protein translation elongation. Finally, through mutational analysis of deactylation motifs we find evidence of positive selection at specific acetylation motifs in fungal pathogens. These results shed new light on the pathogenicity regulation mechanisms underlying the evolution of fungal acetylomes.
Collapse
Affiliation(s)
- Yanjian Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Hailong Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Mingfei Sui
- Software College, Northeastern University, Shenyang, China
| | - Minghui Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Jiamei Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yang Meng
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Tianshu Sun
- Department of Scientific Research, Central Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Qiaojing Liang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Chenhao Suo
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xindi Gao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Chao Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zhuoran Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Wei Du
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Baihua Zhang
- SINO-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang, China
| | - Sixiang Sai
- School of Medicine, Binzhou Medical University, Yantai, China
| | | | - Jing Ye
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Hongchen Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shang Yue
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jiayi Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Manli Zhong
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Changbin Chen
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Science, Shanghai, China
| | - Shouliang Qi
- SINO-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Dancheng Li
- Software College, Northeastern University, Shenyang, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Shenyang, China
| |
Collapse
|
44
|
Copper Utilization, Regulation, and Acquisition by Aspergillus fumigatus. Int J Mol Sci 2019; 20:ijms20081980. [PMID: 31018527 PMCID: PMC6514546 DOI: 10.3390/ijms20081980] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023] Open
Abstract
Copper is an essential micronutrient for the opportunistic human pathogen, Aspergillus fumigatus. Maintaining copper homeostasis is critical for survival and pathogenesis. Copper-responsive transcription factors, AceA and MacA, coordinate a complex network responsible for responding to copper in the environment and determining which response is necessary to maintain homeostasis. For example, A. fumigatus uses copper exporters to mitigate the toxic effects of copper while simultaneously encoding copper importers and small molecules to ensure proper supply of the metal for copper-dependent processes such a nitrogen acquisition and respiration. Small molecules called isocyanides recently found to be produced by A. fumigatus may bind copper and partake in copper homeostasis similarly to isocyanide copper chelators in bacteria. Considering that the host uses copper as a microbial toxin and copper availability fluctuates in various environmental niches, understanding how A. fumigatus maintains copper homeostasis will give insights into mechanisms that facilitate the development of invasive aspergillosis and its survival in nature.
Collapse
|
45
|
The Role of Copper Homeostasis at the Host-Pathogen Axis: From Bacteria to Fungi. Int J Mol Sci 2019; 20:ijms20010175. [PMID: 30621285 PMCID: PMC6337107 DOI: 10.3390/ijms20010175] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/28/2018] [Accepted: 12/29/2018] [Indexed: 02/01/2023] Open
Abstract
Copper is an essential trace element participating in many vital biological processes, however it becomes a toxic agent when in excess. Thus, precise and tight regulation of copper homeostasis processes, including transport, delivery, storage, detoxification, and efflux machineries, is important, ensuring that only the amount needed to sustain basic biological functions and simultaneously prevent copper toxicity in the cell is maintained. Numerous exciting studies have revealed that copper plays an indispensable role at the microbial pathogen-host axis for entities ranging from pathogenic bacteria to deadly fungal species. Analyses of copper homeostases in bacteria and fungi extensively demonstrate that copper is utilized by the host immune system as an anti-microbial agent. The expression of copper efflux and detoxification from microbial pathogens is induced to counteract the host's copper bombardment, which in turn disrupts these machineries, resulting in the attenuation of microbial survival in host tissue. We hereby review the latest work in copper homeostases in pathogenic bacteria and fungi and focus on the maintenance of a copper balance at the pathogen-host interaction axis.
Collapse
|
46
|
Shen Q, Beucler MJ, Ray SC, Rappleye CA. Macrophage activation by IFN-γ triggers restriction of phagosomal copper from intracellular pathogens. PLoS Pathog 2018; 14:e1007444. [PMID: 30452484 PMCID: PMC6277122 DOI: 10.1371/journal.ppat.1007444] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/03/2018] [Accepted: 10/30/2018] [Indexed: 11/19/2022] Open
Abstract
Copper toxicity and copper limitation can both be effective host defense mechanisms against pathogens. Tolerance of high copper by fungi makes toxicity as a defense mechanism largely ineffective against fungal pathogens. A forward genetic screen for Histoplasma capsulatum mutant yeasts unable to replicate within macrophages showed the Ctr3 copper transporter is required for intramacrophage proliferation. Ctr3 mediates copper uptake and is required for growth in low copper. Transcription of the CTR3 gene is induced by differentiation of H. capsulatum into pathogenic yeasts and by low available copper, but not decreased iron. Low expression of a CTR3 transcriptional reporter by intracellular yeasts implies that phagosomes of non-activated macrophages have moderate copper levels. This is further supported by the replication of Ctr3-deficient yeasts within the phagosome of non-activated macrophages. However, IFN-γ activation of phagocytes causes restriction of phagosomal copper as shown by upregulation of the CTR3 transcriptional reporter and by the failure of Ctr3-deficient yeasts, but not Ctr3 expressing yeasts, to proliferate within these macrophages. Accordingly, in a respiratory model of histoplasmosis, Ctr3-deficient yeasts are fully virulent during phases of the innate immune response but are attenuated after the onset of adaptive immunity. Thus, while technical limitations prevent direct measurement of phagosomal copper concentrations and copper-independent factors can influence gene expression, both the CTR3 promoter induction and the attenuation of Ctr3-deficient yeasts indicate activation of macrophages switches the phagosome from a copper-replete to a copper-depleted environment, forcing H. capsulatum reliance on Ctr3 for copper acquisition. Control of primary pathogens that infect phagocytes often requires adaptive immunity, but the mechanisms that convert host cells from permissive to antimicrobial states are only partially understood. The intracellular fungal pathogen Histoplasma capsulatum resides and proliferates within the macrophage phagosome. During innate immunity, macrophages which normally control fungi prove ineffective against H. capsulatum yeasts. At this stage, the phagosome of unactivated macrophages has ample copper that facilitates intracellular growth of Histoplasma but does not cause copper toxicity. However, the onset of adaptive immunity and the subsequent activation of macrophages decreases phagosomal copper and macrophages become less permissive to Histoplasma proliferation. IFN-γ acts as a key cytokine for switching the macrophage strategy by changing phagosomes from a copper-sufficient to a copper-depleted state in order to control intracellular pathogens. In such activated macrophages, H. capsulatum yeasts upregulate expression of the Ctr3 copper transporter to enable continued acquisition of essential copper.
Collapse
Affiliation(s)
- Qian Shen
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
| | - Matthew J. Beucler
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
| | - Stephanie C. Ray
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
| | - Chad A. Rappleye
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
- * E-mail:
| |
Collapse
|
47
|
Kardos J, Héja L, Simon Á, Jablonkai I, Kovács R, Jemnitz K. Copper signalling: causes and consequences. Cell Commun Signal 2018; 16:71. [PMID: 30348177 PMCID: PMC6198518 DOI: 10.1186/s12964-018-0277-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022] Open
Abstract
Copper-containing enzymes perform fundamental functions by activating dioxygen (O2) and therefore allowing chemical energy-transfer for aerobic metabolism. The copper-dependence of O2 transport, metabolism and production of signalling molecules are supported by molecular systems that regulate and preserve tightly-bound static and weakly-bound dynamic cellular copper pools. Disruption of the reducing intracellular environment, characterized by glutathione shortage and ambient Cu(II) abundance drives oxidative stress and interferes with the bidirectional, copper-dependent communication between neurons and astrocytes, eventually leading to various brain disease forms. A deeper understanding of of the regulatory effects of copper on neuro-glia coupling via polyamine metabolism may reveal novel copper signalling functions and new directions for therapeutic intervention in brain disorders associated with aberrant copper metabolism.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - Ágnes Simon
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - István Jablonkai
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - Richard Kovács
- Institute of Neurophysiology, Charité-Universitätsmedizin, Berlin, Germany
| | - Katalin Jemnitz
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| |
Collapse
|
48
|
Logeman BL, Thiele DJ. Reconstitution of a thermophilic Cu + importer in vitro reveals intrinsic high-affinity slow transport driving accumulation of an essential metal ion. J Biol Chem 2018; 293:15497-15512. [PMID: 30131336 PMCID: PMC6177576 DOI: 10.1074/jbc.ra118.004802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/09/2018] [Indexed: 01/01/2023] Open
Abstract
Acquisition of the trace element copper (Cu) is critical to drive essential eukaryotic processes such as oxidative phosphorylation, iron mobilization, peptide hormone biogenesis, and connective tissue maturation. The Ctr1/Ctr3 family of Cu importers, first discovered in fungi and conserved in mammals, are critical for Cu+ movement across the plasma membrane or mobilization from endosomal compartments. Whereas ablation of Ctr1 in mammals is embryonic lethal, and Ctr1 is critical for dietary Cu absorption, cardiac function, and systemic iron distribution, little is known about the intrinsic contribution of Ctr1 for Cu+ permeation through membranes or its mechanism of action. Here, we identify three members of a Cu+ importer family from the thermophilic fungus Chaetomium thermophilum: Ctr3a and Ctr3b, which function on the plasma membrane, and Ctr2, which likely functions in endosomal Cu mobilization. All three proteins drive Cu and isoelectronic silver (Ag) uptake in cells devoid of Cu+ importers. Transport activity depends on signature amino acid motifs that are conserved and essential for all Ctr1/3 transporters. Ctr3a is stable and amenable to purification and was incorporated into liposomes to reconstitute an in vitro Ag+ transport assay characterized by stopped-flow spectroscopy. Ctr3a has intrinsic high-affinity metal ion transport activity that closely reflects values determined in vivo, with slow turnover kinetics. Given structural models for mammalian Ctr1, Ctr3a likely functions as a low-efficiency Cu+ ion channel. The Ctr1/Ctr3 family may be tuned to import essential yet potentially toxic Cu+ ions at a slow rate to meet cellular needs, while minimizing labile intracellular Cu+ pools.
Collapse
Affiliation(s)
| | - Dennis J Thiele
- From the Departments of Pharmacology and Cancer Biology,
- Biochemistry, and
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710
| |
Collapse
|
49
|
A copper transcription factor, AfMac1, regulates both iron and copper homeostasis in the opportunistic fungal pathogen Aspergillus fumigatus. Biochem J 2018; 475:2831-2845. [PMID: 30072493 DOI: 10.1042/bcj20180399] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 11/17/2022]
Abstract
Although iron and copper are co-ordinately regulated in living cells, the homeostatic effects of each of these metals on the other remain unknown. Here, we show the function of AfMac1, a transcriptional activator of the copper and iron regulons of Aspergillus fumigatus, on the interaction between iron and copper. In addition to the copper-specific AfMac1-binding motif 5'-TGTGCTCA-3' found in the promoter region of ctrC, the iron-specific AfMac1-binding motif 5'-AT(C/G)NN(A/T)T(A/C)-3' was identified in the iron regulon but not in the copper regulon by ChIP sequence analysis. Furthermore, mutation of the AfMac1-binding motif of sit1 eliminated AfMac1-mediated sit1 up-regulation. Interestingly, the regulation of gene expression in the iron regulon by AfMac1 was not affected by copper and vice versa AfMac1 localized to the nucleus under iron- or copper-depleted conditions, and AfMac1 was mostly detected in the cytoplasm under iron- or copper-replete conditions. Taken together, these results suggest that A. fumigatus independently regulates iron and copper homeostasis in a manner that involves AfMac1 and mutual interactions.
Collapse
|
50
|
Garcia-Santamarina S, Festa RA, Smith AD, Yu CH, Probst C, Ding C, Homer CM, Yin J, Noonan JP, Madhani H, Perfect JR, Thiele DJ. Genome-wide analysis of the regulation of Cu metabolism in Cryptococcus neoformans. Mol Microbiol 2018; 108:473-494. [PMID: 29608794 PMCID: PMC5980777 DOI: 10.1111/mmi.13960] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2018] [Indexed: 12/13/2022]
Abstract
The ability of the human fungal pathogen Cryptococcus neoformans to adapt to variable copper (Cu) environments within the host is key for successful dissemination and colonization. During pulmonary infection, host alveolar macrophages compartmentalize Cu into the phagosome and C. neoformans Cu-detoxifying metallothioneins, MT1 and MT2, are required for survival of the pathogen. In contrast, during brain colonization the C. neoformans Cu+ importers Ctr1 and Ctr4 are required for virulence. Central for the regulation and expression of both the Cu detoxifying MT1/2 and the Cu acquisition Ctr1/4 proteins is the Cu-metalloregulatory transcription factor Cuf1, an established C. neoformans virulence factor. Due to the importance of the distinct C. neoformans Cu homeostasis mechanisms during host colonization and virulence, and to the central role of Cuf1 in regulating Cu homeostasis, we performed a combination of RNA-Seq and ChIP-Seq experiments to identify differentially transcribed genes between conditions of high and low Cu. We demonstrate that the transcriptional regulation exerted by Cuf1 is intrinsically complex and that Cuf1 also functions as a transcriptional repressor. The Cu- and Cuf1-dependent regulon in C. neoformans reveals new adaptive mechanisms for Cu homeostasis in this pathogenic fungus and identifies potential new pathogen-specific targets for therapeutic intervention in fungal infections.
Collapse
Affiliation(s)
- Sarela Garcia-Santamarina
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Richard A. Festa
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Aaron D. Smith
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Chen-Hsin Yu
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Corinna Probst
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Chen Ding
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Christina M. Homer
- Department of Biochemistry and Biophysics, UCSF, San Francisco, California, USA
| | - Jun Yin
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - James P. Noonan
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hiten Madhani
- Department of Biochemistry and Biophysics, UCSF, San Francisco, California, USA
| | - John R. Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Dennis J. Thiele
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|