1
|
Chong SH, Oshima H, Sugita Y. Allosteric Changes in the Conformational Landscape of Src Kinase upon Substrate Binding. J Mol Biol 2024:168871. [PMID: 39566715 DOI: 10.1016/j.jmb.2024.168871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Precise regulation of protein kinase activity is crucial in cell functions, and its loss is implicated in various diseases. The kinase activity is regulated by interconverting active and inactive states in the conformational landscape. However, how protein kinases switch conformations in response to different signals such as the binding at distinct sites remains incompletely understood. Here, we predict the binding mode for the peptide substrate to Src tyrosine kinase using enhanced conformational sampling simulations (totaling 24 μs) and then investigate changes in the conformational landscape upon substrate binding by conducting unbiased molecular dynamics simulations (totaling 50 μs) initiated from the apo and substrate-bound forms. Unexpectedly, the peptide substrate binding significantly facilitates the transitions from active to inactive conformations in which the αC helix is directed outward, the regulatory spine is broken, and the ATP-binding domain is perturbed. We also explore an underlying residue-contact network responsible for the allosteric conformational changes. Our results are in accord with the recent experiments reporting the negative cooperativity between the peptide substrate and ATP binding to tyrosine kinases and will contribute to advancing our understanding of the regulation mechanisms for kinase activity.
Collapse
Affiliation(s)
- Song-Ho Chong
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan; Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiraku Oshima
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan; Graduate School of Science, University of Hyogo, Hyogo, Japan
| | - Yuji Sugita
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan; Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Japan; Theoretical Molecular Science Laboratory, RIKEN Center for Pioneering Research, Saitama, Japan.
| |
Collapse
|
2
|
Olivieri C, Wang Y, Walker C, Subrahmanian MV, Ha KN, Bernlohr D, Gao J, Camilloni C, Vendruscolo M, Taylor SS, Veglia G. The αC-β4 loop controls the allosteric cooperativity between nucleotide and substrate in the catalytic subunit of protein kinase A. eLife 2024; 12:RP91506. [PMID: 38913408 PMCID: PMC11196109 DOI: 10.7554/elife.91506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
Allosteric cooperativity between ATP and substrates is a prominent characteristic of the cAMP-dependent catalytic subunit of protein kinase A (PKA-C). This long-range synergistic action is involved in substrate recognition and fidelity, and it may also regulate PKA's association with regulatory subunits and other binding partners. To date, a complete understanding of this intramolecular mechanism is still lacking. Here, we integrated NMR(Nuclear Magnetic Resonance)-restrained molecular dynamics simulations and a Markov State Model to characterize the free energy landscape and conformational transitions of PKA-C. We found that the apoenzyme populates a broad free energy basin featuring a conformational ensemble of the active state of PKA-C (ground state) and other basins with lower populations (excited states). The first excited state corresponds to a previously characterized inactive state of PKA-C with the αC helix swinging outward. The second excited state displays a disrupted hydrophobic packing around the regulatory (R) spine, with a flipped configuration of the F100 and F102 residues at the αC-β4 loop. We validated the second excited state by analyzing the F100A mutant of PKA-C, assessing its structural response to ATP and substrate binding. While PKA-CF100A preserves its catalytic efficiency with Kemptide, this mutation rearranges the αC-β4 loop conformation, interrupting the coupling of the two lobes and abolishing the allosteric binding cooperativity. The highly conserved αC-β4 loop emerges as a pivotal element to control the synergistic binding of nucleotide and substrate, explaining how mutations or insertions near or within this motif affect the function and drug sensitivity in homologous kinases.
Collapse
Affiliation(s)
- Cristina Olivieri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Yingjie Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
- Department of Chemistry and Supercomputing Institute, University of MinnesotaMinneapolisUnited States
| | - Caitlin Walker
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
| | | | - Kim N Ha
- Department of Chemistry and Biochemistry, St. Catherine UniversityMinneapolisUnited States
| | - David Bernlohr
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Jiali Gao
- Department of Chemistry and Supercomputing Institute, University of MinnesotaMinneapolisUnited States
| | - Carlo Camilloni
- Department of Chemistry, University of CambridgeCambridgeUnited Kingdom
| | | | - Susan S Taylor
- Department of Pharmacology, University of California at San DiegoSan DiegoUnited States
- Department of Chemistry and Biochemistry, University of California at San DiegoSan DiegoUnited States
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
- Department of Chemistry and Supercomputing Institute, University of MinnesotaMinneapolisUnited States
| |
Collapse
|
3
|
Inoue M, Ekimoto T, Yamane T, Ikeguchi M. Computational Analysis of Activation of Dimerized Epidermal Growth Factor Receptor Kinase Using the String Method and Markov State Model. J Chem Inf Model 2024; 64:3884-3895. [PMID: 38670929 DOI: 10.1021/acs.jcim.4c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Epidermal growth factor receptor (EGFR) activation is accompanied by dimerization. During the activation of the intracellular kinase domain, two EGFR kinases form an asymmetric dimer, and one side of the dimer (receiver) is activated. Using the string method and Markov state model (MSM), we performed a computational analysis of the structural changes in the activation of the EGFR dimer in this study. The string method reveals the minimum free-energy pathway (MFEP) from the inactive to active structure. The MSM was constructed from numerous trajectories of molecular dynamics simulations around the MFEP, which revealed the free-energy map of structural changes. In the activation of the receiver kinase, the unfolding of the activation loop (A-loop) is followed by the rearrangement of the C-helix, as observed in other kinases. However, unlike other kinases, the free-energy map of EGFR at the asymmetric dimer showed that the active state yielded the highest stability and revealed how interactions at the dimer interface induced receiver activation. As the H-helix of the activator approaches the C-helix of the receiver during activation, the A-loop unfolds. Subsequently, L782 of the receiver enters the pocket between the G- and H-helices of the activator, leading to a rearrangement of the hydrophobic residues around L782 of the receiver, which constitutes a structural rearrangement of the C-helix of the receiver from an outward to an inner position. The MSM analysis revealed long-time scale trajectories via kinetic Monte Carlo.
Collapse
Affiliation(s)
- Masao Inoue
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tsutomu Yamane
- HPC- and AI-driven Drug Development Platform Division, Center for Computational Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- HPC- and AI-driven Drug Development Platform Division, Center for Computational Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
4
|
Lesgidou N, Vlassi M. Community analysis of large-scale molecular dynamics simulations elucidated dynamics-driven allostery in tyrosine kinase 2. Proteins 2024; 92:474-498. [PMID: 37950407 DOI: 10.1002/prot.26631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
TYK2 is a nonreceptor tyrosine kinase, member of the Janus kinases (JAK), with a central role in several diseases, including cancer. The JAKs' catalytic domains (KD) are highly conserved, yet the isolated TYK2-KD exhibits unique specificities. In a previous work, using molecular dynamics (MD) simulations of a catalytically impaired TYK2-KD variant (P1104A) we found that this amino acid change of its JAK-characteristic insert (αFG), acts at the dynamics level. Given that structural dynamics is key to the allosteric activation of protein kinases, in this study we applied a long-scale MD simulation and investigated an active TYK2-KD form in the presence of adenosine 5'-triphosphate and one magnesium ion that represents a dynamic and crucial step of the catalytic cycle, in other protein kinases. Community analysis of the MD trajectory shed light, for the first time, on the dynamic profile and dynamics-driven allosteric communications within the TYK2-KD during activation and revealed that αFG and amino acids P1104, P1105, and I1112 in particular, hold a pivotal role and act synergistically with a dynamically coupled communication network of amino acids serving intra-KD signaling for allosteric regulation of TYK2 activity. Corroborating our findings, most of the identified amino acids are associated with cancer-related missense/splice-site mutations of the Tyk2 gene. We propose that the conformational dynamics at this step of the catalytic cycle, coordinated by αFG, underlie TYK2-unique substrate recognition and account for its distinct specificity. In total, this work adds to knowledge towards an in-depth understanding of TYK2 activation and may be valuable towards a rational design of allosteric TYK2-specific inhibitors.
Collapse
Affiliation(s)
- Nastazia Lesgidou
- National Center for Scientific Research "Demokritos", Institute of Biosciences & Applications, Athens, Greece
| | - Metaxia Vlassi
- National Center for Scientific Research "Demokritos", Institute of Biosciences & Applications, Athens, Greece
| |
Collapse
|
5
|
Zhu Y, Ding W, Chen Y, Shan Y, Liu C, Fan X, Lin S, Chen PR. Genetically encoded bioorthogonal tryptophan decaging in living cells. Nat Chem 2024; 16:533-542. [PMID: 38418535 DOI: 10.1038/s41557-024-01463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/29/2024] [Indexed: 03/01/2024]
Abstract
Tryptophan (Trp) plays a critical role in the regulation of protein structure, interactions and functions through its π system and indole N-H group. A generalizable method for blocking and rescuing Trp interactions would enable the gain-of-function manipulation of various Trp-containing proteins in vivo, but generating such a platform remains challenging. Here we develop a genetically encoded N1-vinyl-caged Trp capable of rapid and bioorthogonal decaging through an optimized inverse electron-demand Diels-Alder reaction, allowing site-specific activation of Trp on a protein of interest in living cells. This chemical activation of a genetically encoded caged-tryptophan (Trp-CAGE) strategy enables precise activation of the Trp of interest underlying diverse important molecular interactions. We demonstrate the utility of Trp-CAGE across various protein families, such as catalase-peroxidases and kinases, as translation initiators and posttranslational modification readers, allowing the modulation of epigenetic signalling in a temporally controlled manner. Coupled with computer-aided prediction, our strategy paves the way for bioorthogonal Trp activation on more than 28,000 candidate proteins within their native cellular settings.
Collapse
Affiliation(s)
- Yuchao Zhu
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Wenlong Ding
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yulin Chen
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China
| | - Ye Shan
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Chao Liu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China
| | - Xinyuan Fan
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| | - Shixian Lin
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China.
- Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Peng R Chen
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
6
|
Lee JY, Gebauer E, Seeliger MA, Bahar I. Allo-targeting of the kinase domain: Insights from in silico studies and comparison with experiments. Curr Opin Struct Biol 2024; 84:102770. [PMID: 38211377 PMCID: PMC11044982 DOI: 10.1016/j.sbi.2023.102770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/13/2024]
Abstract
The eukaryotic protein kinase domain has been a broadly explored target for drug discovery, despite limitations imposed by its high sequence conservation as a shared modular domain and the development of resistance to drugs. One way of addressing those limitations has been to target its potential allosteric sites, shortly called allo-targeting, in conjunction with, or separately from, its conserved catalytic/orthosteric site that has been widely exploited. Allosteric regulation has gained importance as an alternative to overcome the drawbacks associated with the indiscriminate effect of targeting the active site, and it turned out to be particularly useful for these highly promiscuous and broadly shared kinase domains. Yet, allo-targeting often faces challenges as the allosteric sites are not as clearly defined as its orthosteric sites, and the effect on the protein function may not be unambiguously assessed. A robust understanding of the consequence of site-specific allo-targeting on the conformational dynamics of the target protein is essential to design effective allo-targeting strategies. Recent years have seen important advances in in silico identification of druggable sites and distinguishing among them those sites expected to allosterically mediate conformational switches essential to signal transmission. The present opinion underscores the utility of such computational approaches applied to the kinase domain, with the help of comparison between computational predictions and experimental observations.
Collapse
Affiliation(s)
- Ji Young Lee
- Laufer Center for Physical & Quantitative Biology, Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook University, NY 11794, USA
| | - Emma Gebauer
- Laufer Center for Physical & Quantitative Biology, Department of Pharmacological Sciences, School of Medicine, Stony Brook University, NY 11794, USA
| | - Markus A Seeliger
- Laufer Center for Physical & Quantitative Biology, Department of Pharmacological Sciences, School of Medicine, Stony Brook University, NY 11794, USA.
| | - Ivet Bahar
- Laufer Center for Physical & Quantitative Biology, Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook University, NY 11794, USA.
| |
Collapse
|
7
|
Balasundaram A, C Doss GP. Comparative Atomistic Insights on Apo and ATP-I1171N/S/T in Nonsmall-Cell Lung Cancer. ACS OMEGA 2023; 8:43856-43872. [PMID: 38027370 PMCID: PMC10666221 DOI: 10.1021/acsomega.3c05785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/21/2023] [Indexed: 12/01/2023]
Abstract
Anaplastic lymphoma kinase (ALK) rearrangements occur in about 5% of nonsmall cell lung cancer (NSCLC) patients. Despite being first recognized as EML4-ALK, fusions with several additional genes have been identified, all of which cause constitutive activation of the ALK kinase and subsequently lead to tumor development. ALK inhibitors first-line crizotinib, second-line ceritinib, and alectinib are effective against NSCLC patients with these rearrangements. Patients progressing on crizotinib had various mutations in the ALK kinase domain. ALK fusion proteins are activated by oligomerization through the fusion partner, which leads to the autophosphorylation of the kinase's domain and consequent downstream activation. The proposed computational study focuses on understanding the activation mechanism of ALK and ATP binding of wild-type (WT) and I1171N/S/T mutations. We analyzed the conformational change of ALK I1171N/S/T mutations and ATP binding using molecular docking and molecular dynamics simulation approaches. According to principal component analysis and free energy landscape, it is clear that I1171N/S/T mutations in Apo and ATP showed different energy minima/unstable structures compared to WT-Apo. The results revealed that I1171N/S/T mutations and ATP binding significantly supported a change toward an active-state conformation, whereas WT-Apo remained inactive. We demonstrated that I1171N/S/T mutations are persistent in an active state and independent of ATP. The I1171S/T mutations showed greater intermolecular H-bonds with ATP than WT-ATP. The molecular mechanics Poisson-Boltzmann surface area analysis revealed that the I1171N/S/T mutation binding energy was similar to that of WT-ATP. This study shows that I1171N/S/T can form stable bonds with ATP and may contribute to a constitutively active kinase. Based on the Y1278-C1097 H-bond and E1167-K1150 salt bridge interaction, I1171N strongly promotes the constitutively active kinase independent of ATP. This structural mechanism study will aid in understanding the oncogenic activity of ALK and the basis for improving the ALK inhibitors.
Collapse
Affiliation(s)
- Ambritha Balasundaram
- Laboratory of Integrative Genomics,
Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - George Priya C Doss
- Laboratory of Integrative Genomics,
Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
8
|
Faezov B, Dunbrack RL. AlphaFold2 models of the active form of all 437 catalytically competent human protein kinase domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550125. [PMID: 37547017 PMCID: PMC10401967 DOI: 10.1101/2023.07.21.550125] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Humans have 437 catalytically competent protein kinase domains with the typical kinase fold, similar to the structure of Protein Kinase A (PKA). Only 155 of these kinases are in the Protein Data Bank in their active form. The active form of a kinase must satisfy requirements for binding ATP, magnesium, and substrate. From structural bioinformatics analysis of 40 unique substrate-bound kinases, we derived several criteria for the active form of protein kinases. We include requirements on the DFG motif of the activation loop but also on the positions of the N-terminal and C-terminal segments of the activation loop that must be placed appropriately to bind substrate. Because the active form of catalytic kinases is needed for understanding substrate specificity and the effects of mutations on catalytic activity in cancer and other diseases, we used AlphaFold2 to produce models of all 437 human protein kinases in the active form. This was accomplished with templates in the active form from the PDB and shallow multiple sequence alignments of orthologs and close homologs of the query protein. We selected models for each kinase based on the pLDDT scores of the activation loop residues, demonstrating that the highest scoring models have the lowest or close to the lowest RMSD to 22 non-redundant substrate-bound structures in the PDB. A larger benchmark of all 130 active kinase structures with complete activation loops in the PDB shows that 80% of the highest-scoring AlphaFold2 models have RMSD < 1.0 Å and 90% have RMSD < 2.0 Å over the activation loop backbone atoms. Models for all 437 catalytic kinases are available at http://dunbrack.fccc.edu/kincore/activemodels. We believe they may be useful for interpreting mutations leading to constitutive catalytic activity in cancer as well as for templates for modeling substrate and inhibitor binding for molecules which bind to the active state.
Collapse
Affiliation(s)
- Bulat Faezov
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia PA 19111, USA
- Kazan Federal University, Kazan, Russian Federation
| | - Roland L. Dunbrack
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia PA 19111, USA
| |
Collapse
|
9
|
Liang Y, Qie Y, Yang J, Wu R, Cui S, Zhao Y, Anderson GJ, Nie G, Li S, Zhang C. Programming conformational cooperativity to regulate allosteric protein-oligonucleotide signal transduction. Nat Commun 2023; 14:4898. [PMID: 37580346 PMCID: PMC10425332 DOI: 10.1038/s41467-023-40589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023] Open
Abstract
Conformational cooperativity is a universal molecular effect mechanism and plays a critical role in signaling pathways. However, it remains a challenge to develop artificial molecular networks regulated by conformational cooperativity, due to the difficulties in programming and controlling multiple structural interactions. Herein, we develop a cooperative strategy by programming multiple conformational signals, rather than chemical signals, to regulate protein-oligonucleotide signal transduction, taking advantage of the programmability of allosteric DNA constructs. We generate a cooperative regulation mechanism, by which increasing the loop lengths at two different structural modules induced the opposite effects manifesting as down- and up-regulation. We implement allosteric logic operations by using two different proteins. Further, in cell culture we demonstrate the feasibility of this strategy to cooperatively regulate gene expression of PLK1 to inhibit tumor cell proliferation, responding to orthogonal protein-signal stimulation. This programmable conformational cooperativity paradigm has potential applications in the related fields.
Collapse
Affiliation(s)
- Yuan Liang
- School of Computer Science, Key Lab of High Confidence Software Technologies, Peking University, 100871, Beijing, China
- School of Control and Computer Engineering, North China Electric Power University, 102206, Beijing, China
| | - Yunkai Qie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- GBA Research Innovation Institute for Nanotechnology, Guangzhou, 510530, China
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jing Yang
- School of Control and Computer Engineering, North China Electric Power University, 102206, Beijing, China
| | - Ranfeng Wu
- School of Computer Science, Key Lab of High Confidence Software Technologies, Peking University, 100871, Beijing, China
| | - Shuang Cui
- School of Computer Science, Key Lab of High Confidence Software Technologies, Peking University, 100871, Beijing, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- GBA Research Innovation Institute for Nanotechnology, Guangzhou, 510530, China
| | - Greg J Anderson
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Herston, Queensland, 4029, Australia
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- GBA Research Innovation Institute for Nanotechnology, Guangzhou, 510530, China
| | - Suping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- GBA Research Innovation Institute for Nanotechnology, Guangzhou, 510530, China.
| | - Cheng Zhang
- School of Computer Science, Key Lab of High Confidence Software Technologies, Peking University, 100871, Beijing, China.
| |
Collapse
|
10
|
Chau AK, Bracken K, Bai L, Pham D, Good L, Maillard RA. Conformational changes in Protein Kinase A along its activation cycle are rooted in the folding energetics of cyclic-nucleotide binding domains. J Biol Chem 2023:104790. [PMID: 37150322 DOI: 10.1016/j.jbc.2023.104790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/09/2023] Open
Abstract
Cyclic-nucleotide binding (CNB) domains are structurally and evolutionarily conserved signaling modules that regulate proteins with diverse folds and functions. Despite a wealth of structural information, the mechanisms by which CNB domains couple cyclic-nucleotide binding to conformational changes involved in signal transduction remain unknown. Here we combined single-molecule and computational approaches to investigate the conformation and folding energetics of the two CNB domains of the regulatory subunit of protein kinase A (PKA). We found that the CNB domains exhibit different conformational and folding signatures in the apo state, when bound to cAMP, or when bound to the PKA catalytic subunit, underscoring their ability to adapt to different binding partners. Moreover, we show while the two CNB domains have near-identical structures, their thermodynamic coupling signatures are divergent, leading to distinct cAMP responses and differential mutational effects. Specifically, we demonstrate the mutation W260A exerts local and allosteric effects that impact multiple steps of the PKA activation cycle. Taken together, these results highlight the complex interplay between folding energetics, conformational dynamics, and thermodynamic signatures that underlies structurally conserved signaling modules in response to ligand binding and mutational effects.
Collapse
Affiliation(s)
- Amy K Chau
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | - Katherine Bracken
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | - Lihui Bai
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | - Dominic Pham
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | - Lydia Good
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | - Rodrigo A Maillard
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
11
|
Mingione VR, Paung Y, Outhwaite IR, Seeliger MA. Allosteric regulation and inhibition of protein kinases. Biochem Soc Trans 2023; 51:373-385. [PMID: 36794774 PMCID: PMC10089111 DOI: 10.1042/bst20220940] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/17/2023]
Abstract
The human genome encodes more than 500 different protein kinases: signaling enzymes with tightly regulated activity. Enzymatic activity within the conserved kinase domain is influenced by numerous regulatory inputs including the binding of regulatory domains, substrates, and the effect of post-translational modifications such as autophosphorylation. Integration of these diverse inputs occurs via allosteric sites that relate signals via networks of amino acid residues to the active site and ensures controlled phosphorylation of kinase substrates. Here, we review mechanisms of allosteric regulation of protein kinases and recent advances in the field.
Collapse
Affiliation(s)
- Victoria R. Mingione
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - YiTing Paung
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ian R. Outhwaite
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Markus A. Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
12
|
Cui M, Zhang D, Wang Q, Chao J. An intelligent, autocatalytic, DNAzyme biocircuit for amplified imaging of intracellular microRNAs. NANOSCALE 2023; 15:578-587. [PMID: 36533380 DOI: 10.1039/d2nr05165f] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
DNAzymes hold great promise as transducing agents for the analysis of intracellular biomarkers. However, their low intracellular delivery efficiency and limited signal amplification capability (including an additional supply of cofactors) hinder their application in low-abundance biomarker analysis. Herein, a general strategy to design an intelligent, autocatalytic, DNAzyme biocircuit is developed for amplified microRNA imaging in living cells. The DNAzyme biocircuit is constructed based on a nanodevice composed of catalytic hairpin assembly (CHA) and DNAzyme biocatalytic functional units, sustained by Au nanoparticles (AuNPs) and MnO2 nanosheets (CD/AM nanodevices). Once the CD/AM nanodevices are endocytosed by cells, the MnO2 nanosheets are reduced by intracellular glutathione (GSH), which not only releases the different units of the DNAzyme circuit, but also generates the cofactor Mn2+ for DNAzyme autocatalysis. The intracellular analytes could trigger the coordinated cross-activation of CHA and autocatalytic DNAzymes on AuNPs, enabling reliable and accurate detection of miRNAs in living cells. This intelligent autocatalytic multilayer DNAzyme biocircuit can effectively avoid signal leakage and obtain high amplification gain, expanding the application of programmable complex DNA nanocircuits in biosensing, nanomaterial assembly, and biomedicine.
Collapse
Affiliation(s)
- Meirong Cui
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Dan Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Qingfu Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Jie Chao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| |
Collapse
|
13
|
Krishnan K, Tian H, Tao P, Verkhivker GM. Probing conformational landscapes and mechanisms of allosteric communication in the functional states of the ABL kinase domain using multiscale simulations and network-based mutational profiling of allosteric residue potentials. J Chem Phys 2022; 157:245101. [PMID: 36586979 PMCID: PMC11184971 DOI: 10.1063/5.0133826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
In the current study, multiscale simulation approaches and dynamic network methods are employed to examine the dynamic and energetic details of conformational landscapes and allosteric interactions in the ABL kinase domain that determine the kinase functions. Using a plethora of synergistic computational approaches, we elucidate how conformational transitions between the active and inactive ABL states can employ allosteric regulatory switches to modulate intramolecular communication networks between the ATP site, the substrate binding region, and the allosteric binding pocket. A perturbation-based network approach that implements mutational profiling of allosteric residue propensities and communications in the ABL states is proposed. Consistent with biophysical experiments, the results reveal functionally significant shifts of the allosteric interaction networks in which preferential communication paths between the ATP binding site and substrate regions in the active ABL state become suppressed in the closed inactive ABL form, which in turn features favorable allosteric coupling between the ATP site and the allosteric binding pocket. By integrating the results of atomistic simulations with dimensionality reduction methods and Markov state models, we analyze the mechanistic role of macrostates and characterize kinetic transitions between the ABL conformational states. Using network-based mutational scanning of allosteric residue propensities, this study provides a comprehensive computational analysis of long-range communications in the ABL kinase domain and identifies conserved regulatory hotspots that modulate kinase activity and allosteric crosstalk between the allosteric pocket, ATP binding site, and substrate binding regions.
Collapse
Affiliation(s)
| | - Hao Tian
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, USA
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, USA
| | - Gennady M. Verkhivker
- Author to whom correspondence should be addressed: . Telephone: 714-516-4586. Fax: 714-532-6048
| |
Collapse
|
14
|
Olivieri C, Li GC, Wang Y, V.S. M, Walker C, Kim J, Camilloni C, De Simone A, Vendruscolo M, Bernlohr DA, Taylor SS, Veglia G. ATP-competitive inhibitors modulate the substrate binding cooperativity of a kinase by altering its conformational entropy. SCIENCE ADVANCES 2022; 8:eabo0696. [PMID: 35905186 PMCID: PMC9337769 DOI: 10.1126/sciadv.abo0696] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
ATP-competitive inhibitors are currently the largest class of clinically approved drugs for protein kinases. By targeting the ATP-binding pocket, these compounds block the catalytic activity, preventing substrate phosphorylation. A problem with these drugs, however, is that inhibited kinases may still recognize and bind downstream substrates, acting as scaffolds or binding hubs for signaling partners. Here, using protein kinase A as a model system, we show that chemically different ATP-competitive inhibitors modulate the substrate binding cooperativity by tuning the conformational entropy of the kinase and shifting the populations of its conformationally excited states. Since we found that binding cooperativity and conformational entropy of the enzyme are correlated, we propose a new paradigm for the discovery of ATP-competitive inhibitors, which is based on their ability to modulate the allosteric coupling between nucleotide and substrate-binding sites.
Collapse
Affiliation(s)
- Cristina Olivieri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Geoffrey C. Li
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yingjie Wang
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Manu V.S.
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Caitlin Walker
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jonggul Kim
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carlo Camilloni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano 20133, Italy
| | - Alfonso De Simone
- Department of Pharmacy, Università degli Studi di Napoli Federico II, Napoli 80131, Italy
| | | | - David A. Bernlohr
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Susan S. Taylor
- Department of Chemistry and Biochemistry, and Pharmacology, University of California at San Diego, CA 92093, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
15
|
Otsuka FAM, Bjelic S. Evaluation of residue variability in a conformation-specific context and during evolutionary sequence reconstruction narrows drug resistance selection in Abl1 tyrosine kinase. Protein Sci 2022; 31:e4354. [PMID: 35762721 PMCID: PMC9202545 DOI: 10.1002/pro.4354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/31/2022] [Accepted: 05/10/2022] [Indexed: 11/12/2022]
Abstract
Diseases with readily available therapies may eventually prevail against the specific treatment by the acquisition of resistance. The constitutively active Abl1 tyrosine kinase known to cause chronic myeloid leukemia is an example, where patients may experience relapse after small inhibitor drug treatment. Mutations in the Abl1 tyrosine kinase domain (Abl1-KD) are a critical source of resistance and their emergence depends on the conformational states that have been observed experimentally: the inactive state, the active state, and the intermediate inactive state that resembles Src kinase. Understanding how resistant positions and amino acid identities are determined by selection pressure during drug treatment is necessary to improve future drug development or treatment decisions. We carry out in silico site-saturation mutagenesis over the Abl1-KD structure in a conformational context to evaluate the in situ and conformational stability energy upon mutation. Out of the 11 studied resistant positions, we determined that 7 of the resistant mutations favored the active conformation of Abl1-KD with respect to the inactive state. When, instead, the sequence optimization was modeled simultaneously at resistant positions, we recovered five known resistant mutations in the active conformation. These results suggested that the Abl1 resistance mechanism targeted substitutions that favored the active conformation. Further sequence variability, explored by ancestral reconstruction in Abl1-KD, showed that neutral genetic drift, with respect to amino acid variability, was specifically diminished in the resistant positions. Since resistant mutations are susceptible to chance with a certain probability of fixation, combining methodologies outlined here may narrow and limit the available sequence space for resistance to emerge, resulting in more robust therapeutic treatments over time.
Collapse
MESH Headings
- Amino Acids
- Drug Resistance, Neoplasm/genetics
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myeloid, Chronic-Phase/drug therapy
- Leukemia, Myeloid, Chronic-Phase/genetics
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-abl/genetics
Collapse
Affiliation(s)
- Felipe A. M. Otsuka
- Department of Chemistry and Biomedical SciencesLinnaeus UniversityKalmarSweden
- Departamento de Bioquímica, Instituto de QuímicaUniversidade de São PauloSão PauloBrazil
| | - Sinisa Bjelic
- Department of Chemistry and Biomedical SciencesLinnaeus UniversityKalmarSweden
| |
Collapse
|
16
|
Mingione VR, Foda Z, Paung Y, Philipose H, Rangwala AM, Shan Y, Seeliger MA. Validation of an allosteric binding site of Src kinase identified by unbiased ligand binding simulations. J Mol Biol 2022; 434:167628. [PMID: 35595169 DOI: 10.1016/j.jmb.2022.167628] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/13/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
Allostery plays a primary role in regulating protein activity, making it an important mechanism in human disease and drug discovery. Identifying allosteric regulatory sites to explore their biological significance and therapeutic potential is invaluable to drug discovery; however, identification remains a challenge. Allosteric sites are often "cryptic" without clear geometric or chemical features. Since allosteric regulatory sites are often less conserved in protein kinases than the orthosteric ATP binding site, allosteric ligands are commonly more specific than ATP competitive inhibitors. We present a generalizable computational protocol to predict allosteric ligand binding sites based on unbiased ligand binding simulation trajectories. We demonstrate the feasibility of this protocol by revisiting our previously published ligand binding simulations using the first identified viral proto-oncogene, Src kinase, as a model system. The binding paths for kinase inhibitor PP1 uncovered three metastable intermediate states before binding the high-affinity ATP-binding pocket, revealing two previously known allosteric sites and one novel site. Herein, we validate the novel site using a combination of virtual screening and experimental assays to identify a v-type allosteric small-molecule inhibitor that targets this novel site with specificity for Src over closely related kinases. This study provides a proof-of-concept for employing unbiased ligand binding simulations to identify cryptic allosteric binding sites and is widely applicable to other protein-ligand systems.
Collapse
Affiliation(s)
- Victoria R Mingione
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Zachariah Foda
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - YiTing Paung
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Hannah Philipose
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Aziz M Rangwala
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yibing Shan
- Antidote Health Foundation for Cure of Cancer, Cambridge, MA 02139, USA.
| | - Markus A Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
17
|
Zhang C, Ma X, Zheng X, Ke Y, Chen K, Liu D, Lu Z, Yang J, Yan H. Programmable allosteric DNA regulations for molecular networks and nanomachines. SCIENCE ADVANCES 2022; 8:eabl4589. [PMID: 35108052 PMCID: PMC8809682 DOI: 10.1126/sciadv.abl4589] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Structure-based molecular regulations have been widely adopted to modulate protein networks in cells and recently developed to control allosteric DNA operations in vitro. However, current examples of programmable allosteric signal transmission through integrated DNA networks are stringently constrained by specific design requirements. Developing a new, more general, and programmable scheme for establishing allosteric DNA networks remains challenging. Here, we developed a general strategy for programmable allosteric DNA regulations that can be finely tuned by varying the dimensions, positions, and number of conformational signals. By programming the allosteric signals, we realized fan-out/fan-in DNA gates and multiple-layer DNA cascading networks, as well as expanding the approach to long-range allosteric signal transmission through tunable DNA origami nanomachines ~100 nm in size. This strategy will enable programmable and complex allosteric DNA networks and nanodevices for nanoengineering, chemical, and biomedical applications displaying sense-compute-actuate molecular functionalities.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Computer Science, Key Lab of High Confidence Software Technologies, Peking University, Beijing 100871, China
- Corresponding author. (C.Z.); (J.Y.); (H.Y.)
| | - Xueying Ma
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
- Bio-evidence Sciences Academy, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Xuedong Zheng
- College of Computer Science, Shenyang Aerospace University, Shenyang 110136, China
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Kuiting Chen
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
| | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zuhong Lu
- The State Key Laboratory of Bioelectronics, Southeast University, Nanjing 211189, China
| | - Jing Yang
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
- Corresponding author. (C.Z.); (J.Y.); (H.Y.)
| | - Hao Yan
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
- Corresponding author. (C.Z.); (J.Y.); (H.Y.)
| |
Collapse
|
18
|
Rangwala AM, Berger BT, Robers MB, Knapp S, Seeliger MA. Resistance to kinase inhibition through shortened target engagement. Mol Cell Oncol 2022; 9:2029999. [PMID: 35252553 PMCID: PMC8890393 DOI: 10.1080/23723556.2022.2029999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 12/03/2022]
Abstract
Imatinib, a selective inhibitor of the breakpoint cluster region (BCR)-ABL kinase, is the poster child for targeted cancer therapeutics. However, its efficacy is limited by resistance mutations. Using a quantitative bioluminescence resonance energy transfer assay in living cells, we identified ABL kinase mutations that could cause imatinib resistance by altering drug residence time.
Collapse
Affiliation(s)
- Aziz M. Rangwala
- Department of Pharmacological Sciences, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| | - Benedict-Tilman Berger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Matthew B. Robers
- Research and Development Department, Promega Corporation, Fitchburg, WI, USA
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Markus A. Seeliger
- Department of Pharmacological Sciences, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| |
Collapse
|
19
|
Molecular mechanism of glycolytic flux control intrinsic to human phosphoglycerate kinase. Proc Natl Acad Sci U S A 2021; 118:2112986118. [PMID: 34893542 DOI: 10.1073/pnas.2112986118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 01/17/2023] Open
Abstract
Glycolysis plays a fundamental role in energy production and metabolic homeostasis. The intracellular [adenosine triphosphate]/[adenosine diphosphate] ([ATP]/[ADP]) ratio controls glycolytic flux; however, the regulatory mechanism underlying reactions catalyzed by individual glycolytic enzymes enabling flux adaptation remains incompletely understood. Phosphoglycerate kinase (PGK) catalyzes the reversible phosphotransfer reaction, which directly produces ATP in a near-equilibrium step of glycolysis. Despite extensive studies on the transcriptional regulation of PGK expression, the mechanism in response to changes in the [ATP]/[ADP] ratio remains obscure. Here, we report a protein-level regulation of human PGK (hPGK) by utilizing the switching ligand-binding cooperativities between adenine nucleotides and 3-phosphoglycerate (3PG). This was revealed by nuclear magnetic resonance (NMR) spectroscopy at physiological salt concentrations. MgADP and 3PG bind to hPGK with negative cooperativity, whereas MgAMPPNP (a nonhydrolyzable ATP analog) and 3PG bind to hPGK with positive cooperativity. These opposite cooperativities enable a shift between different ligand-bound states depending on the intracellular [ATP]/[ADP] ratio. Based on these findings, we present an atomic-scale description of the reaction scheme for hPGK under physiological conditions. Our results indicate that hPGK intrinsically modulates its function via ligand-binding cooperativities that are finely tuned to respond to changes in the [ATP]/[ADP] ratio. The alteration of ligand-binding cooperativities could be one of the self-regulatory mechanisms for enzymes in bidirectional pathways, which enables rapid adaptation to changes in the intracellular environment.
Collapse
|
20
|
Parkins A, Skeens E, McCallum CM, Lisi GP, Pantouris G. The N-terminus of MIF regulates the dynamic profile of residues involved in CD74 activation. Biophys J 2021; 120:3893-3900. [PMID: 34437846 DOI: 10.1016/j.bpj.2021.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/03/2021] [Accepted: 08/19/2021] [Indexed: 11/18/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is an immunomodulatory protein with a pathogenic activity in various inflammatory disorders, autoimmune diseases, and cancer. The majority of MIF-triggered pathological conditions are associated with activation of the cell surface receptor CD74. In the absence of small molecule antagonists that directly target CD74, MIF variants and MIF-ligand complexes have served as modulators of CD74 activity. These molecules have been reported to have either antagonistic or agonistic effects against the receptor, although the mechanistic parameters that distinguish the two groups are largely unknown. Through molecular dynamics simulations and NMR experiments, we explored the relationship between MIF's catalytically active N-terminus and the surface residues important for the activation of CD74. We found that the two sites are connected via backbone dynamics that are propagated to the CD74 activation surface of MIF, from the β2 and β4 strands. Our results also provide mechanistic evidence that explain the functional characteristics of MIF variants, serving as CD74 agonists or antagonists. Such findings are of high importance for understanding the MIF-induced activation of CD74 as well as for the development of highly potent CD74 therapeutics.
Collapse
Affiliation(s)
- Andrew Parkins
- Department of Chemistry, University of the Pacific, Stockton, California
| | - Erin Skeens
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, Rhode Island
| | - C Michael McCallum
- Department of Chemistry, University of the Pacific, Stockton, California
| | - George P Lisi
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, Rhode Island.
| | - Georgios Pantouris
- Department of Chemistry, University of the Pacific, Stockton, California.
| |
Collapse
|
21
|
Huang YMM. Multiscale computational study of ligand binding pathways: Case of p38 MAP kinase and its inhibitors. Biophys J 2021; 120:3881-3892. [PMID: 34453922 PMCID: PMC8511166 DOI: 10.1016/j.bpj.2021.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/07/2021] [Accepted: 08/20/2021] [Indexed: 01/09/2023] Open
Abstract
Protein kinases are one of the most important drug targets in the past 10 years. Understanding the inhibitor association processes will profoundly impact new binder designs with preferred binding kinetics. However, after more than a decade of effort, a complete atomistic-level study of kinase inhibitor binding pathways is still lacking. As all kinases share a similar scaffold, we used p38 kinase as a model system to investigate the conformational dynamics and free energy transition of inhibitor binding toward kinases. Two major kinase conformations, Asp-Phe-Gly (DFG)-in and DFG-out, and three types of inhibitors, type I, II, and III, were thoroughly investigated in this work. We performed Brownian dynamics simulations and up to 340 μs Gaussian-accelerated molecular dynamics simulations to capture the inhibitor binding paths and a series of conformational transitions of the p38 kinase from its apo to inhibitor-bound form. Eighteen successful binding trajectories, including all types of inhibitors, are reported herein. Our simulations suggest a mechanism of inhibitor recruitment, a faster ligand association step to a pre-existing DFG-in/DFG-out p38 protein, followed by a slower molecular rearrangement step to adjust the protein-ligand conformation followed by a shift in the energy landscape to reach the final bound state. The ligand association processes also reflect the energetic favor of type I and type II/III inhibitor binding through ATP and allosteric channels, respectively. These different binding routes are directly responsible for the fast (type I binders) and slow (type II/III binders) kinetics of different types of p38 inhibitors. Our findings also echo the recent study of p38 inhibitor dissociation, implying that ligand unbinding could undergo a reverse path of binding, and both processes share similar metastates. This study deepens the understanding of molecular and energetic features of kinase inhibitor-binding processes and will inspire future drug development from a kinetic point of view.
Collapse
Affiliation(s)
- Yu-Ming M Huang
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan.
| |
Collapse
|
22
|
Verkhivker GM. Making the invisible visible: Toward structural characterization of allosteric states, interaction networks, and allosteric regulatory mechanisms in protein kinases. Curr Opin Struct Biol 2021; 71:71-78. [PMID: 34237520 DOI: 10.1016/j.sbi.2021.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
Despite the established view of protein kinases as dynamic and versatile allosteric regulatory machines, our knowledge of allosteric functional states, allosteric interaction networks, and the intrinsic folding energy landscapes is surprisingly limited. We discuss the latest developments in structural characterization of allosteric molecular events underlying protein kinase dynamics and functions using structural, biophysical, and computational biology approaches. The recent studies highlighted progress in making the invisible aspects of protein kinase 'life' visible, including the determination of hidden allosteric states and mapping of allosteric energy landscapes, discovery of new mechanisms underlying ligand-induced modulation of allosteric activity, evolutionary adaptation of kinase allostery, and characterization of allosteric interaction networks as the intrinsic driver of kinase adaptability and signal transmission in the regulatory assemblies.
Collapse
Affiliation(s)
- Gennady M Verkhivker
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA, 92866, USA; Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA.
| |
Collapse
|
23
|
Walker C, Wang Y, Olivieri C, V S M, Gao J, Bernlohr DA, Calebiro D, Taylor SS, Veglia G. Is Disrupted Nucleotide-Substrate Cooperativity a Common Trait for Cushing's Syndrome Driving Mutations of Protein Kinase A? J Mol Biol 2021; 433:167123. [PMID: 34224748 DOI: 10.1016/j.jmb.2021.167123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 12/14/2022]
Abstract
Somatic mutations in the PRKACA gene encoding the catalytic α subunit of protein kinase A (PKA-C) are responsible for cortisol-producing adrenocortical adenomas. These benign neoplasms contribute to the development of Cushing's syndrome. The majority of these mutations occur at the interface between the two lobes of PKA-C and interfere with the enzyme's ability to recognize substrates and regulatory (R) subunits, leading to aberrant phosphorylation patterns and activation. Rarely, patients with similar phenotypes carry an allosteric mutation, E31V, located at the C-terminal end of the αA-helix and adjacent to the αC-helix, but structurally distinct from the PKA-C/R subunit interface mutations. Using a combination of solution NMR, thermodynamics, kinetic assays, and molecular dynamics simulations, we show that the E31V allosteric mutation disrupts central communication nodes between the N- and C- lobes of the enzyme as well as nucleotide-substrate binding cooperativity, a hallmark for kinases' substrate fidelity and regulation. For both orthosteric (L205R and W196R) and allosteric (E31V) Cushing's syndrome mutants, the loss of binding cooperativity is proportional to the density of the intramolecular allosteric network. This structure-activity relationship suggests a possible common mechanism for Cushing's syndrome driving mutations in which decreased nucleotide/substrate binding cooperativity is linked to loss in substrate fidelity and dysfunctional regulation.
Collapse
Affiliation(s)
- Caitlin Walker
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yingjie Wang
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Cristina Olivieri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Manu V S
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jiali Gao
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, B15 2TT Birmingham, UK; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, B15 2TT Birmingham, UK
| | - Susan S Taylor
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
24
|
Reduced efficacy of a Src kinase inhibitor in crowded protein solution. Nat Commun 2021; 12:4099. [PMID: 34215742 PMCID: PMC8253829 DOI: 10.1038/s41467-021-24349-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
The inside of a cell is highly crowded with proteins and other biomolecules. How proteins express their specific functions together with many off-target proteins in crowded cellular environments is largely unknown. Here, we investigate an inhibitor binding with c-Src kinase using atomistic molecular dynamics (MD) simulations in dilute as well as crowded protein solution. The populations of the inhibitor, 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1), in bulk solution and on the surface of c-Src kinase are reduced as the concentration of crowder bovine serum albumins (BSAs) increases. This observation is consistent with the reduced PP1 inhibitor efficacy in experimental c-Src kinase assays in addition with BSAs. The crowded environment changes the major binding pathway of PP1 toward c-Src kinase compared to that in dilute solution. This change is explained based on the population shift mechanism of local conformations near the inhibitor binding site in c-Src kinase.
Collapse
|
25
|
Kakarala KK, Jamil K. Identification of novel allosteric binding sites and multi-targeted allosteric inhibitors of receptor and non-receptor tyrosine kinases using a computational approach. J Biomol Struct Dyn 2021; 40:6889-6909. [PMID: 33682622 DOI: 10.1080/07391102.2021.1891140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
EGFR1, VEGFR2, Bcr-Abl and Src kinases are key drug targets in non-small cell lung cancer (NSCLC), bladder cancer, pancreatic cancer, CML, ALL, colorectal cancer, etc. The available drugs targeting these kinases have limited therapeutic efficacy due to novel mutations resulting in drug resistance and toxicity, as they target ATP binding site. Allosteric drugs have shown promising results in overcoming drug resistance, but the discovery of allosteric drugs is challenging. The allosteric binding pockets are difficult to predict, as they are generally associated with high energy conformations and regulate protein function in yet unknown mechanisms. In addition, the discovery of drugs using conventional methods takes long time and goes through several challenges, putting the lives of many cancer patients at risk. Therefore, the aim of the present work was to apply the most successful, drug repurposing approach in combination with computational methods to identify kinase inhibitors targeting novel allosteric sites on protein structure and assess their potential multi-kinase binding affinity. Multiple crystal structures belonging to EGFR1, VEGFR2, Bcr-Abl and Src tyrosine kinases were selected, including mutated, inhibitor bound and allosteric conformations to identify potential leads, close to physiological conditions. Interestingly the potential inhibitors identified were peptides. The drugs identified in this study could be used in therapy as a single multi-kinase inhibitor or in a combination of single kinase inhibitors after experimental validation. In addition, we have also identified new hot spots that are likely to be druggable allosteric sites for drug discovery of kinase-specific drugs in the future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Kaiser Jamil
- Bhagwan Mahavir Medical Research Center, Hyderabad, Telangana, India
| |
Collapse
|
26
|
Structural insights into redox-active cysteine residues of the Src family kinases. Redox Biol 2021; 41:101934. [PMID: 33765616 PMCID: PMC8022254 DOI: 10.1016/j.redox.2021.101934] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/18/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022] Open
Abstract
The Src Family Kinases (SFKs) are pivotal regulators of cellular signal transduction and highly sought-after targets in drug discovery. Their actions within cells are controlled by alterations in protein phosphorylation that switch the SFKs from autoinhibited to active states. The SFKs are also well recognized to contain redox-active cysteine residues where oxidation of certain residues directly contribute to kinase function. To more completely understand the factors that influence cysteine oxidation within the SFKs, a review is presented of the local structural environments surrounding SFK cysteine residues compared to their quantified oxidation in vivo from the Oximouse database. Generally, cysteine local structure and degree of redox sensitivity vary with respect to sequence conservation. Cysteine residues found in conserved positions are more mildly redox-active as they are found in hydrophobic environments and not fully exposed to solvent. Non-conserved redox-active cysteines are generally the most reactive with direct solvent access and/or in hydrophilic environments. Results from this analysis motivate future efforts to conduct comprehensive proteome-wide analysis of redox-sensitivity, conservation, and local structural environments of proteins containing reactive cysteine residues.
Collapse
|
27
|
Spitaleri A, Zia SR, Di Micco P, Al-Lazikani B, Soler MA, Rocchia W. Tuning Local Hydration Enables a Deeper Understanding of Protein-Ligand Binding: The PP1-Src Kinase Case. J Phys Chem Lett 2021; 12:49-58. [PMID: 33300337 PMCID: PMC7812613 DOI: 10.1021/acs.jpclett.0c03075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/03/2020] [Indexed: 05/13/2023]
Abstract
Water plays a key role in biomolecular recognition and binding. Despite the development of several computational and experimental approaches, it is still challenging to comprehensively characterize water-mediated effects on the binding process. Here, we investigate how water affects the binding of Src kinase to one of its inhibitors, PP1. Src kinase is a target for treating several diseases, including cancer. We use biased molecular dynamics simulations, where the hydration of predetermined regions is tuned at will. This computational technique efficiently accelerates the SRC-PP1 binding simulation and allows us to identify several key and yet unexplored aspects of the solvent's role. This study provides a further perspective on the binding phenomenon, which may advance the current drug design approaches for the development of new kinase inhibitors.
Collapse
Affiliation(s)
- Andrea Spitaleri
- CONCEPT
Lab, Istituto Italiano di Tecnologia, via Morego 30, Genoa I-16163, Italy
- Center
for Omics Sciences, Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Syeda R. Zia
- CONCEPT
Lab, Istituto Italiano di Tecnologia, via Morego 30, Genoa I-16163, Italy
- Dr.
Panjwani Center for Molecular Medicine and Drug Research, International
Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Patrizio Di Micco
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Bissan Al-Lazikani
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Miguel A. Soler
- CONCEPT
Lab, Istituto Italiano di Tecnologia, via Morego 30, Genoa I-16163, Italy
| | - Walter Rocchia
- CONCEPT
Lab, Istituto Italiano di Tecnologia, via Morego 30, Genoa I-16163, Italy
| |
Collapse
|
28
|
Chakraborty MP, Bhattacharyya S, Roy S, Bhattacharya I, Das R, Mukherjee A. Selective targeting of the inactive state of hematopoietic cell kinase (Hck) with a stable curcumin derivative. J Biol Chem 2021; 296:100449. [PMID: 33617879 PMCID: PMC7946438 DOI: 10.1016/j.jbc.2021.100449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/05/2021] [Accepted: 02/18/2021] [Indexed: 11/29/2022] Open
Abstract
Hck, a Src family nonreceptor tyrosine kinase (SFK), has recently been established as an attractive pharmacological target to improve pulmonary function in COVID-19 patients. Hck inhibitors are also well known for their regulatory role in various malignancies and autoimmune diseases. Curcumin has been previously identified as an excellent DYRK-2 inhibitor, but curcumin's fate is tainted by its instability in the cellular environment. Besides, small molecules targeting the inactive states of a kinase are desirable to reduce promiscuity. Here, we show that functionalization of the 4-arylidene position of the fluorescent curcumin scaffold with an aryl nitrogen mustard provides a stable Hck inhibitor (Kd = 50 ± 10 nM). The mustard curcumin derivative preferentially interacts with the inactive conformation of Hck, similar to type-II kinase inhibitors that are less promiscuous. Moreover, the lead compound showed no inhibitory effect on three other kinases (DYRK2, Src, and Abl). We demonstrate that the cytotoxicity may be mediated via inhibition of the SFK signaling pathway in triple-negative breast cancer and murine macrophage cells. Our data suggest that curcumin is a modifiable fluorescent scaffold to develop selective kinase inhibitors by remodeling its target affinity and cellular stability.
Collapse
Affiliation(s)
- Manas Pratim Chakraborty
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, India
| | - Sudipta Bhattacharyya
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, India
| | - Souryadip Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, India
| | - Indira Bhattacharya
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, India
| | - Rahul Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, India; Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, India.
| | - Arindam Mukherjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, India; Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, India.
| |
Collapse
|
29
|
Peng C, Wang J, Shi Y, Xu Z, Zhu W. Increasing the Sampling Efficiency of Protein Conformational Change by Combining a Modified Replica Exchange Molecular Dynamics and Normal Mode Analysis. J Chem Theory Comput 2020; 17:13-28. [PMID: 33351613 DOI: 10.1021/acs.jctc.0c00592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding conformational change at an atomic level is significant when determining a protein functional mechanism. Replica exchange molecular dynamics (REMD) is a widely used enhanced sampling method to explore protein conformational space. However, REMD with an explicit solvent model requires huge computational resources, immensely limiting its application. In this study, a variation of parallel tempering metadynamics (PTMetaD) with the omission of solvent-solvent interactions in exchange attempts and the use of low-frequency modes calculated by normal-mode analysis (NMA) as collective variables (CVs), namely ossPTMetaD, is proposed with the aim to accelerate MD simulations simultaneously in temperature and geometrical spaces. For testing the performance of ossPTMetaD, five protein systems with diverse biological functions and motion patterns were selected, including large-scale domain motion (AdK), flap movement (HIV-1 protease and BACE1), and DFG-motif flip in kinases (p38α and c-Abl). The simulation results showed that ossPTMetaD requires much fewer numbers of replicas than temperature REMD (T-REMD) with a reduction of ∼70% to achieve a similar exchange ratio. Although it does not obey the detailed balance condition, ossPTMetaD provides consistent results with T-REMD and experimental data. The high accessibility of the large conformational change of protein systems by ossPTMetaD, especially in simulating the very challenging DFG-motif flip of protein kinases, demonstrated its high efficiency and robustness in the characterization of the large-scale protein conformational change pathway and associated free energy profile.
Collapse
Affiliation(s)
- Cheng Peng
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Jinan Wang
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yulong Shi
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.,Open Studio for Druggability Research of Marine Lead Compounds, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
30
|
Potter ZE, Lau HT, Chakraborty S, Fang L, Guttman M, Ong SE, Fowler DM, Maly DJ. Parallel Chemoselective Profiling for Mapping Protein Structure. Cell Chem Biol 2020; 27:1084-1096.e4. [PMID: 32649906 PMCID: PMC7484201 DOI: 10.1016/j.chembiol.2020.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/27/2020] [Accepted: 06/19/2020] [Indexed: 01/01/2023]
Abstract
Solution-based structural techniques complement high-resolution structural data by providing insight into the oft-missed links between protein structure and dynamics. Here, we present Parallel Chemoselective Profiling, a solution-based structural method for characterizing protein structure and dynamics. Our method utilizes deep mutational scanning saturation mutagenesis data to install amino acid residues with specific chemistries at defined positions on the solvent-exposed surface of a protein. Differences in the extent of labeling of installed mutant residues are quantified using targeted mass spectrometry, reporting on each residue's local environment and structural dynamics. Using our method, we studied how conformation-selective, ATP-competitive inhibitors affect the local and global structure and dynamics of full-length Src kinase. Our results highlight how parallel chemoselective profiling can be used to study a dynamic multi-domain protein, and suggest that our method will be a useful addition to the relatively small toolkit of existing protein footprinting techniques.
Collapse
Affiliation(s)
- Zachary E Potter
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Ho-Tak Lau
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Sujata Chakraborty
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Linglan Fang
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
31
|
Hoemberger M, Pitsawong W, Kern D. Cumulative mechanism of several major imatinib-resistant mutations in Abl kinase. Proc Natl Acad Sci U S A 2020; 117:19221-19227. [PMID: 32719139 PMCID: PMC7431045 DOI: 10.1073/pnas.1919221117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite the outstanding success of the cancer drug imatinib, one obstacle in prolonged treatment is the emergence of resistance mutations within the kinase domain of its target, Abl. We noticed that many patient-resistance mutations occur in the dynamic hot spots recently identified to be responsible for imatinib's high selectivity toward Abl. In this study, we provide an experimental analysis of the mechanism underlying drug resistance for three major resistance mutations (G250E, Y253F, and F317L). Our data settle controversies, revealing unexpected resistance mechanisms. The mutations alter the energy landscape of Abl in complex ways: increased kinase activity, altered affinity, and cooperativity for the substrates, and, surprisingly, only a modestly decreased imatinib affinity. Only under cellular adenosine triphosphate (ATP) concentrations, these changes cumulate in an order of magnitude increase in imatinib's half-maximal inhibitory concentration (IC50). These results highlight the importance of characterizing energy landscapes of targets and its changes by drug binding and by resistance mutations developed by patients.
Collapse
Affiliation(s)
- Marc Hoemberger
- Department of Biochemistry, Brandeis University, Waltham, MA 02454
- HHMI, Brandeis University, Waltham, MA 02454
| | - Warintra Pitsawong
- Department of Biochemistry, Brandeis University, Waltham, MA 02454
- HHMI, Brandeis University, Waltham, MA 02454
| | - Dorothee Kern
- Department of Biochemistry, Brandeis University, Waltham, MA 02454;
- HHMI, Brandeis University, Waltham, MA 02454
| |
Collapse
|
32
|
Kim S, Kalappurakkal JM, Mayor S, Rosen MK. Phosphorylation of nephrin induces phase separated domains that move through actomyosin contraction. Mol Biol Cell 2019; 30:2996-3012. [PMID: 31599693 PMCID: PMC6857567 DOI: 10.1091/mbc.e18-12-0823] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 09/03/2019] [Accepted: 10/03/2019] [Indexed: 01/12/2023] Open
Abstract
The plasma membrane of eukaryotic cells is organized into lipid and protein microdomains, whose assembly mechanisms and functions are incompletely understood. We demonstrate that proteins in the nephrin/Nck/N-WASP actin-regulatory pathway cluster into micron-scale domains at the basal plasma membrane upon triggered phosphorylation of transmembrane protein nephrin. The domains are persistent but readily exchange components with their surroundings, and their formation is dependent on the number of Nck SH3 domains, suggesting they are phase separated polymers assembled through multivalent interactions among the three proteins. The domains form independent of the actin cytoskeleton, but acto-myosin contractility induces their rapid lateral movement. Nephrin phosphorylation induces larger clusters at the cell periphery, which are associated with extensive actin assembly and dense filopodia. Our studies illustrate how multivalent interactions between proteins at the plasma membrane can produce micron-scale organization of signaling molecules, and how the resulting clusters can both respond to and control the actin cytoskeleton.
Collapse
Affiliation(s)
- Soyeon Kim
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
- The HHMI/MBL Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543
| | - Joseph M. Kalappurakkal
- The HHMI/MBL Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543
- National Centre for Biological Sciences, Bangalore 560065, India
| | - Satyajit Mayor
- The HHMI/MBL Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543
- National Centre for Biological Sciences, Bangalore 560065, India
| | - Michael K. Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
- The HHMI/MBL Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
33
|
Chen J, Wang A, Liu B, Zhou Y, Luo P, Zhang Z, Li G, Liu Q, Wang F. Quantitative Lysine Reactivity Profiling Reveals Conformational Inhibition Dynamics and Potency of Aurora A Kinase Inhibitors. Anal Chem 2019; 91:13222-13229. [DOI: 10.1021/acs.analchem.9b03647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jin Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, Liaoning P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anhui Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116023, China
| | - Bing Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Ye Zhou
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, Liaoning P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Luo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, Liaoning P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhichao Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116023, China
| | - Guohui Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, Liaoning P. R. China
| |
Collapse
|
34
|
Tsai CC, Yue Z, Shen J. How Electrostatic Coupling Enables Conformational Plasticity in a Tyrosine Kinase. J Am Chem Soc 2019; 141:15092-15101. [PMID: 31476863 DOI: 10.1021/jacs.9b06064] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein kinases are important cellular signaling molecules involved in cancer and a multitude of other diseases. It is well-known that inactive kinases display a remarkable conformational plasticity; however, the molecular mechanisms remain poorly understood. Conformational heterogeneity presents an opportunity but also a challenge in kinase drug discovery. The ability to predictively model various conformational states could accelerate selective inhibitor design. Here we performed a proton-coupled molecular dynamics study to explore the conformational landscape of a c-Src kinase. Starting from a completely inactive structure, the simulations captured all major types of conformational states without the use of a target structure, mutation, or bias. The simulations allowed us to test the experimental hypotheses regarding the mechanism of DFG flip, its coupling to the αC-helix movement, and the formation of regulatory spine. Perhaps the most significant finding is how key titratable residues, such as DFG-Asp, αC-Glu, and HRD-Asp, change protonation states dependent on the DFG, αC, and activation loop conformations. Our data offer direct evidence to support a long-standing hypothesis that protonation of Asp favors the DFG-out state and explain why DFG flip is also possible in simulations with deprotonated Asp. The simulations also revealed intermediate states, among which a unique DFG-out/α-C state formed as DFG-Asp is moved into a back pocket forming a salt bridge with catalytic Lys, which can be tested in selective inhibitor design. Our finding of how proton coupling enables the remarkable conformational plasticity may shift the paradigm of computational studies of kinases which assume fixed protonation states. Understanding proton-coupled conformational dynamics may hold a key to further innovation in kinase drug discovery.
Collapse
Affiliation(s)
- Cheng-Chieh Tsai
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Zhi Yue
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Jana Shen
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| |
Collapse
|
35
|
Astl L, Verkhivker GM. Data-driven computational analysis of allosteric proteins by exploring protein dynamics, residue coevolution and residue interaction networks. Biochim Biophys Acta Gen Subj 2019:S0304-4165(19)30179-5. [PMID: 31330173 DOI: 10.1016/j.bbagen.2019.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Computational studies of allosteric interactions have witnessed a recent renaissance fueled by the growing interest in modeling of the complex molecular assemblies and biological networks. Allosteric interactions in protein structures allow for molecular communication in signal transduction networks. METHODS In this work, we performed a large scale comprehensive and multi-faceted analysis of >300 diverse allosteric proteins and complexes with allosteric modulators. By modeling and exploring coarse-grained dynamics, residue coevolution, and residue interaction networks for allosteric proteins, we have determined unifying molecular signatures shared by allosteric systems. RESULTS The results of this study have suggested that allosteric inhibitors and allosteric activators may differentially affect global dynamics and network organization of protein systems, leading to diverse allosteric mechanisms. By using structural and functional data on protein kinases, we present a detailed case study that that included atomic-level analysis of coevolutionary networks in kinases bound with allosteric inhibitors and activators. CONCLUSIONS We have found that coevolutionary networks can form direct communication pathways connecting functional regions and can recapitulate key regulatory sites and interactions responsible for allosteric signaling in the studied protein systems. The results of this computational investigation are compared with the experimental studies and reveal molecular signatures of known regulatory hotspots in protein kinases. GENERAL SIGNIFICANCE This study has shown that allosteric inhibitors and allosteric activators can have a different effect on residue interaction networks and can exploit distinct regulatory mechanisms, which could open up opportunities for probing allostery and new drug combinations with broad range of activities.
Collapse
Affiliation(s)
- Lindy Astl
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, United States of America
| | - Gennady M Verkhivker
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, United States of America; Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States of America.
| |
Collapse
|
36
|
Agius MP, Ko KS, Johnson TK, Kwarcinski FE, Phadke S, Lachacz EJ, Soellner MB. Selective Proteolysis to Study the Global Conformation and Regulatory Mechanisms of c-Src Kinase. ACS Chem Biol 2019; 14:1556-1563. [PMID: 31287657 PMCID: PMC7254491 DOI: 10.1021/acschembio.9b00306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein kinase pathways are traditionally mapped by monitoring downstream phosphorylation. Meanwhile, the noncatalytic functions of protein kinases remain under-appreciated as critical components of kinase signaling. c-Src is a protein kinase known to have noncatalytic signaling function important in healthy and disease cell signaling. Large conformational changes in the regulatory domains regulate c-Src's noncatalytic functions. Herein, we demonstrate that changes in the global conformation of c-Src can be monitored using a selective proteolysis methodology. Further, we use this methodology to investigate changes in the global conformation of several clinical and nonclinical mutations of c-Src. Significantly, we identify a novel activating mutation observed clinically, W121R, that can escape down-regulation mechanisms. Our methodology can be expanded to monitor the global conformation of other tyrosine kinases, including c-Abl, and represents an important tool toward the elucidation of the noncatalytic functions of protein kinases.
Collapse
Affiliation(s)
- Michael P. Agius
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI
| | - Kristin S. Ko
- Department of Chemistry, University of Michigan, Ann Arbor, MI
| | - Taylor K. Johnson
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI
| | | | - Sameer Phadke
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Eric J. Lachacz
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Matthew B. Soellner
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Chemistry, University of Michigan, Ann Arbor, MI
| |
Collapse
|
37
|
Yueh C, Rettenmaier J, Xia B, Hall DR, Alekseenko A, Porter KA, Barkovich K, Keseru G, Whitty A, Wells JA, Vajda S, Kozakov D. Kinase Atlas: Druggability Analysis of Potential Allosteric Sites in Kinases. J Med Chem 2019; 62:6512-6524. [PMID: 31274316 DOI: 10.1021/acs.jmedchem.9b00089] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The inhibition of kinases has been pursued by the pharmaceutical industry for over 20 years. While the locations of the sites that bind type II and III inhibitors at or near the adenosine 5'-triphosphate binding sites are well defined, the literature describes 10 different regions that were reported as regulatory hot spots in some kinases and thus are potential target sites for type IV inhibitors. Kinase Atlas is a systematic collection of binding hot spots located at the above ten sites in 4910 structures of 376 distinct kinases available in the Protein Data Bank. The hot spots are identified by FTMap, a computational analogue of experimental fragment screening. Users of Kinase Atlas ( https://kinase-atlas.bu.edu ) may view summarized results for all structures of a particular kinase, such as which binding sites are present and how druggable they are, or they may view hot spot information for a particular kinase structure of interest.
Collapse
Affiliation(s)
| | - Justin Rettenmaier
- Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology , University of California , 1700 Fourth Street , San Francisco , California 9415 , United States
| | | | - David R Hall
- Acpharis Incorporated , Holliston , Massachusetts 01746 , United States
| | | | | | - Krister Barkovich
- Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology , University of California , 1700 Fourth Street , San Francisco , California 9415 , United States
| | - Gyorgy Keseru
- Medicinal Chemistry Research Group , Research Center for Natural Sciences , Magyar tudósok krt. 2 , H-1117 Budapest , Hungary
| | | | - James A Wells
- Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology , University of California , 1700 Fourth Street , San Francisco , California 9415 , United States
| | | | | |
Collapse
|
38
|
Conformational coupling by trans-phosphorylation in calcium calmodulin dependent kinase II. PLoS Comput Biol 2019; 15:e1006796. [PMID: 31150387 PMCID: PMC6576796 DOI: 10.1371/journal.pcbi.1006796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/17/2019] [Accepted: 03/28/2019] [Indexed: 12/16/2022] Open
Abstract
The calcium calmodulin-dependent protein kinase II (CaMKII) is a dodecameric holoenzyme important for encoding memory. Its activation, triggered by binding of calcium-calmodulin, persists autonomously after calmodulin dissociation. One (receiver) kinase captures and subsequently phosphorylates the regulatory domain peptide of a donor kinase forming a chained dimer as the first stage of autonomous activation. Protein dynamics simulations examined the conformational changes triggered by dimer formation and phosphorylation, aimed to provide a molecular rationale for human mutations that result in learning disabilities. Ensembles generated from X-ray crystal structures were characterized by network centrality and community analysis. Mutual information related collective motions to local fragment dynamics encoded with a structural alphabet. Implicit solvent tCONCOORD conformational ensembles revealed the dynamic architecture of inactive kinase domains was co-opted in the activated dimer but the network hub shifted from the nucleotide binding cleft to the captured peptide. Explicit solvent molecular dynamics (MD) showed nucleotide and substrate binding determinants formed coupled nodes in long-range signal relays between regulatory peptides in the dimer. Strain in the extended captured peptide was balanced by reduced flexibility of the receiver kinase C-lobe core. The relays were organized around a hydrophobic patch between the captured peptide and a key binding helix. The human mutations aligned along the relays. Thus, these mutations could disrupt the allosteric network alternatively, or in addition, to altered binding affinities. Non-binding protein sectors distant from the binding sites mediated the allosteric signalling; providing possible targets for inhibitor design. Phosphorylation of the peptide modulated the dielectric of its binding pocket to strengthen the patch, non-binding sectors, domain interface and temporal correlations between parallel relays. These results provide the molecular details underlying the reported positive kinase cooperativity to enrich the discussion on how autonomous activation by phosphorylation leads to long-term behavioural effects. Protein kinases play central roles in intracellular signalling. Auto-phosphorylation by bound nucleotide typically precedes phosphate transfer to multiple substrates. Protein conformational changes are central to kinase function, altering binding affinities to change cellular location and shunt from one signal pathway to another. In the brain, the multi-subunit kinase, CaMKII is activated by calcium-calmodulin upon calcium jumps produced by synaptic stimulation. Auto-transphosphorylation of a regulatory peptide enables the kinase to remain activated and mediate long-term behavioural effects after return to basal calcium levels. A database of mutated residues responsible for these effects is difficult to reconcile solely with impaired nucleotide or substrate binding. Therefore, we have computationally generated interaction networks to map the conformational plasticity of the kinase domains where most mutations localize. The network generated from the atomic structure of a phosphorylated dimer resolves protein sectors based on their collective motions. The sectors link nucleotide and substrate binding sites in self-reinforcing relays between regulatory peptides. The self-reinforcement is strengthened by phosphorylation consistent with the reported positive cooperativity of kinase activity with calcium-calmodulin concentration. The network gives a better match with the mutations and, in addition, reveals target sites for drug development.
Collapse
|
39
|
Astl L, Verkhivker GM. Atomistic Modeling of the ABL Kinase Regulation by Allosteric Modulators Using Structural Perturbation Analysis and Community-Based Network Reconstruction of Allosteric Communications. J Chem Theory Comput 2019; 15:3362-3380. [PMID: 31017783 DOI: 10.1021/acs.jctc.9b00119] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, we have examined the molecular mechanisms of allosteric regulation of the ABL tyrosine kinase at the atomic level. Atomistic modeling of the ABL complexes with a panel of allosteric modulators has been performed using a combination of molecular dynamics simulations, structural residue perturbation scanning, and a novel community analysis of the residue interaction networks. Our results have indicated that allosteric inhibitors and activators may exert a differential control on allosteric signaling between the kinase binding sites and functional regions. While the inhibitor binding can strengthen the closed ABL state and induce allosteric communications directed from the allosteric pocket to the ATP binding site, the DPH activator may induce a more dynamic open form and activate allosteric couplings between the ATP and substrate binding sites. By leveraging a network-centric theoretical framework, we have introduced a novel community analysis method and global topological parameters that have unveiled the hierarchical modularity and the intercommunity bridging sites in the residue interaction network. We have found that allosteric functional hotspots responsible for the kinase regulation may serve the intermodular bridges in the global interaction network. The central conclusion from this analysis is that the regulatory switch centers play a fundamental role in the modular network organization of ABL as the unique intercommunity bridges that connect the SH2 and SH3 domains with the catalytic core into a functional kinase assembly. The hierarchy of network organization in the ABL regulatory complexes may allow for the synergistic action of dense intercommunity links required for the robust signal transfer in the catalytic core and sparse network bridges acting as the regulatory control points that orchestrate allosteric transitions between the inhibited and active kinase forms.
Collapse
Affiliation(s)
- Lindy Astl
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology , Chapman University , One University Drive , Orange , California 92866 , United States
| | - Gennady M Verkhivker
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology , Chapman University , One University Drive , Orange , California 92866 , United States.,Department of Biomedical and Pharmaceutical Sciences , Chapman University School of Pharmacy , Irvine , California 92618 , United States
| |
Collapse
|
40
|
Wang Y, V S M, Kim J, Li G, Ahuja LG, Aoto P, Taylor SS, Veglia G. Globally correlated conformational entropy underlies positive and negative cooperativity in a kinase's enzymatic cycle. Nat Commun 2019; 10:799. [PMID: 30778078 PMCID: PMC6379427 DOI: 10.1038/s41467-019-08655-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/15/2019] [Indexed: 11/16/2022] Open
Abstract
Enzymes accelerate the rate of chemical transformations by reducing the activation barriers of uncatalyzed reactions. For signaling enzymes, substrate recognition, binding, and product release are often rate-determining steps in which enthalpy-entropy compensation plays a crucial role. While the nature of enthalpic interactions can be inferred from structural data, the molecular origin and role of entropy in enzyme catalysis remains poorly understood. Using thermocalorimetry, NMR, and MD simulations, we studied the conformational landscape of the catalytic subunit of cAMP-dependent protein kinase A, a ubiquitous phosphoryl transferase involved in a myriad of cellular processes. Along the enzymatic cycle, the kinase exhibits positive and negative cooperativity for substrate and nucleotide binding and product release. We found that globally coordinated changes of conformational entropy activated by ligand binding, together with synchronous and asynchronous breathing motions of the enzyme, underlie allosteric cooperativity along the kinase's cycle.
Collapse
Affiliation(s)
- Yingjie Wang
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
- Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Manu V S
- Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jonggul Kim
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
- Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Geoffrey Li
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
| | - Lalima G Ahuja
- Department of Chemistry and Biochemistry, and Pharmacology University of California at San Diego, La Jolla, CA, 92093, USA
| | - Philip Aoto
- Department of Chemistry and Biochemistry, and Pharmacology University of California at San Diego, La Jolla, CA, 92093, USA
| | - Susan S Taylor
- Department of Chemistry and Biochemistry, and Pharmacology University of California at San Diego, La Jolla, CA, 92093, USA
| | - Gianluigi Veglia
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.
- Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
41
|
Astl L, Tse A, Verkhivker GM. Interrogating Regulatory Mechanisms in Signaling Proteins by Allosteric Inhibitors and Activators: A Dynamic View Through the Lens of Residue Interaction Networks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:187-223. [DOI: 10.1007/978-981-13-8719-7_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
He X, Ni D, Lu S, Zhang J. Characteristics of Allosteric Proteins, Sites, and Modulators. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:107-139. [DOI: 10.1007/978-981-13-8719-7_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Mondal M, Yang Y, Yang L, Yang W, Gao YQ. Role of Conformational Fluctuations of Protein toward Methylation in DNA by Cytosine-5-methyltransferase. J Chem Theory Comput 2018; 14:6679-6689. [PMID: 30403861 DOI: 10.1021/acs.jctc.8b00732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methylation of cytosine is the common epigenetic modification in genomes ranging from bacteria to mammals, and aberrant methylation leads to human diseases including cancer. Recognition of a cognate DNA sequence by DNA methyltransferases and flipping of a target base into the enzyme active site pocket are the key steps in DNA methylation. Using molecular dynamics simulations and enhanced sampling techniques here we elucidate the role of conformational fluctuations of protein and active or passive involvement of protein elements that mediate base flipping and formation of the closed catalytic complex. The free energy profiles for the flipping of target cytosine into the enzyme active site support the major groove base eversion pathway; and the results show that the closed state of enzyme increases the free energy barrier, whereas the open state reduces it. We found that the interactions of the key loop residues of protein with cognate DNA altered the protein motions, and modulation of protein fluctuations relates to the closed catalytic complex formation. Methylation of cytosine in the active site of the closed complex destabilizes the interactions of catalytic loop residues with cognate DNA and reduces the stability of the closed state. Our study provides microscopic insights on the base flipping mechanism coupled with enzyme's loop motions and provides evidence for the role of conformational fluctuations of protein in the enzyme-catalyzed DNA processing mechanism.
Collapse
Affiliation(s)
- Manas Mondal
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences , Peking University , Beijing 100871 , China.,BIOPIC , Peking University , Beijing 100871 , China
| | - Ying Yang
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences , Peking University , Beijing 100871 , China.,BIOPIC , Peking University , Beijing 100871 , China
| | - Lijiang Yang
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences , Peking University , Beijing 100871 , China.,BIOPIC , Peking University , Beijing 100871 , China
| | - Weitao Yang
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | - Yi Qin Gao
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences , Peking University , Beijing 100871 , China.,BIOPIC , Peking University , Beijing 100871 , China
| |
Collapse
|
44
|
Heppner DE, Dustin CM, Liao C, Hristova M, Veith C, Little AC, Ahlers BA, White SL, Deng B, Lam YW, Li J, van der Vliet A. Direct cysteine sulfenylation drives activation of the Src kinase. Nat Commun 2018; 9:4522. [PMID: 30375386 PMCID: PMC6207713 DOI: 10.1038/s41467-018-06790-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/19/2018] [Indexed: 01/17/2023] Open
Abstract
The Src kinase controls aspects of cell biology and its activity is regulated by intramolecular structural changes induced by protein interactions and tyrosine phosphorylation. Recent studies indicate that Src is additionally regulated by redox-dependent mechanisms, involving oxidative modification(s) of cysteines within the Src protein, although the nature and molecular-level impact of Src cysteine oxidation are unknown. Using a combination of biochemical and cell-based studies, we establish the critical importance of two Src cysteine residues, Cys-185 and Cys-277, as targets for H2O2-mediated sulfenylation (Cys-SOH) in redox-dependent kinase activation in response to NADPH oxidase-dependent signaling. Molecular dynamics and metadynamics simulations reveal the structural impact of sulfenylation of these cysteines, indicating that Cys-277-SOH enables solvent exposure of Tyr-416 to promote its (auto)phosphorylation, and that Cys-185-SOH destabilizes pTyr-527 binding to the SH2 domain. These redox-dependent Src activation mechanisms offer opportunities for development of Src-selective inhibitors in treatment of diseases where Src is aberrantly activated.
Collapse
Affiliation(s)
- David E Heppner
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine University of Vermont, 149 Beaumont Avenue, Burlington, VT, 05405, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Ave, Boston, MA, 02115, USA.
| | - Christopher M Dustin
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine University of Vermont, 149 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Chenyi Liao
- Department of Chemistry, College of Arts and Sciences, University of Vermont, 82 University Place, Burlington, VT, 05405, USA
| | - Milena Hristova
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine University of Vermont, 149 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Carmen Veith
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine University of Vermont, 149 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Andrew C Little
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine University of Vermont, 149 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Bethany A Ahlers
- Department of Biology, College of Arts and Sciences, University of Vermont, 109 Carrigan Drive, Burlington, VT, 05405, USA
| | - Sheryl L White
- Department of Neurological Sciences, Robert Larner, M.D. College of Medicine University of Vermont, 149 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Bin Deng
- Department of Biology, College of Arts and Sciences, University of Vermont, 109 Carrigan Drive, Burlington, VT, 05405, USA
| | - Ying-Wai Lam
- Department of Biology, College of Arts and Sciences, University of Vermont, 109 Carrigan Drive, Burlington, VT, 05405, USA
| | - Jianing Li
- Department of Chemistry, College of Arts and Sciences, University of Vermont, 82 University Place, Burlington, VT, 05405, USA.
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine University of Vermont, 149 Beaumont Avenue, Burlington, VT, 05405, USA.
| |
Collapse
|
45
|
Shah NH, Amacher JF, Nocka LM, Kuriyan J. The Src module: an ancient scaffold in the evolution of cytoplasmic tyrosine kinases. Crit Rev Biochem Mol Biol 2018; 53:535-563. [PMID: 30183386 PMCID: PMC6328253 DOI: 10.1080/10409238.2018.1495173] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tyrosine kinases were first discovered as the protein products of viral oncogenes. We now know that this large family of metazoan enzymes includes nearly one hundred structurally diverse members. Tyrosine kinases are broadly classified into two groups: the transmembrane receptor tyrosine kinases, which sense extracellular stimuli, and the cytoplasmic tyrosine kinases, which contain modular ligand-binding domains and propagate intracellular signals. Several families of cytoplasmic tyrosine kinases have in common a core architecture, the "Src module," composed of a Src-homology 3 (SH3) domain, a Src-homology 2 (SH2) domain, and a kinase domain. Each of these families is defined by additional elaborations on this core architecture. Structural, functional, and evolutionary studies have revealed a unifying set of principles underlying the activity and regulation of tyrosine kinases built on the Src module. The discovery of these conserved properties has shaped our knowledge of the workings of protein kinases in general, and it has had important implications for our understanding of kinase dysregulation in disease and the development of effective kinase-targeted therapies.
Collapse
Affiliation(s)
- Neel H. Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Jeanine F. Amacher
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Laura M. Nocka
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
46
|
Sultan MM, Kiss G, Pande VS. Towards simple kinetic models of functional dynamics for a kinase subfamily. Nat Chem 2018; 10:903-909. [PMID: 29988151 DOI: 10.1038/s41557-018-0077-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 05/08/2018] [Indexed: 11/09/2022]
Abstract
Kinases are ubiquitous enzymes involved in the regulation of critical cellular pathways. However, in silico modelling of the conformational ensembles of these enzymes is difficult due to inherent limitations and the cost of computational approaches. Recent algorithmic advances combined with homology modelling and parallel simulations have enabled researchers to address this computational sampling bottleneck. Here, we present the results of molecular dynamics studies for seven Src family kinase (SFK) members: Fyn, Lyn, Lck, Hck, Fgr, Yes and Blk. We present a sequence invariant extension to Markov state models, which allows us to quantitatively compare the structural ensembles of the seven kinases. Our findings indicate that in the absence of their regulatory partners, SFK members have similar in silico dynamics with active state populations ranging from 4 to 40% and activation timescales in the hundreds of microseconds. Furthermore, we observe several potentially druggable intermediate states, including a pocket next to the adenosine triphosphate binding site that could potentially be targeted via a small-molecule inhibitor.
Collapse
Affiliation(s)
| | - Gert Kiss
- Department of Chemistry, Stanford University, Stanford, CA, USA.,Center for Molecular Analysis and Design, Stanford University, Stanford, CA, USA.,Revolution Medicines, Redwood City, CA, USA
| | - Vijay S Pande
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
47
|
Mishra P, Günther S. New insights into the structural dynamics of the kinase JNK3. Sci Rep 2018; 8:9435. [PMID: 29930333 PMCID: PMC6013471 DOI: 10.1038/s41598-018-27867-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022] Open
Abstract
In this work, we study the dynamics and the energetics of the all-atom structure of a neuronal-specific serine/threonine kinase c-Jun N-terminal kinase 3 (JNK3) in three states: unphosphorylated, phosphorylated, and ATP-bound phosphorylated. A series of 2 µs atomistic simulations followed by a conformational landscape mapping and a principal component analysis supports the mechanistic understanding of the JNK3 inactivation/activation process and also indicates key structural intermediates. Our analysis reveals that the unphosphorylated JNK3 undergoes the ‘open-to-closed’ movement via a two-step mechanism. Furthermore, the phosphorylation and ATP-binding allow the JNK3 kinase to attain a fully active conformation. JNK3 is a widely studied target for small-drugs used to treat a variety of neurological disorders. We believe that the mechanistic understanding of the large-conformational changes upon the activation of JNK3 will aid the development of novel targeted therapeutics.
Collapse
Affiliation(s)
- Pankaj Mishra
- Institute of Pharmaceutical Sciences, Research Group Pharmaceutical Bioinformatics, Albert-Ludwigs-University Freiburg, Hermann-Herder-Straße 9, 79104, Freiburg, Germany
| | - Stefan Günther
- Institute of Pharmaceutical Sciences, Research Group Pharmaceutical Bioinformatics, Albert-Ludwigs-University Freiburg, Hermann-Herder-Straße 9, 79104, Freiburg, Germany.
| |
Collapse
|
48
|
Ciepluch K, Radulescu A, Hoffmann I, Raba A, Allgaier J, Richter D, Biehl R. Influence of PEGylation on Domain Dynamics of Phosphoglycerate Kinase: PEG Acts Like Entropic Spring for the Protein. Bioconjug Chem 2018; 29:1950-1960. [DOI: 10.1021/acs.bioconjchem.8b00203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Karol Ciepluch
- Jülich Centre for Neutron Science & Institute of Complex Systems (JCNS-1&ICS-1), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Aurel Radulescu
- Jülich Centre for Neutron Science JCNS at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich, 85748 Garching, Germany
| | - Ingo Hoffmann
- Institute Laue-Langevin (ILL), 71 rue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Andreas Raba
- Jülich Centre for Neutron Science & Institute of Complex Systems (JCNS-1&ICS-1), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jürgen Allgaier
- Jülich Centre for Neutron Science & Institute of Complex Systems (JCNS-1&ICS-1), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dieter Richter
- Jülich Centre for Neutron Science & Institute of Complex Systems (JCNS-1&ICS-1), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Ralf Biehl
- Jülich Centre for Neutron Science & Institute of Complex Systems (JCNS-1&ICS-1), Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
49
|
Water-mediated conformational preselection mechanism in substrate binding cooperativity to protein kinase A. Proc Natl Acad Sci U S A 2018; 115:3852-3857. [PMID: 29581285 DOI: 10.1073/pnas.1720024115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Substrate binding cooperativity in protein kinase A (PKA) seems to involve allosteric coupling between the two binding sites. It received significant attention, but its molecular basis still remains not entirely clear. Based on long molecular dynamics of PKA and its complexes, we characterized an allosteric pathway that links ATP binding to the redistribution of states adopted by a protein substrate positioning segment in favor of those that warrant correct binding. We demonstrate that the cooperativity mechanism critically depends on the presence of water in two distinct, buried hydration sites. One holds just a single water molecule, which acts as a switchable hydrogen bond bridge along the allosteric pathway. The second, filled with partially disordered solvent, is essential for providing a smooth free energy landscape underlying conformational transitions of the peptide binding region. Our findings remain in agreement with experimental data, also concerning the cooperativity abolishing effect of the Y204A mutation, and indicate a plausible molecular mechanism contributing to experimentally observed binding cooperativity of the two substrates.
Collapse
|
50
|
Meng Y, Ahuja LG, Kornev AP, Taylor SS, Roux B. A Catalytically Disabled Double Mutant of Src Tyrosine Kinase Can Be Stabilized into an Active-Like Conformation. J Mol Biol 2018; 430:881-889. [PMID: 29410316 PMCID: PMC6279248 DOI: 10.1016/j.jmb.2018.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 01/11/2023]
Abstract
Tyrosine kinases are enzymes playing a critical role in cellular signaling. Molecular dynamics umbrella sampling potential of mean force computations are used to quantify the impact of activating and inactivating mutations of c-Src kinase. The potential of mean force computations predict that a specific double mutant can stabilize c-Src kinase into an active-like conformation while disabling the binding of ATP in the catalytic active site. The active-like conformational equilibrium of this catalytically dead kinase is affected by a hydrophobic unit that connects to the hydrophobic spine network via the C-helix. The αC-helix plays a crucial role in integrating the hydrophobic residues, making it a hub for allosteric regulation of kinase activity and the active conformation. The computational free-energy landscapes reported here illustrate novel design principles focusing on the important role of the hydrophobic spines. The relative stability of the spines could be exploited in future efforts to artificially engineer active-like but catalytically dead forms of protein kinases.
Collapse
Affiliation(s)
- Yilin Meng
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Lalima G Ahuja
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Alexandr P Kornev
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Susan S Taylor
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|