1
|
Elu N, Subash S, R Louros S. Crosstalk between ubiquitination and translation in neurodevelopmental disorders. Front Mol Neurosci 2024; 17:1398048. [PMID: 39286313 PMCID: PMC11402904 DOI: 10.3389/fnmol.2024.1398048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Ubiquitination is one of the most conserved post-translational modifications and together with mRNA translation contributes to cellular protein homeostasis (proteostasis). Temporal and spatial regulation of proteostasis is particularly important during synaptic plasticity, when translation of specific mRNAs requires tight regulation. Mutations in genes encoding regulators of mRNA translation and in ubiquitin ligases have been associated with several neurodevelopmental disorders. RNA metabolism and translation are regulated by RNA-binding proteins, critical for the spatial and temporal control of translation in neurons. Several ubiquitin ligases also regulate RNA-dependent mechanisms in neurons, with numerous ubiquitination events described in splicing factors and ribosomal proteins. Here we will explore how ubiquitination regulates translation in neurons, from RNA biogenesis to alternative splicing and how dysregulation of ubiquitin signaling can be the underlying cause of pathology in neurodevelopmental disorders, such as Fragile X syndrome. Finally we propose that targeting ubiquitin signaling is an attractive novel therapeutic strategy for neurodevelopmental disorders where mRNA translation and ubiquitin signaling are disrupted.
Collapse
Affiliation(s)
- Nagore Elu
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Srividya Subash
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Susana R Louros
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Li Z, Han D, Li Z, Luo L. Hypoxia-Induced Adaptations of Embryonic Fibroblasts: Implications for Developmental Processes. BIOLOGY 2024; 13:598. [PMID: 39194536 DOI: 10.3390/biology13080598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
Animal embryonic development occurs under hypoxia, which can promote various developmental processes. Embryonic fibroblasts, which can differentiate into bone and cartilage and secrete various members of the collagen protein family, play essential roles in the formation of embryonic connective tissues and basement membranes. However, the adaptations of embryonic fibroblasts under hypoxia remain poorly understood. In this study, we investigated the effects of hypoxia on mouse embryonic fibroblasts (MEFs). We found that hypoxia can induce migration, promote metabolic reprogramming, induce the production of ROS and apoptosis, and trigger the activation of multiple signaling pathways of MEFs. Additionally, we identified several hypoxia-inducible genes, including Proser2, Bean1, Dpf1, Rnf128, and Fam71f1, which are regulated by HIF1α. Furthermore, we demonstrated that CoCl2 partially mimics the effects of low oxygen on MEFs. However, we found that the mechanisms underlying the production of ROS and apoptosis differ between hypoxia and CoCl2 treatment. These findings provide insights into the complex interplay between hypoxia, fibroblasts, and embryonic developmental processes.
Collapse
Affiliation(s)
- Zeyu Li
- College of Pharmaceutical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China
- Marshall Laboratory of Biomedical Engineering, Institute for Inheritance-Based Innovation of Chinese Medicine, Shenzhen University Medical School, Shenzhen 518055, China
| | - Delong Han
- Marshall Laboratory of Biomedical Engineering, Institute for Inheritance-Based Innovation of Chinese Medicine, Shenzhen University Medical School, Shenzhen 518055, China
| | - Zhenchi Li
- Marshall Laboratory of Biomedical Engineering, Institute for Inheritance-Based Innovation of Chinese Medicine, Shenzhen University Medical School, Shenzhen 518055, China
| | - Lingjie Luo
- Marshall Laboratory of Biomedical Engineering, Institute for Inheritance-Based Innovation of Chinese Medicine, Shenzhen University Medical School, Shenzhen 518055, China
| |
Collapse
|
3
|
Yang J, Fu H, Xue F, Li M, Wu Y, Yu Z, Luo H, Gong J, Niu X, Zhang W. Multiview representation learning for identification of novel cancer genes and their causative biological mechanisms. Brief Bioinform 2024; 25:bbae418. [PMID: 39210506 PMCID: PMC11361854 DOI: 10.1093/bib/bbae418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/08/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Tumorigenesis arises from the dysfunction of cancer genes, leading to uncontrolled cell proliferation through various mechanisms. Establishing a complete cancer gene catalogue will make precision oncology possible. Although existing methods based on graph neural networks (GNN) are effective in identifying cancer genes, they fall short in effectively integrating data from multiple views and interpreting predictive outcomes. To address these shortcomings, an interpretable representation learning framework IMVRL-GCN is proposed to capture both shared and specific representations from multiview data, offering significant insights into the identification of cancer genes. Experimental results demonstrate that IMVRL-GCN outperforms state-of-the-art cancer gene identification methods and several baselines. Furthermore, IMVRL-GCN is employed to identify a total of 74 high-confidence novel cancer genes, and multiview data analysis highlights the pivotal roles of shared, mutation-specific, and structure-specific representations in discriminating distinctive cancer genes. Exploration of the mechanisms behind their discriminative capabilities suggests that shared representations are strongly associated with gene functions, while mutation-specific and structure-specific representations are linked to mutagenic propensity and functional synergy, respectively. Finally, our in-depth analyses of these candidates suggest potential insights for individualized treatments: afatinib could counteract many mutation-driven risks, and targeting interactions with cancer gene SRC is a reasonable strategy to mitigate interaction-induced risks for NR3C1, RXRA, HNF4A, and SP1.
Collapse
Affiliation(s)
- Jianye Yang
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Haitao Fu
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
- School of Artificial Intelligence, Hubei University, Wuhan 430070, China
| | - Feiyang Xue
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Menglu Li
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuyang Wu
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhanhui Yu
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Haohui Luo
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Gong
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430062, China
| | - Xiaohui Niu
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Wen Zhang
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Li W, Chen C, Zheng H, Lin Y, An M, Liu D, Zhang Y, Gao M, Lan T, He W. UBE2C-induced crosstalk between mono- and polyubiquitination of SNAT2 promotes lymphatic metastasis in bladder cancer. J Clin Invest 2024; 134:e179122. [PMID: 38949026 PMCID: PMC11213464 DOI: 10.1172/jci179122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/10/2024] [Indexed: 07/02/2024] Open
Abstract
Ubiquitination plays an essential role in protein stability, subcellular localization, and interactions. Crosstalk between different types of ubiquitination results in distinct biological outcomes for proteins. However, the role of ubiquitination-related crosstalk in lymph node (LN) metastasis and the key regulatory factors controlling this process have not been determined. Using high-throughput sequencing, we found that ubiquitin-conjugating enzyme E2 C (UBE2C) was overexpressed in bladder cancer (BCa) and was strongly associated with an unfavorable prognosis. Overexpression of UBE2C increased BCa lymphangiogenesis and promoted LN metastasis both in vitro and in vivo. Mechanistically, UBE2C mediated sodium-coupled neutral amino acid transporter 2 (SNAT2) monoubiquitination at lysine 59 to inhibit K63-linked polyubiquitination at lysine 33 of SNAT2. Crosstalk between monoubiquitination and K63-linked polyubiquitination increased SNAT2 membrane protein levels by suppressing epsin 1-mediated (EPN1-mediated) endocytosis. SNAT2 facilitated glutamine uptake and metabolism to promote VEGFC secretion, ultimately leading to lymphangiogenesis and LN metastasis in patients with BCa. Importantly, inhibition of UBE2C significantly attenuated BCa lymphangiogenesis in a patient-derived xenograft model. Our results reveal the mechanism by which UBE2C mediates crosstalk between the monoubiquitination and K63-linked polyubiquitination of SNAT2 to promote BCa metastasis and identify UBE2C as a promising target for treating LN-metastatic BCa.
Collapse
Affiliation(s)
- Wenjie Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicinem, Guangdong, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangdong, China
| | - Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicinem, Guangdong, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangdong, China
| | - Hanhao Zheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicinem, Guangdong, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangdong, China
| | - Yan Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicinem, Guangdong, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangdong, China
| | - Mingjie An
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicinem, Guangdong, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangdong, China
| | - Daiyin Liu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicinem, Guangdong, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangdong, China
| | - Yonghai Zhang
- Department of Urology, Shantou Central Hospital, Shantou, Guangdong, China
| | - Mingchao Gao
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicinem, Guangdong, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangdong, China
| | - Tianhang Lan
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicinem, Guangdong, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangdong, China
| | - Wang He
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicinem, Guangdong, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangdong, China
| |
Collapse
|
5
|
Park JB, Moon GH, Cho A, Kwon M, Park JW, Yi EC, Kim H, Fukuda J, Kwak C, Ko YG, Chun YS. Neddylation of insulin receptor substrate acts as a bona fide regulator of insulin signaling and its implications for cancer cell migration. Cancer Gene Ther 2024; 31:599-611. [PMID: 38272982 PMCID: PMC11016467 DOI: 10.1038/s41417-024-00729-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
Irregularities in insulin signaling have significantly increased the risk of various cancers, yet the precise underlying mechanisms remain unclear. Within our study, we observed that inhibiting neddylation enhances cancer cell migration across different cancer types by activating both insulin receptor substrates 1 and 2 (IRS1 and IRS2), along with the PI3K/AKT signaling pathway. Notably, in the context of high-grade serous carcinoma (HGSC) patients, whether they had type 2 diabetes mellitus or not, IRS1 and IRS2 displayed a parallel relationship with each other while exhibiting an inverse relationship with NEDD8. We also identified C-CBL as an E3 ligase responsible for neddylating IRS1 and IRS2, with clinical evidence further confirming a reciprocal relationship between C-CBL and pAKT, thereby reinforcing the tumor suppressive role of C-CBL. Altogether, these findings suggest that neddylation genuinely participates in IRS1 and IRS2-dependent insulin signaling, effectively suppressing cancer cell migration. Thus, caution is advised when considering neddylation inhibitors as a treatment option for cancer patients, particularly those presenting with insulin signaling dysregulations linked to conditions like obesity-related type 2 diabetes or hyperinsulinemia.
Collapse
Affiliation(s)
- Jun Bum Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Geon Ho Moon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Ara Cho
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Minji Kwon
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jong-Wan Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Haeryoung Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, Yokohama, 240-8501, Japan
| | - Cheol Kwak
- Department of Urology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Yang-Sook Chun
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
6
|
Ohadi H, Khalili P, Abasnezhad Kasrineh F, Esmaeili OS, Esmaeili Ranjbar F, Manshoori A, Hajizadeh MR, Jalali Z. Umbilical cord blood thyroid hormones are inversely related to telomere length and mitochondrial DNA copy number. Sci Rep 2024; 14:3164. [PMID: 38326475 PMCID: PMC10850477 DOI: 10.1038/s41598-024-53628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024] Open
Abstract
Hypothyroidism has been linked to reduced mortality rate and increased lifespan and health span. Telomere shortening, enhanced oxidative stress, and reduced cellular mitochondrial content are important hallmarks of aging shown to be related to age-associated diseases. It was proposed that the status of these markers in early life can be predictive of lifespan and the predisposition to certain age-associated disease in adulthood. Animal studies indicated that prenatal injection of thyroid hormones affects postnatal telomere length. Here, we sought to determine whether thyroid hormones TSH and fT4 are related to the telomere length, mitochondrial DNA copy number (mtDNAcn), and oxidative stress resistance marker GPX in the cord blood of newborns. In this study, we analyzed 70 mothers (18-42 years) and neonate dyads born in 2022 at the Nik Nafs maternity Hospital in Rafsanjan. The relative telomere length (RTL) and mtDNAcn were measured in the genomic DNA of cord blood leukocytes using real-time PCR. GPX enzyme activity was measured in the serum using colorimetric assays. In this study the correlation between these markers and the cord blood TSH and fT4 hormones were assessed using regression models. We found a reverse relationship between TSH levels and RTL in the cord blood of neonates. Additionally, our results displayed increased TSH levels associated with enhanced GPX activity. Regarding the mitochondrial DNA copy number, we found an indirect relationship between fT4 level and mtDNAcn only in male newborns. Future analyses of various oxidative stress markers, mitochondrial biogenesis status, telomerase activity, and the level of DNA damage are warranted to demonstrate the underlying mechanism of our observations.
Collapse
Affiliation(s)
- Homa Ohadi
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Parvin Khalili
- Social Determinants of Health Research Centre, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Abasnezhad Kasrineh
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ozra Sadat Esmaeili
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Faeze Esmaeili Ranjbar
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Azita Manshoori
- Department of Gynecology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Reza Hajizadeh
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Jalali
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
7
|
Xu L, Xiang W, Yang J, Gao J, Wang X, Meng L, Ye K, Zhao XH, Zhang XD, Jin L, Ye Y. PHB2 promotes SHIP2 ubiquitination via the E3 ligase NEDD4 to regulate AKT signaling in gastric cancer. J Exp Clin Cancer Res 2024; 43:17. [PMID: 38200519 PMCID: PMC10782615 DOI: 10.1186/s13046-023-02937-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Prohibitin 2 (PHB2) exhibits opposite functions of promoting or inhibiting tumour across various cancer types. In this study, we aim to investigate its functions and underlying mechanisms in the context of gastric cancer (GC). METHODS PHB2 protein expression levels in GC and normal tissues were examined using western blot and immunohistochemistry. PHB2 expression level associations with patient outcomes were examined through Kaplan-Meier plotter analysis utilizing GEO datasets (GSE14210 and GSE29272). The biological role of PHB2 and its subsequent regulatory mechanisms were elucidated in vitro and in vivo. GC cell viability and proliferation were assessed using MTT cell viability analysis, clonogenic assays, and BrdU incorporation assays, while the growth of GC xenografted tumours was measured via IHC staining of Ki67. The interaction among PHB2 and SHIP2, as well as between SHIP2 and NEDD4, was identified through co-immunoprecipitation, GST pull-down assays, and deletion-mapping experiments. SHIP2 ubiquitination and degradation were assessed using cycloheximide treatment, plasmid transfection and co-immunoprecipitation, followed by western blot analysis. RESULTS Our analysis revealed a substantial increase in PHB2 expression in GC tissues compared to adjacent normal tissues. Notably, higher PHB2 levels correlated with poorer patient outcomes, suggesting its clinical relevance. Functionally, silencing PHB2 in GC cells significantly reduced cell proliferation and retarded GC tumour growth, whereas overexpression of PHB2 further enhanced GC cell proliferation. Mechanistically, PHB2 physically interacted with Src homology 2-containing inositol 5-phosphatase 2 (SHIP2) in the cytoplasm of GC cells, thus leading to SHIP2 degradation via its novel E3 ligase NEDD4. It subsequently activated the PI3K/Akt signaling pathway and thus promoted GC cell proliferation. CONCLUSIONS Our findings highlight the importance of PHB2 upregulation in driving GC progression and its association with adverse patient outcomes. Understanding the functional impact of PHB2 on GC growth contributes valuable insights into the molecular underpinnings of GC and may pave the way for the development of targeted therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Liang Xu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Wanying Xiang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jiezhen Yang
- Department of Pathology, Zhongshan Hospital (Xiamen Branch), Fudan University, Xiamen, 361015, China
| | - Jing Gao
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xinyue Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Li Meng
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Kaihong Ye
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-Coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-Coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450053, Henan, China
| | - Xiao Hong Zhao
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, 2308, Australia.
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-Coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-Coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450053, Henan, China.
| | - Lei Jin
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-Coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-Coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450053, Henan, China.
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, 2308, Australia.
| | - Yan Ye
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
8
|
Rotin D, Prag G. Physiological Functions of the Ubiquitin Ligases Nedd4-1 and Nedd4-2. Physiology (Bethesda) 2024; 39:18-29. [PMID: 37962894 DOI: 10.1152/physiol.00023.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023] Open
Abstract
The Nedd4 family of E3 ubiquitin ligases, consisting of a C2-WW(n)-HECT domain architecture, includes the closely related Nedd4/Nedd4-1 and Nedd4L/Nedd4-2, which play critical roles in human physiology and pathophysiology.This review focuses on the regulation of enzymatic activity of these Nedd4 proteins, as well as on their roles in regulating stability and function of membrane and other signaling proteins, such as ion channels, ion transporters, and growth factor receptors. The diseases caused by impairment of such regulation are discussed, as well as opportunities and challenges for targeting these enzymes for therapy.
Collapse
Affiliation(s)
- Daniela Rotin
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Biochemistry Department, University of Toronto, Ontario, Canada
| | - Gali Prag
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
- Sagol School of Neuroscience, Tel Aviv University, Israel
| |
Collapse
|
9
|
Masliukov PM. Changes of Signaling Pathways in Hypothalamic Neurons with Aging. Curr Issues Mol Biol 2023; 45:8289-8308. [PMID: 37886966 PMCID: PMC10605528 DOI: 10.3390/cimb45100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
The hypothalamus is an important regulator of autonomic and endocrine functions also involved in aging regulation. The aging process in the hypothalamus is accompanied by disturbed intracellular signaling including insulin/insulin-like growth factor-1 (IGF-1)/growth hormone (GH), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT)/the mammalian target of rapamycin (mTOR), mitogen activated protein kinase (MAPK), janus kinase (JAK)/signal transducer and activator of transcription (STAT), AMP-activated protein kinase (AMPK), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB), and nitric oxide (NO). In the current review, I have summarized the current understanding of the changes in the above-mentioned pathways in aging with a focus on hypothalamic alterations.
Collapse
Affiliation(s)
- Petr M Masliukov
- Department Normal Physiology, Yaroslavl State Medical University, ul. Revoliucionnaya 5, 150000 Yaroslavl, Russia
| |
Collapse
|
10
|
Furuta H, Sheng Y, Takahashi A, Nagano R, Kataoka N, Perks CM, Barker R, Hakuno F, Takahashi SI. The IGF-Independent Role of IRS-2 in the Secretion of MMP-9 Enhances the Growth of Prostate Carcinoma Cell Line PC3. Int J Mol Sci 2023; 24:15065. [PMID: 37894751 PMCID: PMC10606031 DOI: 10.3390/ijms242015065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Insulin receptor substrate-2 (IRS-2), a substrate of the insulin-like growth factor (IGF)-I receptor, is highly expressed in the prostate cancer cell line, PC3. We recently demonstrated that extracellular signal-regulated kinase (Erk1/2), a kinase downstream of IGF signaling, is activated in PC3 cells under serum starvation, and this activation can be inhibited by IRS-2 knockdown. Here, we observed that adding an IGF-I-neutralizing antibody to the culture medium inhibited the activation of Erk1/2. Suppression of Erk1/2 in IRS-2 knockdown cells was restored by the addition of a PC3 serum-free conditioned medium. In contrast, the IRS-2-silenced PC3 conditioned medium could not restore Erk1/2 activation, suggesting that IRS-2 promotes the secretion of proteins that activate the IGF signaling pathway. Furthermore, gelatin zymography analysis of the conditioned medium showed that matrix metalloproteinase-9 (MMP-9) was secreted extracellularly in an IRS-2 dependent manner when PC3 was cultured under serum starvation conditions. Moreover, MMP-9 knockdown suppressed Erk1/2 activation, DNA synthesis, and migratory activity. The IRS-2 levels were positively correlated with Gleason grade in human prostate cancer tissues. These data suggest that highly expressed IRS-2 activates IGF signaling by enabling the secretion of MMP-9, which is associated with hyperproliferation and malignancy of prostate cancer cell line, PC3.
Collapse
Affiliation(s)
- Haruka Furuta
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8654, Japan; (H.F.); (Y.S.); (A.T.); (R.N.); (N.K.)
| | - Yina Sheng
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8654, Japan; (H.F.); (Y.S.); (A.T.); (R.N.); (N.K.)
| | - Ayaka Takahashi
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8654, Japan; (H.F.); (Y.S.); (A.T.); (R.N.); (N.K.)
| | - Raku Nagano
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8654, Japan; (H.F.); (Y.S.); (A.T.); (R.N.); (N.K.)
| | - Naoyuki Kataoka
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8654, Japan; (H.F.); (Y.S.); (A.T.); (R.N.); (N.K.)
| | - Claire Marie Perks
- IGFs & Metabolic Endocrinology Group, Learning & Research Building, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1TH, UK; (C.M.P.); (R.B.)
| | - Rachel Barker
- IGFs & Metabolic Endocrinology Group, Learning & Research Building, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1TH, UK; (C.M.P.); (R.B.)
| | - Fumihiko Hakuno
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8654, Japan; (H.F.); (Y.S.); (A.T.); (R.N.); (N.K.)
| | - Shin-Ichiro Takahashi
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8654, Japan; (H.F.); (Y.S.); (A.T.); (R.N.); (N.K.)
| |
Collapse
|
11
|
Cabezas F, Cabello-Verrugio C, González N, Salas J, Ramírez MJ, de la Vega E, Olguín HC. NEDD4-1 deficiency impairs satellite cell function during skeletal muscle regeneration. Biol Res 2023; 56:21. [PMID: 37147738 PMCID: PMC10161651 DOI: 10.1186/s40659-023-00432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/17/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Satellite cells are tissue-specific stem cells primarily responsible for the regenerative capacity of skeletal muscle. Satellite cell function and maintenance are regulated by extrinsic and intrinsic mechanisms, including the ubiquitin-proteasome system, which is key for maintaining protein homeostasis. In this context, it has been shown that ubiquitin-ligase NEDD4-1 targets the transcription factor PAX7 for proteasome-dependent degradation, promoting muscle differentiation in vitro. Nonetheless, whether NEDD4-1 is required for satellite cell function in regenerating muscle remains to be determined. RESULTS Using conditional gene ablation, we show that NEDD4-1 loss, specifically in the satellite cell population, impairs muscle regeneration resulting in a significant reduction of whole-muscle size. At the cellular level, NEDD4-1-null muscle progenitors exhibit a significant decrease in the ability to proliferate and differentiate, contributing to the formation of myofibers with reduced diameter. CONCLUSIONS These results indicate that NEDD4-1 expression is critical for proper muscle regeneration in vivo and suggest that it may control satellite cell function at multiple levels.
Collapse
Affiliation(s)
- Felipe Cabezas
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, 7510157, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Natalia González
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jeremy Salas
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel J Ramírez
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo de la Vega
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo C Olguín
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
12
|
Wang K, Yu Y, Wang W, Jiang Y, Li Y, Jiang X, Qiao Y, Chen L, Zhao X, Liu J, Yang A, Li J, Zhang R. Targeting the E3 ligase NEDD4 as a novel therapeutic strategy for IGF1 signal pathway-driven gastric cancer. Oncogene 2023; 42:1072-1087. [PMID: 36774408 PMCID: PMC10063445 DOI: 10.1038/s41388-023-02619-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/13/2023]
Abstract
The IGF1 signal pathway is highly activated in some subtype of gastric cancer(GC) that exhibits poor survival and chemotherapy resistance. Although the results of clinical trials of anti-IGF1R monoclonal antibodies and IGF-1R inhibitors have been mostly disappointing in unselected cancer patients, some patients benefit from anti-IGF1R therapy in these failed studies. Therefore, it is necessary to characterize the complex IGF signaling in GC and help refine the strategies targeting the IGF1 pathway. We found that GC cell lines exhibit differential responses to the specific IGF1R inhibitor OSI906. According to the phosphorylation status of Akt upon the OSI906 treatment, we divided the GC cell lines into IGF1R-dependent and IGF1R-independent cells. Both in vitro and in vivo experiments indicate that Dox-induced knockdown of NEDD4 significantly suppresses tumor growth of IGF1R-dependent GC cells and NEDD4 overexpression promotes tumor growth of IGF1R-dependent GC cells. In contrast, the proliferation of IGF1R-independent GC cells is not affected by NEDD4 silencing and overexpression. The rescue experiments show that a PTEN-IRS1 axis is required for NEDD4-mediated regulation of Akt activation and tumor growth in GC cells. Clinically, NEDD4 is expressed higher in IGF1-high GC tissues compared with IGF1-low GC tissues and normal tissues, and the co-high expression of NEDD4 and IGF1 predicts a worse prognosis in GC patients. Taken together, our study demonstrated that NEDD4 specifically promotes proliferation of GC cells dependent on IGF1/IGF1R signaling by antagonizing the protein phosphatase activity of PTEN to IRS1, and targeting NEDD4 may be a promising therapeutic strategy for IGF1 signal pathway-driven gastric cancer.
Collapse
Affiliation(s)
- Ke Wang
- Digestive surgery department of Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, China.,State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032, Xi'an, China
| | - Yanping Yu
- Shaanxi Provincial Tumor Hospital, The Second Ward of Gynecological Tumor, 710032, Xi'an, China
| | - Wei Wang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 710032, Xi'an, China
| | - Yu Jiang
- School of Clinical Medicine, Xi'an Medical University, 710032, Xi'an, China
| | - Yunlong Li
- Digestive surgery department of Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, China
| | - Xunliang Jiang
- Digestive surgery department of Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, China.,State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032, Xi'an, China
| | - Yihuan Qiao
- School of Clinical Medicine, Xi'an Medical University, 710032, Xi'an, China
| | - Le Chen
- School of Clinical Medicine, Xi'an Medical University, 710032, Xi'an, China
| | - Xinhui Zhao
- Department of Thyroid and Breast Surgery, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, 710018, Xi'an, China
| | - Jun Liu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032, Xi'an, China
| | - Angang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 710032, Xi'an, China
| | - Jipeng Li
- Digestive surgery department of Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, China. .,Department of Experimental Surgery, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, China.
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032, Xi'an, China. .,State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 710032, Xi'an, China.
| |
Collapse
|
13
|
Jayaprakash S, Hegde M, BharathwajChetty B, Girisa S, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Unraveling the Potential Role of NEDD4-like E3 Ligases in Cancer. Int J Mol Sci 2022; 23:ijms232012380. [PMID: 36293239 PMCID: PMC9604169 DOI: 10.3390/ijms232012380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer is a deadly disease worldwide, with an anticipated 19.3 million new cases and 10.0 million deaths occurring in 2020 according to GLOBOCAN 2020. It is well established that carcinogenesis and cancer development are strongly linked to genetic changes and post-translational modifications (PTMs). An important PTM process, ubiquitination, regulates every aspect of cellular activity, and the crucial enzymes in the ubiquitination process are E3 ubiquitin ligases (E3s) that affect substrate specificity and must therefore be carefully regulated. A surfeit of studies suggests that, among the E3 ubiquitin ligases, neuronal precursor cell-expressed developmentally downregulated 4 (NEDD4)/NEDD4-like E3 ligases show key functions in cellular processes by controlling subsequent protein degradation and substrate ubiquitination. In addition, it was demonstrated that NEDD4 mainly acts as an oncogene in various cancers, but also plays a tumor-suppressive role in some cancers. In this review, to comprehend the proper function of NEDD4 in cancer development, we summarize its function, both its tumor-suppressive and oncogenic role, in multiple types of malignancies. Moreover, we briefly explain the role of NEDD4 in carcinogenesis and progression, including cell survival, cell proliferation, autophagy, cell migration, invasion, metastasis, epithelial-mesenchymal transition (EMT), chemoresistance, and multiple signaling pathways. In addition, we briefly explain the significance of NEDD4 as a possible target for cancer treatment. Therefore, we conclude that targeting NEDD4 as a therapeutic method for treating human tumors could be a practical possibility.
Collapse
Affiliation(s)
- Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Correspondence: (G.S.); (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
- Correspondence: (G.S.); (A.B.K.)
| |
Collapse
|
14
|
Lu X, Xu H, Xu J, Lu S, You S, Huang X, Zhang N, Zhang L. The regulatory roles of the E3 ubiquitin ligase NEDD4 family in DNA damage response. Front Physiol 2022; 13:968927. [PMID: 36091384 PMCID: PMC9458852 DOI: 10.3389/fphys.2022.968927] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
E3 ubiquitin ligases, an important part of ubiquitin proteasome system, catalyze the covalent binding of ubiquitin to target substrates, which plays a role in protein ubiquitination and regulates different biological process. DNA damage response (DDR) is induced in response to DNA damage to maintain genome integrity and stability, and this process has crucial significance to a series of cell activities such as differentiation, apoptosis, cell cycle. The NEDD4 family, belonging to HECT E3 ubiquitin ligases, is reported as regulators that participate in the DDR process by recognizing different substrates. In this review, we summarize recent researches on NEDD4 family members in the DDR and discuss the roles of NEDD4 family members in the cascade reactions induced by DNA damage. This review may contribute to the further study of pathophysiology for certain diseases and pharmacology for targeted drugs.
Collapse
Affiliation(s)
- Xinxin Lu
- Department of Hematology, the First Affiliated Hospital of China Medical University, Shenyang, LN, China
| | - Haiqi Xu
- Department of Hematology, General Hospital of PLA Northern Theater Command, Shenyang, LN, China
| | - Jiaqi Xu
- Department of Cardiology, the First Affiliated Hospital of China Medical University, Shenyang, LN, China
| | - Saien Lu
- Department of Cardiology, the First Affiliated Hospital of China Medical University, Shenyang, LN, China
| | - Shilong You
- Department of Cardiology, the First Affiliated Hospital of China Medical University, Shenyang, LN, China
| | - Xinyue Huang
- Department of Cardiology, the First Affiliated Hospital of China Medical University, Shenyang, LN, China
| | - Naijin Zhang
- Department of Cardiology, the First Affiliated Hospital of China Medical University, Shenyang, LN, China
| | - Lijun Zhang
- Department of Hematology, the First Affiliated Hospital of China Medical University, Shenyang, LN, China
| |
Collapse
|
15
|
Girnita L, Smith TJ, Janssen JAMJL. It Takes Two to Tango: IGF-I and TSH Receptors in Thyroid Eye Disease. J Clin Endocrinol Metab 2022; 107:S1-S12. [PMID: 35167695 PMCID: PMC9359450 DOI: 10.1210/clinem/dgac045] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 12/13/2022]
Abstract
CONTEXT Thyroid eye disease (TED) is a complex autoimmune disease process. Orbital fibroblasts represent the central orbital immune target. Involvement of the TSH receptor (TSHR) in TED is not fully understood. IGF-I receptor (IGF-IR) is overexpressed in several cell types in TED, including fibrocytes and orbital fibroblasts. IGF-IR may form a physical and functional complex with TSHR. OBJECTIVE Review literature relevant to autoantibody generation in TED and whether these induce orbital fibroblast responses directly through TSHR, IGF-IR, or both. EVIDENCE IGF-IR has traditionally been considered a typical tyrosine kinase receptor in which tyrosine residues become phosphorylated following IGF-I binding. Evidence has emerged that IGF-IR possesses kinase-independent activities and can be considered a functional receptor tyrosine kinase/G-protein-coupled receptor hybrid, using the G-protein receptor kinase/β-arrestin system. Teprotumumab, a monoclonal IGF-IR antibody, effectively reduces TED disease activity, proptosis, and diplopia. In addition, the drug attenuates in vitro actions of both IGF-I and TSH in fibrocytes and orbital fibroblasts, including induction of proinflammatory cytokines by TSH and TED IgGs. CONCLUSIONS Although teprotumumab has been proven effective and relatively safe in the treatment of TED, many questions remain pertaining to IGF-IR, its relationship with TSHR, and how the drug might be disrupting these receptor protein/protein interactions. Here, we propose 4 possible IGF-IR activation models that could underlie clinical responses to teprotumumab observed in patients with TED. Teprotumumab is associated with several adverse events, including hyperglycemia and hearing abnormalities. Underpinning mechanisms of these are being investigated. Patients undergoing treatment with drug must be monitored for these and managed with best medical practices.
Collapse
Affiliation(s)
- Leonard Girnita
- Department of Oncology and Pathology, BioClinicum, Karolinska Institutet and Karolinska University Hospital, 17164 Stockholm, Sweden
| | - Terry J Smith
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Joseph A M J L Janssen
- Erasmus Medical Center, Department of Internal Medicine, Division of Endocrinology, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
16
|
Zhao Y, Li J, Chen J, Ye M, Jin X. Functional roles of E3 ubiquitin ligases in prostate cancer. J Mol Med (Berl) 2022; 100:1125-1144. [PMID: 35816219 DOI: 10.1007/s00109-022-02229-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/16/2022]
Abstract
Prostate cancer (PCa) is a malignant epithelial tumor of the prostate gland with a high male cancer incidence. Numerous studies indicate that abnormal function of ubiquitin-proteasome system (UPS) is associated with the progression and metastasis of PCa. E3 ubiquitin ligases, key components of UPS, determine the specificity of substrates, and substantial advances of E3 ubiquitin ligases have been reached recently. Herein, we introduce the structures and functions of E3 ubiquitin ligases and summarize the mechanisms of E3 ubiquitin ligases-related PCa signaling pathways. In addition, some progresses in the development of inhibitors targeting E3 ubiquitin ligases are also included.
Collapse
Affiliation(s)
- Yiting Zhao
- Department of Oncology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China.,Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China.,Department of Chemoradiotherapy, the Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Jinyun Li
- Department of Oncology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China.,Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Jun Chen
- Department of Chemoradiotherapy, the Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Meng Ye
- Department of Oncology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China.,Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Xiaofeng Jin
- Department of Oncology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China. .,Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
17
|
Chen Y, Zhou D, Yao Y, Sun Y, Yao F, Ma L. Monoubiquitination in Homeostasis and Cancer. Int J Mol Sci 2022; 23:ijms23115925. [PMID: 35682605 PMCID: PMC9180643 DOI: 10.3390/ijms23115925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Monoubiquitination is a post-translational modification (PTM), through which a single ubiquitin molecule is covalently conjugated to a lysine residue of the target protein. Monoubiquitination regulates the activity, subcellular localization, protein-protein interactions, or endocytosis of the substrate. In doing so, monoubiquitination is implicated in diverse cellular processes, including gene transcription, endocytosis, signal transduction, cell death, and DNA damage repair, which in turn regulate cell-cycle progression, survival, proliferation, and stress response. In this review, we summarize the functions of monoubiquitination and discuss how this PTM modulates homeostasis and cancer.
Collapse
Affiliation(s)
- Yujie Chen
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
| | - Dandan Zhou
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
| | - Yinan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Fan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- Correspondence: (F.Y.); (L.M.)
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Correspondence: (F.Y.); (L.M.)
| |
Collapse
|
18
|
Lohraseb I, McCarthy P, Secker G, Marchant C, Wu J, Ali N, Kumar S, Daly RJ, Harvey NL, Kawabe H, Kleifeld O, Wiszniak S, Schwarz Q. Global ubiquitinome profiling identifies NEDD4 as a regulator of Profilin 1 and actin remodelling in neural crest cells. Nat Commun 2022; 13:2018. [PMID: 35440627 PMCID: PMC9018756 DOI: 10.1038/s41467-022-29660-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 03/24/2022] [Indexed: 01/02/2023] Open
Abstract
The ubiquitin ligase NEDD4 promotes neural crest cell (NCC) survival and stem-cell like properties to regulate craniofacial and peripheral nervous system development. However, how ubiquitination and NEDD4 control NCC development remains unknown. Here we combine quantitative analysis of the proteome, transcriptome and ubiquitinome to identify key developmental signalling pathways that are regulated by NEDD4. We report 276 NEDD4 targets in NCCs and show that loss of NEDD4 leads to a pronounced global reduction in specific ubiquitin lysine linkages. We further show that NEDD4 contributes to the regulation of the NCC actin cytoskeleton by controlling ubiquitination and turnover of Profilin 1 to modulate filamentous actin polymerization. Taken together, our data provide insights into how NEDD4-mediated ubiquitination coordinates key regulatory processes during NCC development. Here the authors combine multi-omics approaches to uncover a role for ubiquitination and the ubiquitin ligase NEDD4 in targeting the actin binding protein Profilin 1 to regulate actin polymerisation in neural crest cells.
Collapse
Affiliation(s)
- Iman Lohraseb
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, 5000, Australia
| | - Peter McCarthy
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, 5000, Australia
| | - Genevieve Secker
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, 5000, Australia
| | - Ceilidh Marchant
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, 5000, Australia
| | - Jianmin Wu
- Kinghorn Cancer Centre & Cancer Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2010, Australia
| | - Naveid Ali
- Bone Therapeutics Group, Bone Biology Division, Garvan Institute of Medical Research, Sydney, 2010, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, 5000, Australia
| | - Roger J Daly
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria, 3800, Australia
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, 5000, Australia
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Goettingen, 37075, Germany.,Department of Pharmacology, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Oded Kleifeld
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, 3200003, Israel
| | - Sophie Wiszniak
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, 5000, Australia
| | - Quenten Schwarz
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, 5000, Australia.
| |
Collapse
|
19
|
The Role of NEDD4 E3 Ubiquitin–Protein Ligases in Parkinson’s Disease. Genes (Basel) 2022; 13:genes13030513. [PMID: 35328067 PMCID: PMC8950476 DOI: 10.3390/genes13030513] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 01/25/2023] Open
Abstract
Parkinson’s disease (PD) is a debilitating neurodegenerative disease that causes a great clinical burden. However, its exact molecular pathologies are not fully understood. Whilst there are a number of avenues for research into slowing, halting, or reversing PD, one central idea is to enhance the clearance of the proposed aetiological protein, oligomeric α-synuclein. Oligomeric α-synuclein is the main constituent protein in Lewy bodies and neurites and is considered neurotoxic. Multiple E3 ubiquitin-protein ligases, including the NEDD4 (neural precursor cell expressed developmentally downregulated protein 4) family, parkin, SIAH (mammalian homologues of Drosophila seven in absentia), CHIP (carboxy-terminus of Hsc70 interacting protein), and SCFFXBL5 SCF ubiquitin ligase assembled by the S-phase kinase-associated protein (SKP1), cullin-1 (Cul1), a zinc-binding RING finger protein, and the F-box domain/Leucine-rich repeat protein 5-containing protein FBXL5), have been shown to be able to ubiquitinate α-synuclein, influencing its subsequent degradation via the proteasome or lysosome. Here, we explore the link between NEDD4 ligases and PD, which is not only via α-synuclein but further strengthened by several additional substrates and interaction partners. Some members of the NEDD4 family of ligases are thought to crosstalk even with PD-related genes and proteins found to be mutated in familial forms of PD. Mutations in NEDD4 family genes have not been observed in PD patients, most likely because of their essential survival function during development. Following further in vivo studies, it has been thought that NEDD4 ligases may be viable therapeutic targets in PD. NEDD4 family members could clear toxic proteins, enhancing cell survival and slowing disease progression, or might diminish beneficial proteins, reducing cell survival and accelerating disease progression. Here, we review studies to date on the expression and function of NEDD4 ubiquitin ligases in the brain and their possible impact on PD pathology.
Collapse
|
20
|
Li YC, Cai SW, Shu YB, Chen MW, Shi Z. USP15 in Cancer and Other Diseases: From Diverse Functionsto Therapeutic Targets. Biomedicines 2022; 10:474. [PMID: 35203682 PMCID: PMC8962386 DOI: 10.3390/biomedicines10020474] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 12/10/2022] Open
Abstract
The process of protein ubiquitination and deubiquitination plays an important role in maintaining protein stability and regulating signal pathways, and protein homeostasis perturbations may induce a variety of diseases. The deubiquitination process removes ubiquitin molecules from the protein, which requires the participation of deubiquitinating enzymes (DUBs). Ubiquitin-specific protease 15 (USP15) is a DUB that participates in many biological cell processes and regulates tumorigenesis. A dislocation catalytic triplet was observed in the USP15 structure, a conformation not observed in other USPs, except USP7, which makes USP15 appear to be unique. USP15 has been reported to be involved in the regulation of various cancers and diseases, and the reported substrate functions of USP15 are conflicting, suggesting that USP15 may act as both an oncogene and a tumor suppressor in different contexts. The importance and complexity of USP15 in the pathological processes remains unclear. Therefore, we reviewed the diverse biological functions of USP15 in cancers and other diseases, suggesting the potential of USP15 as an attractive therapeutic target.
Collapse
Affiliation(s)
- Yan-Chi Li
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.-C.L.); (Y.-B.S.)
| | - Song-Wang Cai
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China;
| | - Yu-Bin Shu
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.-C.L.); (Y.-B.S.)
| | - Mei-Wan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 519000, China;
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.-C.L.); (Y.-B.S.)
| |
Collapse
|
21
|
The NEDD4 ubiquitin E3 ligase: a snapshot view of its functional activity and regulation. Biochem Soc Trans 2022; 50:473-485. [PMID: 35129615 DOI: 10.1042/bst20210731] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022]
Abstract
Due to its fundamental role in all eukaryotic cells, a deeper understanding of the molecular mechanisms underlying ubiquitination is of central importance. Being responsible for chain specificity and substrate recognition, E3 ligases are the selective elements of the ubiquitination process. In this review, we discuss different cellular pathways regulated by one of the first identified E3 ligase, NEDD4, focusing on its pathophysiological role, its known targets and modulators. In addition, we highlight small molecule inhibitors that act on NEDD4 and discuss new strategies to effectively target this E3 enzyme.
Collapse
|
22
|
Wang T, Woodman P, Humphrey SJ, Petersen J. Environmental control of Pub1 (NEDD4 family E3 ligase) in Schizosaccharomyces pombe is regulated by TORC2 and Gsk3. Life Sci Alliance 2022; 5:5/5/e202101082. [PMID: 35121625 PMCID: PMC8817228 DOI: 10.26508/lsa.202101082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
The NEDD4 family E3 ligase Pub1 is regulated by the nutrient environment, TORC2, and Gsk3 signalling pathway to control the level of amino acid transporters on the plasma membrane and thus nutrient uptake. Cells respond to changing nutrient environments by adjusting the abundance of surface nutrient transporters and receptors. This can be achieved by modulating ubiquitin-dependent endocytosis, which in part is regulated by the NEDD4 family of E3 ligases. Here we report novel regulation of Pub1, a fission yeast Schizosaccharomyces pombe member of the NEDD4-family of E3 ligases. We show that nitrogen stress inhibits Pub1 function, thereby increasing the abundance of the amino acid transporter Aat1 at the plasma membrane and enhancing sensitivity to the toxic arginine analogue canavanine. We show that TOR complex 2 (TORC2) signalling negatively regulates Pub1, thus TORC2 mutants under nutrient stress have decreased Aat1 at the plasma membrane and are resistant to canavanine. Inhibition of TORC2 signalling increases Pub1 phosphorylation, and this is dependent on Gsk3 activity. Addition of the Tor inhibitor Torin1 increases phosphorylation of Pub1 at serine 199 (S199) by 2.5-fold, and Pub1 protein levels in S199A phospho-ablated mutants are reduced. S199 is conserved in NEDD4 and is located immediately upstream of a WW domain required for protein interaction. Together, we describe how the major TORC2 nutrient-sensing signalling network regulates environmental control of Pub1 to modulate the abundance of nutrient transporters.
Collapse
Affiliation(s)
- Tingting Wang
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, Australia
| | - Philip Woodman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Australia
| | - Janni Petersen
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, Australia
| |
Collapse
|
23
|
Olguín HC. The Gentle Side of the UPS: Ubiquitin-Proteasome System and the Regulation of the Myogenic Program. Front Cell Dev Biol 2022; 9:821839. [PMID: 35127730 PMCID: PMC8811165 DOI: 10.3389/fcell.2021.821839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, the ubiquitin-proteasome system (UPS) has emerged as an important regulator of stem cell function. Here we review recent findings indicating that UPS also plays critical roles in the biology of satellite cells, the muscle stem cell responsible for its maintenance and regeneration. While we focus our attention on the control of key transcriptional regulators of satellite cell function, we briefly discuss early studies suggesting the UPS participates more broadly in the regulation of satellite cell stemness and regenerative capacity.
Collapse
|
24
|
Zhao H, Lu J, He F, Wang M, Yan Y, Chen B, Xie D, Xu C, Wang Q, Liu W, Yu W, Xi Y, Yu L, Yamamoto T, Koyama H, Wang W, Zhang C, Cheng J. Hyperuricemia contributes to glucose intolerance of hepatic inflammatory macrophages and impairs the insulin signaling pathway via IRS2-proteasome degradation. Front Immunol 2022; 13:931087. [PMID: 36177037 PMCID: PMC9513153 DOI: 10.3389/fimmu.2022.931087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/24/2022] [Indexed: 02/05/2023] Open
Abstract
AIM Numerous reports have demonstrated the key importance of macrophage-elicited metabolic inflammation in insulin resistance (IR). Our previous studies confirmed that hyperuricemia or high uric acid (HUA) treatment induced an IR state in several peripheral tissues to promote the development of type 2 diabetes mellitus (T2DM). However, the effect of HUA on glucose uptake and the insulin sensitivity of macrophages and its mechanism is unclear. METHODS To assess systemic IR, we generated hyperuricemic mice by urate oxidase knockout (UOX-KO). Then, glucose/insulin tolerance, the tissue uptake of 18F-fluorodeoxyglucose, body composition, and energy balance were assessed. Glucose uptake of circulating infiltrated macrophages in the liver was evaluated by glucose transporter type 4 (GLUT-4) staining. Insulin sensitivity and the insulin signaling pathway of macrophages were demonstrated using the 2-NBDG kit, immunoblotting, and immunofluorescence assays. The immunoprecipitation assay and LC-MS analysis were used to determine insulin receptor substrate 2 (IRS2) levels and its interacting protein enrichment under HUA conditions. RESULTS Compared to WT mice (10 weeks old), serum uric acid levels were higher in UOX-KO mice (WT, 182.3 ± 5.091 μM versus KO, 421.9 ± 45.47 μM). Hyperuricemic mice with metabolic disorders and systemic IR showed inflammatory macrophage recruitment and increased levels of circulating proinflammatory cytokines. HUA inhibited the nuclear translocation of GLUT-4 in hepatic macrophages, restrained insulin-induced glucose uptake and glucose tolerance, and blocked insulin IRS2/PI3K/AKT signaling. Meanwhile, HUA mediated the IRS2 protein degradation pathway and activated AMPK/mTOR in macrophages. LC-MS analysis showed that ubiquitination degradation could be involved in IRS2 and its interacting proteins to contribute to IR under HUA conditions. CONCLUSION The data suggest that HUA-induced glucose intolerance in hepatic macrophages contributed to insulin resistance and impaired the insulin signaling pathway via IRS2-proteasome degradation.
Collapse
Affiliation(s)
- Hairong Zhao
- Department of Endocrinology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical Research and Development (R&D), College of Pharmacy, Dali University, Dali, China
| | - Jiaming Lu
- Department of Endocrinology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Furong He
- Department of Endocrinology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Mei Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical Research and Development (R&D), College of Pharmacy, Dali University, Dali, China
| | - Yunbo Yan
- Department of Endocrinology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Binyang Chen
- Department of Endocrinology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - De Xie
- Department of Endocrinology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Chenxi Xu
- Department of Endocrinology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Qiang Wang
- Department of Endocrinology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Weidong Liu
- Department of Endocrinology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Wei Yu
- Department of Endocrinology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Yuemei Xi
- Department of Endocrinology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Linqian Yu
- Department of Endocrinology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Tetsuya Yamamoto
- Department of Diabetes, Endocrinology and Clinical Immunology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hidenori Koyama
- Department of Diabetes, Endocrinology and Clinical Immunology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Wei Wang
- Department of Endocrinology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical Research and Development (R&D), College of Pharmacy, Dali University, Dali, China
- *Correspondence: Chenggui Zhang, ; Jidong Cheng,
| | - Jidong Cheng
- Department of Endocrinology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
- Department of Diabetes, Endocrinology and Clinical Immunology, Hyogo College of Medicine, Nishinomiya, Japan
- *Correspondence: Chenggui Zhang, ; Jidong Cheng,
| |
Collapse
|
25
|
Zasu A, Hishima F, Thauvin M, Yoneyama Y, Kitani Y, Hakuno F, Volovitch M, Takahashi SI, Vriz S, Rampon C, Kamei H. NADPH-Oxidase Derived Hydrogen Peroxide and Irs2b Facilitate Re-oxygenation-Induced Catch-Up Growth in Zebrafish Embryo. Front Endocrinol (Lausanne) 2022; 13:929668. [PMID: 35846271 PMCID: PMC9283716 DOI: 10.3389/fendo.2022.929668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Oxygen deprivation induces multiple changes at the cellular and organismal levels, and its re-supply also brings another special physiological status. We have investigated the effects of hypoxia/re-oxygenation on embryonic growth using the zebrafish model: hypoxia slows embryonic growth, but re-oxygenation induces growth spurt or catch-up growth. The mitogen-activated kinase (MAPK)-pathway downstream insulin-like growth factor (IGF/Igf) has been revealed to positively regulate the re-oxygenation-induced catch-up growth, and the role of reactive oxygen species generated by environmental oxygen fluctuation is potentially involved in the phenomenon. Here, we report the role of NADPH-oxidase (Nox)-dependent hydrogen peroxide (H2O2) production in the MAPK-activation and catch-up growth. The inhibition of Nox significantly blunted catch-up growth and MAPK-activity. Amongst two zebrafish insulin receptor substrate 2 genes (irs2a and irs2b), the loss of irs2b, but not its paralog irs2a, resulted in blunted MAPK-activation and catch-up growth. Furthermore, irs2b forcedly expressed in mammalian cells allowed IGF-MAPK augmentation in the presence of H2O2, and the irs2b deficiency completely abolished the somatotropic action of Nox in re-oxygenation condition. These results indicate that redox signaling alters IGF/Igf signaling to facilitate hypoxia/re-oxygenation-induced embryonic growth compensation.
Collapse
Affiliation(s)
- Ayaka Zasu
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Noto, Japan
| | - Futa Hishima
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Noto, Japan
| | - Marion Thauvin
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre national de la recherche scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Sciences et Lettres (PSL) Research University, Paris, France
- Sorbonne Université, Ecole Doctorale 515-Complexité du Vivant, Paris, France
| | - Yosuke Yoneyama
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoichiro Kitani
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Noto, Japan
| | - Fumihiko Hakuno
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Michel Volovitch
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre national de la recherche scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Sciences et Lettres (PSL) Research University, Paris, France
- Department of Biology, École Normale Supérieure, Paris Sciences et Lettres (PSL) Research University, Paris, France
- Laboratoire des BioMolécules (LBM), Département de Chimie, Sorbonne Université, École Normale Supérieure, Paris Sciences et Lettres (PSL) University, Sorbonne Université, Centre national de la recherche scientifique (CNRS), Paris, France
| | - Shin-Ichiro Takahashi
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre national de la recherche scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Sciences et Lettres (PSL) Research University, Paris, France
- Laboratoire des BioMolécules (LBM), Département de Chimie, Sorbonne Université, École Normale Supérieure, Paris Sciences et Lettres (PSL) University, Sorbonne Université, Centre national de la recherche scientifique (CNRS), Paris, France
- Université Paris-Cité, Faculty of Sciences, Paris, France
| | - Christine Rampon
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre national de la recherche scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Sciences et Lettres (PSL) Research University, Paris, France
- Laboratoire des BioMolécules (LBM), Département de Chimie, Sorbonne Université, École Normale Supérieure, Paris Sciences et Lettres (PSL) University, Sorbonne Université, Centre national de la recherche scientifique (CNRS), Paris, France
- Université Paris-Cité, Faculty of Sciences, Paris, France
| | - Hiroyasu Kamei
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Noto, Japan
- *Correspondence: Hiroyasu Kamei,
| |
Collapse
|
26
|
Faghfouri AH, Khajebishak Y, Payahoo L, Faghfuri E, Alivand M. PPAR-gamma agonists: Potential modulators of autophagy in obesity. Eur J Pharmacol 2021; 912:174562. [PMID: 34655597 DOI: 10.1016/j.ejphar.2021.174562] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/21/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Autophagy pathways are involved in the pathogenesis of some obesity related health problems. As obesity is a nutrient sufficiency condition, autophagy process can be altered in obesity through AMP activated protein kinase (AMPK) inhibition. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) as the main modulator of adipogenesis process can be effective in the regulation of obesity related phenotypes. As well, it has been revealed that PPAR-gamma and its agonists can regulate autophagy in different normal or cancer cells. However, their effects on autophagy modulation in obesity have been investigated in the limited number of studies. In the current comprehensive mechanistic review, we aimed to investigate the possible mechanisms of action of PPAR-gamma on the process of autophagy in obesity through narrating the effects of PPAR-gamma on autophagy in the non-obesity conditions. Moreover, mode of action of PPAR-gamma agonists on autophagy related implications comprehensively reviewed in the various studies. Understanding the different effects of PPAR-gamma agonists on autophagy in obesity can help to develop a new approach to management of obesity.
Collapse
Affiliation(s)
- Amir Hossein Faghfouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Community Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yaser Khajebishak
- Department of Nutrition, Maragheh University of Medical Sciences, Maragheh, I.R., Iran
| | - Laleh Payahoo
- Department of Nutrition, Maragheh University of Medical Sciences, Maragheh, I.R., Iran
| | - Elnaz Faghfuri
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mohammadreza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Delvecchio VS, Fierro C, Giovannini S, Melino G, Bernassola F. Emerging roles of the HECT-type E3 ubiquitin ligases in hematological malignancies. Discov Oncol 2021; 12:39. [PMID: 35201500 PMCID: PMC8777521 DOI: 10.1007/s12672-021-00435-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
Ubiquitination-mediated proteolysis or regulation of proteins, ultimately executed by E3 ubiquitin ligases, control a wide array of cellular processes, including transcription, cell cycle, autophagy and apoptotic cell death. HECT-type E3 ubiquitin ligases can be distinguished from other subfamilies of E3 ubiquitin ligases because they have a C-terminal HECT domain that directly catalyzes the covalent attachment of ubiquitin to their substrate proteins. Deregulation of HECT-type E3-mediated ubiquitination plays a prominent role in cancer development and chemoresistance. Several members of this subfamily are indeed frequently deregulated in human cancers as a result of genetic mutations and altered expression or activity. HECT-type E3s contribute to tumorigenesis by regulating the ubiquitination rate of substrates that function as either tumour suppressors or oncogenes. While the pathological roles of the HECT family members in solid tumors are quite well established, their contribution to the pathogenesis of hematological malignancies has only recently emerged. This review aims to provide a comprehensive overview of the involvement of the HECT-type E3s in leukemogenesis.
Collapse
Affiliation(s)
- Vincenza Simona Delvecchio
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Claudia Fierro
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Sara Giovannini
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
28
|
Lero MW, Shaw LM. Diversity of insulin and IGF signaling in breast cancer: Implications for therapy. Mol Cell Endocrinol 2021; 527:111213. [PMID: 33607269 PMCID: PMC8035314 DOI: 10.1016/j.mce.2021.111213] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
This review highlights the significance of the insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF-1R) signaling pathway in cancer and assesses its potential as a therapeutic target. Our emphasis is on breast cancer, but this pathway is central to the behavior of many cancers. An understanding of how IR/IGF-1R signaling contributes to the function of the normal mammary gland provides a foundation for understanding its aberrations in breast cancer. Specifically, dysregulation of the expression and function of ligands (insulin, IGF-1 and IGF-2), receptors and their downstream signaling effectors drive breast cancer initiation and progression, often in a subtype-dependent manner. Efforts to target this pathway for the treatment of cancer have been hindered by several factors including a lack of biomarkers to select patients that could respond to targeted therapy and adverse effects on normal metabolism. To this end, we discuss ongoing efforts aimed at overcoming such obstacles.
Collapse
Affiliation(s)
- Michael W Lero
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Leslie M Shaw
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
29
|
Samaržija I. Post-Translational Modifications That Drive Prostate Cancer Progression. Biomolecules 2021; 11:247. [PMID: 33572160 PMCID: PMC7915076 DOI: 10.3390/biom11020247] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
While a protein primary structure is determined by genetic code, its specific functional form is mostly achieved in a dynamic interplay that includes actions of many enzymes involved in post-translational modifications. This versatile repertoire is widely used by cells to direct their response to external stimuli, regulate transcription and protein localization and to keep proteostasis. Herein, post-translational modifications with evident potency to drive prostate cancer are explored. A comprehensive list of proteome-wide and single protein post-translational modifications and their involvement in phenotypic outcomes is presented. Specifically, the data on phosphorylation, glycosylation, ubiquitination, SUMOylation, acetylation, and lipidation in prostate cancer and the enzymes involved are collected. This type of knowledge is especially valuable in cases when cancer cells do not differ in the expression or mutational status of a protein, but its differential activity is regulated on the level of post-translational modifications. Since their driving roles in prostate cancer, post-translational modifications are widely studied in attempts to advance prostate cancer treatment. Current strategies that exploit the potential of post-translational modifications in prostate cancer therapy are presented.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
30
|
Chen D, Li L, Ren F, Huang R, Gan H, Deng H, Wang H. Maternal hypothyroidism during pregnancy alters the function of the retinol-binding protein 4-mediated mitochondrial permeability conversion pore in the kidneys of offspring rats. Clinics (Sao Paulo) 2021; 76:e2096. [PMID: 33503180 PMCID: PMC7811836 DOI: 10.6061/clinics/2021/e2096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES To determine the role of the RBP4/PiC/SIRT3 signaling pathway in the opening of the mitochondria permeability transition pore (mPTP) in offspring rats with hypothyroidism during pregnancy. METHODS Sixty Sprague-Dawley (SD) rats were employed in this study. Pregnancy was deemed successful when a sperm was found in the uterus. After one week of pregnancy, offspring rats were divided into the following groups: overall hypothyroidism group (OH group), subclinical hypothyroidism group (SCH group), and normal control group (CON group). The establishment of the hypothyroidism model was confirmed when the serum thyroid stimulating hormone (TSH) levels were higher than normal value and TT4 level was within the normal range. The renal mitochondria of offspring rats were extracted on the 14th postnatal day (P14) and 35th postnatal day (P35). RESULTS At P14, no significant differences in the degree of mPTP opening and expression of phosphoric acid carrier vector (PiC) were detected between the rats in the OH group and the SCH group. However, the expression level of silent mating-type information regulation 3 homolog (SIRT3) was markedly reduced. Retinol-binding protein 4 (RBP4) expression increased in the rats from the OH group, relative to that in those from the SCH group. At P35, the degree of mPTP opening and the expression levels of PiC and RBP4 in the OH group were higher than those in the SCH group. However, SIRT3 expression in the OH group was lower than that observed in the SCH group. CONCLUSION RBP4 plays an important role in early renal mitochondrial damage and renal impairment in rats suffering from hypothyroidism during pregnancy. The RBP4/PiC/SIRT3 pathway is thus involved in the opening of the renal mPTP in offspring rats with hyperthyroidism.
Collapse
Affiliation(s)
- Danyan Chen
- Departments of Endocrinology, Chongqing General Hospital, University of Chinese Academy of Sciences, Departments of EndocrinologyChongqing General HospitalUniversity of Chinese Academy of SciencesChinaChina
- *Corresponding author. E-mail:
| | - Li Li
- Departments of Endocrinology, Chongqing General Hospital, University of Chinese Academy of Sciences, Departments of EndocrinologyChongqing General HospitalUniversity of Chinese Academy of SciencesChinaChina
| | - Fang Ren
- Departments of Emergency, Chongqing General Hospital, University of Chinese Academy of Sciences, Departments of EmergencyChongqing General HospitalUniversity of Chinese Academy of SciencesChinaChina
| | - Rongxi Huang
- Departments of Endocrinology, Chongqing General Hospital, University of Chinese Academy of Sciences, Departments of EndocrinologyChongqing General HospitalUniversity of Chinese Academy of SciencesChinaChina
| | - Hua Gan
- Departments of Nephrology, the First Affiliated Hospital of Chongqing Medical University, Departments of Nephrologythe First Affiliated Hospital of Chongqing Medical UniversityChinaChina
| | - Huacong Deng
- Departments of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Departments of Endocrinologythe First Affiliated Hospital of Chongqing Medical UniversityChinaChina
| | - Hongman Wang
- Departments of Endocrinology, Chongqing General Hospital, University of Chinese Academy of Sciences, Departments of EndocrinologyChongqing General HospitalUniversity of Chinese Academy of SciencesChinaChina
| |
Collapse
|
31
|
Yu W, Singh R, Wang Z, O'Malley BW, Yi P. The E3 ligase TRAF4 promotes IGF signaling by mediating atypical ubiquitination of IRS-1. J Biol Chem 2021; 296:100739. [PMID: 33991522 PMCID: PMC8191236 DOI: 10.1016/j.jbc.2021.100739] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 01/03/2023] Open
Abstract
Insulin-like growth factor (IGF) is a potent mitogen that activates the IGF receptor (IGFR)/insulin receptor substrate (IRS) axis, thus stimulating growth in normal cells and uncontrolled cell proliferation in cancer. Posttranslational modifications of IRS such as ubiquitination tightly control IGF signaling, and we previously identified IRS-1 as a potential substrate for the E3 ubiquitin ligase TRAF4 using an unbiased screen. Here we provide evidence that TRAF4-mediated ubiquitination of IRS-1 is physiologically relevant and crucial for IGF signal transduction. Through site-directed mutagenesis we found that TRAF4 promotes an atypical K29-linked ubiquitination at the C-terminal end of IRS-1. Its depletion abolishes AKT and ERK phosphorylation downstream of IGF-1 and inhibits breast cancer cell proliferation. Overexpression of TRAF4 enhances IGF1-induced IGFR-IRS-1 interaction, IRS-1 tyrosine phosphorylation, and downstream effector protein activation, whereas mutation of IRS-1 ubiquitination sites completely abolishes these effects. Altogether, our studies demonstrate that nonproteolytic ubiquitination of IRS-1 is a key step in conveying IGF-1 stimulation from IGFR to IRS-1.
Collapse
Affiliation(s)
- Wenjuan Yu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ramesh Singh
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Zhao Wang
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ping Yi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
32
|
Zhang Y, Qian H, Wu B, You S, Wu S, Lu S, Wang P, Cao L, Zhang N, Sun Y. E3 Ubiquitin ligase NEDD4 family‑regulatory network in cardiovascular disease. Int J Biol Sci 2020; 16:2727-2740. [PMID: 33110392 PMCID: PMC7586430 DOI: 10.7150/ijbs.48437] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022] Open
Abstract
Protein ubiquitination represents a critical modification occurring after translation. E3 ligase catalyzes the covalent binding of ubiquitin to the protein substrate, which could be degraded. Ubiquitination as an important protein post-translational modification is closely related to cardiovascular disease. The NEDD4 family, belonging to HECT class of E3 ubiquitin ligases can recognize different substrate proteins, including PTEN, ENaC, Nav1.5, SMAD2, PARP1, Septin4, ALK1, SERCA2a, TGFβR3 and so on, via the WW domain to catalyze ubiquitination, thus participating in multiple cardiovascular-related disease such as hypertension, arrhythmia, myocardial infarction, heart failure, cardiotoxicity, cardiac hypertrophy, myocardial fibrosis, cardiac remodeling, atherosclerosis, pulmonary hypertension and heart valve disease. However, there is currently no review comprehensively clarifying the important role of NEDD4 family proteins in the cardiovascular system. Therefore, the present review summarized recent studies about NEDD4 family members in cardiovascular disease, providing novel insights into the prevention and treatment of cardiovascular disease. In addition, assessing transgenic animals and performing gene silencing would further identify the ubiquitination targets of NEDD4. NEDD4 quantification in clinical samples would also constitute an important method for determining NEDD4 significance in cardiovascular disease.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Hao Qian
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Boquan Wu
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Shilong You
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Shaojun Wu
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Saien Lu
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Pingyuan Wang
- Staff scientist, Center for Molecular Medicine National Heart Lung and Blood Institute, National Institutes of Health, the United States
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning, China
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| |
Collapse
|
33
|
Sewduth RN, Baietti MF, Sablina AA. Cracking the Monoubiquitin Code of Genetic Diseases. Int J Mol Sci 2020; 21:ijms21093036. [PMID: 32344852 PMCID: PMC7246618 DOI: 10.3390/ijms21093036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/26/2022] Open
Abstract
Ubiquitination is a versatile and dynamic post-translational modification in which single ubiquitin molecules or polyubiquitin chains are attached to target proteins, giving rise to mono- or poly-ubiquitination, respectively. The majority of research in the ubiquitin field focused on degradative polyubiquitination, whereas more recent studies uncovered the role of single ubiquitin modification in important physiological processes. Monoubiquitination can modulate the stability, subcellular localization, binding properties, and activity of the target proteins. Understanding the function of monoubiquitination in normal physiology and pathology has important therapeutic implications, as alterations in the monoubiquitin pathway are found in a broad range of genetic diseases. This review highlights a link between monoubiquitin signaling and the pathogenesis of genetic disorders.
Collapse
Affiliation(s)
- Raj Nayan Sewduth
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; (R.N.S.); (M.F.B.)
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Maria Francesca Baietti
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; (R.N.S.); (M.F.B.)
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Anna A. Sablina
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; (R.N.S.); (M.F.B.)
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
34
|
Wang ZW, Hu X, Ye M, Lin M, Chu M, Shen X. NEDD4 E3 ligase: Functions and mechanism in human cancer. Semin Cancer Biol 2020; 67:92-101. [PMID: 32171886 DOI: 10.1016/j.semcancer.2020.03.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 12/11/2022]
Abstract
A growing amount of evidence indicates that the neuronally expressed developmentally downregulated 4 (NEDD4, also known as NEDD4-1) E3 ligase plays a critical role in a variety of cellular processes via the ubiquitination-mediated degradation of multiple substrates. The abnormal regulation of NEDD4 protein has been implicated in cancer development and progression. In this review article, we briefly delineate the downstream substrates and upstream regulators of NEDD4, which are involved in carcinogenesis. Moreover, we succinctly elucidate the functions of NEDD4 protein in tumorigenesis and progression, including cell proliferation, apoptosis, cell cycle, migration, invasion, epithelial mesenchymal transition (EMT), cancer stem cells, and drug resistance. The findings regarding NEDD4 functions are further supported by knockout mouse models and human tumor tissue studies. This review could provide a promising and optimum anticancer therapeutic strategy via targeting the NEDD4 protein.
Collapse
Affiliation(s)
- Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xiaoli Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Miaomiao Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Min Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Man Chu
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
35
|
Ballar Kirmizibayrak P, Erbaykent-Tepedelen B, Gozen O, Erzurumlu Y. Divergent Modulation of Proteostasis in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:117-151. [PMID: 32274755 DOI: 10.1007/978-3-030-38266-7_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proteostasis regulates key cellular processes such as cell proliferation, differentiation, transcription, and apoptosis. The mechanisms by which proteostasis is regulated are crucial and the deterioration of cellular proteostasis has been significantly associated with tumorigenesis since it specifically targets key oncoproteins and tumor suppressors. Prostate cancer (PCa) is the second most common cause of cancer death in men worldwide. Androgens mediate one of the most central signaling pathways in all stages of PCa via the androgen receptor (AR). In addition to their regulation by hormones, PCa cells are also known to be highly secretory and are particularly prone to ER stress as proper ER function is essential. Alterations in various complex signaling pathways and cellular processes including cell cycle control, transcription, DNA repair, apoptosis, cell adhesion, epithelial-mesenchymal transition (EMT), and angiogenesis are critical factors influencing PCa development through key molecular changes mainly by posttranslational modifications in PCa-related proteins, including AR, NKX3.1, PTEN, p53, cyclin D1, and p27. Several ubiquitin ligases like MDM2, Siah2, RNF6, CHIP, and substrate-binding adaptor SPOP; deubiquitinases such as USP7, USP10, USP26, and USP12 are just some of the modifiers involved in the regulation of these key proteins via ubiquitin-proteasome system (UPS). Some ubiquitin-like modifiers, especially SUMOs, have been also closely associated with PCa. On the other hand, the proteotoxicity resulting from misfolded proteins and failure of ER adaptive capacity induce unfolded protein response (UPR) that is an indispensable signaling mechanism for PCa development. Lastly, ER-associated degradation (ERAD) also plays a crucial role in prostate tumorigenesis. In this section, the relationship between prostate cancer and proteostasis will be discussed in terms of UPS, UPR, SUMOylation, ERAD, and autophagy.
Collapse
Affiliation(s)
| | | | - Oguz Gozen
- Faculty of Medicine, Department of Physiology, Ege University, Izmir, Turkey
| | - Yalcin Erzurumlu
- Faculty of Pharmacy, Department of Biochemistry, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
36
|
The many substrates and functions of NEDD4-1. Cell Death Dis 2019; 10:904. [PMID: 31787758 PMCID: PMC6885513 DOI: 10.1038/s41419-019-2142-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 01/08/2023]
Abstract
Tumorigenesis, tumor growth, and prognosis are highly related to gene alterations and post-translational modifications (PTMs). Ubiquitination is a critical PTM that governs practically all aspects of cellular function. An increasing number of studies show that E3 ubiquitin ligases (E3s) are important enzymes in the process of ubiquitination that primarily determine substrate specificity and thus need to be tightly controlled. Among E3s, neural precursor cell expressed developmentally downregulated 4-1 (NEDD4-1) has been shown to play a critical role in modulating the proliferation, migration, and invasion of cancer cells and the sensitivity of cancer cells to anticancer therapies via regulating multiple substrates. This review discusses some significant discoveries on NEDD4-1 substrates and the signaling pathways in which NEDD4-1 participates. In addition, we introduce the latest potential therapeutic strategies that inhibit or activate NEDD4-1 activity using small molecules. NEDD4-1 likely acts as a novel drug target or diagnostic marker in the battle against cancer.
Collapse
|
37
|
Bernassola F, Chillemi G, Melino G. HECT-Type E3 Ubiquitin Ligases in Cancer. Trends Biochem Sci 2019; 44:1057-1075. [DOI: 10.1016/j.tibs.2019.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/13/2019] [Accepted: 08/23/2019] [Indexed: 12/30/2022]
|
38
|
Lu M, Ma L, Shan P, Liu A, Yu X, Jiang W, Wang X, Zhao X, Ye X, Wang T. DYRK1A aggravates β cell dysfunction and apoptosis by promoting the phosphorylation and degradation of IRS2. Exp Gerontol 2019; 125:110659. [PMID: 31306739 DOI: 10.1016/j.exger.2019.110659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 01/21/2023]
Abstract
In this study, we aimed to investigate the role of dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A), which is one of the most important regulators of Alzheimer's disease development, in islet β cell dysfunction and apoptosis. We found significantly increased expression of DYRK1A in both the hippocampus and pancreatic islets of APPswe/PS1ΔE9 transgenic mice than in wild-type littermates. Furthermore, we observed that the overexpression of DYRK1A greatly aggravated β cell apoptosis. Most importantly, we found that DYRK1A directly interacted with insulin receptor substrate-2 (IRS2) and promoted IRS2 phosphorylation, leading to the proteasomal degradation of IRS2 and promotion of β cell dysfunction and apoptosis. These findings suggested that DYRK1A is a potential drug target in diabetes mellitus.
Collapse
Affiliation(s)
- Mei Lu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Key laboratory of Cardiovascular Proteomics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lin Ma
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Key laboratory of Cardiovascular Proteomics, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Peiyan Shan
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Key laboratory of Cardiovascular Proteomics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Aifen Liu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaolin Yu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenjing Jiang
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xinbang Wang
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xinjing Zhao
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiang Ye
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tan Wang
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
39
|
Liu J, Yao Q, Xiao L, Ma W, Li F, Lai B, Wang N. PPARγ induces NEDD4 gene expression to promote autophagy and insulin action. FEBS J 2019; 287:529-545. [PMID: 31423749 DOI: 10.1111/febs.15042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/24/2019] [Accepted: 08/16/2019] [Indexed: 12/28/2022]
Abstract
The E3 ubiquitin ligase neural precursor cell-expressed developmentally down-regulated protein 4 (NEDD4) plays a crucial role in governing a number of signaling pathways, including insulin and autophagy signaling. However, the molecular mechanism by which NEDD4 gene is transcriptionally regulated has not been fully elucidated. Here, we reported that NEDD4 mRNA and protein levels were increased by peroxisome proliferator-activated receptor-γ (PPARγ) in HepG2 hepatocytes. PPARγ antagonist GW9662 abolished thiazolidinedione (TZD)-induced NEDD4 expression. ChIP and luciferase reporter assays showed that PPARγ directly bound to the potential PPAR-responsive elements (PPREs) within the promoter region of the human NEDD4 gene. In addition, TZDs increased Akt phosphorylation and glucose uptake, which were abrogated through NEDD4 depletion. Furthermore, we showed that NEDD4-mediated autophagy induction and Akt phosphorylation were suppressed by oleic acid and high glucose treatment, activation of PPARγ successfully prevented this suppression. In conclusion, these results suggest that PPARγ plays a novel role in linking glucose metabolism and protein homeostasis through NEDD4-mediated effects on the autophagy machinery.
Collapse
Affiliation(s)
- Jia Liu
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, China
| | - Qinyu Yao
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, China
| | - Lei Xiao
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, China
| | - Wen Ma
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, China
| | - Fan Li
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, China
| | - Baochang Lai
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, China
| | - Nanping Wang
- Advanced Institute for Medical Sciences, Dalian Medical University, China
| |
Collapse
|
40
|
Manzella L, Massimino M, Stella S, Tirrò E, Pennisi MS, Martorana F, Motta G, Vitale SR, Puma A, Romano C, Di Gregorio S, Russo M, Malandrino P, Vigneri P. Activation of the IGF Axis in Thyroid Cancer: Implications for Tumorigenesis and Treatment. Int J Mol Sci 2019; 20:E3258. [PMID: 31269742 PMCID: PMC6651760 DOI: 10.3390/ijms20133258] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 12/22/2022] Open
Abstract
The Insulin-like growth factor (IGF) axis is one of the best-established drivers of thyroid transformation, as thyroid cancer cells overexpress both IGF ligands and their receptors. Thyroid neoplasms encompass distinct clinical and biological entities as differentiated thyroid carcinomas (DTC)-comprising papillary (PTC) and follicular (FTC) tumors-respond to radioiodine therapy, while undifferentiated tumors-including poorly-differentiated (PDTC) or anaplastic thyroid carcinomas (ATCs)-are refractory to radioactive iodine and exhibit limited responses to chemotherapy. Thus, safe and effective treatments for the latter aggressive thyroid tumors are urgently needed. Despite a strong preclinical rationale for targeting the IGF axis in thyroid cancer, the results of the available clinical studies have been disappointing, possibly because of the crosstalk between IGF signaling and other pathways that may result in resistance to targeted agents aimed against individual components of these complex signaling networks. Based on these observations, the combinations between IGF-signaling inhibitors and other anti-tumor drugs, such as DNA damaging agents or kinase inhibitors, may represent a promising therapeutic strategy for undifferentiated thyroid carcinomas. In this review, we discuss the role of the IGF axis in thyroid tumorigenesis and also provide an update on the current knowledge of IGF-targeted combination therapies for thyroid cancer.
Collapse
Affiliation(s)
- Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy.
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy.
| | - Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Maria Stella Pennisi
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Federica Martorana
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
- Department of Medical Oncology A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Gianmarco Motta
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
- Department of Medical Oncology A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Adriana Puma
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Chiara Romano
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Sandra Di Gregorio
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Marco Russo
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, University of Catania, 95122, Italy
| | - Pasqualino Malandrino
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, University of Catania, 95122, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| |
Collapse
|
41
|
Veeraragavulu P, Yellapu NK, Yerrathota S, Adi PJ, Matcha B. Three Novel Mutations I65S, R66S, and G86R Divulge Significant Conformational Variations in the PTB Domain of the IRS1 Gene. ACS OMEGA 2019; 4:2217-2224. [PMID: 31660472 PMCID: PMC6814177 DOI: 10.1021/acsomega.8b01712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/25/2018] [Indexed: 06/10/2023]
Abstract
Insulin receptor substrate 1 (IRS1) is one of the major substrates for the IR, and their interaction mediates several downstream insulin signaling pathways. In this study, we have identified three novel mutations in the IRS1 gene of type 2 diabetic (T2D) patients, which reflected in the amino acid changes as I65S, R66S, and G86R in the phosphotyrosine binding domain of the IRS1 protein. The impact of these mutations on the structure and function of the IRS1 protein was evaluated through molecular modeling studies, and distinct conformational fluctuations were recorded. The variable binding affinities and positional displacement of these mutant models were observed in the ligand-binding cleft of IR. The mutant IRS1 models triggered conformational changes in the L1 domain of IR upon their binding. Such structural variations in IRS1 and IR structures due to mutations resulted in variable molecular interactions that could lead to altered insulin transduction, followed by insulin resistance and T2D.
Collapse
Affiliation(s)
| | - Nanda Kumar Yellapu
- Division
of Animal Biotechnology, Department of Zoology, Sri Venkateswara University, Tirupati 517502, India
| | - Sireesha Yerrathota
- Division
of Animal Biotechnology, Department of Zoology, Sri Venkateswara University, Tirupati 517502, India
| | - Pradeepkiran Jangampalli Adi
- Division
of Animal Biotechnology, Department of Zoology, Sri Venkateswara University, Tirupati 517502, India
- Garrison
Institute on Aging, Texas Tech University
Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, Texas 79430, United
States
| | - Bhaskar Matcha
- Division
of Animal Biotechnology, Department of Zoology, Sri Venkateswara University, Tirupati 517502, India
| |
Collapse
|
42
|
Xu H, Li X, Adams H, Kubena K, Guo S. Etiology of Metabolic Syndrome and Dietary Intervention. Int J Mol Sci 2018; 20:ijms20010128. [PMID: 30602666 PMCID: PMC6337367 DOI: 10.3390/ijms20010128] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/20/2018] [Accepted: 12/25/2018] [Indexed: 02/07/2023] Open
Abstract
The growing prevalence of metabolic syndrome (MetS) in the U.S. and even worldwide is becoming a serious health problem and economic burden. MetS has become a crucial risk factor for the development of type 2 diabetes mellitus (T2D) and cardiovascular diseases (CVD). The rising rates of CVD and diabetes, which are the two leading causes of death, simultaneously exist. To prevent the progression of MetS to diabetes and CVD, we have to understand how MetS occurs and how it progresses. Too many causative factors interact with each other, making the investigation and treatment of metabolic syndrome a very complex issue. Recently, a number of studies were conducted to investigate mechanisms and interventions of MetS, from different aspects. In this review, the proposed and demonstrated mechanisms of MetS pathogenesis are discussed and summarized. More importantly, different interventions are discussed, so that health practitioners can have a better understanding of the most recent research progress and have available references for their daily practice.
Collapse
Affiliation(s)
- Hang Xu
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Xiaopeng Li
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA.
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hannah Adams
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Karen Kubena
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Shaodong Guo
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
43
|
IRS-2 deubiquitination by USP9X maintains anchorage-independent cell growth via Erk1/2 activation in prostate carcinoma cell line. Oncotarget 2018; 9:33871-33883. [PMID: 30338032 PMCID: PMC6188063 DOI: 10.18632/oncotarget.26049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/21/2018] [Indexed: 01/25/2023] Open
Abstract
Insulin-like growth factors (IGFs) have been shown to induce proliferation of many types of cells. Insulin receptor substrates (IRSs) are major targets of IGF-I receptor (IGF-IR) tyrosine kinase activated by IGFs, and are known to play important roles in the activation of downstream signaling pathways, such as the Erk1/2 pathway. Dysregulation of IGF signaling represents a central tumor promoting principle in human carcinogenesis. Prostate carcinoma is highly dependent on the IGF/IGF-IR/IRS axis. Here we identified the deubiquitinase, ubiquitin specific peptidase 9X (USP9X) as a novel binding partner of IRS-2. In a human prostate carcinoma cell line, small interfering RNA (siRNA)-mediated knockdown of USP9X reduced IGF-IR as well as IRS-2 protein levels and increased their ubiquitination. Knockdown of USP9X suppressed basal activation of the Erk1/2 pathway, which was significantly restored by exogenous expression of IRS-2 but not by IGF-IR, suggesting that the stabilization of IRS-2 by USP9X is critical for basal Erk1/2 activation. Finally, we measured anchorage-independent cell growth, a characteristic cancer feature, by soft-agar colony formation assay. Knockdown of USP9X significantly reduced anchorage-independent cell growth of prostate carcinoma cell line. Taken all together, our findings indicate that USP9X is required for the promotion of prostate cancer growth by maintaining the activation of the Erk1/2 pathway through IRS-2 stabilization.
Collapse
|
44
|
Lewis MA, Nolan LS, Cadge BA, Matthews LJ, Schulte BA, Dubno JR, Steel KP, Dawson SJ. Whole exome sequencing in adult-onset hearing loss reveals a high load of predicted pathogenic variants in known deafness-associated genes and identifies new candidate genes. BMC Med Genomics 2018; 11:77. [PMID: 30180840 PMCID: PMC6123954 DOI: 10.1186/s12920-018-0395-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/21/2018] [Indexed: 12/22/2022] Open
Abstract
Background Deafness is a highly heterogenous disorder with over 100 genes known to underlie human non-syndromic hearing impairment. However, many more remain undiscovered, particularly those involved in the most common form of deafness: adult-onset progressive hearing loss. Despite several genome-wide association studies of adult hearing status, it remains unclear whether the genetic architecture of this common sensory loss consists of multiple rare variants each with large effect size or many common susceptibility variants each with small to medium effects. As next generation sequencing is now being utilised in clinical diagnosis, our aim was to explore the viability of diagnosing the genetic cause of hearing loss using whole exome sequencing in individual subjects as in a clinical setting. Methods We performed exome sequencing of thirty patients selected for distinct phenotypic sub-types from well-characterised cohorts of 1479 people with adult-onset hearing loss. Results Every individual carried predicted pathogenic variants in at least ten deafness-associated genes; similar findings were obtained from an analysis of the 1000 Genomes Project data unselected for hearing status. We have identified putative causal variants in known deafness genes and several novel candidate genes, including NEDD4 and NEFH that were mutated in multiple individuals. Conclusions The high frequency of predicted-pathogenic variants detected in known deafness-associated genes was unexpected and has significant implications for current diagnostic sequencing in deafness. Our findings suggest that in a clinic setting, efforts should be made to a) confirm key sequence results by Sanger sequencing, b) assess segregations of variants and phenotypes within the family if at all possible, and c) use caution in applying current pathogenicity prediction algorithms for diagnostic purposes. We conclude that there may be a high number of pathogenic variants affecting hearing in the ageing population, including many in known deafness-associated genes. Our findings of frequent predicted-pathogenic variants in both our hearing-impaired sample and in the larger 1000 Genomes Project sample unselected for auditory function suggests that the reference population for interpreting variants for this very common disorder should be a population of people with good hearing for their age rather than an unselected population. Electronic supplementary material The online version of this article (10.1186/s12920-018-0395-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Morag A Lewis
- Wolfson Centre for Age-Related Diseases, King's College London, WC2R 2LS, London, UK.,Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Lisa S Nolan
- UCL Ear Institute, University College London, WC1X 8EE, London, UK
| | - Barbara A Cadge
- UCL Ear Institute, University College London, WC1X 8EE, London, UK
| | - Lois J Matthews
- Medical University of South Carolina, Charleston, SC, 29425, USA
| | | | - Judy R Dubno
- Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Karen P Steel
- Wolfson Centre for Age-Related Diseases, King's College London, WC2R 2LS, London, UK.,Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Sally J Dawson
- UCL Ear Institute, University College London, WC1X 8EE, London, UK.
| |
Collapse
|
45
|
Monoubiquitination of Cancer Stem Cell Marker CD133 at Lysine 848 Regulates Its Secretion and Promotes Cell Migration. Mol Cell Biol 2018; 38:MCB.00024-18. [PMID: 29760280 DOI: 10.1128/mcb.00024-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022] Open
Abstract
CD133, a widely known marker of cancer stem cells, was recently found in extracellular vesicles. However, the mechanisms underlying CD133 translocation to the extracellular space remain largely unknown. Here we report that CD133 is monoubiquitinated. Ubiquitination occurs primarily on complex glycosylated CD133. The lysine 848 residue at the intracellular carboxyl terminus is one of the sites for CD133 ubiquitination. The K848R mutation does not affect CD133 degradation by the lysosomal pathway but significantly reduces CD133 secretion by inhibiting the interaction between CD133 and tumor susceptibility gene 101 (Tsg101). Furthermore, knockdown of the E3 ubiquitin protein ligase Nedd4 largely impairs CD133 ubiquitination and vesicle secretion. Importantly, CD133-containing vesicles are taken up by recipient cells, consequently promoting cell migration. The K848R mutation reduces cell migration induced by CD133. Taken together, our findings show that monoubiquitination contributes to CD133 vesicle secretion and promotes recipient cell migration. These findings provide a clue to the mechanisms of CD133 secretion and cancer stem cell microenvironment interactional effects.
Collapse
|
46
|
Abstract
Insulin-like growth factors (IGFs) bind specifically to the IGF1 receptor on the cell surface of targeted tissues. Ligand binding to the α subunit of the receptor leads to a conformational change in the β subunit, resulting in the activation of receptor tyrosine kinase activity. Activated receptor phosphorylates several substrates, including insulin receptor substrates (IRSs) and Src homology collagen (SHC). Phosphotyrosine residues in these substrates are recognized by certain Src homology 2 (SH2) domain-containing signaling molecules. These include, for example, an 85 kDa regulatory subunit (p85) of phosphatidylinositol 3-kinase (PI 3-kinase), growth factor receptor-bound 2 (GRB2) and SH2-containing protein tyrosine phosphatase 2 (SHP2/Syp). These bindings lead to the activation of downstream signaling pathways, PI 3-kinase pathway and Ras-mitogen-activated protein kinase (MAP kinase) pathway. Activation of these signaling pathways is known to be required for the induction of various bioactivities of IGFs, including cell proliferation, cell differentiation and cell survival. In this review, the well-established IGF1 receptor signaling pathways required for the induction of various bioactivities of IGFs are introduced. In addition, we will discuss how IGF signals are modulated by the other extracellular stimuli or by themselves based on our studies.
Collapse
Affiliation(s)
- Fumihiko Hakuno
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichiro Takahashi
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
47
|
The protective effects of mangiferin on metabolic and organs functions in the adolescent rat model of alcohol abuse. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
48
|
Identification of a Novel Invasion-Promoting Region in Insulin Receptor Substrate 2. Mol Cell Biol 2018; 38:MCB.00590-17. [PMID: 29685905 DOI: 10.1128/mcb.00590-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/15/2018] [Indexed: 12/13/2022] Open
Abstract
Although the insulin receptor substrate (IRS) proteins IRS1 and IRS2 share considerable homology and activate common signaling pathways, their contributions to breast cancer are distinct. IRS1 has been implicated in the proliferation and survival of breast tumor cells. In contrast, IRS2 facilitates glycolysis, invasion, and metastasis. To determine the mechanistic basis for IRS2-dependent functions, we investigated unique structural features of IRS2 that are required for invasion. Our studies revealed that the ability of IRS2 to promote invasion is dependent upon upstream insulin-like growth factor 1 receptor (IGF-1R)/insulin receptor (IR) activation and the recruitment and activation of phosphatidylinositol 3-kinase (PI3K), functions shared with IRS1. In addition, a 174-amino-acid region in the IRS2 C-terminal tail, which is not conserved in IRS1, is also required for IRS2-mediated invasion. Importantly, this "invasion (INV) region" is sufficient to confer invasion-promoting ability when swapped into IRS1. However, the INV region is not required for the IRS2-dependent regulation of glucose uptake. Bone morphogenetic protein 2-inducible kinase (BMP2K) binds to the INV region and contributes to IRS2-dependent invasion. Taken together, our data advance the mechanistic understanding of how IRS2 regulates invasion and reveal that IRS2 functions important for cancer can be independently targeted without interfering with the metabolic activities of this adaptor protein.
Collapse
|
49
|
Yoneyama Y, Lanzerstorfer P, Niwa H, Umehara T, Shibano T, Yokoyama S, Chida K, Weghuber J, Hakuno F, Takahashi SI. IRS-1 acts as an endocytic regulator of IGF-I receptor to facilitate sustained IGF signaling. eLife 2018; 7:32893. [PMID: 29661273 PMCID: PMC5903866 DOI: 10.7554/elife.32893] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/06/2018] [Indexed: 12/15/2022] Open
Abstract
Insulin-like growth factor-I receptor (IGF-IR) preferentially regulates the long-term IGF activities including growth and metabolism. Kinetics of ligand-dependent IGF-IR endocytosis determines how IGF induces such downstream signaling outputs. Here, we find that the insulin receptor substrate (IRS)-1 modulates how long ligand-activated IGF-IR remains at the cell surface before undergoing endocytosis in mammalian cells. IRS-1 interacts with the clathrin adaptor complex AP2. IRS-1, but not an AP2-binding-deficient mutant, delays AP2-mediated IGF-IR endocytosis after the ligand stimulation. Mechanistically, IRS-1 inhibits the recruitment of IGF-IR into clathrin-coated structures; for this reason, IGF-IR avoids rapid endocytosis and prolongs its activity on the cell surface. Accelerating IGF-IR endocytosis via IRS-1 depletion induces the shift from sustained to transient Akt activation and augments FoxO-mediated transcription. Our study establishes a new role for IRS-1 as an endocytic regulator of IGF-IR that ensures sustained IGF bioactivity, independent of its classic role as an adaptor in IGF-IR signaling.
Collapse
Affiliation(s)
- Yosuke Yoneyama
- Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Hideaki Niwa
- RIKEN Systems and Structural Biology Center, Yokohama, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Takashi Umehara
- RIKEN Systems and Structural Biology Center, Yokohama, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Takashi Shibano
- Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, Yokohama, Japan.,RIKEN Structural Biology Laboratory, Yokohama, Japan
| | - Kazuhiro Chida
- Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Julian Weghuber
- University of Applied Sciences Upper Austria, Wels, Austria.,Austrian Competence Center for Feed and Food Quality, Safety and Innovation, Wels, Austria
| | - Fumihiko Hakuno
- Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichiro Takahashi
- Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
50
|
Balaji V, Pokrzywa W, Hoppe T. Ubiquitylation Pathways In Insulin Signaling and Organismal Homeostasis. Bioessays 2018; 40:e1700223. [PMID: 29611634 DOI: 10.1002/bies.201700223] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/26/2018] [Indexed: 12/26/2022]
Abstract
The insulin/insulin-like growth factor-1 (IGF-1) signaling (IIS) pathway is a pivotal genetic program regulating cell growth, tissue development, metabolic physiology, and longevity of multicellular organisms. IIS integrates a fine-tuned cascade of signaling events induced by insulin/IGF-1, which is precisely controlled by post-translational modifications. The ubiquitin/proteasome-system (UPS) influences the functionality of IIS through inducible ubiquitylation pathways that regulate internalization of the insulin/IGF-1 receptor, the stability of downstream insulin/IGF-1 signaling targets, and activity of nuclear receptors for control of gene expression. An age-related decline in UPS activity is often associated with an impairment of IIS, contributing to pathologies such as cancer, diabetes, cardiovascular, and neurodegenerative disorders. Recent findings identified a key role of diverse ubiquitin modifications in insulin signaling decisions, which governs dynamic adaption upon environmental and physiological changes. In this review, we discuss the mutual crosstalk between ubiquitin and insulin signaling pathways in the context of cellular and organismal homeostasis.
Collapse
Affiliation(s)
- Vishnu Balaji
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann Str. 26, 50931 Cologne, Germany
| | - Wojciech Pokrzywa
- Laboratory of Protein Metabolism in Development and Aging, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann Str. 26, 50931 Cologne, Germany
| |
Collapse
|