1
|
Zhang M, Bai J, Yuan H, Duan X, Yu L, Li Y, Li K, Rile S, Wang X, Wang H, Liu P, Yan J, Wang C. BRD1 deficiency affects SREBF1-related lipid metabolism through regulating H3K9ac/H3K9me3 transition to inhibit HCC progression. Cell Death Dis 2025; 16:104. [PMID: 39962068 PMCID: PMC11833140 DOI: 10.1038/s41419-025-07404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 01/13/2025] [Accepted: 01/29/2025] [Indexed: 02/20/2025]
Abstract
BRD1 encodes a protein containing a bromodomain, which is an essential component of histone acetyltransferase (HAT) complexes. These complexes play a crucial role in the regulation of gene transcription and the modification of chromatin structures. The aberrant expression of BRD1 is frequently observed across a range of cancer types, including hepatocellular carcinomas (HCC). However, the precise mechanisms through which BRD1 contributes to tumorigenesis, especially in HCC, remain unclear. In our investigation, we have uncovered a novel role for BRD1 as an oncogene implicated the regulation of lipid metabolism in HCC progression. Specifically, the deficiency of BRD1 impedes the proliferation and metastasis of HCC cells reducing the accumulation of lipid droplets and cholesterol levels. This effect is mediated through the SREBF1-induced downregulation of SCD1 expression in HCC cells. Mechanistically, the ablation of BRD1 disrupts acetylation level of H3K9, culminating in the subsequent trimethylation of H3K9 (H3K9me3). Notably, the H3K14ac partially colocalizes with H3K9me3 and its methyltransferase SETDB1 to from a double labeling of both H3K14ac and H3K9me3 at the SREBF1 promoter. This double labeling contributes to the creation of a repressive environment, ultimately leading to the downregulation of SREBF1 gene expression in HCC. Furthermore, the combinatorial use of a BRD1 inhibitor and simvastatin augments antitumor efficacy in vivo. Collectively, our findings underscore BRD1 as a critical regulator of SREBF1-associated lipid metabolism and a participant in HCC progression through a distinct epigenetic regulatory mechanism. These discoveries further suggest a promising epigenetic therapeutic approach for the treatment of HCC.
Collapse
Affiliation(s)
- Mingyang Zhang
- College of Life Science, Inner Mongolia University, Xi Lin Guo Le south Road 49, Yu Quan District, Hohhot, Inner Mongolia, China
| | - Jing Bai
- College of Life Science, Inner Mongolia University, Xi Lin Guo Le south Road 49, Yu Quan District, Hohhot, Inner Mongolia, China
| | - Hengye Yuan
- College of Life Science, Inner Mongolia University, Xi Lin Guo Le south Road 49, Yu Quan District, Hohhot, Inner Mongolia, China
| | - Xiaojun Duan
- College of Life Science, Inner Mongolia University, Xi Lin Guo Le south Road 49, Yu Quan District, Hohhot, Inner Mongolia, China
- School of Basic Medicine, Inner Mongolia Medical University, Xin hua Street No. 5, Hui min District, Hohhot, Inner Mongolia, China
| | - Lei Yu
- College of Life Science, Inner Mongolia University, Xi Lin Guo Le south Road 49, Yu Quan District, Hohhot, Inner Mongolia, China
| | - Yu Li
- College of Life Science, Inner Mongolia University, Xi Lin Guo Le south Road 49, Yu Quan District, Hohhot, Inner Mongolia, China
| | - Kexin Li
- College of Life Science, Inner Mongolia University, Xi Lin Guo Le south Road 49, Yu Quan District, Hohhot, Inner Mongolia, China
| | - Saqi Rile
- College of Life Science, Inner Mongolia University, Xi Lin Guo Le south Road 49, Yu Quan District, Hohhot, Inner Mongolia, China
| | - Xinran Wang
- First School of Clinical Medicine, Inner Mongolia Medical University, Xin hua Street No. 5, Hui min District, Hohhot, Inner Mongolia, China
| | - Haisheng Wang
- School of Basic Medicine, Inner Mongolia Medical University, Xin hua Street No. 5, Hui min District, Hohhot, Inner Mongolia, China
| | - Pengxia Liu
- College of Life Science, Inner Mongolia University, Xi Lin Guo Le south Road 49, Yu Quan District, Hohhot, Inner Mongolia, China
| | - Jia Yan
- School of Basic Medicine, Inner Mongolia Medical University, Xin hua Street No. 5, Hui min District, Hohhot, Inner Mongolia, China.
- Medical Experimental Center of Basic Medical School, Inner Mongolia Medical University, Xin hua Street No. 5, Hui min District, Hohhot, Inner Mongolia, China.
| | - Changshan Wang
- College of Life Science, Inner Mongolia University, Xi Lin Guo Le south Road 49, Yu Quan District, Hohhot, Inner Mongolia, China.
| |
Collapse
|
2
|
Mousavi N, Zhou E, Razavi A, Ebrahimi E, Varela-Castillo P, Yang XJ. P3 site-directed mutagenesis: An efficient method based on primer pairs with 3'-overhangs. J Biol Chem 2025:108219. [PMID: 39863101 DOI: 10.1016/j.jbc.2025.108219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/23/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Site-directed mutagenesis is a fundamental tool indispensable for protein and plasmid engineering. An important technological question is how to achieve the efficiency at the ideal level of 100%. Based on complementary primer pairs, the QuickChange method has been widely used, but it requires significant improvements due to its low efficiency and frequent unwanted mutations. An alternative and innovative strategy is to utilize primer pairs with 3'-overhangs, but this approach has not been fully developed. As the first step towards reaching the efficiency of 100%, we have optimized this approach systematically (such as use of newly designed short primers, test of different Pfu DNA polymerases and modification of PCR parameters) and evaluated the resulting method extensively with >100 mutations on 12 mammalian expression vectors, ranging from 7.0-13.4 kb in size and encoding ten epigenetic regulators with links to cancer and neurodevelopmental disorders. We have also tested the new method with two expression vectors for the SARS-COV-2 spike protein. Compared to the QuickChange method, the success rate has increased substantially, with an average efficiency of ∼50%, with some at or close to 100%, and requiring much less time for engineering various mutations. Therefore, we have developed a new site-directed mutagenesis method for efficient and economical generation of various mutations. Notably, the method failed with a human KAT2B expression plasmid that possesses extremely GC-rich sequences. Thus, this study also sheds light on how to improve the method for developing ideal mutagenesis methods with the efficiency at ∼100% for a wide spectrum of plasmids.
Collapse
Affiliation(s)
- Negar Mousavi
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Ethan Zhou
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Arezousadat Razavi
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Elham Ebrahimi
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Paulina Varela-Castillo
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Xiang-Jiao Yang
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada; McGill University Health Center, Montreal, Quebec H3A 1A3, Canada.
| |
Collapse
|
3
|
Su Z, Zhang Y, Tang J, Zhou Y, Long C. Multifunctional acyltransferase HBO1: a key regulatory factor for cellular functions. Cell Mol Biol Lett 2024; 29:141. [PMID: 39543485 PMCID: PMC11566351 DOI: 10.1186/s11658-024-00661-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
HBO1, also known as KAT7 or MYST2, is a crucial histone acetyltransferase with diverse cellular functions. It typically forms complexes with protein subunits or cofactors such as MEAF6, ING4, or ING5, and JADE1/2/3 or BRPF1/2/3, where the BRPF or JADE proteins serve as the scaffold targeting histone H3 or H4, respectively. The histone acetylation mediated by HBO1 plays significant roles in DNA replication and gene expression regulation. Additionally, HBO1 catalyzes the modification of proteins through acylation with propionyl, butyryl, crotonyl, benzoyl, and acetoacetyl groups. HBO1 undergoes ubiquitination and degradation by two types of ubiquitin complexes and can also act as an E3 ubiquitin ligase for the estrogen receptor α (ERα). Moreover, HBO1 participates in the expansion of medullary thymic epithelial cells (mTECs) and regulates the expression of peripheral tissue genes (PTGs) mediated by autoimmune regulator (AIRE), thus inducing immune tolerance. Furthermore, HBO1 influences the renewal of hematopoietic stem cells and the development of neural stem cells significantly. Importantly, the overexpression of HBO1 in various cancers suggests its carcinogenic role and potential as a therapeutic target. This review summarizes recent advancements in understanding HBO1's involvement in acylation modification, DNA replication, ubiquitination, immunity, and stem cell renewal.
Collapse
Affiliation(s)
- Zhanhuan Su
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Yang Zhang
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Jingqiong Tang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410078, Hunan, China.
| | - Chen Long
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
4
|
Yokoyama A, Niida H, Kutateladze TG, Côté J. HBO1, a MYSTerious KAT and its links to cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195045. [PMID: 38851533 PMCID: PMC11330361 DOI: 10.1016/j.bbagrm.2024.195045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
The histone acetyltransferase HBO1, also known as KAT7, is a major chromatin modifying enzyme responsible for H3 and H4 acetylation. It is found within two distinct tetrameric complexes, the JADE subunit-containing complex and BRPF subunit-containing complex. The HBO1-JADE complex acetylates lysine 5, 8 and 12 of histone H4, and the HBO1-BRPF complex acetylates lysine 14 of histone H3. HBO1 regulates gene transcription, DNA replication, DNA damage repair, and centromere function. It is involved in diverse signaling pathways and plays crucial roles in development and stem cell biology. Recent work has established a strong relationship of HBO1 with the histone methyltransferase MLL/KMT2A in acute myeloid leukemia. Here, we discuss functional and pathological links of HBO1 to cancer, highlighting the underlying mechanisms that may pave the way to the development of novel anti-cancer therapies.
Collapse
Affiliation(s)
- Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata 997-0052, Japan.
| | - Hiroyuki Niida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, United States of America.
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division-CHU de Québec-UL Research Center, Laval University Cancer Research Center, Quebec City, QC G1R 3S3, Canada.
| |
Collapse
|
5
|
Feng M, Liu X, Hao X, Ren Y, Dong G, Tian J, Wang Y, Du L, Wang Y, Wang C. Fatty Acids Support the Fitness and Functionality of Tumor-Resident CD8+ T Cells by Maintaining SCML4 Expression. Cancer Res 2023; 83:3368-3384. [PMID: 37610617 DOI: 10.1158/0008-5472.can-23-0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/08/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
CD8+ tissue-resident memory T (Trm) cells and tumor-infiltrating lymphocytes (TIL) regulate tumor immunity and immune surveillance. Characterization of Trm cells and TILs could help identify potential strategies to boost antitumor immunity. Here, we found that the transcription factor SCML4 was required for the progression and polyfunctionality of Trm cells and was associated with a better prognosis in patients with cancer. Moreover, SCML4 maintained multiple functions of TILs. Increased expression of SCML4 in CD8+ cells significantly reduced the growth of multiple types of tumors in mice, while deletion of SCML4 reduced antitumor immunity and promoted CD8+ T-cell exhaustion. Mechanistically, SCML4 recruited the HBO1-BRPF2-ING4 complex to reprogram the expression of T cell-specific genes, thereby enhancing the survival and effector functions of Trm cells and TILs. SCML4 expression was promoted by fatty acid metabolism through mTOR-IRF4-PRDM1 signaling, and fatty acid metabolism-induced epigenetic modifications that promoted tissue-resident and multifunctional gene expression in Trm cells and TILs. SCML4 increased the therapeutic effect of anti-PD-1 treatment by elevating the expression of effector molecules in TILs and inhibiting the apoptosis of TILs, which could be further enhanced by adding an inhibitor of H3K14ac deacetylation. These results provide a mechanistic perspective of functional regulation of tumor-localized Trm cells and TILs and identify an important activation target for tumor immunotherapy. SIGNIFICANCE SCML4 upregulation in CD8+ Trm cells and tumor-infiltrating lymphocytes induced by fatty acid metabolism enhances antitumor immune responses, providing an immunometabolic axis to target for cancer treatment. See related commentary by Chakraborty et al., p. 3321.
Collapse
Affiliation(s)
- Maoxiao Feng
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Clinical Laboratory, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaodong Hao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yidan Ren
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guoying Dong
- Department of Anatomy and Key Laboratory of Experimental Teratology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jie Tian
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yuli Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
6
|
Geffen Y, Anand S, Akiyama Y, Yaron TM, Song Y, Johnson JL, Govindan A, Babur Ö, Li Y, Huntsman E, Wang LB, Birger C, Heiman DI, Zhang Q, Miller M, Maruvka YE, Haradhvala NJ, Calinawan A, Belkin S, Kerelsky A, Clauser KR, Krug K, Satpathy S, Payne SH, Mani DR, Gillette MA, Dhanasekaran SM, Thiagarajan M, Mesri M, Rodriguez H, Robles AI, Carr SA, Lazar AJ, Aguet F, Cantley LC, Ding L, Getz G. Pan-cancer analysis of post-translational modifications reveals shared patterns of protein regulation. Cell 2023; 186:3945-3967.e26. [PMID: 37582358 PMCID: PMC10680287 DOI: 10.1016/j.cell.2023.07.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/06/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023]
Abstract
Post-translational modifications (PTMs) play key roles in regulating cell signaling and physiology in both normal and cancer cells. Advances in mass spectrometry enable high-throughput, accurate, and sensitive measurement of PTM levels to better understand their role, prevalence, and crosstalk. Here, we analyze the largest collection of proteogenomics data from 1,110 patients with PTM profiles across 11 cancer types (10 from the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium [CPTAC]). Our study reveals pan-cancer patterns of changes in protein acetylation and phosphorylation involved in hallmark cancer processes. These patterns revealed subsets of tumors, from different cancer types, including those with dysregulated DNA repair driven by phosphorylation, altered metabolic regulation associated with immune response driven by acetylation, affected kinase specificity by crosstalk between acetylation and phosphorylation, and modified histone regulation. Overall, this resource highlights the rich biology governed by PTMs and exposes potential new therapeutic avenues.
Collapse
Affiliation(s)
- Yifat Geffen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Shankara Anand
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Yo Akiyama
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Tomer M Yaron
- Weill Cornell Medical College, Meyer Cancer Center, New York, NY 10021, USA
| | - Yizhe Song
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jared L Johnson
- Weill Cornell Medical College, Meyer Cancer Center, New York, NY 10021, USA
| | - Akshay Govindan
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Özgün Babur
- Department of Computer Science, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Yize Li
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emily Huntsman
- Weill Cornell Medical College, Meyer Cancer Center, New York, NY 10021, USA
| | - Liang-Bo Wang
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chet Birger
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - David I Heiman
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Qing Zhang
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Mendy Miller
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Yosef E Maruvka
- Biotechnology and Food Engineering, Lokey Center for Life Science and Engineering, Technion, Israel Institute of Technology, Haifa, Israel
| | - Nicholas J Haradhvala
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Anna Calinawan
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Saveliy Belkin
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Alexander Kerelsky
- Weill Cornell Medical College, Meyer Cancer Center, New York, NY 10021, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Samuel H Payne
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA
| | | | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Alexander J Lazar
- Departments of Pathology & Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - François Aguet
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
| | - Lewis C Cantley
- Weill Cornell Medical College, Meyer Cancer Center, New York, NY 10021, USA.
| | - Li Ding
- Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Wang W, Ou Z, Peng J, Wang N, Zhou Y. Bioinformatics-based analysis of potential candidates chromatin regulators for immune infiltration in osteoarthritis. BMC Musculoskelet Disord 2022; 23:1123. [PMID: 36550476 PMCID: PMC9783407 DOI: 10.1186/s12891-022-06098-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Through the bioinformatics analysis to screen out the potential chromatin regulators (CRs) under the immune infiltration of osteoarthritis (OA), thus providing some theoretical support for future studies of epigenetic mechanisms under OA immune infiltration. METHODS By integrating CRs and the OA gene expression matrix, we performed weighted gene co-expression network analysis (WGCNA), differential analysis, and further screened Hub genes by protein-protein interaction (PPI) analysis. Using the OA gene expression matrix, immune infiltration extraction and quantification were performed to analyze the correlations and differences between immune infiltrating cells and their functions. By virtue of these Hub genes, Hub gene association analysis was completed and their upstream miRNAs were predicted by the FunRich software. Moreover, a risk model was established to analyze the risk probability of associated CRs in OA, and the confidence of the results was validated by the validation dataset. RESULTS This research acquired a total of 32 overlapping genes, and 10 Hub genes were further identified. The strongest positive correlation between dendritic cells and mast cells and the strongest negative correlation between parainflammation and Type I IFN reponse. In the OA group DCs, iDCs, macrophages, MCs, APC co-inhibition, and CCR were significantly increased, whereas B cells, NK cells, Th2 cells, TIL, and T cell co-stimulation were significantly decreased. The risk model results revealed that BRD1 might be an independent risk factor for OA, and the validation dataset results are consistent with it. 60 upstream miRNAs of OA-related CRs were predicted by the FunRich software. CONCLUSION This study identified certain potential CRs and miRNAs that could regulate OA immunity, thus providing certain theoretical supports for future epigenetic mechanism studies on the immune infiltration of OA.
Collapse
Affiliation(s)
- Weiwei Wang
- Guilin Hospital of Traditional Chinese Medicine, Guilin, 541002 Guangxi China
| | - Zhixue Ou
- Guilin Hospital of Traditional Chinese Medicine, Guilin, 541002 Guangxi China
| | - Jianlan Peng
- grid.256609.e0000 0001 2254 5798Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, 530001 Guangxi China
| | - Ning Wang
- grid.511973.8The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, 530001 Guangxi China
| | - Yi Zhou
- grid.256609.e0000 0001 2254 5798Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, 530001 Guangxi China
| |
Collapse
|
8
|
Zu G, Liu Y, Cao J, Zhao B, Zhang H, You L. BRPF1-KAT6A/KAT6B Complex: Molecular Structure, Biological Function and Human Disease. Cancers (Basel) 2022; 14:4068. [PMID: 36077605 PMCID: PMC9454415 DOI: 10.3390/cancers14174068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The bromodomain and PHD finger-containing protein1 (BRPF1) is a member of family IV of the bromodomain-containing proteins that participate in the post-translational modification of histones. It functions in the form of a tetrameric complex with a monocytic leukemia zinc finger protein (MOZ or KAT6A), MOZ-related factor (MORF or KAT6B) or HAT bound to ORC1 (HBO1 or KAT7) and two small non-catalytic proteins, the inhibitor of growth 5 (ING5) or the paralog ING4 and MYST/Esa1-associated factor 6 (MEAF6). Mounting studies have demonstrated that all the four core subunits play crucial roles in different biological processes across diverse species, such as embryonic development, forebrain development, skeletal patterning and hematopoiesis. BRPF1, KAT6A and KAT6B mutations were identified as the cause of neurodevelopmental disorders, leukemia, medulloblastoma and other types of cancer, with germline mutations associated with neurodevelopmental disorders displaying intellectual disability, and somatic variants associated with leukemia, medulloblastoma and other cancers. In this paper, we depict the molecular structures and biological functions of the BRPF1-KAT6A/KAT6B complex, summarize the variants of the complex related to neurodevelopmental disorders and cancers and discuss future research directions and therapeutic potentials.
Collapse
Affiliation(s)
- Gaoyu Zu
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ying Liu
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jingli Cao
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Baicheng Zhao
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hang Zhang
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Linya You
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Fudan University, Shanghai 200040, China
| |
Collapse
|
9
|
Bai R, Cui J. Burgeoning Exploration of the Role of Natural Killer Cells in Anti-PD-1/PD-L1 Therapy. Front Immunol 2022; 13:886931. [PMID: 35634343 PMCID: PMC9133458 DOI: 10.3389/fimmu.2022.886931] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Antibodies targeting programmed death receptor-1 (PD-1)/programmed death ligand-1 (PD-L1) have been considered breakthrough therapies for a variety of solid and hematological malignancies. Although cytotoxic T cells play an important antitumor role during checkpoint blockade, they still show a potential killing effect on tumor types showing loss of/low major histocompatibility complex (MHC) expression and/or low neoantigen load; this knowledge has shifted the focus of researchers toward mechanisms of action other than T cell-driven immune responses. Evidence suggests that the blockade of the PD-1/PD-L1 axis may also improve natural killer (NK)-cell function and activity through direct or indirect mechanisms, which enhances antitumor cytotoxic effects; although important, this topic has been neglected in previous studies. Recently, some studies have reported evidence of PD-1 and PD-L1 expression in human NK cells, performed exploration of the intrinsic mechanism by which PD-1/PD-L1 blockade enhances NK-cell responses, and made some progress. This article summarizes the recent advances regarding the expression of PD-1 and PD-L1 molecules on the surface of NK cells as well as the interaction between anti-PD-1/PD-L1 drugs and NK cells and associated molecular mechanisms in the tumor microenvironment.
Collapse
Affiliation(s)
| | - Jiuwei Cui
- *Correspondence: Jiuwei Cui, ; orcid.org/0000-0001-6496-7550
| |
Collapse
|
10
|
Liang Y, Kaneko K, Xin B, Lee J, Sun X, Zhang K, Feng GS. Temporal analyses of postnatal liver development and maturation by single-cell transcriptomics. Dev Cell 2022; 57:398-414.e5. [PMID: 35134346 PMCID: PMC8842999 DOI: 10.1016/j.devcel.2022.01.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/10/2021] [Accepted: 01/05/2022] [Indexed: 02/09/2023]
Abstract
The postnatal development and maturation of the liver, the major metabolic organ, are inadequately understood. We have analyzed 52,834 single-cell transcriptomes and identified 31 cell types or states in mouse livers at postnatal days 1, 3, 7, 21, and 56. We observe unexpectedly high levels of hepatocyte heterogeneity in the developing liver and the progressive construction of the zonated metabolic functions from pericentral to periportal hepatocytes, which is orchestrated with the development of sinusoid endothelial, stellate, and Kupffer cells. Trajectory and gene regulatory analyses capture 36 transcription factors, including a circadian regulator, Bhlhe40, in programming liver development. Remarkably, we identified a special group of macrophages enriched at day 7 with a hybrid phenotype of macrophages and endothelial cells, which may regulate sinusoidal construction and Treg-cell function. This study provides a comprehensive atlas that covers all hepatic cell types and is instrumental for further dissection of liver development, metabolism, and disease.
Collapse
Affiliation(s)
- Yan Liang
- Department of Pathology, Division of Biological Sciences, and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kota Kaneko
- Department of Pathology, Division of Biological Sciences, and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bing Xin
- Department of Pathology, Division of Biological Sciences, and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jin Lee
- Department of Pathology, Division of Biological Sciences, and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kun Zhang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gen-Sheng Feng
- Department of Pathology, Division of Biological Sciences, and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
11
|
Yamaguchi N. [Novel Tyrosine Phosphorylation Signals in the Nucleus and on Mitotic Spindle Fibers and Lysosomes Revealed by Strong Inhibition of Tyrosine Dephosphorylation]. YAKUGAKU ZASSHI 2021; 141:927-947. [PMID: 34193653 DOI: 10.1248/yakushi.21-00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein-tyrosine phosphorylation is one of the posttranslational modifications and plays critical roles in regulating a wide variety of cellular processes, such as cell proliferation, differentiation, adhesion, migration, survival, and apoptosis. Protein-tyrosine phosphorylation is reversibly regulated by protein-tyrosine kinases and protein-tyrosine phosphatases. Strong inhibition of protein-tyrosine phosphatase activities is required to undoubtedly detect tyrosine phosphorylation. Our extremely careful usage of Na3VO4, a potent protein-tyrosine phosphatase inhibitor, has revealed not only the different intracellular trafficking pathways of Src-family tyrosine kinase members but also novel tyrosine phosphorylation signals in the nucleus and on mitotic spindle fibers and lysosomes. Furthermore, despite that the first identified oncogene product v-Src is generally believed to induce transformation through continuous stimulation of proliferation signaling by its strong tyrosine kinase activity, v-Src-driven transformation was found to be caused not by continuous proliferation signaling but by v-Src tyrosine kinase activity-dependent stochastic genome alterations. Here, I summarize our findings regarding novel tyrosine phosphorylation signaling in a spatiotemporal sense and highlight the significance of the roles of tyrosine phosphorylation in transcriptional regulation inside the nucleus and chromosome dynamics.
Collapse
Affiliation(s)
- Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
12
|
Li N, Torres MB, Spetz MR, Wang R, Peng L, Tian M, Dower CM, Nguyen R, Sun M, Tai CH, de Val N, Cachau R, Wu X, Hewitt SM, Kaplan RN, Khan J, St Croix B, Thiele CJ, Ho M. CAR T cells targeting tumor-associated exons of glypican 2 regress neuroblastoma in mice. Cell Rep Med 2021; 2:100297. [PMID: 34195677 PMCID: PMC8233664 DOI: 10.1016/j.xcrm.2021.100297] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/21/2021] [Accepted: 05/10/2021] [Indexed: 01/05/2023]
Abstract
Targeting solid tumors must overcome several major obstacles, in particular, the identification of elusive tumor-specific antigens. Here, we devise a strategy to help identify tumor-specific epitopes. Glypican 2 (GPC2) is overexpressed in neuroblastoma. Using RNA sequencing (RNA-seq) analysis, we show that exon 3 and exons 7-10 of GPC2 are expressed in cancer but are minimally expressed in normal tissues. Accordingly, we discover a monoclonal antibody (CT3) that binds exons 3 and 10 and visualize the complex structure of CT3 and GPC2 by electron microscopy. The potential of this approach is exemplified by designing CT3-derived chimeric antigen receptor (CAR) T cells that regress neuroblastoma in mice. Genomic sequencing of T cells recovered from mice reveals the CAR integration sites that may contribute to CAR T cell proliferation and persistence. These studies demonstrate how RNA-seq data can be exploited to help identify tumor-associated exons that can be targeted by CAR T cell therapies.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/pharmacology
- Cell Line, Tumor
- Cell Proliferation
- Exons
- Female
- Gene Expression
- Glypicans/antagonists & inhibitors
- Glypicans/chemistry
- Glypicans/genetics
- Glypicans/immunology
- Humans
- Immunotherapy, Adoptive/methods
- Mice
- Mice, Nude
- Models, Molecular
- Nervous System Neoplasms/genetics
- Nervous System Neoplasms/mortality
- Nervous System Neoplasms/pathology
- Nervous System Neoplasms/therapy
- Neuroblastoma/genetics
- Neuroblastoma/mortality
- Neuroblastoma/pathology
- Neuroblastoma/therapy
- Protein Binding
- Protein Conformation
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Sequence Analysis, RNA
- Survival Analysis
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Burden
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Nan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Madeline B. Torres
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Madeline R. Spetz
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ruixue Wang
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luyi Peng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Meijie Tian
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher M. Dower
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Rosa Nguyen
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ming Sun
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chin-Hsien Tai
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natalia de Val
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Raul Cachau
- Data Science and Information Technology Program, Leidos Biomedical Research, Frederick, MD 21702, USA
| | - Xiaolin Wu
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Stephen M. Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rosandra N. Kaplan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brad St Croix
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Carol J. Thiele
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Paternoster V, Edhager AV, Qvist P, Donskov JG, Shliaha P, Jensen ON, Mors O, Nielsen AL, Børglum AD, Palmfeldt J, Christensen JH. Inactivation of the Schizophrenia-associated BRD1 gene in Brain Causes Failure-to-thrive, Seizure Susceptibility and Abnormal Histone H3 Acetylation and N-tail Clipping. Mol Neurobiol 2021; 58:4495-4505. [PMID: 34056693 DOI: 10.1007/s12035-021-02432-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
Genetic studies have repeatedly shown that the Bromodomain containing 1 gene, BRD1, is involved in determining mental health, and the importance of the BRD1 protein for normal brain function has been studied in both cell models and constitutive haploinsufficient Brd1+/- mice. Homozygosity for inactivated Brd1 alleles is lethal during embryonic development in mice. In order to further characterize the molecular functions of BRD1 in the brain, we have developed a novel Brd1 knockout mouse model (Brd1-/-) with bi-allelic conditional inactivation of Brd1 in the central nervous system. Brd1-/- mice were viable but smaller and with reduced muscle strength. They showed reduced exploratory behavior and increased sensitivity to pentylenetetrazole-induced seizures supporting the previously described GABAergic dysfunction in constitutive Brd1+/- mice. Because BRD1 takes part in protein complexes with histone binding and modifying functions, we investigated the effect of BRD1 depletion on the global histone modification pattern in mouse brain by mass spectrometry. We found decreased levels of histone H3 acetylation (H3K9ac, H3K14ac, and H3K18ac) and increased N-tail clipping in consequence of BRD1 depletion. Collectively, the presented results support that BRD1 controls gene expression at the epigenetic level by regulating histone H3 proteoforms in the brain.
Collapse
Affiliation(s)
- Veerle Paternoster
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark.,Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark.,Centre for Genomics and Personalized Medicine, CGPM, Aarhus University, Aarhus, Denmark
| | - Anders Valdemar Edhager
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Research Unit for Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Per Qvist
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark.,Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark.,Centre for Genomics and Personalized Medicine, CGPM, Aarhus University, Aarhus, Denmark
| | - Julie Grinderslev Donskov
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark.,Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark.,Centre for Genomics and Personalized Medicine, CGPM, Aarhus University, Aarhus, Denmark
| | - Pavel Shliaha
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Ole Nørregaard Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.,Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Psychosis Research Unit, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Lade Nielsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | - Anders Dupont Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark.,Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark.,Centre for Genomics and Personalized Medicine, CGPM, Aarhus University, Aarhus, Denmark
| | - Johan Palmfeldt
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Research Unit for Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jane Hvarregaard Christensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark. .,Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark. .,Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark. .,Centre for Genomics and Personalized Medicine, CGPM, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
14
|
Diboun I, Wani S, Ralston SH, Albagha OM. Epigenetic analysis of Paget's disease of bone identifies differentially methylated loci that predict disease status. eLife 2021; 10:65715. [PMID: 33929316 PMCID: PMC8184208 DOI: 10.7554/elife.65715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Paget's disease of bone (PDB) is characterized by focal increases in disorganized bone remodeling. This study aims to characterize PDB-associated changes in DNA methylation profiles in patients' blood. Meta-analysis of data from the discovery and cross-validation set, each comprising 116 PDB cases and 130 controls, revealed significant differences in DNA methylation at 14 CpG sites, 4 CpG islands, and 6 gene-body regions. These loci, including two characterized as functional through expression quantitative trait-methylation analysis, were associated with functions related to osteoclast differentiation, mechanical loading, immune function, and viral infection. A multivariate classifier based on discovery samples was found to discriminate PDB cases and controls from the cross-validation with a sensitivity of 0.84, specificity of 0.81, and an area under curve of 92.8%. In conclusion, this study has shown for the first time that epigenetic factors contribute to the pathogenesis of PDB and may offer diagnostic markers for prediction of the disease.
Collapse
Affiliation(s)
- Ilhame Diboun
- Division of Genomic and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Sachin Wani
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Stuart H Ralston
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Omar Me Albagha
- Division of Genomic and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.,Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
15
|
Wan C, Keany MP, Dong H, Al-Alem LF, Pandya UM, Lazo S, Boehnke K, Lynch KN, Xu R, Zarrella DT, Gu S, Cejas P, Lim K, Long HW, Elias KM, Horowitz NS, Feltmate CM, Muto MG, Worley MJ, Berkowitz RS, Matulonis UA, Nucci MR, Crum CP, Rueda BR, Brown M, Liu XS, Hill SJ. Enhanced Efficacy of Simultaneous PD-1 and PD-L1 Immune Checkpoint Blockade in High-Grade Serous Ovarian Cancer. Cancer Res 2020; 81:158-173. [PMID: 33158814 DOI: 10.1158/0008-5472.can-20-1674] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/22/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022]
Abstract
Immune therapies have had limited efficacy in high-grade serous ovarian cancer (HGSC), as the cellular targets and mechanism(s) of action of these agents in HGSC are unknown. Here we performed immune functional and single-cell RNA sequencing transcriptional profiling on novel HGSC organoid/immune cell co-cultures treated with a unique bispecific anti-programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) antibody compared with monospecific anti-PD-1 or anti-PD-L1 controls. Comparing the functions of these agents across all immune cell types in real time identified key immune checkpoint blockade (ICB) targets that have eluded currently available monospecific therapies. The bispecific antibody induced superior cellular state changes in both T and natural killer (NK) cells. It uniquely induced NK cells to transition from inert to more active and cytotoxic phenotypes, implicating NK cells as a key missing component of the current ICB-induced immune response in HGSC. It also induced a subset of CD8 T cells to transition from naïve to more active and cytotoxic progenitor-exhausted phenotypes post-treatment, revealing the small, previously uncharacterized population of CD8 T cells responding to ICB in HGSC. These state changes were driven partially through bispecific antibody-induced downregulation of the bromodomain-containing protein BRD1. Small-molecule inhibition of BRD1 induced similar state changes in vitro and demonstrated efficacy in vivo, validating the co-culture results. Our results demonstrate that state changes in both NK and a subset of T cells may be critical in inducing an effective anti-tumor immune response and suggest that immune therapies able to induce such cellular state changes, such as BRD1 inhibitors, may have increased efficacy in HGSC. SIGNIFICANCE: This study indicates that increased efficacy of immune therapies in ovarian cancer is driven by state changes of NK and small subsets of CD8 T cells into active and cytotoxic states.
Collapse
Affiliation(s)
- Changxin Wan
- Department of Data Sciences, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina
| | - Matthew P Keany
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Han Dong
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts
| | - Linah F Al-Alem
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts.,Obstetrics Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts
| | - Unnati M Pandya
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts.,Obstetrics Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts
| | - Suzan Lazo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Karsten Boehnke
- Oncology Translational Research, Eli Lilly and Company, New York, New York
| | - Katherine N Lynch
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Rui Xu
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts.,Obstetrics Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts.,Department of Internal Medicine, Shaanxi Province Cancer Hospital, Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Dominique T Zarrella
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts
| | - Shengqing Gu
- Department of Data Sciences, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Paloma Cejas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Klothilda Lim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kevin M Elias
- Obstetrics Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women' Hospital, Boston, Massachusetts
| | - Neil S Horowitz
- Obstetrics Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women' Hospital, Boston, Massachusetts
| | - Colleen M Feltmate
- Obstetrics Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women' Hospital, Boston, Massachusetts
| | - Michael G Muto
- Obstetrics Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women' Hospital, Boston, Massachusetts
| | - Michael J Worley
- Obstetrics Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women' Hospital, Boston, Massachusetts
| | - Ross S Berkowitz
- Obstetrics Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women' Hospital, Boston, Massachusetts
| | - Ursula A Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Marisa R Nucci
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Christopher P Crum
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Bo R Rueda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts.,Obstetrics Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Xiaole Shirley Liu
- Department of Data Sciences, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sarah J Hill
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. .,Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Pathology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Cirillo E, Prencipe MR, Giardino G, Romano R, Scalia G, Genesio R, Nitsch L, Pignata C. Clinical Phenotype, Immunological Abnormalities, and Genomic Findings in Patients with DiGeorge Spectrum Phenotype without 22q11.2 Deletion. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 8:3112-3120. [DOI: 10.1016/j.jaip.2020.06.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
|
17
|
BRD4/8/9 are prognostic biomarkers and associated with immune infiltrates in hepatocellular carcinoma. Aging (Albany NY) 2020; 12:17541-17567. [PMID: 32927435 PMCID: PMC7521508 DOI: 10.18632/aging.103768] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/29/2020] [Indexed: 01/24/2023]
Abstract
Bromodomain (BRD)-containing proteins are a class of epigenetic readers with unique recognition for N-acetyl-lysine in histones and functions of gene transcription and chromatin modification, known to be critical in various cancers. However, little is known about the roles of distinct BRD-containing protein genes in hepatocellular carcinoma (HCC). Most recently, we investigated the transcriptional and survival data of BRD1, BRD2, BRD3, BRD4, BRD7, BRD8, BRD9 in HCC patients through ONCOMINE, UALCAN, Human Protein Atlas, GEPIA, cBioPortal, STRING, TIMER databases. BRD1/2/3/4/7/8/9 were over-expressed in HCC and were significantly associated with clinical cancer stages and pathological tumor grades. High mRNA expressions of BRD4/8/9 were promising candidate biomarkers in HCC patients. The rate of sequence alternations in BRD1/2/3/4/7/8/9 was relatively high (52%) in HCC patients, and the genetic alternations were correlated with shorter overall survival and disease-free survival in HCC patients. Additionally, the mRNA expression levels of individual BRD genes were significantly positively associated with the immune infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. And the associations between BRD1/2/3/4/7/8/9 and diverse immune marker sets showed a significance. Overall, these results indicated that BRD4/8/9 could be potential prognostic markers and druggable epigenetic targets in HCC patients.
Collapse
|
18
|
Lan R, Wang Q. Deciphering structure, function and mechanism of lysine acetyltransferase HBO1 in protein acetylation, transcription regulation, DNA replication and its oncogenic properties in cancer. Cell Mol Life Sci 2020; 77:637-649. [PMID: 31535175 PMCID: PMC11104888 DOI: 10.1007/s00018-019-03296-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022]
Abstract
HBO1 complexes are major acetyltransferase responsible for histone H4 acetylation in vivo, which belongs to the MYST family. As the core catalytic subunit, HBO1 consists of an N-terminal domain and a C-terminal MYST domain that are in charge of acetyl-CoA binding and acetylation reaction. HBO1 complexes are multimeric and normally consist of two native subunits MEAF6, ING4 or ING5 and two kinds of cofactors as chromatin reader: Jade-1/2/3 and BRPF1/2/3. The choices of subunits to form the HBO1 complexes provide a regulatory switch to potentiate its activity between histone H4 and H3 tails. Thus, HBO1 complexes present multiple functions in histone acetylation, gene transcription, DNA replication, protein ubiquitination, and immune regulation, etc. HBO1 is a co-activator for CDT1 to facilitate chromatin loading of MCM complexes and promotes DNA replication licensing. This process is regulated by mitotic kinases such as CDK1 and PLK1 by phosphorylating HBO1 and modulating its acetyltransferase activity, therefore, connecting histone acetylation to regulations of cell cycle and DNA replication. In addition, both gene amplification and protein overexpression of HBO1 confirmed its oncogenic role in cancers. In this paper, we review the recent advances and discuss our understanding of the multiple functions, activity regulation, and disease relationship of HBO1.
Collapse
Affiliation(s)
- Rongfeng Lan
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| | - Qianqian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| |
Collapse
|
19
|
Kueh AJ, Eccles S, Tang L, Garnham AL, May RE, Herold MJ, Smyth GK, Voss AK, Thomas T. HBO1 (KAT7) Does Not Have an Essential Role in Cell Proliferation, DNA Replication, or Histone 4 Acetylation in Human Cells. Mol Cell Biol 2020; 40:e00506-19. [PMID: 31767635 PMCID: PMC6996278 DOI: 10.1128/mcb.00506-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/11/2019] [Indexed: 01/01/2023] Open
Abstract
HBO1 (MYST2/KAT7) is essential for histone 3 lysine 14 acetylation (H3K14ac) but is dispensable for H4 acetylation and DNA replication in mouse tissues. In contrast, previous studies using small interfering RNA (siRNA) knockdown in human cell lines have suggested that HBO1 is essential for DNA replication. To determine if HBO1 has distinctly different roles in immortalized human cell lines and normal mouse cells, we performed siRNA knockdown of HBO1. In addition, we used CRISPR/Cas9 to generate 293T, MCF7, and HeLa cell lines lacking HBO1. Using both techniques, we show that HBO1 is essential for all H3K14ac in human cells and is unlikely to have a direct effect on H4 acetylation and only has minor effects on cell proliferation. Surprisingly, the loss of HBO1 and H3K14ac in HeLa cells led to the secondary loss of almost all H4 acetylation after 4 weeks. Thus, HBO1 is dispensable for DNA replication and cell proliferation in immortalized human cells. However, while cell proliferation proceeded without HBO1 and H3K14ac, HBO1 gene deletion led to profound changes in cell adhesion, particularly in 293T cells. Consistent with this phenotype, the loss of HBO1 in both 293T and HeLa principally affected genes mediating cell adhesion, with comparatively minor effects on other cellular processes.
Collapse
Affiliation(s)
- Andrew J Kueh
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Samantha Eccles
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Leonie Tang
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Alexandra L Garnham
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Rose E May
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Marco J Herold
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Gordon K Smyth
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
| | - Anne K Voss
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Tim Thomas
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
20
|
Chen L, Luo L, Kang N, He X, Li T, Chen Y. The Protective Effect of HBO1 on Cigarette Smoke Extract-Induced Apoptosis in Airway Epithelial Cells. Int J Chron Obstruct Pulmon Dis 2020; 15:15-24. [PMID: 32021140 PMCID: PMC6954103 DOI: 10.2147/copd.s234634] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose Epigenetic modification is one of most important mechanisms underlying the pathogenesis of chronic obstructive pulmonary disease (COPD). The purpose of this study was to determine whether histone acetyltransferase binding to ORC1 (HBO1) can protect against cigarette smoke (CS)-induced cell apoptosis and sustain normal histone acetylation in COPD. Methods Human lung tissue samples were obtained from patients who underwent lung resection. The emphysema mouse model and HBO1 overexpressing mice were each established by intraperitoneal injection with cigarette smoke extract (CSE) or intratracheal lentiviral vectors instillation. TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assays were used to assess apoptotic ratio in mice. The apoptosis of human bronchial epithelial cells (HBECs) was assayed by flow cytometry. HBO1, B-cell lymphoma-2 (BCL-2), and H3K14ac protein expression were detected by Western blotting. HBO1 mRNA expression was measured by quantitative real-time polymerase chain reaction. Results Protein expression of HBO1 was decreased significantly in lung tissue from COPD patients and CSE-treated emphysema mouse models. Overexpression of HBO1 attenuated CSE-induced emphysematous changes, as well as apoptosis in the lungs of COPD mice. In vitro, the HBO1 protein degraded in a time- and dose-dependent course with CSE treatment. With flow cytometry, we proved that HBO1 could reverse the apoptosis of HBECs induced by CSE. Furthermore, HBO1 overexpression promoted the expression of anti-apoptotic BCL-2 protein and enhanced H3K14 acetylation in airway epithelial cells. Conclusion These findings demonstrate that the key histone modulator HBO1 plays a protective role in COPD pathogenesis that may shed light on potential therapeutic targets to inhibit the progress of COPD.
Collapse
Affiliation(s)
- Lin Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha 410011, Hunan, People's Republic of China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha 410011, Hunan, People's Republic of China
| | - Lijuan Luo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha 410011, Hunan, People's Republic of China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha 410011, Hunan, People's Republic of China
| | - Naixin Kang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha 410011, Hunan, People's Republic of China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha 410011, Hunan, People's Republic of China
| | - Xue He
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha 410011, Hunan, People's Republic of China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha 410011, Hunan, People's Republic of China
| | - Tiao Li
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha 410011, Hunan, People's Republic of China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha 410011, Hunan, People's Republic of China
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha 410011, Hunan, People's Republic of China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha 410011, Hunan, People's Republic of China
| |
Collapse
|
21
|
Abstract
During thymocyte development at the double positive stage, thymocytes are subjected to a TCR quality check process termed "thymocyte selection." TCRs with proper binding capabilities to MHC molecules (with self-peptide) are able to transduce cell survival signals and allow the continuing of development to single positive T cells. It has been known that TCRs in DP cells can transduce signals with higher efficiency than peripheral mature T cells, even though they share most of the signaling components. Recent studies have revealed some thymocyte-specific signaling modulators including Themis and Tespa1. The activation of TCR signaling during positive selection results in the activation of several key transcription factors and extensive gene expression change, which has been revealed by newly developed systemic transcriptome analysis tools, and could be used for the evaluation of positive selection process. The fate determination postpositive selection is also governed on the epigenetic level including both DNA methylation and histone modifications.
Collapse
Affiliation(s)
- Jun Lyu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lie Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Linrong Lu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China; Department of Dermatology and Rheumatology in Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
22
|
Hayashi Y, Harada Y, Kagiyama Y, Nishikawa S, Ding Y, Imagawa J, Shingai N, Kato N, Kitaura J, Hokaiwado S, Maemoto Y, Ito A, Matsui H, Kitabayashi I, Iwama A, Komatsu N, Kitamura T, Harada H. NUP98-HBO1-fusion generates phenotypically and genetically relevant chronic myelomonocytic leukemia pathogenesis. Blood Adv 2019; 3:1047-1060. [PMID: 30944097 PMCID: PMC6457235 DOI: 10.1182/bloodadvances.2018025007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 02/27/2019] [Indexed: 12/18/2022] Open
Abstract
Chronic myelomonocytic leukemia (CMML) constitutes a hematopoietic stem cell (HSC) disorder characterized by prominent monocytosis and myelodysplasia. Although genome sequencing has revealed the CMML mutation profile, the mechanism of disease development remains unclear. Here we show that aberrant histone acetylation by nucleoporin-98 (NUP98)-HBO1, a newly identified fusion in a patient with CMML, is sufficient to generate clinically relevant CMML pathogenesis. Overexpression of NUP98-HBO1 in murine HSC/progenitors (HSC/Ps) induced diverse CMML phenotypes, such as severe leukocytosis, increased CD115+ Ly6Chigh monocytes (an equivalent subpopulation to human classical CD14+ CD16- monocytes), macrocytic anemia, thrombocytopenia, megakaryocyte-lineage dysplasia, splenomegaly, and cachexia. A NUP98-HBO1-mediated transcriptional signature in human CD34+ cells was specifically activated in HSC/Ps from a CMML patient cohort. Besides critical determinants of monocytic cell fate choice in HSC/Ps, an oncogenic HOXA9 signature was significantly activated by NUP98-HBO1 fusion through aberrant histone acetylation. Increased HOXA9 gene expression level with disease progression was confirmed in our CMML cohort. Genetic disruption of NUP98-HBO1 histone acetyltransferase activity abrogated its leukemogenic potential and disease development in human cells and a mouse model. Furthermore, treatment of azacytidine was effective in our CMML mice. The recapitulation of CMML clinical phenotypes and gene expression profile by the HBO1 fusion suggests our new model as a useful platform for elucidating the central downstream mediators underlying diverse CMML-related mutations and testing multiple compounds, providing novel therapeutic potential.
Collapse
Affiliation(s)
- Yoshihiro Hayashi
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuka Harada
- Department of Clinical Laboratory Medicine, Bunkyo Gakuin University, Tokyo, Japan
| | - Yuki Kagiyama
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Sayuri Nishikawa
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Ye Ding
- Division of Oncology and Hematology, Edogawa Hospital, Tokyo, Japan
| | - Jun Imagawa
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Naoki Shingai
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Naoko Kato
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Jiro Kitaura
- Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shintaro Hokaiwado
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuki Maemoto
- Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Akihiro Ito
- Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Issay Kitabayashi
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan; and
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Norio Komatsu
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hironori Harada
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
23
|
Wang C, Oshima M, Sato D, Matsui H, Kubota S, Aoyama K, Nakajima-Takagi Y, Koide S, Matsubayashi J, Mochizuki-Kashio M, Nakano-Yokomizo T, Bai J, Nagao T, Kanai A, Iwama A, Sashida G. Ezh2 loss propagates hypermethylation at T cell differentiation-regulating genes to promote leukemic transformation. J Clin Invest 2018; 128:3872-3886. [PMID: 30080177 PMCID: PMC6118644 DOI: 10.1172/jci94645] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/19/2018] [Indexed: 07/30/2023] Open
Abstract
Early T cell precursor acute lymphoblastic leukemia (ETP-ALL) is a new pathological entity with poor outcomes in T cell ALL (T-ALL) that is characterized by a high incidence of loss-of-function mutations in polycomb repressive complex 2 (PRC2) genes. We generated a mouse model of ETP-ALL by deleting Ezh2, one of the PRC2 genes, in p53-null hematopoietic cells. The loss of Ezh2 in p53-null hematopoietic cells impeded the differentiation of ETPs and eventually induced ETP-ALL-like disease in mice, indicating that PRC2 functions as a bona fide tumor suppressor in ETPs. A large portion of PRC2 target genes acquired DNA hypermethylation of their promoters following reductions in H3K27me3 levels upon the loss of Ezh2, which included pivotal T cell differentiation-regulating genes. The reactivation of a set of regulators by a DNA-demethylating agent, but not the transduction of single regulator genes, effectively induced the differentiation of ETP-ALL cells. Thus, PRC2 protects key T cell developmental regulators from DNA hypermethylation in order to keep them primed for activation upon subsequent differentiation phases, while its insufficiency predisposes ETPs to leukemic transformation. These results revealed a previously unrecognized epigenetic switch in response to PRC2 dysfunction and provide the basis for specific rational epigenetic therapy for ETP-ALL with PRC2 insufficiency.
Collapse
Affiliation(s)
- Changshan Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Motohiko Oshima
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Daisuke Sato
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, and
| | - Sho Kubota
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazumasa Aoyama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yaeko Nakajima-Takagi
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shuhei Koide
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jun Matsubayashi
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
| | - Makiko Mochizuki-Kashio
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takako Nakano-Yokomizo
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jie Bai
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshitaka Nagao
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
| | - Akinori Kanai
- Department of Molecular Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Goro Sashida
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
24
|
Evaluating the bromodomain protein BRD1 as a therapeutic target in rheumatoid arthritis. Sci Rep 2018; 8:11125. [PMID: 30042400 PMCID: PMC6057939 DOI: 10.1038/s41598-018-29127-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 07/05/2018] [Indexed: 12/28/2022] Open
Abstract
Targeting epigenetic reader proteins by small molecule inhibitors represents a new therapeutic concept in autoimmune diseases such as rheumatoid arthritis (RA). Although inhibitors targeting bromodomain protein 1 (BRD1) are in development, the function of BRD1 has hardly been studied. We investigated the therapeutic potential of BRD1 inhibition in joint-resident cells in RA, synovial fibroblasts (SF) and macrophages. The proliferation of SF was decreased upon BRD1 silencing, accompanied by the downregulation of genes involved in cell cycle regulation. Silencing of BRD1 in SF decreased the basal expression of MMP1 but increased TNF-α- and LPS-induced levels of MMP3, IL6 and IL8. In monocyte-derived macrophages (MDM), silencing of BRD1 decreased the LPS-induced expression of TNF-α, but did not significantly affect basal and the TNF-α- and LPS-induced expression of IL6 and IL8. Our data point to a cell type- and a stimulus-specific function of BRD1. Inhibiting BRD1 could have potential beneficial effects in RA via decreasing the proliferation of SF. Anti-inflammatory effects were limited and only observed in MDM.
Collapse
|
25
|
Cai QQ, Dong YW, Qi B, Shao XT, Wang R, Chen ZY, He BM, Wu XZ. BRD1-Mediated Acetylation Promotes Integrin αV Gene Expression Via Interaction with Sulfatide. Mol Cancer Res 2018; 16:610-622. [PMID: 29453316 DOI: 10.1158/1541-7786.mcr-17-0527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/16/2017] [Accepted: 01/26/2018] [Indexed: 11/16/2022]
Abstract
Integrin αV gene expression is often dysregulated in cancers especially in hepatocellular carcinoma (HCC); however, the mechanism of regulation is poorly understood. Here, it is demonstrated that sulfatide activated integrin αV gene transcription, through histone H3K9/14 acetylation at the promoter, and high integrin αV expression are closely associated with poor prognosis. To elucidate the mechanism of regulation of acetylation, sulfatide-bound proteins were screened by mass spectrometry (MS), and bromodomain containing protein 1 (BRD1) was identified as an interacting protein that also colocalized with sulfatide in HCC cells. BRD1 was also formed a complex with Sp1, which was recruited to the integrin αV gene promoter. Sulfatide was also found to induce BRD1, monocytic leukemia zinc finger (MOZ) and histone acetyltransferase binding to ORC1 (HBO1) acetyltransferase multiprotein complex recruitment to the integrin αV promoter, which is responsible for histone H3K9/14 acetylation. Finally, knockdown of BRD1 limited sulfatide-induced H3K9/14 acetylation and occupancy of MOZ or HBO1 on integrin αV gene promoter.Implications: This study demonstrates that sulfatide interaction with BRD1 mediates acetylation and is important for regulation of integrin αV gene expression. Mol Cancer Res; 16(4); 610-22. ©2018 AACR.
Collapse
Affiliation(s)
- Qian Qian Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Key Lab of Glycoconjugate Research, Ministry of Public Health, Shanghai, China
| | - Yi Wei Dong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Key Lab of Glycoconjugate Research, Ministry of Public Health, Shanghai, China
| | - Bing Qi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Key Lab of Glycoconjugate Research, Ministry of Public Health, Shanghai, China
| | - Xiao-Ting Shao
- Yu Ying Hospital, Wenzhou Medical University, Wenzhou, China
| | - Rong Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Key Lab of Glycoconjugate Research, Ministry of Public Health, Shanghai, China
| | - Zhong Yi Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Key Lab of Glycoconjugate Research, Ministry of Public Health, Shanghai, China
| | - Bao Mei He
- Yu Ying Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xing Zhong Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Key Lab of Glycoconjugate Research, Ministry of Public Health, Shanghai, China.
| |
Collapse
|
26
|
Acetylation of the Cd8 Locus by KAT6A Determines Memory T Cell Diversity. Cell Rep 2018; 16:3311-3321. [PMID: 27653692 DOI: 10.1016/j.celrep.2016.08.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/21/2016] [Accepted: 08/17/2016] [Indexed: 11/20/2022] Open
Abstract
How functionally diverse populations of pathogen-specific killer T cells are generated during an immune response remains unclear. Here, we propose that fine-tuning of CD8αβ co-receptor levels via histone acetylation plays a role in lineage fate. We show that lysine acetyltransferase 6A (KAT6A) is responsible for maintaining permissive Cd8 gene transcription and enabling robust effector responses during infection. KAT6A-deficient CD8(+) T cells downregulated surface CD8 co-receptor expression during clonal expansion, a finding linked to reduced Cd8α transcripts and histone-H3 lysine 9 acetylation of the Cd8 locus. Loss of CD8 expression in KAT6A-deficient T cells correlated with reduced TCR signaling intensity and accelerated contraction of the effector-like memory compartment, whereas the long-lived memory compartment appeared unaffected, a result phenocopied by the removal of the Cd8 E8I enhancer element. These findings suggest a direct role of CD8αβ co-receptor expression and histone acetylation in shaping functional diversity within the cytotoxic T cell pool.
Collapse
|
27
|
Yan MS, Turgeon PJ, Man HSJ, Dubinsky MK, Ho JJD, El-Rass S, Wang YD, Wen XY, Marsden PA. Histone acetyltransferase 7 (KAT7)-dependent intragenic histone acetylation regulates endothelial cell gene regulation. J Biol Chem 2018; 293:4381-4402. [PMID: 29414790 DOI: 10.1074/jbc.ra117.001383] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/26/2018] [Indexed: 12/12/2022] Open
Abstract
Although the functional role of chromatin marks at promoters in mediating cell-restricted gene expression has been well characterized, the role of intragenic chromatin marks is not well understood, especially in endothelial cell (EC) gene expression. Here, we characterized the histone H3 and H4 acetylation profiles of 19 genes with EC-enriched expression via locus-wide chromatin immunoprecipitation followed by ultra-high-resolution (5 bp) tiling array analysis in ECs versus non-ECs throughout their genomic loci. Importantly, these genes exhibit differential EC enrichment of H3 and H4 acetylation in their promoter in ECs versus non-ECs. Interestingly, VEGFR-2 and VEGFR-1 show EC-enriched acetylation across broad intragenic regions and are up-regulated in non-ECs by histone deacetylase inhibition. It is unclear which histone acetyltransferases (KATs) are key to EC physiology. Depletion of KAT7 reduced VEGFR-2 expression and disrupted angiogenic potential. Microarray analysis of KAT7-depleted ECs identified 263 differentially regulated genes, many of which are key for growth and angiogenic potential. KAT7 inhibition in zebrafish embryos disrupted vessel formation and caused loss of circulatory integrity, especially hemorrhage, all of which were rescued with human KAT7. Notably, perturbed EC-enriched gene expression, especially the VEGFR-2 homologs, contributed to these vascular defects. Mechanistically, KAT7 participates in VEGFR-2 transcription by mediating RNA polymerase II binding, H3 lysine 14, and H4 acetylation in its intragenic region. Collectively, our findings support the importance of differential histone acetylation at both promoter and intragenic regions of EC genes and reveal a previously underappreciated role of KAT7 and intragenic histone acetylation in regulating VEGFR-2 and endothelial function.
Collapse
Affiliation(s)
- Matthew S Yan
- From the Departments of Medical Biophysics and.,Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and
| | - Paul J Turgeon
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and.,Laboratory Medicine and Pathobiology
| | - Hon-Sum Jeffrey Man
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and.,Institute of Medical Science, and
| | - Michelle K Dubinsky
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and.,Institute of Medical Science, and
| | - J J David Ho
- the Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 31336, and.,the Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida 31336
| | - Suzan El-Rass
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and.,Institute of Medical Science, and
| | - You-Dong Wang
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and.,Institute of Medical Science, and
| | - Xiao-Yan Wen
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and.,Institute of Medical Science, and
| | - Philip A Marsden
- From the Departments of Medical Biophysics and .,Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and.,Institute of Medical Science, and.,Department of Medicine, University of Toronto, Toronto, Ontario M5B 1T8, Canada
| |
Collapse
|
28
|
Abstract
There has been speculation as to how bi-potent CD4(+) CD8(+) double-positive precursor thymocytes choose their distinct developmental fate, becoming either CD4(+) helper or CD8(+) cytotoxic T cells. Based on the clear correlation of αβT cell receptor (TCR) specificity to major histocompatibility complex (MHC) classes with this lineage choice, various studies have attempted to resolve this question by examining the cellular signaling events initiated by TCR engagements, a strategy referred to as a 'top-down' approach. On the other hand, based on the other correlation of CD4/CD8 co-receptor expression with its selected fate, other studies have addressed this question by gradually unraveling the sequential mechanisms that control the phenotypic outcome of this fate decision, a method known as the 'bottom-up' approach. Bridging these two approaches will contribute to a more comprehensive understanding of how TCR signals are coupled with developmental programs in the nucleus. Advances made during the last two decades seemed to make these two approaches more closely linked. For instance, identification of two transcription factors, ThPOK and Runx3, which play central roles in the development of helper and cytotoxic lineages, respectively, provided significant insights into the transcriptional network that controls a CD4/CD8 lineage choice. This review summarizes achievements made using the 'bottom-up' approach, followed by a perspective on future pathways toward coupling TCR signaling with nuclear programs.
Collapse
Affiliation(s)
- Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| |
Collapse
|
29
|
Newman DM, Voss AK, Thomas T, Allan RS. Essential role for the histone acetyltransferase KAT7 in T cell development, fitness, and survival. J Leukoc Biol 2016; 101:887-892. [PMID: 27733580 DOI: 10.1189/jlb.1ma0816-338r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 12/18/2022] Open
Abstract
Histone acetylation has an important role in gene regulation, DNA replication, and repair. Because these processes are central to the development of the immune system, we investigated the role of a previously unstudied histone acetyltransferase named KAT7 (also known as Myst2 or HBO1) in the regulation of thymopoiesis and observed a critical role in the regulation of conventional and innate-like T cell development. We found that KAT7-deficient thymocytes displayed normal, positive selection and development into mature single-positive αβ thymocytes; however, we observed few peripheral CD4+ or CD8+ T cells. The observed effects did not appear to arise from alterations to DNA replication, the TCR repertoire, or a block in thymocyte maturation and, more likely, was linked to survival defects related to gene deregulation because KAT7 deficiency led to an almost complete and specific loss of global histone-H3 lysine 14 acetylation (H3K14ac). Overall, we demonstrated a nonredundant role for KAT7 in the maintenance of H3K14ac, which is intimately linked with the ability to develop a normal immune system.
Collapse
Affiliation(s)
- Dane M Newman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; and.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; and.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Tim Thomas
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; and.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Rhys S Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; and .,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
30
|
Cao W, Guo J, Wen X, Miao L, Lin F, Xu G, Ma R, Yin S, Hui Z, Chen T, Guo S, Chen W, Huang Y, Liu Y, Wang J, Wei L, Wang L. CXXC finger protein 1 is critical for T-cell intrathymic development through regulating H3K4 trimethylation. Nat Commun 2016; 7:11687. [PMID: 27210293 PMCID: PMC4879243 DOI: 10.1038/ncomms11687] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/19/2016] [Indexed: 02/07/2023] Open
Abstract
T-cell development in the thymus is largely controlled by an epigenetic program, involving in both DNA methylation and histone modifications. Previous studies have identified Cxxc1 as a regulator of both cytosine methylation and histone 3 lysine 4 trimethylation (H3K4me3). However, it is unknown whether Cxxc1 plays a role in thymocyte development. Here we show that T-cell development in the thymus is severely impaired in Cxxc1-deficient mice. Furthermore, we identify genome-wide Cxxc1-binding sites and H3K4me3 modification sites in wild-type and Cxxc1-deficient thymocytes. Our results demonstrate that Cxxc1 directly controls the expression of key genes important for thymocyte survival such as RORγt and for T-cell receptor signalling including Zap70 and CD8, through maintaining the appropriate H3K4me3 on their promoters. Importantly, we show that RORγt, a direct target of Cxxc1, can rescue the survival defects in Cxxc1-deficient thymocytes. Our data strongly support a critical role of Cxxc1 in thymocyte development.
Collapse
Affiliation(s)
- Wenqiang Cao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jing Guo
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaofeng Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Li Miao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Feng Lin
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Guanxin Xu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ruoyu Ma
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shengxia Yin
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhaoyuan Hui
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Tingting Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Shixin Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Wei Chen
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.,Division of Pulmonary Medicine, Allergy and Immunology, Department of Pediatrics, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224, USA
| | - Yingying Huang
- Core Facilities, College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jianli Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Lie Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
31
|
Yan K, You L, Degerny C, Ghorbani M, Liu X, Chen L, Li L, Miao D, Yang XJ. The Chromatin Regulator BRPF3 Preferentially Activates the HBO1 Acetyltransferase but Is Dispensable for Mouse Development and Survival. J Biol Chem 2015; 291:2647-63. [PMID: 26677226 DOI: 10.1074/jbc.m115.703041] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Indexed: 12/12/2022] Open
Abstract
To interpret epigenetic information, chromatin readers utilize various protein domains for recognition of DNA and histone modifications. Some readers possess multidomains for modification recognition and are thus multivalent. Bromodomain- and plant homeodomain-linked finger-containing protein 3 (BRPF3) is such a chromatin reader, containing two plant homeodomain-linked fingers, one bromodomain and a PWWP domain. However, its molecular and biological functions remain to be investigated. Here, we report that endogenous BRPF3 preferentially forms a tetrameric complex with HBO1 (also known as KAT7) and two other subunits but not with related acetyltransferases such as MOZ, MORF, TIP60, and MOF (also known as KAT6A, KAT6B, KAT5, and KAT8, respectively). We have also characterized a mutant mouse strain with a lacZ reporter inserted at the Brpf3 locus. Systematic analysis of β-galactosidase activity revealed dynamic spatiotemporal expression of Brpf3 during mouse embryogenesis and high expression in the adult brain and testis. Brpf3 disruption, however, resulted in no obvious gross phenotypes. This is in stark contrast to Brpf1 and Brpf2, whose loss causes lethality at E9.5 and E15.5, respectively. In Brpf3-null mice and embryonic fibroblasts, RT-quantitative PCR uncovered no changes in levels of Brpf1 and Brpf2 transcripts, confirming no compensation from them. These results indicate that BRPF3 forms a functional tetrameric complex with HBO1 but is not required for mouse development and survival, thereby distinguishing BRPF3 from its paralogs, BRPF1 and BRPF2.
Collapse
Affiliation(s)
- Kezhi Yan
- From the Rosalind and Morris Goodman Cancer Research Center, Departments of Biochemistry and Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Linya You
- From the Rosalind and Morris Goodman Cancer Research Center, Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Cindy Degerny
- From the Rosalind and Morris Goodman Cancer Research Center
| | - Mohammad Ghorbani
- From the Rosalind and Morris Goodman Cancer Research Center, Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Xin Liu
- From the Rosalind and Morris Goodman Cancer Research Center
| | - Lulu Chen
- the State Key Laboratory of Reproductive Medicine, Research Center for Bone and Stem Cells, Department of Human Anatomy, Nanjing Medical University, Nanjing 210029, China, and
| | - Lin Li
- From the Rosalind and Morris Goodman Cancer Research Center, Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Dengshun Miao
- the State Key Laboratory of Reproductive Medicine, Research Center for Bone and Stem Cells, Department of Human Anatomy, Nanjing Medical University, Nanjing 210029, China, and
| | - Xiang-Jiao Yang
- From the Rosalind and Morris Goodman Cancer Research Center, Departments of Biochemistry and Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada, the McGill University Health Center, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
32
|
Abstract
BACKGROUND High attrition rates in drug discovery call for new approaches to improve target validation. Academia is filling gaps, but often lacks the experience and resources of the pharmaceutical industry resulting in poorly characterized tool compounds. DISCUSSION The SGC has established an open access chemical probe consortium, currently encompassing ten pharmaceutical companies. One of its mandates is to create well-characterized inhibitors (chemical probes) for epigenetic targets to enable new biology and target validation for drug development. CONCLUSION Epigenetic probe compounds have proven to be very valuable and have not only spurred a plethora of novel biological findings, but also provided starting points for clinical trials. These probes have proven to be critical complementation to traditional genetic targeting strategies and provided sometimes surprising results.
Collapse
Affiliation(s)
- Peter J Brown
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Susanne Müller
- Structural Genomics Consortium, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7FZ, UK
| |
Collapse
|
33
|
Haery L, Thompson RC, Gilmore TD. Histone acetyltransferases and histone deacetylases in B- and T-cell development, physiology and malignancy. Genes Cancer 2015; 6:184-213. [PMID: 26124919 PMCID: PMC4482241 DOI: 10.18632/genesandcancer.65] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/12/2015] [Indexed: 12/31/2022] Open
Abstract
The development of B and T cells from hematopoietic precursors and the regulation of the functions of these immune cells are complex processes that involve highly regulated signaling pathways and transcriptional control. The signaling pathways and gene expression patterns that give rise to these developmental processes are coordinated, in part, by two opposing classes of broad-based enzymatic regulators: histone acetyltransferases (HATs) and histone deacetylases (HDACs). HATs and HDACs can modulate gene transcription by altering histone acetylation to modify chromatin structure, and by regulating the activity of non-histone substrates, including an array of immune-cell transcription factors. In addition to their role in normal B and T cells, dysregulation of HAT and HDAC activity is associated with a variety of B- and T-cell malignancies. In this review, we describe the roles of HATs and HDACs in normal B- and T-cell physiology, describe mutations and dysregulation of HATs and HDACs that are implicated lymphoma and leukemia, and discuss HAT and HDAC inhibitors that have been explored as treatment options for leukemias and lymphomas.
Collapse
Affiliation(s)
- Leila Haery
- Department of Biology, Boston University, Boston, MA, USA
| | | | | |
Collapse
|
34
|
Yang XJ. MOZ and MORF acetyltransferases: Molecular interaction, animal development and human disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1818-26. [PMID: 25920810 DOI: 10.1016/j.bbamcr.2015.04.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/17/2015] [Accepted: 04/22/2015] [Indexed: 01/16/2023]
Abstract
Lysine residues are subject to many forms of covalent modification and one such modification is acetylation of the ε-amino group. Initially identified on histone proteins in the 1960s, lysine acetylation is now considered as an important form of post-translational modification that rivals phosphorylation. However, only about a dozen of human lysine acetyltransferases have been identified. Among them are MOZ (monocytic leukemia zinc finger protein; a.k.a. MYST3 and KAT6A) and its paralog MORF (a.k.a. MYST4 and KAT6B). Although there is a distantly related protein in Drosophila and sea urchin, these two enzymes are vertebrate-specific. They form tetrameric complexes with BRPF1 (bromodomain- and PHD finger-containing protein 1) and two small non-catalytic subunits. These two acetyltransferases and BRPF1 play key roles in various developmental processes; for example, they are important for development of hematopoietic and neural stem cells. The human KAT6A and KAT6B genes are recurrently mutated in leukemia, non-hematologic malignancies, and multiple developmental disorders displaying intellectual disability and various other abnormalities. In addition, the BRPF1 gene is mutated in childhood leukemia and adult medulloblastoma. Therefore, these two acetyltransferases and their partner BRPF1 are important in animal development and human disease.
Collapse
Affiliation(s)
- Xiang-Jiao Yang
- The Rosalind & Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada; McGill University Health Center, Montreal, Quebec H3A 1A3, Canada.
| |
Collapse
|
35
|
You L, Yan K, Zou J, Zhao H, Bertos NR, Park M, Wang E, Yang XJ. The chromatin regulator Brpf1 regulates embryo development and cell proliferation. J Biol Chem 2015; 290:11349-64. [PMID: 25773539 DOI: 10.1074/jbc.m115.643189] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Indexed: 12/22/2022] Open
Abstract
With hundreds of chromatin regulators identified in mammals, an emerging issue is how they modulate biological and pathological processes. BRPF1 (bromodomain- and PHD finger-containing protein 1) is a unique chromatin regulator possessing two PHD fingers, one bromodomain and a PWWP domain for recognizing multiple histone modifications. In addition, it binds to the acetyltransferases MOZ, MORF, and HBO1 (also known as KAT6A, KAT6B, and KAT7, respectively) to promote complex formation, restrict substrate specificity, and enhance enzymatic activity. We have recently showed that ablation of the mouse Brpf1 gene causes embryonic lethality at E9.5. Here we present systematic analyses of the mutant animals and demonstrate that the ablation leads to vascular defects in the placenta, yolk sac, and embryo proper, as well as abnormal neural tube closure. At the cellular level, Brpf1 loss inhibits proliferation of embryonic fibroblasts and hematopoietic progenitors. Molecularly, the loss reduces transcription of a ribosomal protein L10 (Rpl10)-like gene and the cell cycle inhibitor p27, and increases expression of the cell-cycle inhibitor p16 and a novel protein homologous to Scp3, a synaptonemal complex protein critical for chromosome association and embryo survival. These results uncover a crucial role of Brpf1 in controlling mouse embryo development and regulating cellular and gene expression programs.
Collapse
Affiliation(s)
- Linya You
- From the The Rosalind and Morris Goodman Cancer Research Center, Department of Medicine, and
| | - Kezhi Yan
- From the The Rosalind and Morris Goodman Cancer Research Center, Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3
| | - Jinfeng Zou
- National Research Council Canada, Montreal, Quebec H4P 2R2, and
| | - Hong Zhao
- From the The Rosalind and Morris Goodman Cancer Research Center
| | | | - Morag Park
- From the The Rosalind and Morris Goodman Cancer Research Center, Department of Medicine, and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, McGill University Health Center, Montreal, Quebec H3A 1A3, Canada
| | - Edwin Wang
- National Research Council Canada, Montreal, Quebec H4P 2R2, and
| | - Xiang-Jiao Yang
- From the The Rosalind and Morris Goodman Cancer Research Center, Department of Medicine, and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, McGill University Health Center, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|