1
|
Liu B, Chen LW, Wang L. Atomically dispersed Pt 1Ir 1 pair for synergetic hydrogenation of levulinic acid to γ-valerolactone. NANOSCALE ADVANCES 2024; 6:4825-4830. [PMID: 39323419 PMCID: PMC11421542 DOI: 10.1039/d4na00419a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/13/2024] [Indexed: 09/27/2024]
Abstract
Atomically dispersed metal catalysts have attracted considerable attention in various important reactions owing to their high atom utilization and specific coordination environment. However, monometallic single sites sometimes present undesirable catalytic performance, which usually need a synergistic effect with the neighboring metal atoms, such as dimers or trimers. Different metal pairs on various solid carriers have been reported; nonetheless, huge challenges remain to precisely prepare a metal pair-site. Herein, we present a versatile strategy to synthesize an atomically dispersed Pt1Ir1 pair via strong metal-sulfur interaction over porous sulfur-doped carbons. Pt1Ir1 pair sites presented high activity and stability for the hydrogenation of levulinic acid to γ-valerolactone.
Collapse
Affiliation(s)
- Boyang Liu
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225009 Jiangsu China
| | - Lin-Wei Chen
- School of Pharmacy & Institute of Pharmaceutics, Anhui University of Chinese Medicine Hefei 230012 China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225009 Jiangsu China
| |
Collapse
|
2
|
Shi L, Li Q, Liu S, Liu X, Yang S, Chen C, Li Z, Liu S. Bimetallic nanozymes synergize to regulate the behavior of oxygen intermediates and substrate HMF adsorption. Chem Commun (Camb) 2024; 60:8860-8863. [PMID: 39081237 DOI: 10.1039/d4cc03213f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
We have constructed a bimetallic (CoNiP) nanozyme, leveraging the synergistic effect of cobalt and nickel, which efficiently catalyzes the oxidation of TMB from colorless to ox-TMB (blue). Density functional theory (DFT) calculations further highlight the pivotal role of this synergistic effect in improving the adsorption energy of oxygen intermediates, accelerating the catalytic process.
Collapse
Affiliation(s)
- Lei Shi
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Qiang Li
- Inner Mongolia Institute of Synthetic chemistry, Hohhot, 010010, China.
| | - Shuang Liu
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Xinyang Liu
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Shucheng Yang
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Chunxia Chen
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Zhijun Li
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Song Liu
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
3
|
Liu Y, Gao L, Chang G, Zhou W. Enhancing reductive conversion of levulinic acid and levulinates to γ-valerolactone: Role of oxygen vacancy in MnOx catalysts. BIORESOURCE TECHNOLOGY 2024; 406:131001. [PMID: 38897549 DOI: 10.1016/j.biortech.2024.131001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Oxygen vacancies (Ov) in metal oxides play a crucial role in modifying the electronic and acidic properties of catalysts, thereby influencing their catalytic activity. This study explores the impact of Ov in MnOx catalysts on their acidic and catalytic properties for the Meerwein-Ponndorf-Verley reduction of levulinic acid (LA) and levulinate to γ-valerolactone (GVL). Various characterization techniques demonstrate that surface Ov significantly modulate the acidic properties of MnOx catalysts, positively correlating with Lewis/Brønsted acid ratio and GVL yield. In situ DRIFTS and DFT calculations further unveil the reaction mechanism, revealing that Ov facilitate the activation and dehydrogenation of isopropanol and subsequent hydrogen transfer and hydrogenation of LA, leading to enhanced GVL production. These insights underscore the pivotal role of Ov in MnOx catalysts for the efficient conversion of LA to GVL, highlighting their importance in improving catalytic performance.
Collapse
Affiliation(s)
- Yong Liu
- School of Resources & Environment and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330047, China; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, 210096, China.
| | - Lingling Gao
- School of Resources & Environment and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Guozhang Chang
- Institute of Yellow River Delta Earth Surface Process and Ecological Integrity, College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Wenguang Zhou
- School of Resources & Environment and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
4
|
Wang S, Zhuang Z, Chen X, Wang Y, Li X, Yang M, Wu Y, Peng Q, Chen C, Li Y. 3D Oxide-Derived Ru Catalyst for Ultra-Efficient Hydrogenation of Levulinic Acid to γ-Valerolactone. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306227. [PMID: 37806748 DOI: 10.1002/smll.202306227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/02/2023] [Indexed: 10/10/2023]
Abstract
γ-valerolactone (GVL) is a key value-added chemical catalytically produced from levulinic acid (LA), an important biomass derivative platform chemical. Here an ultra-efficient 3D Ru catalyst generated by in situ reduction of RuZnOx nanoboxes is reported; the catalyst features a well-defined structure of highly dispersed in situ oxide-derived Ru (IOD-Ru) clusters (≈1 nm in size) spatially confined within the 3D nanocages with rich mesopores, which guarantees a maximized atom utilization with a high exposure of Ru active sites as well as a 3D accessibility for substrate molecules. The IOD-Ru exhibits ultrahigh performance for the hydrogenation of LA into GVL with a record-breaking turnover frequency (TOF) up to 59400 h-1 , 14 times higher than that of the ex situ reduction of RuZnOx nanoboxes catalyst. Structural characterizations and theoretical calculations collectively indicate that the defect-rich and coordination-unsaturated IOD-Ru sites can boost the activation of the carbonyl group in LA with a significantly lowered energy barrier of hydrogenation.
Collapse
Affiliation(s)
- Shanshan Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Zewen Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Xin Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yu Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaoxian Li
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Mingde Yang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Yulong Wu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Qing Peng
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chen Chen
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Liu L, Corma A. Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles. Chem Rev 2023; 123:4855-4933. [PMID: 36971499 PMCID: PMC10141355 DOI: 10.1021/acs.chemrev.2c00733] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 03/29/2023]
Abstract
Heterogeneous bimetallic catalysts have broad applications in industrial processes, but achieving a fundamental understanding on the nature of the active sites in bimetallic catalysts at the atomic and molecular level is very challenging due to the structural complexity of the bimetallic catalysts. Comparing the structural features and the catalytic performances of different bimetallic entities will favor the formation of a unified understanding of the structure-reactivity relationships in heterogeneous bimetallic catalysts and thereby facilitate the upgrading of the current bimetallic catalysts. In this review, we will discuss the geometric and electronic structures of three representative types of bimetallic catalysts (bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles) and then summarize the synthesis methodologies and characterization techniques for different bimetallic entities, with emphasis on the recent progress made in the past decade. The catalytic applications of supported bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles for a series of important reactions are discussed. Finally, we will discuss the future research directions of catalysis based on supported bimetallic catalysts and, more generally, the prospective developments of heterogeneous catalysis in both fundamental research and practical applications.
Collapse
Affiliation(s)
- Lichen Liu
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Avelino Corma
- Instituto
de Tecnología Química, Universitat
Politècnica de València−Consejo Superior de Investigaciones
Científicas (UPV-CSIC), Avenida de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
6
|
Qu R, Junge K, Beller M. Hydrogenation of Carboxylic Acids, Esters, and Related Compounds over Heterogeneous Catalysts: A Step toward Sustainable and Carbon-Neutral Processes. Chem Rev 2023; 123:1103-1165. [PMID: 36602203 DOI: 10.1021/acs.chemrev.2c00550] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The catalytic hydrogenation of esters and carboxylic acids represents a fundamental and important class of organic transformations, which is widely applied in energy, environmental, agricultural, and pharmaceutical industries. Due to the low reactivity of the carbonyl group in carboxylic acids and esters, this type of reaction is, however, rather challenging. Hence, specifically active catalysts are required to achieve a satisfactory yield. Nevertheless, in recent years, remarkable progress has been made on the development of catalysts for this type of reaction, especially heterogeneous catalysts, which are generally dominating in industry. Here in this review, we discuss the recent breakthroughs as well as milestone achievements for the hydrogenation of industrially important carboxylic acids and esters utilizing heterogeneous catalysts. In addition, related catalytic hydrogenations that are considered of importance for the development of cleaner energy technologies and a circular chemical industry will be discussed in detail. Special attention is paid to the insights into the structure-activity relationship, which will help the readers to develop rational design strategies for the synthesis of more efficient heterogeneous catalysts.
Collapse
Affiliation(s)
- Ruiyang Qu
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
7
|
García-Sancho C, Mérida-Robles JM, Cecilia-Buenestado JA, Moreno-Tost R, Maireles-Torres PJ. The Role of Copper in the Hydrogenation of Furfural and Levulinic Acid. Int J Mol Sci 2023; 24:2443. [PMID: 36768767 PMCID: PMC9916970 DOI: 10.3390/ijms24032443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Currently, there is a great interest in the development of sustainable and green technologies for production of biofuels and chemicals. In this sense, much attention is being paid to lignocellulosic biomass as feedstock, as alternative to fossil-based resources, inasmuch as its fractions can be transformed into value-added chemicals. Two important platform molecules derived from lignocellulosic sugars are furfural and levulinic acid, which can be transformed into a large spectrum of chemicals, by hydrogenation, oxidation, or condensation, with applications as solvents, agrochemicals, fragrances, pharmaceuticals, among others. However, in many cases, noble metal-based catalysts, scarce and expensive, are used. Therefore, an important effort is performed to search the most abundant, readily available, and cheap transition-metal-based catalysts. Among these, copper-based catalysts have been proposed, and the present review deals with the hydrogenation of furfural and levulinic acid, with Cu-based catalysts, into several relevant chemicals: furfuryl alcohol, 2-methylfuran, and cyclopentanone from FUR, and γ-valerolactone and 2-methyltetrahydrofuran from LA. Special emphasis has been placed on catalytic processes used (gas- and liquid-phase, catalytic transfer hydrogenation), under heterogeneous catalysis. Moreover, the effect of addition of other metal to Cu-based catalysts has been considered, as well as the issue related to catalyst stability in reusing studies.
Collapse
Affiliation(s)
| | - Josefa María Mérida-Robles
- Departamento de Química Inorgánica, Cristalografía y Mineralogía (Unidad Asociada al ICP-CSIC), Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, 29071 Málaga, Spain
| | | | - Ramón Moreno-Tost
- Departamento de Química Inorgánica, Cristalografía y Mineralogía (Unidad Asociada al ICP-CSIC), Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, 29071 Málaga, Spain
| | | |
Collapse
|
8
|
Xiao X, Xi S, Zang W, Lim SH, Gao J, Chu W, Liu Y. Insight into Key Parameters for Fabricating Stable Single-Atom Pt-Ni x Alloy by Reduction Environment-Induced Anti-Ostwald Effects. CHEMSUSCHEM 2023; 16:e202201885. [PMID: 36353926 DOI: 10.1002/cssc.202201885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Developing single-atom catalysts with superior stability under reduction conditions is essential for hydrogenation/dehydrogenation catalysis and green hydrogen generation. In this contribution, single-atom Pt catalysts were achieved via a reduction environment-induced anti-Ostwald approach in the highly confined Ni species (Pt-Nix ) on nonreducible Al2 O3 matrix. In-situ X-ray absorption spectroscopy indicated that the isolated Pt-Nix metallic bonds, generated at high reduction temperature, dominated the formation of single Pt atoms. A relatively large cluster of metallic Ni would benefit the stabilization of Pt single atom as observed via high-angle annular dark-field scanning transmission electron microscopy and validated by density functional theory simulation. Excellent performance on cellulose hydrogenolysis was demonstrated under harsh reductive and hydrothermal conditions, potentially expandable to other hydrogen involved reactions like CO2 hydrogenation, green hydrogen production from different hydrogen carriers, and beyond.
Collapse
Affiliation(s)
- Xin Xiao
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, P. R. China
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Wenjie Zang
- Department of Materials Science and Engineering, University of California, Irvine, CA92697, USA
| | - San Hua Lim
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Jiajian Gao
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Wei Chu
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, P. R. China
| | - Yan Liu
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, 627833, Singapore
| |
Collapse
|
9
|
Qiu YP, Shi Q, Wang WZ, Xia SH, Dai H, Yin H, Yang ZQ, Wang P. Facile Synthesis of Highly Dispersed and Well-Alloyed Bimetallic Nanoparticles on Oxide Support. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106143. [PMID: 35199957 DOI: 10.1002/smll.202106143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Supported alloy catalysts play a pivotal role in many heterogeneous catalytic processes of socioeconomic and environmental importance. But the controlled synthesis of supported alloy nanoparticles with consistent composition and tight size distribution remains a challenging issue. Herein, a simple yet effective method for preparation of highly dispersed, homogeneously alloyed bimetallic nanoparticles on oxide supports is reported. This method is based on solid solution of metal cations in parent oxide and strong electrostatic adsorption of a secondary metal species onto the oxide surface. In the reductive annealing process, hydrogen spillover occurs from the surface metal with a higher reduction potential to the solute metal in solid solution, leading to metal exsolution and homogenous alloying of the metals on the oxide surface. The ceria-supported Ni-Pt alloy is chosen as a model catalyst and hydrazine monohydrate decomposition is chosen as a probe reaction to demonstrate this method, and particularly its advantages over the conventional impregnation and galvanic replacement methods. A systematic application of this method using different oxides and base-noble metal pairs further elucidates its applicability and generality.
Collapse
Affiliation(s)
- Yu-Ping Qiu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Qing Shi
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Wei-Zhen Wang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Su-Hong Xia
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Hao Dai
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Hui Yin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | | | - Ping Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| |
Collapse
|
10
|
Li B, Zhao H, Fang J, Li J, Gao W, Ma K, Liu C, Yang H, Ren X, Dong Z. Ru nanoparticles anchored on porous N-doped carbon nanospheres for efficient catalytic hydrogenation of Levulinic acid to γ-valerolactone under solvent-free conditions. J Colloid Interface Sci 2022; 623:905-914. [DOI: 10.1016/j.jcis.2022.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 01/07/2023]
|
11
|
Wang H, Wang Q, Wu Y, Peng J, Gu XK, Ding M. Dual-Oriented Selectivity Switching for Highly Efficient Biomass Upgrading via Selective C–O Bond Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongtao Wang
- Department of Energy Chemical Engineering, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, P. R. China
| | - Qi Wang
- Department of Energy Chemical Engineering, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, P. R. China
| | - Yushan Wu
- Department of Energy Chemical Engineering, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, P. R. China
| | - Jiebang Peng
- Department of Energy Chemical Engineering, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, P. R. China
| | - Xiang-Kui Gu
- Department of Energy Chemical Engineering, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, P. R. China
| | - Mingyue Ding
- Department of Energy Chemical Engineering, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, P. R. China
- Shenzhen Research Institute of Wuhan University, Shenzhen 518108, P. R. China
| |
Collapse
|
12
|
Ji Y, Liu H, Wang F, Guo X. Conversion of biomass to γ-valerolactone by efficient transfer hydrogenation of ethyl levulinate over Al-SPAN nanosheets. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Deep eutectic solvent assisted fabrication of zirconium phytate thin nanosheets for important biomass transformations. iScience 2022; 25:105039. [PMID: 36147961 PMCID: PMC9485070 DOI: 10.1016/j.isci.2022.105039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/26/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Utilization of naturally occurring resources to construct functional catalytic materials is significantly important, and facile and environmental-benign strategies are highly desired to afford the materials having a specific structure and good catalytic activity. Herein, we reported an innovative deep eutectic solvent (DES)-assisted strategy to synthesize zirconium phytate with a thin nanosheet structure (denoted as Zr-Phy-DES) using plant-originated phytic acid (PhyA) as the renewable building block. This strategy was eco-friendly and adjustable owing to the designability of DESs. The Zr-Phy-DES as an acidic catalyst showed high activity on two important biomass transformations, i.e., dehydration of carbohydrates and Meerwein-Ponndorf-Verley reduction of ethyl levulinate. Interestingly, Zr-Phy-DES showed higher catalytic performance than the zirconium phytates prepared in ethylene glycol and N,N-dimethylformamide, confirming the advantage of DESs for preparing functional materials. Notably, the unique feature of this proposed strategy is that renewable catalysts are prepared in an environmental-benign solvent for efficiently catalyzing biomass transformation. An eco-friendly strategy for preparing catalytic materials with a specific structure The catalytic activity of the prepared materials varied with the type of solvents The material prepared in deep eutectic solvent showed better performance Catalytic materials from natural resources and green solvents to convert biomass
Collapse
|
14
|
Abusuek DA, Tkachenko OP, Bykov AV, Sidorov AI, Matveeva VG, Sulman MG, Nikoshvili LZ. ZSM-5 as a support for Ru-containing catalysts of levulinic acid hydrogenation: Influence of the reaction conditions and the zeolite acidity. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
MoNi nano-alloy loaded on carbon nanotubes with high activity and stability for the catalytic hydrogenation of petro resin. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02250-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Chen Z, Zeng X, Li X, Lv Z, Li J, Zhang Y. Strong Metal Phosphide-Phosphate Support Interaction for Enhanced Non-Noble Metal Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106724. [PMID: 34791708 DOI: 10.1002/adma.202106724] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Strong metal-support interaction (SMSI) is crucial for supported catalysts in heterogeneous catalysis. Here is the first report on strong metal phosphide-phosphate support interaction (SMPSI). The key to SMPSI is the activation of P species on the support, which leads to simultaneous generation of metal phosphide nanoparticles (NPs) and core-shell nanostructures formed by support migration onto the NPs. The encapsulation state of metal phosphide and charge transfer are identical to those of classical SMSIs and can be optimally regulated. Furthermore, the strong interactions of Co2 PL /MnP-3 not only significantly enhance the anti-oxidation and anti-acid capability of non-noble metal but also exhibit excellent catalytic activity and stability toward hydrogenating a wide range of compounds into value-added fine chemicals with 100% selectivity, which is even better than Pd/C and Pt/C. The SMPSI construction can be generally extended to other systems such as Ni2 PL /Mn3 (PO4 )2 , Co2 PL /LaPO4 , and CoPL /CePO4 . This study provides a new approach for the rational design of advanced non-noble metal catalysts and introduce a novel paradigm for the strong interaction between NPs and support.
Collapse
Affiliation(s)
- Zemin Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, Anhui Province Key Laboratory for Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiang Zeng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, Anhui Province Key Laboratory for Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xinyu Li
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zhenxing Lv
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Jiong Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Ying Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, Anhui Province Key Laboratory for Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
17
|
Selective conversion of levulinic acid to gamma-valerolactone over Ni-based catalysts: Impacts of catalyst formulation on sintering of nickel. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Gell L, Honkala K. Ligand assisted hydrogenation of levulinic acid on Pt(111) from first principles calculations. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02048j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we investigate the hydrogenation reaction of levulinic acid to 4-hydroxypentanovic acid on a ligand-modified Pt(111) using DFT. Modifying nanoparticle surfaces with ligands can have beneficial effects on...
Collapse
|
19
|
Gokhale TA, Raut AB, Chawla SK, Bhanage BM. Insights into Cascade and Sequential one pot pathways for reductive amination of aldehydes paired with bio-derived levulinic acid to N-substituted pyrrolidones using molecular hydrogen. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00384d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work aims to explore cascade and sequential one pot syntheses pathways for N-substituted pyrrolidones from aryl aldehydes and bio-derived levulinic acid (LA) using molecular hydrogen and ammonia. This process...
Collapse
|
20
|
Highly active electrocatalytic CO2 reduction with manganese N-heterocyclic carbene pincer by para electronic tuning. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Anand S, Pinheiro D, Sunaja Devi KR. Recent Advances in Hydrogenation Reactions Using Bimetallic Nanocatalysts: A Review. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Samika Anand
- Department of Chemistry CHRIST (Deemed to be University) Bangalore 560029 Karnataka India
| | - Dephan Pinheiro
- Department of Chemistry CHRIST (Deemed to be University) Bangalore 560029 Karnataka India
| | - K. R. Sunaja Devi
- Department of Chemistry CHRIST (Deemed to be University) Bangalore 560029 Karnataka India
| |
Collapse
|
22
|
He J, Wu Z, Gu Q, Liu Y, Chu S, Chen S, Zhang Y, Yang B, Chen T, Wang A, Weckhuysen BM, Zhang T, Luo W. Zeolite-Tailored Active Site Proximity for the Efficient Production of Pentanoic Biofuels. Angew Chem Int Ed Engl 2021; 60:23713-23721. [PMID: 34409728 DOI: 10.1002/anie.202108170] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/16/2021] [Indexed: 11/07/2022]
Abstract
Biofuel production can alleviate reliance on fossil resources and thus carbon dioxide emission. Hydrodeoxygenation (HDO) refers collectively to a series of important biorefinery processes to produce biofuels. Here, well-dispersed and ultra-small Ru metal nanoclusters (ca. 1 nm), confined within the micropores of zeolite Y, provide the required active site intimacy, which significantly boosts the chemoselectivity towards the production of pentanoic biofuels in the direct, one-pot HDO of neat ethyl levulinate. Crucial for improving catalyst stability is the addition of La, which upholds the confined proximity by preventing zeolite lattice deconstruction during catalysis. We have established and extended an understanding of the "intimacy criterion" in catalytic biomass valorization. These findings bring new understanding of HDO reactions over confined proximity sites, leading to potential application for pentanoic biofuels in biomass conversion.
Collapse
Affiliation(s)
- Jiang He
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
- University of Chinese Academy of Science, 19A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Zhijie Wu
- State Key Laboratory of Heavy Oil Processing and Key Laboratory of Catalysis of CNPC, China University of Petroleum, 18 Fuxue Road, ChangPing, Beijing, 102249, P. R. China
| | - Qingqing Gu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Yuanshuai Liu
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Shengqi Chu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Shaohua Chen
- Key Laboratory of Advanced Energy Materials Chemistry, Institute of New Catalytic Materials Science, Nankai University, 38 Tongyang Road, Tianjin, 300350, P. R. China
| | - Yafeng Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Bing Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Tiehong Chen
- Key Laboratory of Advanced Energy Materials Chemistry, Institute of New Catalytic Materials Science, Nankai University, 38 Tongyang Road, Tianjin, 300350, P. R. China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Wenhao Luo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| |
Collapse
|
23
|
He J, Wu Z, Gu Q, Liu Y, Chu S, Chen S, Zhang Y, Yang B, Chen T, Wang A, Weckhuysen BM, Zhang T, Luo W. Zeolite‐Tailored Active Site Proximity for the Efficient Production of Pentanoic Biofuels. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jiang He
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
- University of Chinese Academy of Science 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| | - Zhijie Wu
- State Key Laboratory of Heavy Oil Processing and Key Laboratory of Catalysis of CNPC China University of Petroleum 18 Fuxue Road, ChangPing Beijing 102249 P. R. China
| | - Qingqing Gu
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Yuanshuai Liu
- Inorganic Chemistry and Catalysis group Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Shengqi Chu
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Sciences 19B Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| | - Shaohua Chen
- Key Laboratory of Advanced Energy Materials Chemistry Institute of New Catalytic Materials Science Nankai University 38 Tongyang Road Tianjin 300350 P. R. China
| | - Yafeng Zhang
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Bing Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Tiehong Chen
- Key Laboratory of Advanced Energy Materials Chemistry Institute of New Catalytic Materials Science Nankai University 38 Tongyang Road Tianjin 300350 P. R. China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis group Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Wenhao Luo
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| |
Collapse
|
24
|
Song L, Wang R, Che L, Jiang Y, Zhou M, Zhao Y, Pang J, Jiang M, Zhou G, Zheng M, Zhang T. Catalytic Aerobic Oxidation of Lignocellulose-Derived Levulinic Acid in Aqueous Solution: A Novel Route to Synthesize Dicarboxylic Acids for Bio-Based Polymers. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lei Song
- Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, People’s Republic of China
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Rui Wang
- Division of Energy Materials, Dalian Institute of Chemical Physicals, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Li Che
- Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, People’s Republic of China
| | - Yu Jiang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Mo Zhou
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Yu Zhao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Jifeng Pang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Min Jiang
- Division of Energy Materials, Dalian Institute of Chemical Physicals, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Guangyuan Zhou
- Division of Energy Materials, Dalian Institute of Chemical Physicals, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Mingyuan Zheng
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- Dalian National Laboratory for Clean Energy, Dalian 116023, People’s Republic of China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| |
Collapse
|
25
|
Ullah N, Song Z, Liu W, Kuo CC, Ramiere A, Cai X. Photo-promoted in situ reduction and stabilization of Pd nanoparticles by H 2 at photo-insensitive Sm 2O 3 nanorods. J Colloid Interface Sci 2021; 607:479-487. [PMID: 34509730 DOI: 10.1016/j.jcis.2021.08.184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
Controlled synthesis of noble metal nanoparticles with well-defined size and good dispersion on supports has been a long-standing challenge in heterogeneous catalysis. Here we report a facile photo-assisted H2in situ reduction process to synthesize monodispersed Pd nanoparticles with 2-4 nm size on photo-insensitive Sm2O3 rare-earth metal oxide with nanorod morphology. Thanks to the contribution of UV irradiation, the photoelectrons generation in the Sm2O3 support accelerates the H2 reduction of Pd2+ ions into Pd0 and stabilize the growth of very small Pd nanoparticles homogeneously dispersed on the support. The homogeneous distribution of the Pd NPs on the surface of Sm2O3 is most likely attributed to the profuse nucleation sites created by the UV irradiation and the abundance of hydroxyl groups on the support. The hydrogenation of styrene to ethylbenzene was studied as a model reaction. As a result, the UV radiated sample shows an excellent TOF value of 7419 h-1, which is quadruple of the sample without UV irradiation, under the condition of 0.1 MPa H2 at a content of 1.0 wt% Pd. Besides, UV radiated sample shows a negligible performance degradation during the repeated cycling process. This photo-promoted H2 reduction process provides a convenient and straightforward route for assembling materials with novel structures and functions for nanotechnology applications.
Collapse
Affiliation(s)
- Naseeb Ullah
- Institute for Advanced Studies (IAS), Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhaoqi Song
- Institute for Advanced Studies (IAS), Shenzhen University, Shenzhen 518060, China
| | - Wei Liu
- Institute for Advanced Studies (IAS), Shenzhen University, Shenzhen 518060, China
| | - Chi-Ching Kuo
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, 10608 Taipei, Taiwan.
| | - Aymeric Ramiere
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Xingke Cai
- Institute for Advanced Studies (IAS), Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
26
|
Liu X, Ye S, Lan G, Su P, Zhang X, Price CAH, Li Y, Liu J. Atomic Pyridinic Nitrogen Sites Promoting Levulinic Acid Hydrogenations over Double-Shelled Hollow Ru/C Nanoreactors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101271. [PMID: 34254441 DOI: 10.1002/smll.202101271] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/27/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen-doped nanocarbons are widely used as supports for metal-heterogeneous catalytic conversions. When nitrogen-doped nanocarbon supports are used to disperse metallic nanoparticles (MNPs), the nitrogen dopant can enhance MNPs electron density to reach higher catalytic activity and promote MNPs stability through anchoring effects. However, the precise identification of active nitrogen species between N-dopants and reactants is rarely reported. Herein, a proof-of-concept study on the active N species for levulinic acid hydrogenation is reported. A double-shell structured carbon catalyst (DSC) is designed with selectively locating ultrafine Ru NPs only on inner carbon shell, specifically, different N species on the external carbon shell. Through the design of such a nanostructure, it is demonstrated that the alkaline pyridinic N species on the outer shell serves as an anchor point for the spontaneous binding of the acidic reactant. The pyridinic N content can be modulated from 7.4 to 29.2 mg gcat-1 by selecting different precursors. Finally, the Ru-DSC-CTS (using chitosan as the precursor) catalyst achieves a 99% conversion of levulinic acid under 70 °C and 4 MPa hydrogen pressure for 1 h. This work sheds light on the design of nanoreactors at the atomic scale and investigates heterogeneous catalysis at the molecular level.
Collapse
Affiliation(s)
- Xiaoyan Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
- Institute of Industrial Catalysis, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, 310014, China
| | - Sheng Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology Institute, University of Surrey, Guilford, Surrey, GU2 7XH, UK
| | - Guojun Lan
- Institute of Industrial Catalysis, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, 310014, China
| | - Panpan Su
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Xiaoli Zhang
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Cameron Alexander Hurd Price
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology Institute, University of Surrey, Guilford, Surrey, GU2 7XH, UK
| | - Ying Li
- Institute of Industrial Catalysis, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, 310014, China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology Institute, University of Surrey, Guilford, Surrey, GU2 7XH, UK
| |
Collapse
|
27
|
Wang L, Yang Y, Yin P, Ren Z, Liu W, Tian Z, Zhang Y, Xu E, Yin J, Wei M. MoO x-Decorated Co-Based Catalysts toward the Hydrodeoxygenation Reaction of Biomass-Derived Platform Molecules. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31799-31807. [PMID: 34197068 DOI: 10.1021/acsami.1c10599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Catalytic conversion of a biomass derivative (levulinic acid, LA) to a high value-added product (γ-valerolactone, GVL) has attracted much attention, in which the control of catalytic selectivity plays an important role. Herein, a stepwise method was developed to prepare Co-MoOx catalysts via topological transformation (calcination reduction) from layered double hydroxide (Mo/CoAl-LDH) precursors. X-ray diffraction, high-resolution transmission electron microscopy, and hydrogen temperature-programmed reduction demonstrate the formation of MoOx-decorated Co structures of Co-MoOx samples. Remarkably, the sample that is reduced at 500 °C is featured with the most abundant interfacial Coδ+ (denoted as Co-MoOx-500), which exhibits an excellent catalytic performance toward the hydrodeoxygenation (HDO) reaction of several biomass-derived platform molecules (furfural, FAL; succinic acid, SA; 5-hydroxymethyl-furfural, HMF; and levulinic acid, LA). Especially, this optimal catalyst displays a high yield (99%) toward the HDO reaction of LA to GVL, which stands at the highest level among non-noble metal catalysts. The combination of in situ FT-IR characterization and theoretical calculation further confirms that interfacial Coδ+ sites in Co-MoOx-500 act as adsorption active sites for the polarization of a C═O bond in an LA molecule, which simultaneously promotes C═O hydrogenation and C-O cleavage. Moreover, the MoOx overlayer suppresses the formation of byproducts by covering the Co0 sites. This work offers a cost-effective and efficient catalyst, which can be potentially applied in catalytic conversion of biomass-derived platform molecules.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yusen Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Pan Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhen Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Wei Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhaowei Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yuanjing Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Enze Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jianjun Yin
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, P. R. China
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
28
|
Dumoleijn KNR, Villa A, Marelli M, Prati L, Moonen K, Stevens CV. Heterogeneous Catalyzed Chemoselective Reductive Amination of Halogenated Aromatic Aldehydes. ChemCatChem 2021. [DOI: 10.1002/cctc.202100334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kim N. R. Dumoleijn
- SynBioC Research Group Department of Green Chemistry and Technology Faculty of Bioscience Engineering Ghent University Coupure Links 653 9000 Ghent Belgium
- Eastman Chemical Company Pantserschipstraat 207 9000 Ghent Belgium
| | - Alberto Villa
- Dipartimento di Chimica Università degli Studi di Milano Via C. Golgi 19 20133 Milan Italy
| | - Marcello Marelli
- National Research Council CNR-SCITEC Via G. Fantoli 16/15 20133 Milan Italy
| | - Laura Prati
- Dipartimento di Chimica Università degli Studi di Milano Via C. Golgi 19 20133 Milan Italy
| | - Kristof Moonen
- Eastman Chemical Company Pantserschipstraat 207 9000 Ghent Belgium
| | - Christian V. Stevens
- SynBioC Research Group Department of Green Chemistry and Technology Faculty of Bioscience Engineering Ghent University Coupure Links 653 9000 Ghent Belgium
| |
Collapse
|
29
|
Gao X, Zhu S, Dong M, Fan W. MOF-derived hcp-Co nanoparticles encapsulated in ultrathin graphene for carboxylic acids hydrogenation to alcohols. J Catal 2021. [DOI: 10.1016/j.jcat.2021.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Rapid and facile laser-assistant preparation of Ru-ZIF-67-derived CoRu nanoalloy@N-doped graphene for electrocatalytic hydrogen evolution reaction at all pH values. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138337] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
31
|
Serrà A, Artal R, Philippe L, Gómez E. Electrodeposited Ni-Rich Ni-Pt Mesoporous Nanowires for Selective and Efficient Formic Acid-Assisted Hydrogenation of Levulinic Acid to γ-Valerolactone. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4666-4677. [PMID: 33826345 PMCID: PMC8631738 DOI: 10.1021/acs.langmuir.1c00461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/26/2021] [Indexed: 06/12/2023]
Abstract
In pursuit of friendlier conditions for the preparation of high-value biochemicals, we developed catalytic synthesis of γ-valerolactone by levulinic acid hydrogenation with formic acid as the hydrogen source. Both levulinic and formic acid are intermediate products in the biomass transformation processes. The objective of the work is twofold: the development of a novel approach for milder synthesis conditions to produce γ-valerolactone and the reduction of the economic cost of the catalyst. Ni-rich Ni-Pt mesoporous nanowires were synthesized in an aqueous medium using a combined hard-soft-template-assisted electrodeposition method, in which porous polycarbonate membranes controlled the shape and the Pluronic P-123 copolymer served as the porogen agent. The electrodeposition conditions selected favored nickel deposition and generated nanowires with nickel percentages above 75 atom %. The increase in deposition potential favored nickel deposition. However, it was detrimental for the porous diameter because the mesoporous structure is promoted by the presence of the platinum-rich micelles near the substrate, which is not favored at more negative potentials. The prepared catalysts promoted the complete transformation to γ-valerolactone in a yield of around 99% and proceeded with the absence of byproducts. The coupling temperature and reaction time were optimized considering the energy cost. The threshold operational temperature was established at 140 °C, at which, 120 min was sufficient for attaining the complete transformation. Working temperatures below 140 °C rendered the reaction completion difficult. The Ni78Pt22 nanowires exhibited excellent reusability, with minimal nickel leaching into the reaction mixture, whereas those with higher nickel contents showed corrosion.
Collapse
Affiliation(s)
- Albert Serrà
- Laboratory
for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
- Grup
d’Electrodeposició de Capes Primes i Nanoestructures
(GE-CPN), Departament de Ciència de Materials i Química
Física, Universitat de Barcelona, Martí i Franquès,
1, E-08028 Barcelona, Catalonia, Spain
- Institute
of Nanoscience and Nanotechnology (INUB), Universitat de Barcelona, E-08028 Barcelona, Catalonia, Spain
| | - Raül Artal
- Laboratory
for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
- Grup
d’Electrodeposició de Capes Primes i Nanoestructures
(GE-CPN), Departament de Ciència de Materials i Química
Física, Universitat de Barcelona, Martí i Franquès,
1, E-08028 Barcelona, Catalonia, Spain
| | - Laetitia Philippe
- Laboratory
for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | - Elvira Gómez
- Grup
d’Electrodeposició de Capes Primes i Nanoestructures
(GE-CPN), Departament de Ciència de Materials i Química
Física, Universitat de Barcelona, Martí i Franquès,
1, E-08028 Barcelona, Catalonia, Spain
- Institute
of Nanoscience and Nanotechnology (INUB), Universitat de Barcelona, E-08028 Barcelona, Catalonia, Spain
| |
Collapse
|
32
|
Okal J, Adamska K. Thermal Stability of Ru–Re NPs in H2 and O2 Atmosphere and Their Activity in VOCs Oxidation: Effect of Ru Precursor. Catal Letters 2021. [DOI: 10.1007/s10562-021-03607-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractThe thermal stability of Ru–Re NPs on γ-alumina support was studied in hydrogen at 800 °C and in air at 250–400 °C. The catalysts were synthesized using Cl-free and Cl-containing Ru precursors and NH4ReO4. Very high sintering resistance of Ru–Re NPs was found in hydrogen atmosphere and independent of Ru precursors and Re loading, the size of them was below 2–3 nm. In air, metal segregation occurred at 250 °C, leading to formation of RuO2 and highly dispersed ReOx species. Ruthenium agglomeration was hindered at higher Re loading and in presence of residual Cl species. Propane oxidation rate was higher with the Ru(N)–Re catalysts than with Ru(N) and that containing Cl species. The Ru(N)–Re (3:1) catalyst exhibited the highest activity and the lowest activation energy (91.6 kJ mol−1) what is in contrast to Ru(Cl)–Re (3:1) which had the lowest activity and the highest activation energy (119.3 kJ mol−1). Thus, the synergy effect was not observed in Cl-containing catalysts.
Graphic Abstract
Collapse
|
33
|
Liu X, Li B, Han G, Liu X, Cao Z, Jiang DE, Sun Y. Electrocatalytic synthesis of heterocycles from biomass-derived furfuryl alcohols. Nat Commun 2021; 12:1868. [PMID: 33767166 PMCID: PMC7994825 DOI: 10.1038/s41467-021-22157-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/23/2021] [Indexed: 11/08/2022] Open
Abstract
It is very attractive yet underexplored to synthesize heterocyclic moieties pertaining to biologically active molecules from biomass-based starting compounds. Herein, we report an electrocatalytic Achmatowicz reaction for the synthesis of hydropyranones from furfuryl alcohols, which can be readily produced from biomass-derived and industrially available furfural. Taking advantage of photo-induced polymerization of a bipyridyl ligand, we demonstrate the facile preparation of a heterogenized nickel electrocatalyst, which effectively drives the Achmatowicz reaction electrochemically. A suite of characterization techniques and density functional theory computations were performed to aid the understanding of the reaction mechanism. It is rationalized that the unsaturated coordination sphere of nickel sites in our electrocatalyst plays an important role at low applied potential, not only allowing the intimate interaction between the nickel center and furfuryl alcohol but also enabling the transfer of hydroxide from nickel to the bound furfuryl alcohol.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Bo Li
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Guanqun Han
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Xingwu Liu
- Syncat@Beijing, Synfuels CHINA Co., Ltd, Beijing, China
| | - Zhi Cao
- Syncat@Beijing, Synfuels CHINA Co., Ltd, Beijing, China.
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China.
| | - De-En Jiang
- Department of Chemistry, University of California, Riverside, CA, USA.
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
34
|
Guadix‐Montero S, Santos Hernandez A, Lei N, Morgan DJ, He Q, Wang A, Zhang T, Roldan A, Sankar M. Controlling the Selectivity of Supported Ru Nanoparticles During Glycerol Hydrogenolysis: C−O
vs
C−C Cleavage. ChemCatChem 2021. [DOI: 10.1002/cctc.202001881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Susana Guadix‐Montero
- Cardiff Catalysis Institute, School of Chemistry Cardiff University Cardiff CF10 3AT United Kingdom
| | - Alba Santos Hernandez
- Cardiff Catalysis Institute, School of Chemistry Cardiff University Cardiff CF10 3AT United Kingdom
| | - Nian Lei
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road, Dalian Liaoning 116023 P. R. China
| | - David J. Morgan
- Cardiff Catalysis Institute, School of Chemistry Cardiff University Cardiff CF10 3AT United Kingdom
| | - Qian He
- Cardiff Catalysis Institute, School of Chemistry Cardiff University Cardiff CF10 3AT United Kingdom
- Department of Materials Science and Engineering National University of Singapore Singapore 117575 Singapore
| | - Aiqin Wang
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road, Dalian Liaoning 116023 P. R. China
- Dalian National Laboratory for Clean Energy 457 Zhongshan Road Dalian 116023 P. R. China
| | - Tao Zhang
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road, Dalian Liaoning 116023 P. R. China
| | - Alberto Roldan
- Cardiff Catalysis Institute, School of Chemistry Cardiff University Cardiff CF10 3AT United Kingdom
| | - Meenakshisundaram Sankar
- Cardiff Catalysis Institute, School of Chemistry Cardiff University Cardiff CF10 3AT United Kingdom
| |
Collapse
|
35
|
Chen G, Sun Q, Xu J, Zheng L, Rong J, Zong B. Sulfonic Derivatives as Recyclable Acid Catalysts in the Dehydration of Fructose to 5-Hydroxymethylfurfural in Biphasic Solvent Systems. ACS OMEGA 2021; 6:6798-6809. [PMID: 33748593 PMCID: PMC7970464 DOI: 10.1021/acsomega.0c05857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/03/2021] [Indexed: 05/27/2023]
Abstract
Biphasic systems have received increasing attention for acid-catalyzed dehydration of hexoses to 5-hydroxymethylfurfural (HMF) because of their high efficiency in in situ extraction and stabilization of HMF. Different organic solvents and acid catalysts were applied in these systems, but their effects on the dehydration activity and HMF yield, and the recycling of homogeneous acid catalysts remain largely unexplored. Here, we tested different solvent systems containing a wide range of organic solvents with low boiling points to study the effects of their chemical structures on fructose dehydration and provided stable H2O-dioxane and H2O-acetonitrile biphasic systems with high HMF yields of 76-79% using water-soluble sulfonic derivatives as homogeneous acid catalysts under mild conditions (383 K). By analyzing the partition coefficients of HMF and sulfonic derivatives, 94.3% of HMF and 87.1% of NH2SO3H were, respectively, restrained in the dioxane phase and aqueous phase in the H2O-dioxane biphasic system and easily divided by phase separation. The effects of the adjacent group in sulfonic derivatives and reaction temperature on fructose conversions and HMF yields suggest that in a specific biphasic system, the catalysts' acidity and reaction conditions significantly affect the fructose dehydration activity but hardly influence the optimal yield of HMF, and an almost constant amount of carbon loss was observed mainly due to the poor hydrothermal stability of fructose. Such developments offer a promising strategy to address the challenge in the separation and recycling of homogeneous acid catalysts in the practical HMF production.
Collapse
Affiliation(s)
- Gongzhe Chen
- State
Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| | - Qianhui Sun
- State
Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| | - Jia Xu
- State
Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| | - Lufan Zheng
- State
Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| | - Junfeng Rong
- State
Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| | - Baoning Zong
- State
Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| |
Collapse
|
36
|
Heterogeneous Ru Catalysts as the Emerging Potential Superior Catalysts in the Selective Hydrogenation of Bio-Derived Levulinic Acid to γ-Valerolactone: Effect of Particle Size, Solvent, and Support on Activity, Stability, and Selectivity. Catalysts 2021. [DOI: 10.3390/catal11020292] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Catalytic hydrogenation of a biomass-derived molecule, levulinic acid (LA), to γ-valerolactone (GVL) has been getting much attention from researchers across the globe recently. This is because GVL has been identified as one of the potential molecules for replacing fossil fuels. For instance, GVL can be catalytically converted into liquid alkenes in the molecular weight range close to that found in transportation fuels via a process that does not require an external hydrogen source. Noble and non-noble metals have been used as catalysts for the selective hydrogenation of LA to GVL. Of these, Ru has been reported to be the most active metal for this reaction. The type of metal supports and solvents has been proved to affect the activity, selectivity, and yields of GVL. Water has been identified as a potential, effective “green” solvent for the hydrogenation of LA to GVL. The use of different sources of H2 other than molecular hydrogen (such as formic acid) has also been explored. In a few instances, the product, GVL, is hydrogenated further to other useful products such as 1,4-pentanediol (PD) and methyl tetrahydrofuran (MTHF). This review selectively focuses on the potential of immobilized Ru catalysts as a potential superior catalyst for selective hydrogenation of LA to GVL.
Collapse
|
37
|
Han Y, Dai J, Xu R, Ai W, Zheng L, Wang Y, Yan W, Chen W, Luo J, Liu Q, Wang D, Li Y. Notched-Polyoxometalate Strategy to Fabricate Atomically Dispersed Ru Catalysts for Biomass Conversion. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yunhu Han
- Xi’an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jun Dai
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Ruirui Xu
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710000, China
| | - Wenying Ai
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100084, China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230029, China
| | - Wenxing Chen
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jun Luo
- Center for Electron Microscopy, Tianjin University of Technology, Tianjin 300384, China
| | - Qiang Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
38
|
Decarpigny C, Noël S, Addad A, Ponchel A, Monflier E, Bleta R. Robust Ruthenium Catalysts Supported on Mesoporous Cyclodextrin-Templated TiO 2-SiO 2 Mixed Oxides for the Hydrogenation of Levulinic Acid to γ-Valerolactone. Int J Mol Sci 2021; 22:1721. [PMID: 33572104 PMCID: PMC7915766 DOI: 10.3390/ijms22041721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022] Open
Abstract
In this paper, we present a versatile template-directed colloidal self-assembly method for the fabrication in aqueous phase of composition-tuned mesoporous RuO2@TiO2-SiO2 catalysts. Randomly methylated β-cyclodextrin/Pluronic F127 supramolecular assemblies were used as soft templates, TiO2 colloids as building blocks, and tetraethyl orthosilicate as a silica source. Catalysts were characterized at different stages of their synthesis using dynamic light scattering, N2-adsorption analysis, powder X-ray diffraction, temperature programmed reduction, high-resolution transmission electron microscopy, high-angle annular bright-field and dark-field scanning transmission electron microscopy, together with EDS elemental mapping. Results revealed that both the supramolecular template and the silica loading had a strong impact on the pore characteristics and crystalline structure of the mixed oxides, as well as on the morphology of the RuO2 nanocrystals. Their catalytic performance was then evaluated in the aqueous phase hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) under mild conditions (50 °C, 50 bar H2). Results showed that the cyclodextrin-derived catalyst displayed almost quantitative LA conversion and 99% GVL yield in less than one hour. Moreover, this catalyst could be reused at least five times without loss of activity. This work offers an effective approach to the utilization of cyclodextrins for engineering the surface morphology of Ru nanocrystals and pore characteristics of TiO2-based materials for catalytic applications in hydrogenation reactions.
Collapse
Affiliation(s)
- Cédric Decarpigny
- University Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-62300 Lens, France; (C.D.); (S.N.); (A.P.); (E.M.)
| | - Sébastien Noël
- University Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-62300 Lens, France; (C.D.); (S.N.); (A.P.); (E.M.)
| | - Ahmed Addad
- University Lille, CNRS, INRA, ENSCL, UMR 8207-UMET-Unité Matériaux et Transformations, F-59000 Lille, France;
| | - Anne Ponchel
- University Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-62300 Lens, France; (C.D.); (S.N.); (A.P.); (E.M.)
| | - Eric Monflier
- University Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-62300 Lens, France; (C.D.); (S.N.); (A.P.); (E.M.)
| | - Rudina Bleta
- University Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-62300 Lens, France; (C.D.); (S.N.); (A.P.); (E.M.)
| |
Collapse
|
39
|
Surface interactions with the metal oxide surface control Ru nanoparticle formation and catalytic performance. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Jiang H, Lu R, Luo X, Si X, Xu J, Lu F. Molybdenum-Catalyzed Deoxygenation Coupling of Lignin-Derived Alcohols for Functionalized Bibenzyl Chemicals. Chemistry 2021; 27:1292-1296. [PMID: 32929787 DOI: 10.1002/chem.202003776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Indexed: 01/05/2023]
Abstract
With the growing demand for sustainability and reducing CO2 footprint, lignocellulosic biomass has attracted much attention as a renewable, carbon-neutral and low-cost feedstock for the production of chemicals and fuels. To realize efficient utilization of biomass resource, it is essential to selectively alter the high degree of oxygen functionality of biomass-derivates. Herein, we introduced a novel procedure to transform renewable lignin-derived alcohols to various functionalized bibenzyl chemicals. This strategy relied on a short deoxygenation coupling pathway with economical molybdenum catalyst. A well-designed H-donor experiment was performed to investigate the mechanism of this Mo-catalyzed process. It was proven that benzyl carbon-radical was the most possible intermediate to form the bibenzyl products. It was also discovered that the para methoxy and phenolic hydroxyl groups could stabilize the corresponding radical intermediates and then facilitate to selectively obtain bibenzyl products. Our research provides a promising application to produce functionalized aromatics from biomass-derived materials.
Collapse
Affiliation(s)
- Huifang Jiang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Rui Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
| | - Xiaolin Luo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoqin Si
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
| | - Jie Xu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
| | - Fang Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
| |
Collapse
|
41
|
Rai A, Ranganath KVS. Recyclable catalysts for the synthesis of heterocyclic compounds using carbon materials. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Akanksha Rai
- Department of Chemistry, Institute of Science Banaras Hindu University Varanasi Uttar Pradesh India
| | - Kalluri V. S. Ranganath
- Department of Chemistry, Institute of Science Banaras Hindu University Varanasi Uttar Pradesh India
| |
Collapse
|
42
|
Xu R, Liu K, Du H, Liu H, Cao X, Zhao X, Qu G, Li X, Li B, Si C. Falling Leaves Return to Their Roots: A Review on the Preparation of γ-Valerolactone from Lignocellulose and Its Application in the Conversion of Lignocellulose. CHEMSUSCHEM 2020; 13:6461-6476. [PMID: 32961026 DOI: 10.1002/cssc.202002008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/18/2020] [Indexed: 06/11/2023]
Abstract
γ-Valerolactone (GVL), derived from renewable lignocellulosic biomass, has been considered as a cost-competitive and green platform chemical. With the increasingly prominent environmental problems, a deep understanding of the preparation and transformation of GVL is highly needed. Based on the latest progress made with GVL, preparation and applications of GVL are summarized and discussed in this Review. In particular, the state-of-the-art in catalytic production of GVL is described based on the use of noble-metal and non-noble-metal catalysts. The application of GVL for the valorization of lignocellulose would improve the yield of target products such as sugar monomers and furfural. Thus, GVL can be produced from lignocellulose and simultaneously it can also be used for the valorization of lignocellulose, just as in the sustainable and renewable cycle, "the falling leaves returns to their roots". This Review is expected to provide valuable reference and new proposal for the further development and better utilization of GVL.
Collapse
Affiliation(s)
- Rui Xu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13 Avenue, TEDA, Tianjin, 300457, P. R. China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, P. R. China
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao, 266101, P. R. China
| | - Kun Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13 Avenue, TEDA, Tianjin, 300457, P. R. China
| | - Haishun Du
- Department of Chemical Engineering, Auburn University, 212 Rolls Hall, Auburn, Alabama 36849, USA
| | - Huayu Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13 Avenue, TEDA, Tianjin, 300457, P. R. China
| | - Xuefei Cao
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, No.35 Tsinghua East Road, Haidian District, Beijing, 100083, P. R. China
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xiaoyun Li
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13 Avenue, TEDA, Tianjin, 300457, P. R. China
| | - Bin Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao, 266101, P. R. China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13 Avenue, TEDA, Tianjin, 300457, P. R. China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, P. R. China
| |
Collapse
|
43
|
Fujita S, Yamaguchi S, Yamazoe S, Yamasaki J, Mizugaki T, Mitsudome T. Nickel phosphide nanoalloy catalyst for the selective deoxygenation of sulfoxides to sulfides under ambient H 2 pressure. Org Biomol Chem 2020; 18:8827-8833. [PMID: 33179696 DOI: 10.1039/d0ob01603a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Exploring novel catalysis by less common, metal-non-metal nanoalloys is of great interest in organic synthesis. We herein report a titanium-dioxide-supported nickel phosphide nanoalloy (nano-Ni2P/TiO2) that exhibits high catalytic activity for the deoxygenation of sulfoxides. nano-Ni2P/TiO2 deoxygenated various sulfoxides to sulfides under 1 bar of H2, representing the first non-noble metal catalyst for sulfoxide deoxygenation under ambient H2 pressure. Spectroscopic analyses revealed that this high activity is due to cooperative catalysis by nano-Ni2P and TiO2.
Collapse
Affiliation(s)
- Shu Fujita
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | | | | | | | | | | |
Collapse
|
44
|
Xu SL, Shen SC, Xiong W, Zhao S, Zuo LJ, Wang L, Zeng WJ, Chu SQ, Chen P, Lin Y, Qian K, Huang W, Liang HW. High-Temperature Synthesis of Small-Sized Pt/Nb Alloy Catalysts on Carbon Supports for Hydrothermal Reactions. Inorg Chem 2020; 59:15953-15961. [PMID: 33085476 DOI: 10.1021/acs.inorgchem.0c02457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Catalytic biomass conversions are sustainable processes to produce value-added fuels and chemicals but need stable catalysts that can tolerate harsh hydrothermal conditions. Herein, we report a hydrothermally stable catalyst by alloying Pt with a high-melting-point metal Nb. The Pt/Nb alloy catalysts are prepared by H2 reduction at a high temperature of 900 °C with a high-surface-area carbon black support, which can suppress metal sintering at high temperatures and thus lead to small-sized alloyed Pt/Nb particles of only 2.2 nm. Taking the advantages of surface acid property provided by the Nb sites and the size effect, the prepared C-supported small-sized Pt/Nb alloy catalysts exhibit attractive activities for the hydrogenation of levulinic acid into γ-valerolactone and the water-gas shift reaction. More significantly, benefiting from the inherent stability of high-melting-point Nb, the Pt/Nb alloy catalysts show much enhanced hydrothermal stability compared to commercial Pt/C and Ru/C catalysts.
Collapse
Affiliation(s)
- Shi-Long Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shan-Cheng Shen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wei Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Shuai Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Lu-Jie Zuo
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Lei Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wei-Jie Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Sheng-Qi Chu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Chen
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Yue Lin
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Kun Qian
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Weixin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Hai-Wei Liang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
45
|
Amodeo J, Pietrucci F, Lam J. Out-of-Equilibrium Polymorph Selection in Nanoparticle Freezing. J Phys Chem Lett 2020; 11:8060-8066. [PMID: 32880462 DOI: 10.1021/acs.jpclett.0c02129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ability to design synthesis processes that are out of equilibrium has opened the possibility of creating nanomaterials with remarkable physicochemical properties, choosing from a much richer palette of possible atomic architectures compared to equilibrium processes in extended systems. In this work, we employ atomistic simulations to demonstrate how to control polymorph selection via the cooling rate during nanoparticle freezing in the case of Ni3Al, a material with a rich structural landscape. State-of-the-art free-energy calculations allow us to rationalize the complex nucleation process, discovering a switch between two kinetic pathways, yielding the equilibrium structure at room temperature and an alternative metastable one at higher temperature. Our findings address the key challenge in the synthesis of nanoalloys for technological applications, i.e., rationally exploiting the competition between kinetics and thermodynamics by designing a treatment history that forces the system into desirable metastable states.
Collapse
Affiliation(s)
- Jonathan Amodeo
- Université de Lyon, INSA-Lyon, MATEIS, UMR 5510 CNRS, 69621 Villeurbanne, France
| | - Fabio Pietrucci
- Sorbonne Université, CNRS UMR 7590, IMPMC, 75005 Paris, France
| | - Julien Lam
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Code Postal 231, Boulevard du Triomphe, 1050 Brussels, Belgium
| |
Collapse
|
46
|
Li Z, Yu Z, Luo X, Li C, Wu H, Zhao W, Li H, Yang S. Recent advances in liquid hydrosilane-mediated catalytic N-formylation of amines with CO 2. RSC Adv 2020; 10:33972-34005. [PMID: 35519060 PMCID: PMC9056842 DOI: 10.1039/d0ra05858k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/08/2020] [Indexed: 02/03/2023] Open
Abstract
Carbon dioxide is an ideal raw material for the synthesis of complex organic compounds because of its rich, non-toxic, and good physical properties. It is of great significance to transform CO2 into valuable fine chemicals and develop a green sustainable cycle of carbon surplus. Based on hydrosilane as a reducing agent, this work summarizes the recent applications of reductive amidation of CO2 using different catalysts such as organocatalysts, ionic liquids (ILs), salts, transition metal complexes, and solvents. The main factors affecting the reductive amidation of CO2 and the possible reaction mechanism are discussed. Moreover, the future orientation and catalytic systems of the formylation of amines with CO2 and hydrosilane are prospected. This review depicts different types of catalyst systems developed for upgrading of amines and carbon dioxide into N-formylated products in the presence of hydrosilane, with attention on reaction mechanism and process optimization.![]()
Collapse
Affiliation(s)
- Zhengyi Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University Guiyang 550025 Guizhou China +86-851-8829-2170 +86-851-8829-2171
| | - Zhaozhuo Yu
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University Guiyang 550025 Guizhou China +86-851-8829-2170 +86-851-8829-2171
| | - Xiaoxiang Luo
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University Guiyang 550025 Guizhou China +86-851-8829-2170 +86-851-8829-2171
| | - Chuanhui Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University Guiyang 550025 Guizhou China +86-851-8829-2170 +86-851-8829-2171
| | - Hongguo Wu
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University Guiyang 550025 Guizhou China +86-851-8829-2170 +86-851-8829-2171
| | - Wenfeng Zhao
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University Guiyang 550025 Guizhou China +86-851-8829-2170 +86-851-8829-2171.,Technical University of Denmark, Centre for Catalysis and Sustainable Chemistry, Department of Chemistry Kemitorvet, Building 207 2800 Kgs. Lyngby Denmark
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University Guiyang 550025 Guizhou China +86-851-8829-2170 +86-851-8829-2171
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University Guiyang 550025 Guizhou China +86-851-8829-2170 +86-851-8829-2171
| |
Collapse
|
47
|
Stable yolk-structured catalysts towards aqueous levulinic acid hydrogenation within a single Ru nanoparticle anchored inside the mesoporous shell of hollow carbon spheres. J Colloid Interface Sci 2020; 576:394-403. [DOI: 10.1016/j.jcis.2020.05.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022]
|
48
|
Guadix-Montero S, Santos-Hernandez A, Folli A, Sankar M. Effect of support acidity during selective hydrogenolysis of glycerol over supported palladium-ruthenium catalysts. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20200055. [PMID: 32623993 PMCID: PMC7422897 DOI: 10.1098/rsta.2020.0055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
We report the role of the acidity of support during the selectivity hydrogenolysis of glycerol over supported bimetallic palladium-ruthenium (PdRu) catalysts. The PdRu nanoparticles were supported on a series of metal oxides and zeolitic supports via the modified impregnation method and tested for the liquid-phase hydrogenolysis of glycerol using gaseous hydrogen. The relative acid site densities of selected catalysts were determined by ammonia temperature-programmed desorption and pyridine desorption experiments. Based on these studies, we report a direct correlation between the catalytic activity (conversion and 1,2 propane diol yield) and two different acid sites (strong acid sites and very strong acid sites). Besides zeolite-supported catalysts, TiO2 supported PdRu nanoparticles exhibit moderate catalytic activity; however, this catalyst shows high selectivity for the desired C-O bond cleavage to produce C3 products over the undesired C-C bond cleavage to produce < C3 products. This article is part of a discussion meeting issue 'Science to enable the circular economy'.
Collapse
Affiliation(s)
- Susana Guadix-Montero
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Alba Santos-Hernandez
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Andrea Folli
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | | |
Collapse
|
49
|
Yu Z, Lu X, Xiong J, Li X, Bai H, Ji N. Heterogeneous Catalytic Hydrogenation of Levulinic Acid to γ-Valerolactone with Formic Acid as Internal Hydrogen Source. CHEMSUSCHEM 2020; 13:2916-2930. [PMID: 32153131 DOI: 10.1002/cssc.202000175] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/07/2020] [Indexed: 06/10/2023]
Abstract
As one of the most promising biomass-based platform molecules, γ-valerolactone (GVL) can be synthesized from a variety of lignocellulosic feedstocks through different hydrogen supply pathways. Among these transformation routes, the hydrogenation of levulinic acid (LA) to GVL by using formic acid (FA) as the internal hydrogen source is regarded as a critical path for the sustainable development of renewable energy systems. Although a large number of studies on the synthesis of GVL have been reported, the FA/LA catalytic system has not been interpreted as thoroughly as it should be. In this Minireview, core concerns are focused on key issues and their effects in this FA/LA catalytic system. The catalytic mechanism, together with competitive adsorption behavior between FA and LA on heterogeneous catalysts, is presented. The effects of active metal species and catalyst supports on the overall catalytic performance are summarized, and the influences of key condition parameters, including the time, temperature, FA/LA molar ratios, and aqueous solvent, are discussed. In particular, impacts and improvements of coke deposition and metal leaching, which could greatly affect the catalyst stability, are analyzed in detail. Additionally, several feasible suggestions for the enhancement of the catalytic efficiency and stability are also proposed.
Collapse
Affiliation(s)
- Zhihao Yu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P. R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P. R. China
- Department of Chemistry & Environmental Science, School of Science, Tibet University, Lhasa, 850000, P. R. China
| | - Jian Xiong
- Department of Chemistry & Environmental Science, School of Science, Tibet University, Lhasa, 850000, P. R. China
| | - Xiaoyun Li
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Hui Bai
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P. R. China
| | - Na Ji
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
50
|
Zhou X, Li K, Lin Y, Song L, Liu J, Liu Y, Zhang L, Wu Z, Song S, Li J, Zhang H. A Single‐Atom Manipulation Approach for Synthesis of Atomically Mixed Nanoalloys as Efficient Catalysts. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xuan Zhou
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 China
| | - Kai Li
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 China
| | - Yunxiang Lin
- National Synchrotron Radiation Laboratory CAS Center for Excellence in Nanoscience University of Science and Technology of China Hefei 230026 China
| | - Li Song
- National Synchrotron Radiation Laboratory CAS Center for Excellence in Nanoscience University of Science and Technology of China Hefei 230026 China
| | - Jincheng Liu
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yu Liu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 China
| | - Lingling Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Zhijian Wu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 China
| | - Jun Li
- Department of Chemistry Tsinghua University Beijing 100084 China
- Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 China
- Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|