1
|
Petrosyan E, Fares J, Ahuja CS, Lesniak MS, Koski TR, Dahdaleh NS, El Tecle NE. Genetics and pathogenesis of scoliosis. NORTH AMERICAN SPINE SOCIETY JOURNAL 2024; 20:100556. [PMID: 39399722 PMCID: PMC11470263 DOI: 10.1016/j.xnsj.2024.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024]
Abstract
Background Scoliosis is defined as a lateral spine curvature of at least 10° with vertebral rotation, as seen on a posterior-anterior radiograph, often accompanied by reduced thoracic kyphosis. Scoliosis affects all age groups: idiopathic scoliosis is the most common spinal disorder in children and adolescents, while adult degenerative scoliosis typically affects individuals over fifty. In the United States, approximately 3 million new cases of scoliosis are diagnosed annually, with a predicted increase in part due to global aging. Despite its prevalence, the etiopathogenesis of scoliosis remains unclear. Methods This comprehensive review analyzes the literature on the etiopathogenetic evidence for both idiopathic and adult degenerative scoliosis. PubMed and Google Scholar databases were searched for studies on the genetic factors and etiopathogenetic mechanisms of scoliosis development and progression, with the search limited to articles in English. Results For idiopathic scoliosis, genetic factors are categorized into three groups: genes associated with susceptibility, disease progression, and both. We identify gene groups related to different biological processes and explore multifaceted pathogenesis of idiopathic scoliosis, including evolutionary adaptations to bipedalism and developmental and homeostatic spinal aberrations. For adult degenerative scoliosis, we segregate genetic and pathogenic evidence into categories of angiogenesis and inflammation, extracellular matrix degradation, neural associations, and hormonal influences. Finally, we compare findings in idiopathic scoliosis and adult degenerative scoliosis, discuss current limitations in scoliosis research, propose a new model for scoliosis etiopathogenesis, and highlight promising areas for future studies. Conclusions Scoliosis is a complex, multifaceted disease with largely enigmatic origins and mechanisms of progression, keeping it under continuous scientific scrutiny.
Collapse
Affiliation(s)
- Edgar Petrosyan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Christopher S. Ahuja
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Maciej S. Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Tyler R. Koski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Nader S. Dahdaleh
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Najib E. El Tecle
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| |
Collapse
|
2
|
Zhang S, Dai LN, Yin Q, Kang XP, Zeng DD, Jiang T, Zhao GY, Li XH, Li J. Dinucleotide composition representation -based deep learning to predict scoliosis-associated Fibrillin-1 genotypes. Front Genet 2024; 15:1492226. [PMID: 39502335 PMCID: PMC11534654 DOI: 10.3389/fgene.2024.1492226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Scoliosis is a pathological spine structure deformation, predominantly classified as "idiopathic" due to its unknown etiology. However, it has been suggested that scoliosis may be linked to polygenic backgrounds. It is crucial to identify potential Adolescent Idiopathic Scoliosis (AIS)-related genetic backgrounds before scoliosis onset. Methods The present study was designed to intelligently parse, decompose and predict AIS-related variants in ClinVar database. Possible AIS-related variant records downloaded from ClinVar were parsed for various labels, decomposed for Dinucleotide Compositional Representation (DCR) and other traits, screened for high-risk genes with statistical analysis, and then learned intelligently with deep learning to predict high-risk AIS genotypes. Results Results demonstrated that the present framework is composed of all technical sections of data parsing, scoliosis genotyping, genome encoding, machine learning (ML)/deep learning (DL) and scoliosis genotype predicting. 58,000 scoliosis-related records were automatically parsed and statistically analyzed for high-risk genes and genotypes, such as FBN1, LAMA2 and SPG11. All variant genes were decomposed for DCR and other traits. Unsupervised ML indicated marked inter-group separation and intra-group clustering of the DCR of FBN1, LAMA2 or SPG11 for the five types of variants (Pathogenic, Pathogeniclikely, Benign, Benignlikely and Uncertain). A FBN1 DCR-based Convolutional Neural Network (CNN) was trained for Pathogenic and Benign/ Benignlikely variants performed accurately on validation data and predicted 179 high-risk scoliosis variants. The trained predictor was interpretable for the similar distribution of variant types and variant locations within 2D structure units in the predicted 3D structure of FBN1. Discussion In summary, scoliosis risk is predictable by deep learning based on genomic decomposed features of DCR. DCR-based classifier has predicted more scoliosis risk FBN1 variants in ClinVar database. DCR-based models would be promising for genotype-to-phenotype prediction for more disease types.
Collapse
Affiliation(s)
- Sen Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Li-Na Dai
- College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Qi Yin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Xiao-Ping Kang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Dan-Dan Zeng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Tao Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Guang-Yu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Xiao-He Li
- College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Jing Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
3
|
Bok S, Sun J, Greenblatt MB. Are osteoblasts multiple cell types? A new diversity in skeletal stem cells and their derivatives. J Bone Miner Res 2024; 39:1386-1392. [PMID: 39052334 PMCID: PMC11425698 DOI: 10.1093/jbmr/zjae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024]
Abstract
Only in the past decade have skeletal stem cells (SSCs), a cell type displaying formal evidence of stemness and serving as the ultimate origin of mature skeletal cell types such as osteoblasts, been defined. Here, we discuss a pair of recent reports that identify that SSCs do not represent a single cell type, but rather a family of related cells that each have characteristic anatomic locations and distinct functions tailored to the physiology of those sites. The distinct functional properties of these SSCs in turn provide a basis for the diseases of their respective locations. This concept emerges from one report identifying a distinct vertebral skeletal stem cell driving the high rate of breast cancer metastasis to the spine over other skeletal sites and a report identifying 2 SSCs in the calvaria that interact to mediate both physiologic calvarial mineralization and pathologic calvarial suture fusion in craniosynostosis. Despite displaying functional differences, these SSCs are each united by shared features including a shared series of surface markers and parallel differentiation hierarchies. We propose that this diversity at the level of SSCs in turn translates into a similar diversity at the level of mature skeletal cell types, including osteoblasts, with osteoblasts derived from different SSCs each displaying different functional and transcriptional characteristics reflecting their cell of origin. In this model, osteoblasts would represent not a single cell type, but rather a family of related cells each with distinct functions, paralleling the functional diversity in SSCs.
Collapse
Affiliation(s)
- Seoyeon Bok
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York NY 10065, United States
| | - Jun Sun
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York NY 10065, United States
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York NY 10065, United States
- Skeletal Health and Orthopedic Research Program, Hospital for Special Surgery, New York NY 10065, United States
| |
Collapse
|
4
|
Wen W, Zhao Z, Zheng Z, Zhao S, Zhao H, Cheng X, Du H, Li Z, Wang S, Qiu G, Wu Z, Zhang TJ, Wu N. Rare variant association analyses reveal the significant contribution of carbohydrate metabolic disturbance in severe adolescent idiopathic scoliosis. J Med Genet 2024; 61:666-676. [PMID: 38724173 PMCID: PMC11228217 DOI: 10.1136/jmg-2023-109667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/18/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Adolescent idiopathic scoliosis (AIS), the predominant genetic-influenced scoliosis, results in spinal deformities without vertebral malformations. However, the molecular aetiology of AIS remains unclear. METHODS Using genome/exome sequencing, we studied 368 patients with severe AIS (Cobb angle >40°) and 3794 controls from a Han Chinese cohort. We performed gene-based and pathway-based weighted rare variant association tests to assess the mutational burden of genes and established biological pathways. Differential expression analysis of muscle tissues from 14 patients with AIS and 15 controls was served for validation. RESULTS SLC16A8, a lactate transporter linked to retinal glucose metabolism, was identified as a novel severe AIS-associated gene (p=3.08E-06, false discovery rate=0.009). Most AIS cases with deleterious SLC16A8 variants demonstrated early onset high myopia preceding scoliosis. Pathway-based burden test also revealed a significant enrichment in multiple carbohydrate metabolism pathways, especially galactose metabolism. Patients with deleterious variants in these genes demonstrated a significantly larger spinal curve. Genes related to catabolic processes and nutrient response showed divergent expression between AIS cases and controls, reinforcing our genomic findings. CONCLUSION This study uncovers the pivotal role of genetic variants in carbohydrate metabolism in the development of AIS, unveiling new insights into its aetiology and potential treatment.
Collapse
Affiliation(s)
- Wen Wen
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, Beijing, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Beijing, China
| | - Zhengye Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences; Beijing, Beijing, Beijing, China
| | - Zhifa Zheng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences; Beijing, Beijing, Beijing, China
| | - Sen Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, Beijing, China
- Baylor College of Medicine Department of Molecular and Human Genetics, Houston, Texas, USA
| | - Hengqiang Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, Beijing, China
- Feinberg School of Medicine, Northwestern University; Chicago, Chicago, Illinois, USA
| | - Xi Cheng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, Beijing, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Beijing, China
| | - Huakang Du
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, Beijing, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Beijing, China
| | - Ziquan Li
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences; Beijing, Beijing, Beijing, China
| | - Shengru Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences; Beijing, Beijing, Beijing, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences; Beijing, Beijing, Beijing, China
| | - Zhihong Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, Beijing, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, Beijing, China
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences; Beijing, Beijing, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences; Beijing, Beijing, Beijing, China
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
Neri S, Assirelli E, Manzetti M, Viroli G, Ialuna M, Traversari M, Ciaffi J, Ursini F, Faldini C, Ruffilli A. Identification of Epigenetic Biomarkers of Adolescent Idiopathic Scoliosis Progression: A Workflow to Assess Local Gene Expression. Int J Mol Sci 2024; 25:5329. [PMID: 38791368 PMCID: PMC11120692 DOI: 10.3390/ijms25105329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is a three-dimensional structural deformity of the spine that affects 2-3% of adolescents under the age of 16. AIS etiopathogenesis is not completely understood; however, the disease phenotype is correlated to multiple genetic loci and results from genetic-environmental interactions. One of the primary, still unresolved issues is the implementation of reliable diagnostic and prognostic markers. For clinical management improvement, predictors of curve progression are particularly needed. Recently, an epigenetic contribution to AIS development and progression was proposed; nevertheless, validation of data obtained in peripheral tissues and identification of the specific mechanisms and genes under epigenetic control remain limited. In this study, we propose a methodological approach for the identification of epigenetic markers of AIS progression through an original workflow based on the preliminary characterization of local expression of candidate genes in tissues directly involved in the pathology. The feasibility of the proposed methodological protocol has been originally tested here in terms of identification of the putative epigenetic markers of AIS progression, collection of the different tissues, retrieval of an appropriate amount and quality of RNA and DNA, and identification of suitable reference genes.
Collapse
Affiliation(s)
- Simona Neri
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.A.); (J.C.); (F.U.)
| | - Elisa Assirelli
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.A.); (J.C.); (F.U.)
| | - Marco Manzetti
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.M.); (G.V.); (M.I.); (M.T.); (C.F.); (A.R.)
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Giovanni Viroli
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.M.); (G.V.); (M.I.); (M.T.); (C.F.); (A.R.)
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Marco Ialuna
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.M.); (G.V.); (M.I.); (M.T.); (C.F.); (A.R.)
| | - Matteo Traversari
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.M.); (G.V.); (M.I.); (M.T.); (C.F.); (A.R.)
| | - Jacopo Ciaffi
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.A.); (J.C.); (F.U.)
| | - Francesco Ursini
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.A.); (J.C.); (F.U.)
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Cesare Faldini
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.M.); (G.V.); (M.I.); (M.T.); (C.F.); (A.R.)
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Alberto Ruffilli
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.M.); (G.V.); (M.I.); (M.T.); (C.F.); (A.R.)
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
6
|
Normand É, Franco A, Parent S, Lombardi G, Brayda-Bruno M, Colombini A, Moreau A, Marcil V. Association between the GLP1R A316T Mutation and Adolescent Idiopathic Scoliosis in French Canadian and Italian Cohorts. Genes (Basel) 2024; 15:481. [PMID: 38674415 PMCID: PMC11050147 DOI: 10.3390/genes15040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Studies have revealed anthropometric discrepancies in girls with adolescent idiopathic scoliosis (AIS) compared to non-scoliotic subjects, such as a higher stature, lower weight, and lower body mass index. While the causes are still unknown, it was proposed that metabolic hormones could play a role in AIS pathophysiology. Our objectives were to evaluate the association of GLP1R A316T polymorphism in AIS susceptibility and to study its relationship with disease severity and progression. We performed a retrospective case-control association study with controls and AIS patients from an Italian and French Canadian cohort. The GLP1R rs10305492 polymorphism was genotyped in 1025 subjects (313 non-scoliotic controls and 712 AIS patients) using a validated TaqMan allelic discrimination assay. Associations were evaluated by odds ratio and 95% confidence intervals. In the AIS group, there was a higher frequency of the variant genotype A/G (4.2% vs. 1.3%, OR = 3.40, p = 0.016) and allele A (2.1% vs. 0.6%, OR = 3.35, p = 0.017) than controls. When the AIS group was stratified for severity (≤40° vs. >40°), progression of the disease (progressor vs. non-progressor), curve type, or body mass index, there was no statistically significant difference in the distribution of the polymorphism. Our results support that the GLP1R A316T polymorphism is associated with a higher risk of developing AIS, but without being associated with disease severity and progression.
Collapse
Affiliation(s)
- Émilie Normand
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC H3T 1C5, Canada;
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1A8, Canada
| | - Anita Franco
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Research Center, Sainte-Justine University Hospital Center, Montreal, QC H3T 1C5, Canada; (A.F.); (A.M.)
| | - Stefan Parent
- Department of Surgery, Sainte-Justine University Hospital Center, Montreal, QC H3T 1C5, Canada;
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy;
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, 61-871 Poznań, Poland
| | - Marco Brayda-Bruno
- Scoliosis Unit, Department of Orthopedics and Traumatology-Spine Surgery III, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy;
| | - Alessandra Colombini
- Orthopaedic Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy;
| | - Alain Moreau
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Research Center, Sainte-Justine University Hospital Center, Montreal, QC H3T 1C5, Canada; (A.F.); (A.M.)
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montreal, QC H3A 1J4, Canada
| | - Valérie Marcil
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC H3T 1C5, Canada;
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1A8, Canada
| |
Collapse
|
7
|
Ushiki A, Sheng RR, Zhang Y, Zhao J, Nobuhara M, Murray E, Ruan X, Rios JJ, Wise CA, Ahituv N. Deletion of Pax1 scoliosis-associated regulatory elements leads to a female-biased tail abnormality. Cell Rep 2024; 43:113907. [PMID: 38461417 PMCID: PMC11005513 DOI: 10.1016/j.celrep.2024.113907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 12/29/2023] [Accepted: 02/19/2024] [Indexed: 03/12/2024] Open
Abstract
Adolescent idiopathic scoliosis (AIS), a sideways curvature of the spine, is sexually dimorphic, with increased incidence in females. A genome-wide association study identified a female-specific AIS susceptibility locus near the PAX1 gene. Here, we use mouse enhancer assays, three mouse enhancer knockouts, and subsequent phenotypic analyses to characterize this region. Using mouse enhancer assays, we characterize a sequence, PEC7, which overlaps the AIS-associated variant, and find it to be active in the tail tip and intervertebral disc. Removal of PEC7 or Xe1, a known sclerotome enhancer nearby, or deletion of both sequences lead to a kinky tail phenotype only in the Xe1 and combined (Xe1+PEC7) knockouts, with only the latter showing a female sex dimorphic phenotype. Extensive phenotypic characterization of these mouse lines implicates several differentially expressed genes and estrogen signaling in the sex dimorphic bias. In summary, our work functionally characterizes an AIS-associated locus and dissects the mechanism for its sexual dimorphism.
Collapse
Affiliation(s)
- Aki Ushiki
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Rory R Sheng
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yichi Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Jingjing Zhao
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Mai Nobuhara
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Elizabeth Murray
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Xin Ruan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jonathan J Rios
- Center for Translational Research, Scottish Rite for Children, Dallas, TX 75390, USA; Department of Orthopedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Carol A Wise
- Center for Translational Research, Scottish Rite for Children, Dallas, TX 75390, USA; Department of Orthopedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
8
|
Handa M, Demura S, Yokogawa N, Hinoi E, Hiraiwa M, Kato S, Shinmura K, Annen R, Kobayashi M, Yamada Y, Nagatani S, Kurokawa Y, Tsuchiya H. Characteristics of Scoliosis in Mice Induced by Chondrocyte-specific Inactivation of L-type Amino Acid Transporter 1. Spine (Phila Pa 1976) 2024; 49:285-293. [PMID: 37796156 DOI: 10.1097/brs.0000000000004842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023]
Abstract
STUDY DESIGN A mouse study of the Slc7a5 gene using conditional knockout to assess the effects of its inactivation on spinal deformity. OBJECTIVES This study aimed to investigate whether the mice with scoliosis [induced by chondrocyte-specific inactivation of L-type amino acid transporter 1 (LAT1)] show a developmental process similar to that of pediatric scoliosis and to examine the relationship between reduced bone mineral density (BMD) and scoliosis. Furthermore, we aimed to obtain insights into elucidating the etiology and pathophysiology of scoliosis. SUMMARY OF BACKGROUND DATA The etiology and pathogenesis of scoliosis are not fully understood despite substantial investigative efforts. LAT1 is an amino acid transporter that mediates the cellular uptake of large neutral amino acids. A recent study revealed that chondrocyte-specific inactivation of LAT1 in mice results in scoliosis (Col2a1-Cre;Slc7a5fl/fl mice: "Sko mice"). MATERIALS AND METHODS Body length, body weight, Cobb angle, vertebral body rotation angle, and BMD at 1, 2, 4, 6, and 8 weeks of age were examined and statistically compared with those of normal control mice. Pathologic and morphologic evaluation was performed on specimens from 10-week-old euthanized mice. RESULTS The Sko mice developed thoracic scoliosis in infancy without congenital malformations. This spinal deformity progressed rapidly during growth, with diverse curve patterns and hypoplastic vertebral bodies. Pathologic examination revealed thickening of the growth plates and decreased osteoblasts, suggesting that impaired endochondral ossification was the cause of the scoliosis. Sko mice were also observed to have decreased BMD and degraded bone microstructure. Reduced BMD and bone quality may not be the causes of the onset and progression of scoliosis in the Sko mice. CONCLUSIONS In Sko mice, the characteristics of scoliosis and vertebral pathology showed many similarities with syndromic scoliosis in humans. Endochondral ossification defects may impair growth, leading to scoliosis and decreased BMD.
Collapse
Affiliation(s)
- Makoto Handa
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Satoru Demura
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Noriaki Yokogawa
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Eiichi Hinoi
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Manami Hiraiwa
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Satoshi Kato
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kazuya Shinmura
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Ryohei Annen
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Motoya Kobayashi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yohei Yamada
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Satoshi Nagatani
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yuki Kurokawa
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
9
|
Yu H, Khanshour AM, Ushiki A, Otomo N, Koike Y, Einarsdottir E, Fan Y, Antunes L, Kidane YH, Cornelia R, Sheng RR, Zhang Y, Pei J, Grishin NV, Evers BM, Cheung JPY, Herring JA, Terao C, Song YQ, Gurnett CA, Gerdhem P, Ikegawa S, Rios JJ, Ahituv N, Wise CA. Association of genetic variation in COL11A1 with adolescent idiopathic scoliosis. eLife 2024; 12:RP89762. [PMID: 38277211 PMCID: PMC10945706 DOI: 10.7554/elife.89762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is a common and progressive spinal deformity in children that exhibits striking sexual dimorphism, with girls at more than fivefold greater risk of severe disease compared to boys. Despite its medical impact, the molecular mechanisms that drive AIS are largely unknown. We previously defined a female-specific AIS genetic risk locus in an enhancer near the PAX1 gene. Here, we sought to define the roles of PAX1 and newly identified AIS-associated genes in the developmental mechanism of AIS. In a genetic study of 10,519 individuals with AIS and 93,238 unaffected controls, significant association was identified with a variant in COL11A1 encoding collagen (α1) XI (rs3753841; NM_080629.2_c.4004C>T; p.(Pro1335Leu); p=7.07E-11, OR = 1.118). Using CRISPR mutagenesis we generated Pax1 knockout mice (Pax1-/-). In postnatal spines we found that PAX1 and collagen (α1) XI protein both localize within the intervertebral disc-vertebral junction region encompassing the growth plate, with less collagen (α1) XI detected in Pax1-/- spines compared to wild-type. By genetic targeting we found that wild-type Col11a1 expression in costal chondrocytes suppresses expression of Pax1 and of Mmp3, encoding the matrix metalloproteinase 3 enzyme implicated in matrix remodeling. However, the latter suppression was abrogated in the presence of the AIS-associated COL11A1P1335L mutant. Further, we found that either knockdown of the estrogen receptor gene Esr2 or tamoxifen treatment significantly altered Col11a1 and Mmp3 expression in chondrocytes. We propose a new molecular model of AIS pathogenesis wherein genetic variation and estrogen signaling increase disease susceptibility by altering a PAX1-COL11a1-MMP3 signaling axis in spinal chondrocytes.
Collapse
Affiliation(s)
- Hao Yu
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
| | - Anas M Khanshour
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
| | - Aki Ushiki
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
| | - Nao Otomo
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical SciencesTokyoJapan
| | - Yoshinao Koike
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical SciencesTokyoJapan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical SciencesYokohamaJapan
| | - Elisabet Einarsdottir
- Science for Life Laboratory, Department of Gene Technology, KTH-Royal Institute of TechnologySolnaSweden
| | - Yanhui Fan
- School of Biomedical Sciences, The University of Hong KongHong Kong SARChina
| | - Lilian Antunes
- Department of Neurology, Washington University in St. LouisSt. LouisUnited States
| | - Yared H Kidane
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
| | - Reuel Cornelia
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
| | - Rory R Sheng
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
| | - Yichi Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
- School of Pharmaceutical Sciences, Tsinghua UniversityBeijingChina
| | - Jimin Pei
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Bret M Evers
- Department of Pathology, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Ophthalmology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology LKS Faculty of Medicine, The University of Hong KongHong Kong SARChina
| | - John A Herring
- Department of Orthopedic Surgery, Scottish Rite for ChildrenDallasUnited States
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical CenterDallasUnited States
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical SciencesYokohamaJapan
| | - You-qiang Song
- School of Biomedical Sciences, The University of Hong KongHong Kong SARChina
| | - Christina A Gurnett
- Department of Neurology, Washington University in St. LouisSt. LouisUnited States
| | - Paul Gerdhem
- Department of Surgical Sciences, Uppsala UniversityUppsalaSweden
- Department of Orthopaedics and Hand Surgery, Uppsala University HospitalUppsalaSweden
- Department of Clinical Science, Intervention & Technology (CLINTEC), Karolinska Institutet, Stockholm, Uppsala UniversityUppsalaSweden
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical SciencesTokyoJapan
| | - Jonathan J Rios
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical CenterDallasUnited States
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Pediatrics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
| | - Carol A Wise
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical CenterDallasUnited States
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Pediatrics, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
10
|
Singh H, Shipra, Gupta M, Gupta N, Gupta G, Pandita AK, Sharma R, Pandita S, Singh V, Garg B, Rai E, Sharma S. SOX9 gene shows association with adolescent idiopathic scoliosis predisposition in Northwest Indians. Eur J Med Res 2024; 29:66. [PMID: 38245767 PMCID: PMC10799485 DOI: 10.1186/s40001-024-01635-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Adolescent idiopathic scoliosis (AIS) is a common structural deformity of the spine affecting adolescent individuals globally. The disorder is polygenic and is accompanied by the association of various genetic loci. Genetic studies in Chinese and Japanese populations have shown the association of genetic variants of SOX9 with AIS curve severity. However, no genetic study evaluating the association of SRY-Box Transcription Factor 9 (SOX9) variants with AIS predisposition has been conducted in any Indian population. Thus, we aimed to investigate the association of the genetic variants of the SOX9 along with 0.88 Mb upstream region with AIS susceptibility in the population of Northwest India. METHODS In total, 113 AIS cases and 500 non-AIS controls were recruited from the population of Northwest India in the study and screened for 155 genetic variants across the SOX9 gene and 0.88 Mb upstream region of the gene using Global Screening Array-24 v3.0 chip (Illumina). The statistical significance of the Bonferroni threshold was set at 0.000322. RESULT The results showed the association of 11 newly identified variants; rs9302936, rs7210997, rs77736349, rs12940821, rs9302937, rs77447012, rs8071904, rs74898711, rs9900249, rs2430514, and rs1042667 with the AIS susceptibility in the studied population. Only one variant, rs2430514, was inversely associated with AIS in the population, while the ten variants were associated with the AIS risk. Moreover, 47 variants clustered in the gene desert region of the SOX9 gene were associated at a p-value ≤ 0.05. CONCLUSION The present study is the first to demonstrate the association of SOX9 enhancer locus variants with AIS in any South Asian Indian population. The results are interesting as rs1042667, a 3' untranslated region (UTR) variant in the exon 3 and upstream variants of the SOX9 gene, were associated with AIS susceptibility in the Northwest Indian population. This provides evidence that the variants in the enhancer region of SOX9 might regulate its gene expression, thus leading to AIS pathology and might act as an important gene for AIS susceptibility.
Collapse
Affiliation(s)
- Hemender Singh
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Shipra
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Manish Gupta
- Department of Orthopaedics, All India Institute of Medical Sciences, New Delhi, India
| | - Nital Gupta
- District Hospital Poonch, Poonch, Jammu and Kashmir, India
| | - Geetanjali Gupta
- Department of Radiology, Shri Mata Vaishno Devi Narayana Superspeciality Hospital, Katra, Jammu and Kashmir, India
| | - Ajay K Pandita
- Accidental Hospital, Chowki Choura, Jammu, Jammu and Kashmir, India
| | - Rajesh Sharma
- Government Medical College, Jammu, Jammu and Kashmir, India
| | - Sarla Pandita
- Chest Disease Hospital, Bakshi Nagar, Jammu, Jammu and Kashmir, India
| | - Vinod Singh
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Bhavuk Garg
- Department of Orthopaedics, All India Institute of Medical Sciences, New Delhi, India
| | - Ekta Rai
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India.
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| | - Swarkar Sharma
- Human Genetics Research Lab, Centre for Molecular Biology, Central University of Jammu, Jammu, India.
| |
Collapse
|
11
|
Terhune E, Heyn P, Piper C, Wethey C, Monley A, Cuevas M, Hadley Miller N. Association between genetic polymorphisms and risk of adolescent idiopathic scoliosis in case-control studies: a systematic review. J Med Genet 2024; 61:196-206. [PMID: 37696603 DOI: 10.1136/jmg-2022-108993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 07/09/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Adolescent idiopathic scoliosis (AIS) is a structural lateral spinal curvature of ≥10° with rotation. Approximately 2%-3% of children across populations are affected with AIS, and this condition is responsible for ~$3 billion in costs within the USA. Although AIS is believed to have a strong genetic contribution, clinical translation of identified genetic variants has stalled. METHODS The databases MEDLINE (via PubMed), Embase, Google Scholar and Ovid MEDLINE were searched and limited to articles in English. Title and abstract, full-text and data extraction screening was conducted through Covidence, followed by data transfer to a custom REDCap database. Studies containing variant-level data using genome-wide methodology as well as validation studies of genome-wide methods were considered. Quality assessment was conducted using Q-Genie. RESULTS 33 studies were included, including 9 genome-wide association studies, 4 whole exome sequencing and 20 validation studies. Combined, these studies included data from >35,000 cases and >67,000 controls, not including validation cohorts. Additionally, results from six meta-analyses containing novel cohorts were also reported. All included study cohorts were from populations of primarily East Asian or Caucasian descent. Quality assessment found that overall study quality was high and control group selection was moderate. The highest number of reported associations were in single nucleotide polymorphisms (SNPs) in or near LBX1, LBX1-AS1, GPR126/ADGRG6 or BNC2. CONCLUSION AIS risk may be influenced by specific SNPs, particularly those in/near LBX1 and GPR126. Translatability of study findings is unknown due to an underrepresentation of most ethnic groups as well as few identified genome-wide studies. Further studies may benefit from increased cohort diversity and thorough evaluation of control cohort groups.
Collapse
Affiliation(s)
- Elizabeth Terhune
- Department of Orthopedics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Patricia Heyn
- Department of Orthopedics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christi Piper
- Department of Orthopedics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cambria Wethey
- Department of Orthopedics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anna Monley
- Department of Orthopedics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Melissa Cuevas
- Department of Orthopedics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nancy Hadley Miller
- Department of Orthopedics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
12
|
Wang X, Yue M, Cheung JPY, Cheung PWH, Fan Y, Wu M, Wang X, Zhao S, Khanshour AM, Rios JJ, Chen Z, Wang X, Tu W, Chan D, Yuan Q, Qin D, Qiu G, Wu Z, Zhang TJ, Ikegawa S, Wu N, Wise CA, Hu Y, Luk KDK, Song YQ, Gao B. Impaired glycine neurotransmission causes adolescent idiopathic scoliosis. J Clin Invest 2024; 134:e168783. [PMID: 37962965 PMCID: PMC10786698 DOI: 10.1172/jci168783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is the most common form of spinal deformity, affecting millions of adolescents worldwide, but it lacks a defined theory of etiopathogenesis. Because of this, treatment of AIS is limited to bracing and/or invasive surgery after onset. Preonset diagnosis or preventive treatment remains unavailable. Here, we performed a genetic analysis of a large multicenter AIS cohort and identified disease-causing and predisposing variants of SLC6A9 in multigeneration families, trios, and sporadic patients. Variants of SLC6A9, which encodes glycine transporter 1 (GLYT1), reduced glycine-uptake activity in cells, leading to increased extracellular glycine levels and aberrant glycinergic neurotransmission. Slc6a9 mutant zebrafish exhibited discoordination of spinal neural activities and pronounced lateral spinal curvature, a phenotype resembling human patients. The penetrance and severity of curvature were sensitive to the dosage of functional glyt1. Administration of a glycine receptor antagonist or a clinically used glycine neutralizer (sodium benzoate) partially rescued the phenotype. Our results indicate a neuropathic origin for "idiopathic" scoliosis, involving the dysfunction of synaptic neurotransmission and central pattern generators (CPGs), potentially a common cause of AIS. Our work further suggests avenues for early diagnosis and intervention of AIS in preadolescents.
Collapse
Affiliation(s)
- Xiaolu Wang
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
- School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ming Yue
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Orthopaedics and Traumatology, University of Hong Kong–Shenzhen Hospital, Shenzhen, China
| | - Prudence Wing Hang Cheung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yanhui Fan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Meicheng Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xiaojun Wang
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Sen Zhao
- Department of Orthopaedic Surgery, Department of Medical Research Center, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College Hospital (PUMCH) and Chinese Academy of Medical Sciences, Beijing, China
| | - Anas M. Khanshour
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children (SRC), Dallas, Texas, USA
| | - Jonathan J. Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children (SRC), Dallas, Texas, USA
- Eugene McDermott Center for Human Growth and Development, Departments of Orthopaedic Surgery and Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zheyi Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xiwei Wang
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Danny Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Qiuju Yuan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Tai Po, Hong Kong, China
| | - Dajiang Qin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Tai Po, Hong Kong, China
| | - Guixing Qiu
- Department of Orthopaedic Surgery, Department of Medical Research Center, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College Hospital (PUMCH) and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Department of Orthopaedic Surgery, Department of Medical Research Center, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College Hospital (PUMCH) and Chinese Academy of Medical Sciences, Beijing, China
| | - Terry Jianguo Zhang
- Department of Orthopaedic Surgery, Department of Medical Research Center, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College Hospital (PUMCH) and Chinese Academy of Medical Sciences, Beijing, China
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Nan Wu
- Department of Orthopaedic Surgery, Department of Medical Research Center, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College Hospital (PUMCH) and Chinese Academy of Medical Sciences, Beijing, China
| | - Carol A. Wise
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children (SRC), Dallas, Texas, USA
- Eugene McDermott Center for Human Growth and Development, Departments of Orthopaedic Surgery and Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yong Hu
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Orthopaedics and Traumatology, University of Hong Kong–Shenzhen Hospital, Shenzhen, China
| | - Keith Dip Kei Luk
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - You-Qiang Song
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Medicine, University of Hong Kong–Shenzhen Hospital, Shenzhen, China
- State Key Laboratory of Brain and Cognitive Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Bo Gao
- School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Orthopaedics and Traumatology, University of Hong Kong–Shenzhen Hospital, Shenzhen, China
- Centre for Translational Stem Cell Biology, Tai Po, Hong Kong, China
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
13
|
Jiang X, Liu F, Zhang M, Hu W, Zhao Y, Xia B, Xu K. Advances in genetic factors of adolescent idiopathic scoliosis: a bibliometric analysis. Front Pediatr 2024; 11:1301137. [PMID: 38322243 PMCID: PMC10845672 DOI: 10.3389/fped.2023.1301137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/11/2023] [Indexed: 02/08/2024] Open
Abstract
Objective This study offers a bibliometric analysis of the current situation, hotspots, and cutting-edge domains of genetic factors of adolescent idiopathic scoliosis (AIS). Methods All publications related to genetic factors of AIS from January 1, 1992, to February 28, 2023, were searched from the Web of Science. CiteSpace software was employed for bibliometric analysis, collecting information about countries, institutions, authors, journals, and keywords of each article. Results A cumulative number of 308 articles have been ascertained. Since 2006, publications relating to genetic factors of AIS have significantly increased. China leads in both productivity and influence in this area, with the Chinese Academy of Medical Sciences being the most productive institution. The most prolific scholars in this field are Y. Qiu and Z. Z. Zhu. The publications that contributed the most were from Spine and European Spine Journal. The most prominent keywords in the genetic factors of AIS were "fibrillin gene", "menarche", "calmodulin", "estrogen receptor gene", "linkage analysis", "disc degeneration", "bone mineral density", "melatonin signaling dysfunction", "collagen gene", "mesenchymal stem cell", "LBX1", "promoter polymorphism", "Bone formation", "cerebrospinal fluid flow" and "extracellular matrix". Conclusion This analysis provides the frontiers and trends of genetic factors in AIS, including relevant research, partners, institutions and countries.
Collapse
Affiliation(s)
| | - Fuyun Liu
- Department of Orthopedics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | | | | | | | | | | |
Collapse
|
14
|
Ghanbari F, Otomo N, Gamache I, Iwami T, Koike Y, Khanshour AM, Ikegawa S, Wise CA, Terao C, Manousaki D. Interrogating Causal Effects of Body Composition and Puberty-Related Risk Factors on Adolescent Idiopathic Scoliosis: A Two-Sample Mendelian Randomization Study. JBMR Plus 2023; 7:e10830. [PMID: 38130750 PMCID: PMC10731118 DOI: 10.1002/jbm4.10830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 12/23/2023] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is the most common form of pediatric musculoskeletal disorder. Observational studies have pointed to several risk factors for AIS, but almost no evidence exists to support their causal association with AIS. Here, we applied Mendelian randomization (MR), known to limit bias from confounding and reverse causation, to investigate causal associations between body composition and puberty-related exposures and AIS risk in Europeans and Asians. For our two-sample MR studies, we used single nucleotide polymorphisms (SNPs) associated with body mass index (BMI), waist-hip ratio, lean mass, childhood obesity, bone mineral density (BMD), 25-hydroxyvitamin D (25OHD), age at menarche, and pubertal growth in large European genome-wide association studies (GWAS), and with adult osteoporosis risk and age of menarche in Biobank Japan. We extracted estimates of the aforementioned SNPs on AIS risk from the European or Asian subsets of the largest multiancestry AIS GWAS (N = 7956 cases/88,459 controls). The results of our inverse variance-weighted (IVW) MR estimates suggest no causal association between the aforementioned risk factors and risk of AIS. Pleiotropy-sensitive MR methods yielded similar results. However, restricting our analysis to European females with AIS, we observed a causal association between estimated BMD and the risk of AIS (IVW odds ratio for AIS = 0.1, 95% confidence interval 0.01 to 0.7, p = 0.02 per SD increase in estimated BMD), but this association was no longer significant after adjusting for BMI, body fat mass, and 25OHD and remained significant after adjusting for age at menarche in multivariable MR. In conclusion, we demonstrated a protective causal effect of BMD on AIS risk in females of European ancestry, but this effect was modified by BMI, body fat mass, and 25OHD levels. Future MR studies using larger AIS GWAS are needed to investigate small effects of the aforementioned exposures on AIS. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Faegheh Ghanbari
- Research Center of the Sainte‐Justine University HospitalUniversity of MontrealMontrealQuebecCanada
| | - Nao Otomo
- Laboratory for Statistical and Translational GeneticsRIKEN Center for Integrative Medical Sciences, RIKENYokohamaJapan
- Department of Orthopedic SurgeryKeio University School of MedicineTokyoJapan
| | - Isabel Gamache
- Research Center of the Sainte‐Justine University HospitalUniversity of MontrealMontrealQuebecCanada
| | - Takuro Iwami
- Laboratory for Statistical and Translational GeneticsRIKEN Center for Integrative Medical Sciences, RIKENYokohamaJapan
- Department of Orthopedic SurgeryKeio University School of MedicineTokyoJapan
| | - Yoshinao Koike
- Laboratory for Statistical and Translational GeneticsRIKEN Center for Integrative Medical Sciences, RIKENYokohamaJapan
- Department of Orthopedic SurgeryHokkaido University Graduate School of MedicineSapporoJapan
| | - Anas M. Khanshour
- Scottish Rite for Children Center for Pediatric Bone Biology and Translational ResearchDallasTexasUSA
| | - Shiro Ikegawa
- Laboratory for Statistical and Translational GeneticsRIKEN Center for Integrative Medical Sciences, RIKENYokohamaJapan
| | - Carol A. Wise
- Scottish Rite for Children Center for Pediatric Bone Biology and Translational ResearchDallasTexasUSA
- McDermott Center for Human Growth & DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Chikashi Terao
- Laboratory for Statistical and Translational GeneticsRIKEN Center for Integrative Medical Sciences, RIKENYokohamaJapan
| | - Despoina Manousaki
- Research Center of the Sainte‐Justine University HospitalUniversity of MontrealMontrealQuebecCanada
- Department of PediatricsUniversity of MontrealMontrealCanada
- Department of Biochemistry and Molecular MedicineUniversity of MontrealMontrealQuebecCanada
| |
Collapse
|
15
|
Yu H, Khanshour AM, Ushiki A, Otomo N, Koike Y, Einarsdottir E, Fan Y, Antunes L, Kidane YH, Cornelia R, Sheng R, Zhang Y, Pei J, Grishin NV, Evers BM, Cheung JPY, Herring JA, Terao C, Song YQ, Gurnett CA, Gerdhem P, Ikegawa S, Rios JJ, Ahituv N, Wise CA. Association of genetic variation in COL11A1 with adolescent idiopathic scoliosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542293. [PMID: 37292598 PMCID: PMC10245954 DOI: 10.1101/2023.05.26.542293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Adolescent idiopathic scoliosis (AIS) is a common and progressive spinal deformity in children that exhibits striking sexual dimorphism, with girls at more than five-fold greater risk of severe disease compared to boys. Despite its medical impact, the molecular mechanisms that drive AIS are largely unknown. We previously defined a female-specific AIS genetic risk locus in an enhancer near the PAX1 gene. Here we sought to define the roles of PAX1 and newly-identified AIS-associated genes in the developmental mechanism of AIS. In a genetic study of 10,519 individuals with AIS and 93,238 unaffected controls, significant association was identified with a variant in COL11A1 encoding collagen (α1) XI (rs3753841; NM_080629.2_c.4004C>T; p.(Pro1335Leu); P=7.07e-11, OR=1.118). Using CRISPR mutagenesis we generated Pax1 knockout mice (Pax1-/-). In postnatal spines we found that PAX1 and collagen (α1) XI protein both localize within the intervertebral disc (IVD)-vertebral junction region encompassing the growth plate, with less collagen (α1) XI detected in Pax1-/- spines compared to wildtype. By genetic targeting we found that wildtype Col11a1 expression in costal chondrocytes suppresses expression of Pax1 and of Mmp3, encoding the matrix metalloproteinase 3 enzyme implicated in matrix remodeling. However, this suppression was abrogated in the presence of the AIS-associated COL11A1P1335L mutant. Further, we found that either knockdown of the estrogen receptor gene Esr2, or tamoxifen treatment, significantly altered Col11a1 and Mmp3 expression in chondrocytes. We propose a new molecular model of AIS pathogenesis wherein genetic variation and estrogen signaling increase disease susceptibility by altering a Pax1-Col11a1-Mmp3 signaling axis in spinal chondrocytes.
Collapse
Affiliation(s)
- Hao Yu
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Anas M Khanshour
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Aki Ushiki
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Nao Otomo
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, JP
| | - Yoshinao Koike
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, JP
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, JP
| | - Elisabet Einarsdottir
- Science for Life Laboratory, Department of Gene Technology, KTH-Royal Institute of Technology, Solna, SE
| | - Yanhui Fan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, CN
| | - Lilian Antunes
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yared H Kidane
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Reuel Cornelia
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Rory Sheng
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Yichi Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, CN
| | - Jimin Pei
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bret M Evers
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, CN
| | - John A Herring
- Department of Orthopedic Surgery, Scottish Rite for Children, Dallas, TX, USA
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, JP
| | - You-Qiang Song
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, CN
| | - Christina A Gurnett
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Paul Gerdhem
- Department of Clinical Science, Intervention & Technology (CLINTEC), Karolinska Institutet, Stockholm, Uppsala University, Uppsala, SE
- Department of Surgical Sciences, Uppsala University and
- Department of Orthopaedics and Hand Surgery, Uppsala University Hospital, Uppsala, SE
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, JP
| | - Jonathan J Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Carol A Wise
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
16
|
Ushiki A, Sheng RR, Zhang Y, Zhao J, Nobuhara M, Murray E, Ruan X, Rios JJ, Wise CA, Ahituv N. Deletion of Pax1 scoliosis-associated regulatory elements leads to a female-biased tail abnormality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536497. [PMID: 37090618 PMCID: PMC10120660 DOI: 10.1101/2023.04.12.536497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Adolescent idiopathic scoliosis (AIS), a sideways curvature of the spine, is sexually dimorphic, with increased incidence in females. A GWAS identified a female-specific AIS susceptibility locus near the PAX1 gene. Here, we used mouse enhancer assays, three mouse enhancer knockouts and subsequent phenotypic analyses to characterize this region. Using mouse enhancer assays, we characterized a sequence, PEC7, that overlaps the AIS-associated variant, and found it to be active in the tail tip and intervertebral disc. Removal of PEC7 or Xe1, a known sclerotome enhancer nearby, and deletion of both sequences led to a kinky phenotype only in the Xe1 and combined (Xe1+PEC7) knockouts, with only the latter showing a female sex dimorphic phenotype. Extensive phenotypic characterization of these mouse lines implicated several differentially expressed genes and estrogen signaling in the sex dimorphic bias. In summary, our work functionally characterizes an AIS-associated locus and dissects the mechanism for its sexual dimorphism.
Collapse
Affiliation(s)
- Aki Ushiki
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Rory R. Sheng
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yichi Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Jingjing Zhao
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Mai Nobuhara
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Elizabeth Murray
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Xin Ruan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jonathan J. Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Carol A. Wise
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
17
|
Yonezawa Y, Guo L, Kakinuma H, Otomo N, Yoshino S, Takeda K, Nakajima M, Shiraki T, Ogura Y, Takahashi Y, Koike Y, Minami S, Uno K, Kawakami N, Ito M, Yonezawa I, Watanabe K, Kaito T, Yanagida H, Taneichi H, Harimaya K, Taniguchi Y, Shigematsu H, Iida T, Demura S, Sugawara R, Fujita N, Yagi M, Okada E, Hosogane N, Kono K, Chiba K, Kotani T, Sakuma T, Akazawa T, Suzuki T, Nishida K, Kakutani K, Tsuji T, Sudo H, Iwata A, Sato T, Inami S, Nakamura M, Matsumoto M, Terao C, Watanabe K, Okamoto H, Ikegawa S. Identification of a Functional Susceptibility Variant for Adolescent Idiopathic Scoliosis that Upregulates Early Growth Response 1 (EGR1)-Mediated UNCX Expression. J Bone Miner Res 2023; 38:144-153. [PMID: 36342191 DOI: 10.1002/jbmr.4738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/23/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Adolescent idiopathic scoliosis (AIS) is a serious health problem affecting 3% of live births all over the world. Many loci associated with AIS have been identified by previous genome wide association studies, but their biological implication remains mostly unclear. In this study, we evaluated the AIS-associated variants in the 7p22.3 locus by combining in silico, in vitro, and in vivo analyses. rs78148157 was located in an enhancer of UNCX, a homeobox gene and its risk allele upregulated the UNCX expression. A transcription factor, early growth response 1 (EGR1), transactivated the rs78148157-located enhancer and showed a higher binding affinity for the risk allele of rs78148157. Furthermore, zebrafish larvae with UNCX messenger RNA (mRNA) injection developed body curvature and defective neurogenesis in a dose-dependent manner. rs78148157 confers the genetic susceptibility to AIS by enhancing the EGR1-regulated UNCX expression. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Yoshiro Yonezawa
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan.,Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Long Guo
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan.,Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Hisaya Kakinuma
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Brain Science Institute, Saitama, Japan
| | - Nao Otomo
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Soichiro Yoshino
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuki Takeda
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Nakajima
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Toshiyuki Shiraki
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Brain Science Institute, Saitama, Japan
| | - Yoji Ogura
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Takahashi
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yoshinao Koike
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Orthopedic Surgery, Graduate School of Medical Sciences, Hokkaido University, Sapporo, Japan
| | - Shohei Minami
- Department of Orthopedic Surgery, Seirei Sakura Citizen Hospital, Chiba, Japan
| | - Koki Uno
- Department of Orthopedic Surgery, National Hospital Organization, Kobe Medical Center, Kobe, Japan
| | | | - Manabu Ito
- Department of Orthopedic Surgery, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Ikuho Yonezawa
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Kei Watanabe
- Department of Orthopedic Surgery, Niigata University Medical and Dental General Hospital, Niigata, Japan
| | - Takashi Kaito
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Haruhisa Yanagida
- Department of Orthopedic Surgery, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Hiroshi Taneichi
- Department of Orthopedic Surgery, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Katsumi Harimaya
- Department of Orthopedic Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yuki Taniguchi
- Department of Orthopedic, Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideki Shigematsu
- Department of Orthopedic Surgery, Nara Medical University, Nara, Japan
| | - Takahiro Iida
- Department of Orthopedic Surgery, Dokkyo Medical University Koshigaya Hospital, Saitama, Japan
| | - Satoru Demura
- Department of Orthopedic Surgery, Kanazawa University Hospital, Kanazawa, Japan
| | - Ryo Sugawara
- Department of Orthopedic Surgery, Jichi Medical University, Tochigi, Japan
| | - Nobuyuki Fujita
- Department of Orthopedic Surgery, Fujita Health University, Nagoya, Japan
| | - Mitsuru Yagi
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Eijiro Okada
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Naobumi Hosogane
- Department of Orthopedic Surgery, Kyorin University School of Medicine, Tokyo, Japan
| | - Katsuki Kono
- Department of Orthopedic Surgery, Kono Orthopaedic Clinic, Tokyo, Japan
| | - Kazuhiro Chiba
- Department of Orthopedic Surgery, National Defense Medical College, Saitama, Japan
| | - Toshiaki Kotani
- Department of Orthopedic Surgery, Seirei Sakura Citizen Hospital, Chiba, Japan
| | - Tsuyoshi Sakuma
- Department of Orthopedic Surgery, Seirei Sakura Citizen Hospital, Chiba, Japan
| | - Tsutomu Akazawa
- Department of Orthopedic Surgery, Seirei Sakura Citizen Hospital, Chiba, Japan
| | - Teppei Suzuki
- Department of Orthopedic Surgery, National Hospital Organization, Kobe Medical Center, Kobe, Japan
| | - Kotaro Nishida
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenichiro Kakutani
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Taichi Tsuji
- Department of Orthopedic Surgery, Meijo Hospital, Nagoya, Japan
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Akira Iwata
- Department of Preventive and Therapeutic Research for Metastatic Bone Tumor, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Sato
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Satoshi Inami
- Department of Orthopedic Surgery, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kota Watanabe
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hitoshi Okamoto
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Brain Science Institute, Saitama, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| |
Collapse
|
18
|
Tam WK, Cheung JPY, Koljonen PA, Kwan KYH, Cheung KM, Leung VYL. Slow twitch paraspinal muscle dysregulation in adolescent idiopathic scoliosis exhibiting HIF-2α misexpression. JOR Spine 2022; 5:e1227. [PMID: 36601371 PMCID: PMC9799082 DOI: 10.1002/jsp2.1227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Background Adolescent idiopathic scoliosis (AIS) refers to a three-dimensional spinal deformity which has a typical onset during adolescence. In most cases, the cause of the deformity cannot be clearly identified. Unbalanced paraspinal muscle activity in AIS patients was reported and hypoxia was implicated to regulate myogenesis. This study aims to investigate the association between myogenesis/muscle toning and HIF-αs activity in the pathogenesis of AIS. Methods HIF-αs expression was examined by enzyme-linked immunosorbent assay and western blot in paraspinal myoblasts isolated from 18 subjects who underwent deformity correction surgery. QPCR was conducted to measure the gene expression levels of perinatal muscle fiber markers MYH3, MYH8; slow twitch muscle fiber markers MHY7; fast twitch muscle fiber markers MYH4; and myogenic regulatory factors MYF5 and MYOG. Slow and fast twitch muscle fiber composition in concave/convex paraspinal musculature of AIS subjects was evaluated by immunostaining of myosin heavy chain type I (MyHC I) and myosin heavy chain type II (MyHC II). Results Reduced HIF-2α induction under hypoxia was found in paraspinal myoblast culture of 33% AIS subjects. We detected a suppression of perinatal and slow twitch muscle fiber associated genes, but not fast twitch muscle fiber-associated genes and myogenic regulatory factors in HIF-2α misexpressed AIS myoblasts. Distinct reduction of slow twitch muscle fiber was evidenced in convex paraspinal musculature, suggesting an asymmetric expression of slow twitch muscle fiber in HIF-2α misexpressed AIS patients. Conclusions This study indicates an association of abnormal HIF-2α expression in paraspinal myoblasts and a disproportionate slow twitch muscle fiber content in the convexity of the curvature in a subset of AIS subjects, suggesting HIF-2α dysregulation as a possible risk factor for AIS. The role of HIF-2α in paraspinal muscle function during spinal growth and its relevance in AIS prognosis warrants further investigation.
Collapse
Affiliation(s)
- Wai Kit Tam
- Department of Orthopaedics and TraumatologyThe University of Hong KongPokfulamHong Kong SARChina
| | - Jason P. Y. Cheung
- Department of Orthopaedics and TraumatologyThe University of Hong KongPokfulamHong Kong SARChina
- Orthopaedic Medical CenterHKU‐Shenzhen HospitalShenzhenChina
| | - Paul A. Koljonen
- Department of Orthopaedics and TraumatologyThe University of Hong KongPokfulamHong Kong SARChina
| | - Kenny Y. H. Kwan
- Department of Orthopaedics and TraumatologyThe University of Hong KongPokfulamHong Kong SARChina
- Orthopaedic Medical CenterHKU‐Shenzhen HospitalShenzhenChina
| | - Kenneth M.C. Cheung
- Department of Orthopaedics and TraumatologyThe University of Hong KongPokfulamHong Kong SARChina
- Orthopaedic Medical CenterHKU‐Shenzhen HospitalShenzhenChina
| | - Victor Y. L. Leung
- Department of Orthopaedics and TraumatologyThe University of Hong KongPokfulamHong Kong SARChina
- Orthopaedic Medical CenterHKU‐Shenzhen HospitalShenzhenChina
| |
Collapse
|
19
|
Xie H, Li M, Kang Y, Zhang J, Zhao C. Zebrafish: an important model for understanding scoliosis. Cell Mol Life Sci 2022; 79:506. [PMID: 36059018 PMCID: PMC9441191 DOI: 10.1007/s00018-022-04534-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 02/06/2023]
Abstract
Scoliosis is a common spinal deformity that considerably affects the physical and psychological health of patients. Studies have shown that genetic factors play an important role in scoliosis. However, its etiopathogenesis remain unclear, partially because of the genetic heterogeneity of scoliosis and the lack of appropriate model systems. Recently, the development of efficient gene editing methods and high-throughput sequencing technology has made it possible to explore the underlying pathological mechanisms of scoliosis. Owing to their susceptibility for developing scoliosis and high genetic homology with human, zebrafish are increasingly being used as a model for scoliosis in developmental biology, genetics, and clinical medicine. Here, we summarize the recent advances in scoliosis research on zebrafish and discuss the prospects of using zebrafish as a scoliosis model.
Collapse
Affiliation(s)
- Haibo Xie
- Affiliated Hospital of Guangdong Medical University and Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.,Sars-Fang Centre, Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Mingzhu Li
- Affiliated Hospital of Guangdong Medical University and Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yunsi Kang
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.,Sars-Fang Centre, Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University and Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China. .,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, China.
| | - Chengtian Zhao
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China. .,Sars-Fang Centre, Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
20
|
Demura S, Hinoi E, Kawakami N, Handa M, Yokogawa N, Hiraiwa M, Kato S, Shinmura K, Shimizu T, Oku N, Annen R, Kobayashi M, Yamada Y, Nagatani S, Iezaki T, Taniguchi Y, Tsuchiya H. The L-type Amino Acid Transporter (LAT1) Expression in Patients with Scoliosis. Spine Surg Relat Res 2022; 6:402-407. [PMID: 36051676 PMCID: PMC9381085 DOI: 10.22603/ssrr.2021-0189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/11/2021] [Indexed: 01/04/2023] Open
Abstract
Introduction Amino acid transporters are transmembrane proteins that are known to mediate the transfer of amino acids. As one of the amino acid transporters, LAT1, which is encoded by Slc7a5, mediates the cellular uptake of the essential amino acids. Recently, most studies have focused on examining the relationship between LAT1 and skeletal formation in terms of development. However, little is known regarding the clinical features of LAT1 in the cartilage, which might result in the development of skeletal deformities such as scoliosis. Thus, the aim of this study was to investigate the expression of L-type amino acid transporter 1 (LAT1) and its solute carrier transporter 7a5 (Slc7a5) in patients with pediatric scoliosis and to compare with the relationship between LAT1 and Slc7a5 expression and their clinical features. Methods We have prospectively recruited 56 patients who underwent corrective spinal fusion for scoliosis. The patients comprised 40 girls and 16 boys, with a mean age of 13.1 years at the time of surgery. There were 34 idiopathic scoliosis (IS) patients, whereas 22 were congenital scoliosis (CS) patients. During the surgery, an epiphyseal part of the spinous process at apical vertebra was harvested; then, LAT1 and Slc7a5 expressions in the cartilage were evaluated. Results As per our findings, LAT1 expression was observed in the cartilage in 60.7% (34 out of 56) of the patients. LAT1 expression in IS patients was 76%, which were statistically higher compared to 36% in CS patients. When compared with LAT1 expression, no statistical difference was noted in terms of age, gender, body mass index (BMI), Cobb angle, and Risser grade. Meanwhile, the mean Slc7a5 expression in IS patients was determined to be significantly higher than that in CS patients. No significant correlation was observed between Slc7a5 expression and age, BMI, and Cobb angle. Conclusions LAT1 and Slc7a5 expression in IS and CS patients showed significant differences. These expressions were found to be not correlated with age, stature, and severity of the deformity.
Collapse
Affiliation(s)
- Satoru Demura
- Department of Orthopaedic Surgery Graduate School of Medical Sciences Kanazawa University, Kanazawa, Japan
| | - Eiichi Hinoi
- Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan.,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Noriaki Kawakami
- Department of Orthopaedic Surgery, Ichinomiya Nishi Hospital, Aichi, Japan
| | - Makoto Handa
- Department of Orthopaedic Surgery Graduate School of Medical Sciences Kanazawa University, Kanazawa, Japan
| | - Noriaki Yokogawa
- Department of Orthopaedic Surgery Graduate School of Medical Sciences Kanazawa University, Kanazawa, Japan
| | - Manami Hiraiwa
- Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Satoshi Kato
- Department of Orthopaedic Surgery Graduate School of Medical Sciences Kanazawa University, Kanazawa, Japan
| | - Kazuya Shinmura
- Department of Orthopaedic Surgery Graduate School of Medical Sciences Kanazawa University, Kanazawa, Japan
| | - Takaki Shimizu
- Department of Orthopaedic Surgery Graduate School of Medical Sciences Kanazawa University, Kanazawa, Japan
| | - Norihiro Oku
- Department of Orthopaedic Surgery Graduate School of Medical Sciences Kanazawa University, Kanazawa, Japan
| | - Ryohei Annen
- Department of Orthopaedic Surgery Graduate School of Medical Sciences Kanazawa University, Kanazawa, Japan
| | - Motoya Kobayashi
- Department of Orthopaedic Surgery Graduate School of Medical Sciences Kanazawa University, Kanazawa, Japan
| | - Yohei Yamada
- Department of Orthopaedic Surgery Graduate School of Medical Sciences Kanazawa University, Kanazawa, Japan
| | - Satoshi Nagatani
- Department of Orthopaedic Surgery Graduate School of Medical Sciences Kanazawa University, Kanazawa, Japan
| | - Takashi Iezaki
- Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuki Taniguchi
- Department of Orthopaedic Surgery, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery Graduate School of Medical Sciences Kanazawa University, Kanazawa, Japan
| |
Collapse
|
21
|
Marya S, Tambe AD, Millner PA, Tsirikos AI. Adolescent idiopathic scoliosis : a review of aetiological theories of a multifactorial disease. Bone Joint J 2022; 104-B:915-921. [PMID: 35909373 DOI: 10.1302/0301-620x.104b8.bjj-2021-1638.r1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Adolescent idiopathic scoliosis (AIS), defined by an age at presentation of 11 to 18 years, has a prevalence of 0.47% and accounts for approximately 90% of all cases of idiopathic scoliosis. Despite decades of research, the exact aetiology of AIS remains unknown. It is becoming evident that it is the result of a complex interplay of genetic, internal, and environmental factors. It has been hypothesized that genetic variants act as the initial trigger that allow epigenetic factors to propagate AIS, which could also explain the wide phenotypic variation in the presentation of the disorder. A better understanding of the underlying aetiological mechanisms could help to establish the diagnosis earlier and allow a more accurate prediction of deformity progression. This, in turn, would prompt imaging and therapeutic intervention at the appropriate time, thereby achieving the best clinical outcome for this group of patients. Cite this article: Bone Joint J 2022;104-B(8):915-921.
Collapse
Affiliation(s)
- Shivan Marya
- Royal Manchester Children's Hospital, Manchester, UK
| | | | | | - Athanasios I Tsirikos
- Scottish National Spine Deformity Centre, Royal Hospital for Children and Young People, Edinburgh, UK
| |
Collapse
|
22
|
Nada D, Julien C, Papillon-Cavanagh S, Majewski J, Elbakry M, Elremaly W, Samuels ME, Moreau A. Identification of FAT3 as a new candidate gene for adolescent idiopathic scoliosis. Sci Rep 2022; 12:12298. [PMID: 35853984 PMCID: PMC9296578 DOI: 10.1038/s41598-022-16620-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022] Open
Abstract
In an effort to identify rare alleles associated with adolescent idiopathic scoliosis (AIS) whole-exome sequencing was performed on a discovery cohort of 73 unrelated patients and 70 age-and sex matched controls, all of French-Canadian ancestry. A collapsing gene burden test was performed to analyze rare protein-altering variants using case–control statistics. Since no single gene achieved statistical significance, targeted exon sequencing was performed for 24 genes with the smallest p values, in an independent replication cohort of unrelated severely affected females with AIS and sex-matched controls (N = 96 each). An excess of rare, potentially protein-altering variants was noted in one particular gene, FAT3, although it did not achieve statistical significance. Independently, we sequenced the exomes of all members of a rare multiplex family of three affected sisters and unaffected parents. All three sisters were compound heterozygous for two rare protein-altering variants in FAT3. The parents were single heterozygotes for each variant. The two variants in the family were also present in our discovery cohort. A second validation step was done, using another independent replication cohort of 258 unrelated AIS patients having reach their skeletal maturity and 143 healthy controls to genotype nine FAT3 gene variants, including the two variants previously identified in the multiplex family: p.L517S (rs139595720) and p.L4544F (rs187159256). Interestingly, two FAT3 variants, rs139595720 (genotype A/G) and rs80293525 (genotype C/T), were enriched in severe scoliosis cases (4.5% and 2.7% respectively) compared to milder cases (1.4% and 0.7%) and healthy controls (1.6% and 0.8%). Our results implicate FAT3 as a new candidate gene in the etiology of AIS.
Collapse
Affiliation(s)
- Dina Nada
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, (room 2.17.027), 3175 Chemin de la Côte-Ste-Catherine, Montreal, QC, H3T 1C5, Canada.,Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Cédric Julien
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, (room 2.17.027), 3175 Chemin de la Côte-Ste-Catherine, Montreal, QC, H3T 1C5, Canada.,Injury Repair Recovery Program, McGill University Health Center Research Institute, Montreal, QC, Canada
| | | | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Mohamed Elbakry
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, (room 2.17.027), 3175 Chemin de la Côte-Ste-Catherine, Montreal, QC, H3T 1C5, Canada.,Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Wesam Elremaly
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, (room 2.17.027), 3175 Chemin de la Côte-Ste-Catherine, Montreal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Mark E Samuels
- Sainte-Justine University Hospital Research Center, Montreal, QC, Canada.,Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Alain Moreau
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, (room 2.17.027), 3175 Chemin de la Côte-Ste-Catherine, Montreal, QC, H3T 1C5, Canada. .,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada. .,Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
23
|
Role of Primary Cilia in Skeletal Disorders. Stem Cells Int 2022; 2022:6063423. [PMID: 35761830 PMCID: PMC9233574 DOI: 10.1155/2022/6063423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 11/26/2022] Open
Abstract
Primary cilia are highly conserved microtubule-based organelles that project from the cell surface into the extracellular environment and play important roles in mechanosensation, mechanotransduction, polarity maintenance, and cell behaviors during organ development and pathological changes. Intraflagellar transport (IFT) proteins are essential for cilium formation and function. The skeletal system consists of bones and connective tissue, including cartilage, tendons, and ligaments, providing support, stability, and movement to the body. Great progress has been achieved in primary cilia and skeletal disorders in recent decades. Increasing evidence suggests that cells with cilium defects in the skeletal system can cause numerous human diseases. Moreover, specific deletion of ciliary proteins in skeletal tissues with different Cre mice resulted in diverse malformations, suggesting that primary cilia are involved in the development of skeletal diseases. In addition, the intact of primary cilium is essential to osteogenic/chondrogenic induction of mesenchymal stem cells, regarded as a promising target for clinical intervention for skeletal disorders. In this review, we summarized the role of primary cilia and ciliary proteins in the pathogenesis of skeletal diseases, including osteoporosis, bone/cartilage tumor, osteoarthritis, intervertebral disc degeneration, spine scoliosis, and other cilium-related skeletal diseases, and highlighted their promising treatment methods, including using mesenchymal stem cells. Our review tries to present evidence for primary cilium as a promising target for clinical intervention for skeletal diseases.
Collapse
|
24
|
Terhune EA, Heyn PC, Piper CR, Hadley-Miller N. Genetic variants associated with the occurrence and progression of adolescent idiopathic scoliosis: a systematic review protocol. Syst Rev 2022; 11:118. [PMID: 35681176 PMCID: PMC9178937 DOI: 10.1186/s13643-022-01991-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adolescent idiopathic scoliosis (AIS) is a structural lateral spinal curvature of ≥ 10° with rotation. Approximately 2-3% of children in most populations are affected with AIS, and this condition is responsible for approximately $1.1 billion in surgical costs to the US healthcare system. Although a genetic factor for AIS has been demonstrated for decades, with multiple potentially contributory loci identified across populations, treatment options have remained limited to bracing and surgery. METHODS The databases MEDLINE (via PubMed), Embase, Google Scholar, and Ovid MEDLINE will be searched and limited to articles in English. We will conduct title and abstract, full-text, and data extraction screening through Covidence, followed by data transfer to a custom REDCap database. Quality assessment will be confirmed by multiple reviewers. Studies containing variant-level data (i.e., GWAS, exome sequencing) for AIS subjects and controls will be considered. Outcomes of interest will include presence/absence of AIS, scoliosis curve severity, scoliosis curve progression, and presence/absence of nucleotide-level variants. Analyses will include odds ratios and relative risk assessments, and subgroup analysis (i.e., males vs. females, age groups) may be applied. Quality assessment tools will include GRADE and Q-Genie for genetic studies. DISCUSSION In this systematic review, we seek to evaluate the quality of genetic evidence for AIS to better inform research efforts, to ultimately improve the quality of patient care and diagnosis. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration #CRD42021243253.
Collapse
Affiliation(s)
- Elizabeth A. Terhune
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Patricia C. Heyn
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO USA
- Center for Gait and Movement Analysis, Children’s Hospital Colorado, Aurora, CO USA
- Cochrane US University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Christi R. Piper
- Strauss Health Sciences Library, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Nancy Hadley-Miller
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO USA
- Musculoskeletal Research Center, Children’s Hospital Colorado, Aurora, CO USA
| |
Collapse
|
25
|
de Azevedo GBL, Perini JA, Araújo Junior AEP, Moliterno LAM, Andrande RM, Guimarães JAM, Defino HLA. Association of FBN1 polymorphism with susceptibility of adolescent idiopathic scoliosis: a case-control study. BMC Musculoskelet Disord 2022; 23:430. [PMID: 35526034 PMCID: PMC9077855 DOI: 10.1186/s12891-022-05370-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fibrillin-1 (FBN1) is an extracellular matrix glycoprotein essential to the structural component of microfibrils and FBN1 gene polymorphisms can be associated with adolescent idiopathic scoliosis (AIS) susceptibility. This study aimed to evaluate the potential role of the FBN1 rs12916536 polymorphism in AIS development or severity and the variation in Cobb angle in relation to patient's characteristics. METHODS DNA from 563 subjects (185 AIS patients and 378 controls) were genotyped using a validated TaqMan allelic discrimination assay. A multivariate logistic regression model evaluated the association between polymorphism and AIS, using the adjusted odds ratios (OR) with their respective 95% confidence intervals (95% CI). A linear regression analysis evaluated the variation in Cobb angle according to the patient's age and body mass index (BMI). RESULTS Among the AIS group there was a predominance of females (12:1), low or normal BMI (90%), 58% had a Cobb angle greater than 45° and 74% were skeletally mature. Age was a risk factor (4-fold) for curve progression higher than BMI (P < 0.001). The allelic frequency of the rs12916536 G > A polymorphism was 40% in controls and 31% in AIS cases; and this difference was statistically significant (P = 0.004). FBN1 rs12916536 GA + AA genotypes were associated with a lower risk of AIS susceptibility (OR = 0.58 and 95% CI = 0.35-0.98), after adjustment for age, sex and BMI. However, no significant differences were detected in polymorphism distribution with the severity of the disease (Cobb < 45° or ≥ 45°). CONCLUSION Age was a risk factor for progression of the scoliotic curve and FBN1 rs12916536 polymorphism a protective factor for AIS susceptibility.
Collapse
Affiliation(s)
- Gustavo Borges Laurindo de Azevedo
- Spine Surgery Center, National Institute of Traumatology and Orthopaedics (INTO), Rio de Janeiro, RJ, Brazil.,Departments of Orthopaedic and Anesthesiology, Ribeirão Preto Medical School, University of São Paulo, de São Paulo, Brazil
| | - Jamila Alessandra Perini
- Research Division, National Institute of Traumatology and Orthopaedics (INTO), Avenida Brasil, 500, Rio de Janeiro, RJ, zip code 20940-070, Brazil. .,Research Laboratory of Pharmaceutical Sciences (LAPESF), State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil.
| | - Antônio Eulálio Pedrosa Araújo Junior
- Spine Surgery Center, National Institute of Traumatology and Orthopaedics (INTO), Rio de Janeiro, RJ, Brazil.,Departments of Orthopaedic and Anesthesiology, Ribeirão Preto Medical School, University of São Paulo, de São Paulo, Brazil
| | - Luis Antonio Medeiros Moliterno
- Spine Surgery Center, National Institute of Traumatology and Orthopaedics (INTO), Rio de Janeiro, RJ, Brazil.,Departments of Orthopaedic and Anesthesiology, Ribeirão Preto Medical School, University of São Paulo, de São Paulo, Brazil
| | - Rodrigo Mantelatto Andrande
- Departments of Orthopaedic and Anesthesiology, Ribeirão Preto Medical School, University of São Paulo, de São Paulo, Brazil
| | - João Antonio Matheus Guimarães
- Research Division, National Institute of Traumatology and Orthopaedics (INTO), Avenida Brasil, 500, Rio de Janeiro, RJ, zip code 20940-070, Brazil
| | - Helton Luiz Aparecido Defino
- Departments of Orthopaedic and Anesthesiology, Ribeirão Preto Medical School, University of São Paulo, de São Paulo, Brazil
| |
Collapse
|
26
|
Wang W, Chen T, Liu Y, Wang S, Yang N, Luo M. Predictive value of single-nucleotide polymorphisms in curve progression of adolescent idiopathic scoliosis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:2311-2325. [PMID: 35434775 DOI: 10.1007/s00586-022-07213-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/24/2022] [Accepted: 04/06/2022] [Indexed: 12/18/2022]
Abstract
PURPOSE Genetic diagnosis is a promising approach because several single-nucleotide polymorphisms (SNPs) associated with adolescent idiopathic scoliosis (AIS) progression have been reported. We review the predictive value of SNPs in curve progression of adolescent idiopathic scoliosis. METHODS We reviewed DNA-based prognostic testing to predict curve progression. Then, the multiple polymorphisms in loci related to AIS progression were also reviewed, and we elucidated the predictive value of SNPs from four functional perspectives, including endocrine metabolism, neuromuscular system, cartilage and extracellular matrix, enzymes, and cytokines. RESULTS The ScoliScores were less successful predictors than expected, and the weak power of predictive SNPs might account for its failure. Susceptibility loci in ESR1, ESR2, GPER, and IGF1, which related to endocrine metabolism, have been reported to predict AIS progression. Neuromuscular imbalance might be a potential mechanism of scoliosis, and SNPs in LBX1, NTF3, and SOCS3 have been reported to predict the curve progression of AIS. Susceptibility loci in SOX9, MATN1, AJAP1, MMP9, and TIMP2, which are related to cartilage and extracellular matrix, are also potentially related to AIS progression. Enzymes and cytokines play essential roles in regulating bone metabolism and embryonic development. SNPs in BNC2, SLC39A8, TGFB1, IL-6, IL-17RC, and CHD7 were suggested as predictive loci for AIS curve progression. CONCLUSIONS Many promising SNPs have been identified to predict the curve progression of AIS. However, conflicting results from replication studies and different ethnic groups hamper their reliability. Convincing SNPs from multiethnic populations and functional verification are needed.
Collapse
Affiliation(s)
- Wengang Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, People's Republic of China
| | - Tailong Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, People's Republic of China
| | - Yibin Liu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, People's Republic of China
| | - Songsong Wang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, People's Republic of China
| | - Ningning Yang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, People's Republic of China. .,Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, People's Republic of China.
| | - Ming Luo
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China.
| |
Collapse
|
27
|
Wang Y, Troutwine BR, Zhang H, Gray RS. The axonemal dynein heavy chain 10 gene is essential for monocilia motility and spine alignment in zebrafish. Dev Biol 2022; 482:82-90. [PMID: 34915022 PMCID: PMC8792996 DOI: 10.1016/j.ydbio.2021.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
Adolescent idiopathic scoliosis (AIS) is a common pediatric musculoskeletal disorder worldwide, characterized by atypical spine curvatures in otherwise healthy children. Human genetic studies have identified candidate genes associated with AIS, however, only a few of these have been shown to recapitulate adult-viable scoliosis in animal models. Using an F0 CRISPR screening approach in zebrafish, we demonstrate that disruption of the dynein axonemal heavy chain 10 (dnah10) gene results in recessive adult-viable scoliosis in zebrafish. Using a stably segregating dnah10 mutant zebrafish, we showed that the ependymal monocilia lining the hindbrain and spinal canal displayed reduced beat frequency, which was correlated with the disassembly of the Reissner fiber and the onset of body curvatures. Taken together, these results suggest that monocilia function in larval zebrafish contributes to the polymerization of the Reissner fiber and straightening of the body axis.
Collapse
Affiliation(s)
- Yunjia Wang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Nutritional Sciences, 200 W 24th Street, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Benjamin R Troutwine
- Department of Nutritional Sciences, 200 W 24th Street, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Hongqi Zhang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Ryan S Gray
- Department of Nutritional Sciences, 200 W 24th Street, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
28
|
Muñoz-Montecinos C, Romero A, Sepúlveda V, Vira MÁ, Fehrmann-Cartes K, Marcellini S, Aguilera F, Caprile T, Fuentes R. Turning the Curve Into Straight: Phenogenetics of the Spine Morphology and Coordinate Maintenance in the Zebrafish. Front Cell Dev Biol 2022; 9:801652. [PMID: 35155449 PMCID: PMC8826430 DOI: 10.3389/fcell.2021.801652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
The vertebral column, or spine, provides mechanical support and determines body axis posture and motion. The most common malformation altering spine morphology and function is adolescent idiopathic scoliosis (AIS), a three-dimensional spinal deformity that affects approximately 4% of the population worldwide. Due to AIS genetic heterogenicity and the lack of suitable animal models for its study, the etiology of this condition remains unclear, thus limiting treatment options. We here review current advances in zebrafish phenogenetics concerning AIS-like models and highlight the recently discovered biological processes leading to spine malformations. First, we focus on gene functions and phenotypes controlling critical aspects of postembryonic aspects that prime in spine architecture development and straightening. Second, we summarize how primary cilia assembly and biomechanical stimulus transduction, cerebrospinal fluid components and flow driven by motile cilia have been implicated in the pathogenesis of AIS-like phenotypes. Third, we highlight the inflammatory responses associated with scoliosis. We finally discuss recent innovations and methodologies for morphometrically characterize and analyze the zebrafish spine. Ongoing phenotyping projects are expected to identify novel and unprecedented postembryonic gene functions controlling spine morphology and mutant models of AIS. Importantly, imaging and gene editing technologies are allowing deep phenotyping studies in the zebrafish, opening new experimental paradigms in the morphometric and three-dimensional assessment of spinal malformations. In the future, fully elucidating the phenogenetic underpinnings of AIS etiology in zebrafish and humans will undoubtedly lead to innovative pharmacological treatments against spinal deformities.
Collapse
Affiliation(s)
- Carlos Muñoz-Montecinos
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Adrián Romero
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Vania Sepúlveda
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - María Ángela Vira
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Karen Fehrmann-Cartes
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Universidad de las Américas, Concepción, Chile
| | - Sylvain Marcellini
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Felipe Aguilera
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Teresa Caprile
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ricardo Fuentes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
29
|
Perini J, Pedrosa A, Azevedo GLD, Cardoso J, Guimarães JM, Defino HA. Polymorphisms in paired box 1 gene were associated with susceptibility of adolescent idiopathic scoliosis: A case–control study. JOURNAL OF CRANIOVERTEBRAL JUNCTION AND SPINE 2022; 13:318-324. [PMID: 36263348 PMCID: PMC9574104 DOI: 10.4103/jcvjs.jcvjs_54_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/09/2022] [Indexed: 11/04/2022] Open
Abstract
Background Objectives: Settings and Design: Materials and Methods: Statistical Analysis: Results: Conclusions:
Collapse
|
30
|
Xu L, Feng Z, Dai Z, Lee WYW, Wu Z, Liu Z, Sun X, Tang N, Cheng JCY, Qiu Y, Zhu Z. A Functional SNP in the Promoter of LBX1 Is Associated With the Development of Adolescent Idiopathic Scoliosis Through Involvement in the Myogenesis of Paraspinal Muscles. Front Cell Dev Biol 2021; 9:777890. [PMID: 34917617 PMCID: PMC8670502 DOI: 10.3389/fcell.2021.777890] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/28/2021] [Indexed: 01/22/2023] Open
Abstract
Previous studies have shown that LBX1 is associated with adolescent idiopathic scoliosis (AIS) in multiple populations. For the first time, rs1322330 located in the putative promoter region of LBX1 was found significantly associated with AIS in the Chinese population [p = 6.08 × 10–14, odds ratio (OR) = 1.42, 95% confidence interval of 1.03–1.55]. Moreover, the luciferase assay and electrophoretic mobility shift assay supported that the allele A of rs1322330 could down-regulate the expression of LBX1 in the paraspinal muscles of AIS. In addition, silencing LBX1 in the myosatellite cells resulted in significantly inhibited cell viability and myotube formation, which supported an essential role of LBX1 in muscle development of AIS. To summarize, rs1322330 may be a novel functional SNP regulating the expression of LBX1, which was involved in the etiology of AIS possibly via regulation of myogenesis in the paraspinal muscles.
Collapse
Affiliation(s)
- Leilei Xu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing/Hong Kong, China
| | - Zhenhua Feng
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing/Hong Kong, China
| | - Zhicheng Dai
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing/Hong Kong, China
| | - Wayne Y. W. Lee
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing/Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhichong Wu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing/Hong Kong, China
| | - Zhen Liu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing/Hong Kong, China
| | - Xu Sun
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing/Hong Kong, China
| | - Nelson Tang
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing/Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jack Chun-Yiu Cheng
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing/Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yong Qiu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing/Hong Kong, China
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing/Hong Kong, China
- *Correspondence: Zezhang Zhu,
| |
Collapse
|
31
|
Dai Z, Wang Y, Wu Z, Feng Z, Sun X, Qiu Y, Cheng JCY, Xu L, Zhu Z. Female-Specific Susceptibility Locus in BOC and SEC16B are Associated with Adolescent Idiopathic Scoliosis. Spine (Phila Pa 1976) 2021; 46:E1178-E1184. [PMID: 33958541 DOI: 10.1097/brs.0000000000004098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A genetic case-control study. OBJECTIVES To investigate whether the variants in BOC, SEC16B, and SH2D1B are sex-specifically and functionally associated with the susceptibility of adolescent idiopathic scoliosis (AIS) in Chinese Han population. SUMMARY OF BACKGROUND DATA A recent genome-wide association study identified three female-specific susceptibility loci of AIS in Japanese population. However, the association of these genes with AIS in other populations remains unclear. Further investigation of the functional role of the three genes was warranted. METHODS SNPs rs73235136, rs545608, and rs142502288 were genotyped in 1599 AIS patients and 2985 controls. Paraspinal muscle collected from 40 AIS and 30 lumber disc herniation patients during surgical interventions was used for gene expression analysis. The difference regarding genotype and allele frequency between patients and controls was analyzed by chi-square analysis. Expression of BOC and SEC16B was compared between AIS and lumber disc herniation patients by the Student t test. Pearson correlation analysis was performed to evaluate the relationship between gene expression level and clinical phenotypes. RESULTS SNPs rs73235136 of BOC and rs545608 of SEC16B were found to be remarkably associated with AIS only in females. Allele C of rs73235136 and allele G of rs545608 could significantly add to the risk of female AIS patients, with an odds ratio of 1.087 and 1.033, respectively. However, there was no significant difference between the male patients and controls regarding genotype or allele frequency of rs73235136 and rs545608. No polymorphism at rs142502288 was detected in either patients or controls, and all the subjects had genotype of AA. Moreover, tissue expression of BOC and SEC16B was significantly lower in AIS patients compared with controls. BOC expression was positively associated with bone mineral contents, and expression of SEC16B was negatively correlated with curve severity in AIS patients. CONCLUSION Female-specific variants in BOC and SEC16B were associated with AIS. Expression of BOC and SEC16B was significantly lower in AIS patients. The role of BOC and SEC16B in the development of AIS is worthy of further investigation.Level of Evidence: 3.
Collapse
Affiliation(s)
- Zhicheng Dai
- Department of Spine Surgery, the Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing and Hong Kong, China
| | - Yuwen Wang
- Department of Spine Surgery, the Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing and Hong Kong, China
| | - Zhichong Wu
- Department of Spine Surgery, the Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing and Hong Kong, China
| | - Zhenhua Feng
- Department of Spine Surgery, the Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing and Hong Kong, China
| | - Xu Sun
- Department of Spine Surgery, the Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing and Hong Kong, China
| | - Yong Qiu
- Department of Spine Surgery, the Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing and Hong Kong, China
| | - Jack Chun-Yiu Cheng
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing and Hong Kong, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Leilei Xu
- Department of Spine Surgery, the Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing and Hong Kong, China
| | - Zezhang Zhu
- Department of Spine Surgery, the Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing and Hong Kong, China
| |
Collapse
|
32
|
Otomo N, Lu HF, Koido M, Kou I, Takeda K, Momozawa Y, Kubo M, Kamatani Y, Ogura Y, Takahashi Y, Nakajima M, Minami S, Uno K, Kawakami N, Ito M, Sato T, Watanabe K, Kaito T, Yanagida H, Taneichi H, Harimaya K, Taniguchi Y, Shigematsu H, Iida T, Demura S, Sugawara R, Fujita N, Yagi M, Okada E, Hosogane N, Kono K, Nakamura M, Chiba K, Kotani T, Sakuma T, Akazawa T, Suzuki T, Nishida K, Kakutani K, Tsuji T, Sudo H, Iwata A, Kaneko K, Inami S, Kochi Y, Chang WC, Matsumoto M, Watanabe K, Ikegawa S, Terao C. Polygenic Risk Score of Adolescent Idiopathic Scoliosis for Potential Clinical Use. J Bone Miner Res 2021; 36:1481-1491. [PMID: 34159637 DOI: 10.1002/jbmr.4324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/12/2022]
Abstract
Adolescent idiopathic scoliosis (AIS) is a common disease causing three-dimensional spinal deformity in as many as 3% of adolescents. Development of a method that can accurately predict the onset and progression of AIS is an immediate need for clinical practice. Because the heritability of AIS is estimated as high as 87.5% in twin studies, prediction of its onset and progression based on genetic data is a promising option. We show the usefulness of polygenic risk score (PRS) for the prediction of onset and progression of AIS. We used AIS genomewide association study (GWAS) data comprising 79,211 subjects in three cohorts and constructed a PRS based on association statistics in a discovery set including 31,999 female subjects. After calibration using a validation data set, we applied the PRS to a test data set. By integrating functional annotations showing heritability enrichment in the selection of variants, the PRS demonstrated an association with AIS susceptibility (p = 3.5 × 10-40 with area under the receiver-operating characteristic [AUROC] = 0.674, sensitivity = 0.644, and specificity = 0.622). The decile with the highest PRS showed an odds ratio of as high as 3.36 (p = 1.4 × 10-10 ) to develop AIS compared with the fifth in decile. The addition of a predictive model with only a single clinical parameter (body mass index) improved predictive ability for development of AIS (AUROC = 0.722, net reclassification improvement [NRI] 0.505 ± 0.054, p = 1.6 × 10-8 ), potentiating clinical use of the prediction model. Furthermore, we found the Cobb angle (CA), the severity measurement of AIS, to be a polygenic trait that showed a significant genetic correlation with AIS susceptibility (rg = 0.6, p = 3.0 × 10-4 ). The AIS PRS demonstrated a significant association with CA. These results indicate a shared polygenic architecture between onset and progression of AIS and the potential usefulness of PRS in clinical settings as a predictor to promote early intervention of AIS and avoid invasive surgery. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Nao Otomo
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan.,Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan.,Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Hsing-Fang Lu
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan.,Department of Clinical Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Masaru Koido
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan.,Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ikuyo Kou
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan
| | - Kazuki Takeda
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan.,Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan.,Laboratory of Complex Trait Genomics, Graduate School of Frontier Science, The University of Tokyo, Tokyo, Japan
| | - Yoji Ogura
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Takahashi
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Nakajima
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan
| | - Shohei Minami
- Department of Orthopedic Surgery, Seirei Sakura Citizen Hospital, Sakura, Japan
| | - Koki Uno
- Department of Orthopedic Surgery, National Hospital Organization, Kobe Medical Center, Kobe, Japan
| | | | - Manabu Ito
- Department of Orthopedic Surgery, National Hospital Organization, Hokkaido Medical Center, Sapporo, Japan
| | - Tatsuya Sato
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Kei Watanabe
- Department of Orthopedic Surgery, Niigata University Medical and Dental General Hospital, Niigata, Japan
| | - Takashi Kaito
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Haruhisa Yanagida
- Department of Orthopedic & Spine Surgery, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Hiroshi Taneichi
- Department of Orthopedic Surgery, Dokkyo Medical University School of Medicine, Mibu, Japan
| | - Katsumi Harimaya
- Department of Orthopedic Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yuki Taniguchi
- Department of Orthopedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideki Shigematsu
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - Takahiro Iida
- First Department of Orthopedic Surgery, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Satoru Demura
- Department of Orthopedic Surgery, Graduate School of Medical Science Kanazawa University, Kanazawa, Japan
| | - Ryo Sugawara
- Department of Orthopedic Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Nobuyuki Fujita
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan.,Department of Orthopedic Surgery, Fujita Health University, Toyoake, Japan
| | - Mitsuru Yagi
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Eijiro Okada
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Naobumi Hosogane
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan.,Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Katsuki Kono
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan.,Kono Orthopaedic Clinic, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kazuhiro Chiba
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Toshiaki Kotani
- Department of Orthopedic Surgery, Seirei Sakura Citizen Hospital, Sakura, Japan
| | - Tsuyoshi Sakuma
- Department of Orthopedic Surgery, Seirei Sakura Citizen Hospital, Sakura, Japan
| | - Tsutomu Akazawa
- Department of Orthopedic Surgery, Seirei Sakura Citizen Hospital, Sakura, Japan
| | - Teppei Suzuki
- Department of Orthopedic Surgery, National Hospital Organization, Kobe Medical Center, Kobe, Japan
| | - Kotaro Nishida
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenichiro Kakutani
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Taichi Tsuji
- Department of Orthopedic Surgery, Meijo Hospital, Nagoya, Japan
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akira Iwata
- Department of Preventive and Therapeutic Research for Metastatic Bone Tumor, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuo Kaneko
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Satoshi Inami
- Department of Orthopedic Surgery, Dokkyo Medical University School of Medicine, Mibu, Japan
| | - Yuta Kochi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental and University, Tokyo, Japan
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, Taipei Medical University, Taipei, Taiwan.,Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Department of Pharmacy, Taipei Medical University-Wangfang Hospital, Taipei, Taiwan.,Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kota Watanabe
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan.,Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan.,Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
33
|
Severity of Idiopathic Scoliosis Is Associated with Differential Methylation: An Epigenome-Wide Association Study of Monozygotic Twins with Idiopathic Scoliosis. Genes (Basel) 2021; 12:genes12081191. [PMID: 34440365 PMCID: PMC8391702 DOI: 10.3390/genes12081191] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/27/2022] Open
Abstract
Epigenetic mechanisms may contribute to idiopathic scoliosis (IS). We identified 8 monozygotic twin pairs with IS, 6 discordant (Cobb angle difference > 10°) and 2 concordant (Cobb angle difference ≤ 2°). Genome-wide methylation in blood was measured with the Infinium HumanMethylation EPIC Beadchip. We tested for differences in methylation and methylation variability between discordant twins and tested the association between methylation and curve severity in all twins. Differentially methylated region (DMR) analyses identified gene promoter regions. Methylation at cg12959265 (chr. 7 DPY19L1) was less variable in cases (false discovery rate (FDR) = 0.0791). We identified four probes (false discovery rate, FDR < 0.10); cg02477677 (chr. 17, RARA gene), cg12922161 (chr. 2 LOC150622 gene), cg08826461 (chr. 2), and cg16382077 (chr. 7) associated with curve severity. We identified 57 DMRs where hyper- or hypo-methylation was consistent across the region and 28 DMRs with a consistent association with curve severity. Among DMRs, 21 were correlated with bone methylation. Prioritization of regions based on methylation concordance in bone identified promoter regions for WNT10A (WNT signaling), NPY (regulator of bone and energy homeostasis), and others predicted to be relevant for bone formation/remodeling. These regions may aid in understanding the complex interplay between genetics, environment, and IS.
Collapse
|
34
|
Wang L, Sun F, Wan ZY, Ye B, Wen Y, Liu H, Yang Z, Pang H, Meng Z, Fan B, Alfiko Y, Shen Y, Bai B, Lee MSQ, Piferrer F, Schartl M, Meyer A, Yue GH. Genomic Basis of Striking Fin Shapes and Colors in the Fighting Fish. Mol Biol Evol 2021; 38:3383-3396. [PMID: 33871625 PMCID: PMC8321530 DOI: 10.1093/molbev/msab110] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Resolving the genomic basis underlying phenotypic variations is a question of great importance in evolutionary biology. However, understanding how genotypes determine the phenotypes is still challenging. Centuries of artificial selective breeding for beauty and aggression resulted in a plethora of colors, long-fin varieties, and hyper-aggressive behavior in the air-breathing Siamese fighting fish (Betta splendens), supplying an excellent system for studying the genomic basis of phenotypic variations. Combining whole-genome sequencing, quantitative trait loci mapping, genome-wide association studies, and genome editing, we investigated the genomic basis of huge morphological variation in fins and striking differences in coloration in the fighting fish. Results revealed that the double tail, elephant ear, albino, and fin spot mutants each were determined by single major-effect loci. The elephant ear phenotype was likely related to differential expression of a potassium ion channel gene, kcnh8. The albinotic phenotype was likely linked to a cis-regulatory element acting on the mitfa gene and the double-tail mutant was suggested to be caused by a deletion in a zic1/zic4 coenhancer. Our data highlight that major loci and cis-regulatory elements play important roles in bringing about phenotypic innovations and establish Bettas as new powerful model to study the genomic basis of evolved changes.
Collapse
Affiliation(s)
- Le Wang
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Fei Sun
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Zi Yi Wan
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Baoqing Ye
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Yanfei Wen
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Huiming Liu
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Zituo Yang
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Hongyan Pang
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Zining Meng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bin Fan
- Department of Food and Environmental Engineering, Yangjiang Polytechnic, Yangjiang, China
| | - Yuzer Alfiko
- Biotech Lab, Wilmar International, Jakarta, Indonesia
| | - Yubang Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
| | - Bin Bai
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - May Shu Qing Lee
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Francesc Piferrer
- Institute of Marine Sciences (ICM), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Gen Hua Yue
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
35
|
Analysis of the Degree of Involvement of the Lower Limb Muscles in the Pathological Process in Adolescents with Idiopathic Scoliosis. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.2.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background. The problem of the effect of adolescent idiopathic scoliosis on the functional condition of the lower limb muscles is still highlighted insufficiently.Aim. Analysis of the degree of involvement of the lower limb muscles in the pathological process in adolescents with idiopathic scoliosis.Methods. A comparative analysis has been made on the results of examination of 209 adolescents: 25 adolescents with idiopathic scoliosis; 170 normal adolescents; 14 adolescents with congenital scoliosis. The moments of force ofthe lower limb muscles were evaluated using dynamometric stands. Electrophysiological characteristics of the lower limb muscles were registered by the method of global and stimulation electroneuromyography.Results. The decrease in the amplitude of voluntary EMG of the femoral muscles in adolescents with idiopathic and congenital scoliosis is accompanied by dropping the moments of force relative to the values of the control group. The leg muscles are characterized by the preservation of the values of force at the level of normal test subjects under the conditions of the reduced voluntary EMG of high frequency. The amplitude of the M-responses of the indicator muscles and the values of the excitation propagation velocity along the motor fibers were also preserved. There are no statistically significant correlations between the amount of the spine deformity, on the one hand, and the values of asymmetry of the characteristics of the muscles in adolescents with idiopathic scoliosis.Conclusion. In adolescents with idiopathic scoliosis the function of femoral muscles is decreased, and there is no relationship between the amount of the spine deformity and the values of asymmetry of the characteristics of the lower limb muscles. The similar character of muscle function changes in adolescents with idiopathic and congenital scoliosis can testify that the cause of the observed changes is not the disease etiology, but the insufficient level of motor activity.
Collapse
|
36
|
Rios JJ, Denton K, Yu H, Manickam K, Garner S, Russell J, Ludwig S, Rosenfeld JA, Liu P, Munch J, Sucato DJ, Beutler B, Wise CA. Saturation mutagenesis defines novel mouse models of severe spine deformity. Dis Model Mech 2021; 14:269194. [PMID: 34142127 PMCID: PMC8246263 DOI: 10.1242/dmm.048901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
Embryonic formation and patterning of the vertebrate spinal column requires coordination of many molecular cues. After birth, the integrity of the spine is impacted by developmental abnormalities of the skeletal, muscular and nervous systems, which may result in deformities, such as kyphosis and scoliosis. We sought to identify novel genetic mouse models of severe spine deformity by implementing in vivo skeletal radiography as part of a high-throughput saturation mutagenesis screen. We report selected examples of genetic mouse models following radiographic screening of 54,497 mice from 1275 pedigrees. An estimated 30.44% of autosomal genes harbored predicted damaging alleles examined twice or more in the homozygous state. Of the 1275 pedigrees screened, 7.4% presented with severe spine deformity developing in multiple mice, and of these, meiotic mapping implicated N-ethyl-N-nitrosourea alleles in 21% of pedigrees. Our study provides proof of concept that saturation mutagenesis is capable of discovering novel mouse models of human disease, including conditions with skeletal, neural and neuromuscular pathologies. Furthermore, we report a mouse model of skeletal disease, including severe spine deformity, caused by recessive mutation in Scube3. By integrating results with a human clinical exome database, we identified a patient with undiagnosed skeletal disease who harbored recessive mutations in SCUBE3, and we demonstrated that disease-associated mutations are associated with reduced transactivation of Smad signaling in vitro. All radiographic results and mouse models are made publicly available through the Mutagenetix online database with the goal of advancing understanding of spine development and discovering novel mouse models of human disease. Summary: We report selected mouse models of spine deformity following mutagenesis across 30% of autosomal genes, results of which are made publicly available to advance understanding of spine development and disease.
Collapse
Affiliation(s)
- Jonathan J Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA.,Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Orthopaedic Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kristin Denton
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Hao Yu
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Kandamurugu Manickam
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Shannon Garner
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Jamie Russell
- Center for the Genetics of Host Defense, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sara Ludwig
- Center for the Genetics of Host Defense, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jill A Rosenfeld
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Baylor Genetics, Houston, TX 77021, USA
| | - Pengfei Liu
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Baylor Genetics, Houston, TX 77021, USA
| | - Jake Munch
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Daniel J Sucato
- Department of Orthopaedics, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Carol A Wise
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA.,Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Orthopaedic Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
37
|
Novel Mutations in UTS2R are Associated with Adolescent Idiopathic Scoliosis in the Chinese Population. Spine (Phila Pa 1976) 2021; 46:E288-E293. [PMID: 33156271 DOI: 10.1097/brs.0000000000003786] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A case-control study. OBJECTIVES To investigate the association of urotensin II (UTS2) signals with the susceptibility of adolescent idiopathic scoliosis (AIS) in the Chinese Han population. SUMMARY OF BACKGROUND DATA Dysregulated UTS2 signals induced by impaired cerebrospinal fluid flow have been implicated in the development of idiopathic scoliosis through studies on zebrafish. Furthermore, mutations in urotensin II receptor (UTS2R) were reported to cause severe scoliosis in zebrafish. In spite of the evidence presented in animal models, there is still a lack of knowledge concerning the role of UTS2 signaling related genes in AIS. METHODS In the discovery stage, exons of UTS2, UTS2R, and UTS2D were sequenced for 200 AIS patients and 200 healthy controls. Newly identified mutations were further genotyped in another independent cohort of 1000 AIS patients and 1000 controls by allelic-specific multiple ligase detection reactions. Gene expression analysis was performed in 36 AIS patients and 36 age-matched congenital scoliosis patients. The Chi-square test was used to compare the genotyping data between the groups. Gene expression analysis was compared with the Student t test. RESULTS Association between two novel mutations (rs11654140, c.51T > C; rs568196624, c.1146C > G) and the development of AIS was identified. Allele C of rs11654140 and allele G of rs568196624 were significantly associated with the risk of AIS (1.5% vs. 0.5%, odds ratio = 3.02, P = 0.01 for rs11654140; 1.41% vs. 0.58%, odds ratio = 2.29, P = 0.04 for rs568196624). The mRNA expression of UTS2R in the AIS group was significantly higher as compared with that in the control group (0.059 ± 0.015 vs. 0.035 ± 0.013, P < 0.01). CONCLUSIONS Rare mutations in UTS2R were significantly associated with AIS. Expression of UTS2R was significantly increased in AIS patients. The role of UTS2 signaling in the development of AIS is worthy of further investigation.Level of Evidence: N/A.
Collapse
|
38
|
Terhune EA, Cuevas MT, Monley AM, Wethey CI, Chen X, Cattell MV, Bayrak MN, Bland MR, Sutphin B, Trahan GD, Taylor MRG, Niswander LA, Jones KL, Baschal EE, Antunes L, Dobbs M, Gurnett C, Appel B, Gray R, Hadley Miller N. Mutations in KIF7 implicated in idiopathic scoliosis in humans and axial curvatures in zebrafish. Hum Mutat 2021; 42:392-407. [PMID: 33382518 DOI: 10.1002/humu.24162] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/02/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022]
Abstract
Idiopathic scoliosis (IS) is a spinal disorder affecting up to 3% of otherwise healthy children. IS has a strong familial genetic component and is believed to be genetically complex due to significant variability in phenotype and heritability. Previous studies identified putative loci and variants possibly contributing to IS susceptibility, including within extracellular matrix, cilia, and actin networks, but the genetic architecture and underlying mechanisms remain unresolved. Here, we used whole-exome sequencing from three affected individuals in a multigenerational family with IS and identified 19 uncommon variants (minor allele frequency < 0.05). Genotyping of additional family members identified a candidate heterozygous variant (H1115Q, G>C, rs142032413) within the ciliary gene KIF7, a regulator within the hedgehog (Hh) signaling pathway. Resequencing of the second cohort of unrelated IS individuals and controls identified several severe mutations in KIF7 in affected individuals only. Subsequently, we generated a mutant zebrafish model of kif7 using CRISPR-Cas9. kif7co63/co63 zebrafish displayed severe scoliosis, presenting in juveniles and progressing through adulthood. We observed no deformities in the brain, Reissner fiber, or central canal cilia in kif7co63/co63 embryos, although alterations were seen in Hh pathway gene expression. This study suggests defects in KIF7-dependent Hh signaling, which may drive pathogenesis in a subset of individuals with IS.
Collapse
Affiliation(s)
- Elizabeth A Terhune
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Melissa T Cuevas
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anna M Monley
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Musculoskeletal Research Center, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Cambria I Wethey
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiaomi Chen
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Maria V Cattell
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Melisa N Bayrak
- Department of Nutritional Sciences, Dell Pediatrics Research Institute, The University of Texas at Austin, Austin, Texas, USA
| | - Morgan R Bland
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Brittan Sutphin
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - George Devon Trahan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Matthew R G Taylor
- Department of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lee A Niswander
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Kenneth L Jones
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Erin E Baschal
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lilian Antunes
- Department of Orthopedics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Matthew Dobbs
- Department of Orthopedics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christina Gurnett
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bruce Appel
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Ryan Gray
- Department of Nutritional Sciences, Dell Pediatrics Research Institute, The University of Texas at Austin, Austin, Texas, USA
| | - Nancy Hadley Miller
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Musculoskeletal Research Center, Children's Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
39
|
Genetic Variant of TBX1 Gene Is Functionally Associated With Adolescent Idiopathic Scoliosis in the Chinese Population. Spine (Phila Pa 1976) 2021; 46:17-21. [PMID: 32947497 DOI: 10.1097/brs.0000000000003700] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A genetic association study. OBJECTIVE The aim of this study was to investigate whether rs1978060 of TBX1 gene was a susceptible locus of adolescent idiopathic scoliosis (AIS) in the Chinese Han population and to better define the functional role of TBX1 in the development and progression of AIS. SUMMARY OF BACKGROUND DATA A recent genome-wide association study reported a novel susceptible locus in TBX1 gene, which was associated with the development of AIS in the Japanese population. However, there is a paucity of knowledge concerning the functional role of TBX1 in the Chinese AIS population. METHODS The SNP rs1978060 was genotyped in 1725 female AIS patients and 2600 healthy controls. Paraspinal muscle samples were collected from 30 AIS patients and 26 age-matched congenital scoliosis (CS) patients for the analysis of tissue expression. The differences of genotype and allele distributions between the patients and the controls were calculated using the χ test. The Pearson correlation analysis was carried out to investigate the relation between the expression of the PAX1 gene and the curve severity. RESULTS SNP rs1978060 was significantly associated with the susceptibility of AIS. Allele G of rs1978060 could significantly add to the risk of AIS with an odds ratio of 1.12. The tissue expression of TBX1 was obviously decreased in AIS patients. There was a remarkable correlation between the curve magnitude and the TBX1 expression (r = -0.519, P = 0.003). CONCLUSION The association between TBX1 and the susceptibility of AIS was successfully replicated in the Chinese population. Moreover, rs1978060 may be a functional variant regulating the expression of TBX1. More studies were warranted to explore the functional role of TBX1 in the onset and progression of AIS. LEVEL OF EVIDENCE 3.
Collapse
|
40
|
Makki N, Zhao J, Liu Z, Eckalbar WL, Ushiki A, Khanshour AM, Wu J, Rios J, Gray RS, Wise CA, Ahituv N. Genomic characterization of the adolescent idiopathic scoliosis-associated transcriptome and regulome. Hum Mol Genet 2020; 29:3606-3615. [PMID: 33179741 PMCID: PMC7823110 DOI: 10.1093/hmg/ddaa242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/24/2020] [Accepted: 10/12/2020] [Indexed: 12/27/2022] Open
Abstract
Adolescent idiopathic scoliosis (AIS), a sideways curvature of the spine, is the most common pediatric musculoskeletal disorder, affecting ~3% of the population worldwide. However, its genetic bases and tissues of origin remain largely unknown. Several genome-wide association studies (GWAS) have implicated nucleotide variants in non-coding sequences that control genes with important roles in cartilage, muscle, bone, connective tissue and intervertebral disks (IVDs) as drivers of AIS susceptibility. Here, we set out to define the expression of AIS-associated genes and active regulatory elements by performing RNA-seq and chromatin immunoprecipitation-sequencing against H3 lysine 27 acetylation in these tissues in mouse and human. Our study highlights genetic pathways involving AIS-associated loci that regulate chondrogenesis, IVD development and connective tissue maintenance and homeostasis. In addition, we identify thousands of putative AIS-associated regulatory elements which may orchestrate tissue-specific expression in musculoskeletal tissues of the spine. Quantification of enhancer activity of several candidate regulatory elements from our study identifies three functional enhancers carrying AIS-associated GWAS SNPs at the ADGRG6 and BNC2 loci. Our findings provide a novel genome-wide catalog of AIS-relevant genes and regulatory elements and aid in the identification of novel targets for AIS causality and treatment.
Collapse
Affiliation(s)
- Nadja Makki
- Department of Anatomy and Cell Biology, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Jingjing Zhao
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Zhaoyang Liu
- Department of Pediatrics and Nutritional Sciences, Dell Pediatric Research Institute, University of Texas at Austin, Austin, TX, USA
| | - Walter L Eckalbar
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Aki Ushiki
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Anas M Khanshour
- Center for Pediatric Bone Biology and Translational Research, Texas Scottish Rite Hospital for Children, Dallas, TX, USA
| | - Joe Wu
- Health Science Center Libraries, University of Florida, Gainesville, FL, USA
| | - Jonathan Rios
- Center for Pediatric Bone Biology and Translational Research, Texas Scottish Rite Hospital for Children, Dallas, TX, USA.,McDermott Center for Human Growth and Development and Departments of Orthopaedic Surgery and Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ryan S Gray
- Department of Pediatrics and Nutritional Sciences, Dell Pediatric Research Institute, University of Texas at Austin, Austin, TX, USA
| | - Carol A Wise
- Center for Pediatric Bone Biology and Translational Research, Texas Scottish Rite Hospital for Children, Dallas, TX, USA.,McDermott Center for Human Growth and Development and Departments of Orthopaedic Surgery and Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
41
|
Wang Y, Liu Z, Yang G, Gao Q, Xiao L, Li J, Guo C, Troutwine BR, Gray RS, Xie L, Zhang H. Coding Variants Coupled With Rapid Modeling in Zebrafish Implicate Dynein Genes, dnaaf1 and zmynd10, as Adolescent Idiopathic Scoliosis Candidate Genes. Front Cell Dev Biol 2020; 8:582255. [PMID: 33251213 PMCID: PMC7672046 DOI: 10.3389/fcell.2020.582255] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is the most common pediatric spine disorder affecting ∼3% of children worldwide. Human genetic studies suggest a complex polygenic disease model for AIS with large genetic and phenotypic heterogeneity. However, the overall genetic etiology of AIS remains poorly understood. To identify additional AIS susceptibility loci, we performed whole-exome sequencing (WES) on a cohort of 195 Southern Chinese AIS patients. Bioinformatics analysis identified 237 novel rare variants associated with AIS, located in 232 new susceptibility loci. Enrichment analysis of these variants revealed 10 gene families associated with our AIS cohort. We screened these gene families by comparing our candidate gene list with IS candidate genes in the Human Phenotype Ontology (HPO) database and previous reported studies. Two candidate gene families, axonemal dynein and axonemal dynein assembly factors, were retained for their associations with ciliary architecture and function. The damaging effects of candidate variants in dynein genes dnali1, dnah1, dnaaf, and zmynd10, as well as in one fibrillin-related gene tns1, were functionally analyzed in zebrafish using targeted CRISPR/Cas9 screening. Knockout of two candidate genes, dnaaf1 or zmynd10, recapitulated scoliosis in viable adult zebrafish. Altogether, our results suggest that the disruption of one or more dynein-associated factors may correlate with AIS susceptibility in the Southern Chinese population.
Collapse
Affiliation(s)
- Yunjia Wang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, TX, United States
| | - Zhenhao Liu
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, National Health and Family Planning Commission, Xiangya Hospital, Central South University, Changsha, China
| | - Guanteng Yang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qile Gao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lige Xiao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiong Li
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chaofeng Guo
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Benjamin R Troutwine
- Department of Pediatrics, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, TX, United States
| | - Ryan S Gray
- Department of Pediatrics, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, TX, United States
| | - Lu Xie
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai, China
| | - Hongqi Zhang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
42
|
Pérez-Machado G, Berenguer-Pascual E, Bovea-Marco M, Rubio-Belmar PA, García-López E, Garzón MJ, Mena-Mollá S, Pallardó FV, Bas T, Viña JR, García-Giménez JL. From genetics to epigenetics to unravel the etiology of adolescent idiopathic scoliosis. Bone 2020; 140:115563. [PMID: 32768685 DOI: 10.1016/j.bone.2020.115563] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022]
Abstract
Scoliosis is defined as the three-dimensional (3D) structural deformity of the spine with a radiological lateral Cobb angle (a measure of spinal curvature) of ≥10° that can be caused by congenital, developmental or degenerative problems. However, those cases whose etiology is still unknown, and affect healthy children and adolescents during growth, are the commonest form of spinal deformity, known as adolescent idiopathic scoliosis (AIS). In AIS management, early diagnosis and the accurate prediction of curve progression are most important because they can decrease negative long-term effects of AIS treatment, such as unnecessary bracing, frequent exposure to radiation, as well as saving the high costs of AIS treatment. Despite efforts made to identify a method or technique capable of predicting AIS progression, this challenge still remains unresolved. Genetics and epigenetics, and the application of machine learning and artificial intelligence technologies, open up new avenues to not only clarify AIS etiology, but to also identify potential biomarkers that can substantially improve the clinical management of these patients. This review presents the most relevant biomarkers to help explain the etiopathogenesis of AIS and provide new potential biomarkers to be validated in large clinical trials so they can be finally implemented into clinical settings.
Collapse
Affiliation(s)
| | | | | | - Pedro Antonio Rubio-Belmar
- Institute for Health Research La Fe, IISLaFe, Valencia, Spain; Spine Surgery Unit, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Eva García-López
- EpiDisease S.L., University of Valencia. Scientific Park. Paterna, Valencia, Spain
| | - María José Garzón
- EpiDisease S.L., University of Valencia. Scientific Park. Paterna, Valencia, Spain
| | - Salvador Mena-Mollá
- EpiDisease S.L., University of Valencia. Scientific Park. Paterna, Valencia, Spain; Department of Physiology, University of Valencia, Faculty of Medicine and Dentistry, Valencia, Spain
| | - Federico V Pallardó
- EpiDisease S.L., University of Valencia. Scientific Park. Paterna, Valencia, Spain; Department of Physiology, University of Valencia, Faculty of Medicine and Dentistry, Valencia, Spain; Consortium Center for Biomedical Network Research ISCIII. Instituto de Salud Carlos III, Valencia, Spain; INCLIVA Health Research Institute, Valencia, Spain
| | - Teresa Bas
- Institute for Health Research La Fe, IISLaFe, Valencia, Spain; Spine Surgery Unit, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Juan R Viña
- INCLIVA Health Research Institute, Valencia, Spain; Department of Biochemistry, University of Valencia, Faculty of Medicine and Dentistry, Valencia, Spain
| | - José Luis García-Giménez
- EpiDisease S.L., University of Valencia. Scientific Park. Paterna, Valencia, Spain; Department of Physiology, University of Valencia, Faculty of Medicine and Dentistry, Valencia, Spain; Consortium Center for Biomedical Network Research ISCIII. Instituto de Salud Carlos III, Valencia, Spain; INCLIVA Health Research Institute, Valencia, Spain.
| |
Collapse
|
43
|
IS (Idiopathic Scoliosis) etiology: Multifactorial genetic research continues. A systematic review 1950 to 2017. J Orthop 2020; 21:421-426. [PMID: 32943828 DOI: 10.1016/j.jor.2020.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022] Open
Abstract
Objective IS (idiopathic scoliosis) is a common spinal condition occurring in otherwise completely healthy adolescents. The root cause of IS remains unclear. This systematic review will focus on an update of genetic factors and IS etiology. Though it is generally accepted that the condition is not due to a single gene effect, etiology studies continue looking for a root cause including genetic variants. Though susceptibility from multiple genetic components is plausible based on known family history data, the literature remains unclear regarding multifactorial genetic influences. The objective of this study was to critically evaluate the evidence behind genetic causes (not single gene) of IS through a systematic review and strength-of-study analysis of existing genetic and genome-wide association studies (GWAS). We used the protocol of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Methods PubMed was searched for the terms IS, scoliotic, spinal curve, genetic, gene, etiology, polymorphisms. Articles were assessed for risk-of-bias. Level-of-evidence grading was completed via Oxford Centre for Evidence-Based Medicine criteria. The assessment scores factor strength of a study in determining a positive or negative association to a gene etiology. Results After screening of 36 eligible papers, 8 relevant studies met inclusion criteria at this time, 3 were in favor of a genetic factor for IS, whereas 5 studies were against it. Conclusion Based on the literature analyzed, there is moderate evidence with a low risk-of-bias that does not clarify a genetic cause of IS. The 2 studies in favor of a genetic etiology were completed in homogeneous populations, limiting their generalizability. Relying on a genetic etiology alone for IS may over simplify its multifactorial nature and limit appreciation of other influences.
Collapse
|
44
|
Jiang H, Liang S, He K, Hu J, Xu E, Lin T, Meng Y, Zhao J, Ma J, Gao R, Wang C, Yang F, Zhou X. Exome sequencing analysis identifies frequent oligogenic involvement and FLNB variants in adolescent idiopathic scoliosis. J Med Genet 2020; 57:405-413. [PMID: 32381728 PMCID: PMC7279190 DOI: 10.1136/jmedgenet-2019-106411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/09/2019] [Accepted: 12/21/2019] [Indexed: 01/08/2023]
Abstract
Background Adolescent idiopathic scoliosis (AIS) is a genetically heterogeneous disease characterised by three-dimensional deformity of the spine in the absence of a congenital spinal anomaly or neurological musculoskeletal disorder. The clinical variability and incomplete penetrance of some genes linked with AIS indicate that this disease constitutes an oligogenic trait. Objective We aimed to explore the oligogenic nature of this disease and identify novel AIS genes. Methods We analysed rare damaging variants within AIS-associated genes by using exome sequencing in 40 AIS trios and 183 sporadic patients. Results Multiple variants within AIS-associated genes were identified in eight AIS trios, and five individuals harboured rare damaging variants in the FLNB gene. The patients showed more frequent oligogenicity than the controls. In the gene-based burden test, the top signal resided in FLNB. In functional studies, we found that the AIS-associated FLNB variants altered the protein’s conformation and subcellular localisation and its interaction with other proteins (TTC26 and OFD1) involved in AIS. The most compelling evidence of an oligogenic basis was that the number of rare damaging variants was recognised as an independent prognostic factor for curve progression in Cox regression analysis. Conclusion Our data indicate that AIS is an oligogenic disease and identify FLNB as a susceptibility gene for AIS.
Collapse
Affiliation(s)
- Heng Jiang
- Department of Orthopedics, Changzheng hospital, Second Military Medical University, Shanghai, China
| | - Shulun Liang
- Department of Orthopedics, Changzheng hospital, Second Military Medical University, Shanghai, China
| | - Kai He
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Enjie Xu
- Department of Orthopedics, Changzheng hospital, Second Military Medical University, Shanghai, China
| | - Tao Lin
- Department of Orthopedics, Changzheng hospital, Second Military Medical University, Shanghai, China
| | - Yichen Meng
- Department of Orthopedics, Changzheng hospital, Second Military Medical University, Shanghai, China
| | - Jianquan Zhao
- Department of Orthopedics, Changzheng hospital, Second Military Medical University, Shanghai, China
| | - Jun Ma
- Department of Orthopedics, Changzheng hospital, Second Military Medical University, Shanghai, China
| | - Rui Gao
- Department of Orthopedics, Changzheng hospital, Second Military Medical University, Shanghai, China
| | - Ce Wang
- Department of Orthopedics, Changzheng hospital, Second Military Medical University, Shanghai, China
| | - Fu Yang
- Department of Medical Genetics, Second Military Medical University, Shangahi, China.,Department of Cell Engineering, Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
45
|
Wang L, Zhang Y, Zhao S, Dong X, Li X, You Y, Yan Z, Liu G, Tong B, Chen Y, Yang X, Tian Y, Gao N, Wang Y, Wu Z, Qiu G, Zhang J, Wu N, Deciphering Disorders Involving Scoliosis COmorbidities DSG. Estrogen Receptors (ESRs) Mutations in Adolescent Idiopathic Scoliosis: A Cross-Sectional Study. MEDICAL SCIENCE MONITOR : INTERNATIONAL MEDICAL JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2020; 26:e921611. [PMID: 32218412 PMCID: PMC7101201 DOI: 10.12659/msm.921611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Adolescent idiopathic scoliosis (AIS) is the most common spinal deformity, but its etiology is unclear. Multiple genetic mutations have been reported to be associated with AIS. Material/Methods We enrolled a cohort of 113 surgically treated AIS patients with available parental subjects from the Peking Union Medical College Hospital. We performed whole-exome sequencing in 10 trio families and whole-genome sequencing in 103 singleton patients. Luciferase assay was used to detect the functional alterations of candidate ESR1 and ESR2 variants. Results Using a de novo strategy, a missense variant in ESR1 (c.868A>G) was selected as a candidate gene for AIS. The main Cobb angle of this patient was 41° (T6–T10). Another potential pathogenic variant in ESR2 (c.236T>C) was identified. The main curve of the patient was 45° at T10–L3. The transactivation capacities of the mutated ESR1 and ESR2 protein were both significantly decreased (p=0.026 and 0.014, respectively). Conclusions Potential pathogenic variants in ESR1 and ESR2 were identified in 113 AIS patients, suggesting that genetic mutations in ESR1/2 were associated with the risk of AIS.
Collapse
Affiliation(s)
- Lianlei Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland).,Graduate School of Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China (mainland).,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Yuanqiang Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland).,Graduate School of Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China (mainland).,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland).,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China (mainland).,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Xiying Dong
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland).,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China (mainland).,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China (mainland).,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Yi You
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China (mainland).,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Zihui Yan
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland).,Graduate School of Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China (mainland).,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Gang Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland).,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China (mainland).,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Bingdu Tong
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland).,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Yaping Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland).,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Xu Yang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland).,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Yuan Tian
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland).,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Na Gao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland).,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Yipeng Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland).,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China (mainland).,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Zhihong Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland).,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China (mainland).,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China (mainland).,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland).,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China (mainland).,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland).,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China (mainland).,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland).,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China (mainland).,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | | |
Collapse
|
46
|
Wise CA, Sepich D, Ushiki A, Khanshour AM, Kidane YH, Makki N, Gurnett CA, Gray RS, Rios JJ, Ahituv N, Solnica-Krezel L. The cartilage matrisome in adolescent idiopathic scoliosis. Bone Res 2020; 8:13. [PMID: 32195011 PMCID: PMC7062733 DOI: 10.1038/s41413-020-0089-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
The human spinal column is a dynamic, segmented, bony, and cartilaginous structure that protects the neurologic system and simultaneously provides balance and flexibility. Children with developmental disorders that affect the patterning or shape of the spine can be at risk of neurologic and other physiologic dysfunctions. The most common developmental disorder of the spine is scoliosis, a lateral deformity in the shape of the spinal column. Scoliosis may be part of the clinical spectrum that is observed in many developmental disorders, but typically presents as an isolated symptom in otherwise healthy adolescent children. Adolescent idiopathic scoliosis (AIS) has defied understanding in part due to its genetic complexity. Breakthroughs have come from recent genome-wide association studies (GWAS) and next generation sequencing (NGS) of human AIS cohorts, as well as investigations of animal models. These studies have identified genetic associations with determinants of cartilage biogenesis and development of the intervertebral disc (IVD). Current evidence suggests that a fraction of AIS cases may arise from variation in factors involved in the structural integrity and homeostasis of the cartilaginous extracellular matrix (ECM). Here, we review the development of the spine and spinal cartilages, the composition of the cartilage ECM, the so-called "matrisome" and its functions, and the players involved in the genetic architecture of AIS. We also propose a molecular model by which the cartilage matrisome of the IVD contributes to AIS susceptibility.
Collapse
Affiliation(s)
- Carol A. Wise
- Center for Pediatric Bone Biology and Translational Research, Texas Scottish Rite Hospital for Children, 2222 Welborn St., Dallas, TX 75219 USA
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75235 USA
- Departments of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75235 USA
- Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235 USA
| | - Diane Sepich
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Aki Ushiki
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158 USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158 USA
| | - Anas M. Khanshour
- Center for Pediatric Bone Biology and Translational Research, Texas Scottish Rite Hospital for Children, 2222 Welborn St., Dallas, TX 75219 USA
| | - Yared H. Kidane
- Center for Pediatric Bone Biology and Translational Research, Texas Scottish Rite Hospital for Children, 2222 Welborn St., Dallas, TX 75219 USA
| | - Nadja Makki
- Department of Anatomy and Cell Biology, University of Florida, College of Medicine, Gainesville, FL 32610 USA
| | - Christina A. Gurnett
- Departments of Neurology, Washington University School of Medicine, St Louis, MO 63110 USA
- Pediatrics, Washington University School of Medicine, St Louis, MO 63110 USA
- Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO 63110 USA
| | - Ryan S. Gray
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, TX 78723 USA
| | - Jonathan J. Rios
- Center for Pediatric Bone Biology and Translational Research, Texas Scottish Rite Hospital for Children, 2222 Welborn St., Dallas, TX 75219 USA
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75235 USA
- Departments of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75235 USA
- Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235 USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158 USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158 USA
| | - Lila Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
47
|
A Novel Coding Variant in SLC39A8 Is Associated With Adolescent Idiopathic Scoliosis in Chinese Han Population. Spine (Phila Pa 1976) 2020; 45:226-233. [PMID: 31513097 DOI: 10.1097/brs.0000000000003244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A genetic case-control association study. OBJECTIVE The aim of this study was to investigate the association of SLC39A8 with the susceptibility of adolescent idiopathic scoliosis (AIS) in Chinese Han population. SUMMARY OF BACKGROUND DATA A recent exome-wide association study identified a missense variant rs13107325 in SLC39A8 that was associated with AIS. However, there was a lack of study validating the association of this novel mutation with AIS in other populations. METHODS The variant rs13107325 was genotyped in 965 AIS patients and 976 healthy controls by allelic specific multiple ligase detection reactions. Variants located in the coding region of SLC39A8 were identified by exon sequencing for 192 AIS patients and 192 controls. Paraspinal muscles from 36 AIS patients and 36 age-matched congenital scoliosis patients were collected for the gene expression analysis. Comparison between the cases and controls was performed with the χ test for genotyping data or with Student t test for gene expression analysis. RESULTS For the missense variant rs13107325, there was no case of mutation detected in the patients or the controls. All the subjects had homozygous genotype CC. Exon sequencing revealed that a coding variant rs11097773 of SLC39A8 had a significantly different distribution of minor allele frequency between patients and controls (7.81% vs. 14.8%, P = 0.002). The mRNA expression of SLC39A8 in the patients was remarkably lower than that in the controls (0.0015 ± 0.00026 vs. 0.0021 ± 0.00033, P < 0.001). CONCLUSION The association of previously reported novel mutation (rs13107325 in SLC39A8) with AIS was not replicated in the Chinese population. Interestingly, a novel coding variant rs11097773 of SLC39A8 is found significantly associated with AIS. Moreover, the expression of SLC39A8 was obviously decreased in AIS patients. Further study is warranted to clarify the functional role of rs11097773 in the development of AIS. LEVEL OF EVIDENCE 3.
Collapse
|
48
|
Dstyk mutation leads to congenital scoliosis-like vertebral malformations in zebrafish via dysregulated mTORC1/TFEB pathway. Nat Commun 2020; 11:479. [PMID: 31980602 PMCID: PMC6981171 DOI: 10.1038/s41467-019-14169-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
Congenital scoliosis (CS) is a complex genetic disorder characterized by vertebral malformations. The precise etiology of CS is not fully defined. Here, we identify that mutation in dual serine/threonine and tyrosine protein kinase (dstyk) lead to CS-like vertebral malformations in zebrafish. We demonstrate that the scoliosis in dstyk mutants is related to the wavy and malformed notochord sheath formation and abnormal axial skeleton segmentation due to dysregulated biogenesis of notochord vacuoles and notochord function. Further studies show that DSTYK is located in late endosomal/lysosomal compartments and is involved in the lysosome biogenesis in mammalian cells. Dstyk knockdown inhibits notochord vacuole and lysosome biogenesis through mTORC1-dependent repression of TFEB nuclear translocation. Inhibition of mTORC1 activity can rescue the defect in notochord vacuole biogenesis and scoliosis in dstyk mutants. Together, our findings reveal a key role of DSTYK in notochord vacuole biogenesis, notochord morphogenesis and spine development through mTORC1/TFEB pathway. Congenital scoliosis is a complex genetic disorder characterized by vertebral malformation. Here, the authors demonstrate that loss of dstyk leads to scoliosis in zebrafish due to dysregulated biogenesis of notochord vacuoles and that DSTYK is required for lysosome biogenesis through mTORC1 regulation.
Collapse
|
49
|
Liu G, Wang L, Wang X, Yan Z, Yang X, Lin M, Liu S, Zuo Y, Niu Y, Zhao S, Zhao Y, Zhang J, Shen J, Wang Y, Qiu G, Wu Z, Wu N. Whole-Genome Methylation Analysis of Phenotype Discordant Monozygotic Twins Reveals Novel Epigenetic Perturbation Contributing to the Pathogenesis of Adolescent Idiopathic Scoliosis. Front Bioeng Biotechnol 2019; 7:364. [PMID: 31921798 PMCID: PMC6914696 DOI: 10.3389/fbioe.2019.00364] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/12/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Adolescent idiopathic scoliosis (AIS) is a complex disease affecting a large number of teenagers, especially in female. This study reveals novel epigenetic perturbation to the pathogenesis of AIS. Methods: A female monozygotic (MZ) twin pair discordant for AIS were examined for whole-exome sequencing and epigenome difference. Sets of differentially methylated regions (DMRs) were validated using MethylTarget™ method in 20 AIS female patients and 20 healthy female controls. Results: Few exome difference but several potential DMRs were found between the MZ twins. We identified 313 hypermethylated DMRs and 397 hypomethylated DMRs, respectively. Most of them were enriched in the MAPK and PI3K-Akt signaling pathway, which may contribute to the discordance of AIS. Several DMRs related to scoliosis genes were tested, and the NDN: TSS-DMR (chr15:23932133-23932304, hg19) was confirmed in additional samples. The methylation level of this DMR was significantly higher in the AIS group than in the control group (p = 0.04). Conclusions: We described the epigenome difference in an AIS female discordant MZ twin pair using Whole Genome Bisulfite Sequencing (WGBS). The NDN: TSS-DMR had higher methylation level in female AIS, which can help elucidate the potential etiology of AIS.
Collapse
Affiliation(s)
- Gang Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Lianlei Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Xinyu Wang
- Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, China
| | - Zihui Yan
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Xinzhuang Yang
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Mao Lin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Sen Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Yuzhi Zuo
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Yanxue Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianxiong Shen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Yipeng Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
50
|
Association of Susceptibility Genes for Adolescent Idiopathic Scoliosis and Intervertebral Disc Degeneration With Adult Spinal Deformity. Spine (Phila Pa 1976) 2019; 44:1623-1629. [PMID: 31365516 DOI: 10.1097/brs.0000000000003179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Genetic case-control study of single nucleotide polymorphisms (SNPs). OBJECTIVE To examine the association of previously reported susceptibility genes for adolescent idiopathic scoliosis (AIS) and intervertebral disc (IVD) degeneration with adult spinal deformity (ASD). SUMMARY OF BACKGROUND DATA ASD is a spinal deformity that develops and progresses with age. Its etiology is unclear. Several ASD susceptibility genes were recently reported using a candidate gene approach; however, the sample sizes were small and associations with ASD development were not determined. METHODS ASD was defined as structural scoliosis with a Cobb angle more than 15° on standing radiographs, taken of patients at age 40 to 75 years in this study. Subjects in whom scoliosis was diagnosed before age 20 were excluded. We recruited 356 Japanese ASD subjects and 3341 healthy controls for case-control association studies of previously reported SNPs. We genotyped four known AIS-associated SNPs (rs11190870 in LBX1, rs6570507 in GPR126, rs10738445 in BNC2, and rs6137473 in PAX1) and three IVD degeneration-associated SNPs (rs1245582 in CHST3, rs2073711 in CILP, and rs1676486 in COL11A1) by the Invader assay. RESULTS Among the AIS-associated SNPs, rs11190870 and rs6137473 showed strong and nominal associations with ASD (P = 1.44 × 10, 1.00 × 10, respectively). Of the IVD degeneration-associated SNPs, rs1245582 and rs2073711 showed no association with ASD, while rs1676486 showed a nominal association (P = 1.10 × 10). In a subgroup analysis, rs11190870 was significantly associated with a Cobb angle more than 20° in the minor thoracic curve (P = 1.44 × 10) and with a left convex lumbar curve (P = 6.70 × 10), and nominally associated with an apical vertebra higher than L1 (P = 1.80 × 10). CONCLUSION rs11190870 in LBX1, a strong susceptibility SNP for AIS, may also be a susceptibility SNP for ASD. Thus, ASD and AIS may share a common genetic background. LEVEL OF EVIDENCE 4.
Collapse
|