1
|
Zhang X, Tamaki H, Kikukawa T, Fujiwara T, Matsuki Y. Structural changes of Natronomonas pharaonis halorhodopsin in its late photocycle revealed by solid-state NMR spectroscopy. Biophys Chem 2024; 315:107329. [PMID: 39369577 DOI: 10.1016/j.bpc.2024.107329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/08/2024]
Abstract
Natronomonas pharaonis halorhodopsin (NpHR) is a light-driven Cl- inward pump that is widely used as an optogenetic tool. Although NpHR is previously extensively studied, its Cl- uptake process is not well understood from the protein structure perspective, mainly because in crystalline lattice, it has been difficult to analyze the structural changes associated with the Cl- uptake process. In this study, we used solid-state NMR to analyze NpHR both in the Cl--bound and -free states under near-physiological transmembrane condition. Chemical shift perturbation analysis suggested that while the structural change caused by the Cl- depletion is widespread over the NpHR molecule, residues in the extracellular (EC) part of helix D exhibited significant conformational changes that may be related to the Cl- uptake process. By combining photochemical analysis and dynamic nuclear polarization (DNP)-enhanced solid-state NMR measurement on NpHR point mutants for the suggested residues, we confirmed their importance in the Cl- uptake process. In particular, we found the mutation at Ala165 position, located at the trimer interface, to an amino acid with bulky sidechain (A165V) significantly perturbs the late photocycle and disrupts its trimeric assembly in the Cl--free state as well as during the ion-pumping cycle under the photo-irradiated condition. This strongly suggested an outward movement of helix D at EC part, disrupting the trimer integrity. Together with the spectroscopic data and known NpHR crystal structures, we proposed a model that this helix movement is required for creating the Cl- entrance path on the extracellular surface of the protein and is crucial to the Cl- uptake process.
Collapse
Affiliation(s)
- Xin Zhang
- Institute for Protein Research, Osaka University, Japan
| | - Hajime Tamaki
- Institute for Protein Research, Osaka University, Japan
| | | | | | - Yoh Matsuki
- Institute for Protein Research, Osaka University, Japan; Center for Quantum Information and Quantum Biology, Osaka University, Japan.
| |
Collapse
|
2
|
Oppermann J, Rozenberg A, Fabrin T, González-Cabrera C, Parker R, Béjà O, Prigge M, Hegemann P. Robust optogenetic inhibition with red-light-sensitive anion-conducting channelrhodopsins. eLife 2024; 12:RP90100. [PMID: 39401075 PMCID: PMC11473104 DOI: 10.7554/elife.90100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Channelrhodopsins (ChRs) are light-gated ion channels widely used to optically activate or silence selected electrogenic cells, such as individual brain neurons. Here, we describe identifying and characterizing a set of anion-conducting ChRs (ACRs) from diverse taxa and representing various branches of the ChR phylogenetic tree. The Mantoniella squamata ACR (MsACR1) showed high sensitivity to yellow-green light (λmax at 555 nm) and was further engineered for optogenetic applications. A single amino-acid substitution that mimicked red-light-sensitive rhodopsins like Chrimson shifted the photosensitivity 20 nm toward red light and accelerated photocurrent kinetics. Hence, it was named red and accelerated ACR, raACR. Both wild-type and mutant are capable optical silencers at low light intensities in mouse neurons in vitro and in vivo, while raACR offers a higher temporal resolution.
Collapse
Affiliation(s)
- Johannes Oppermann
- Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu BerlinBerlinGermany
| | - Andrey Rozenberg
- Faculty of Biology, Technion – Israel Institute of TechnologyHaifaIsrael
| | - Thomaz Fabrin
- Research Group Neuromodulatory Networks, Leibniz Institute for NeurobiologyMagdeburgGermany
| | - Cristian González-Cabrera
- Research Group Neuromodulatory Networks, Leibniz Institute for NeurobiologyMagdeburgGermany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Rafael Parker
- Research Group Neuromodulatory Networks, Leibniz Institute for NeurobiologyMagdeburgGermany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Oded Béjà
- Faculty of Biology, Technion – Israel Institute of TechnologyHaifaIsrael
| | - Matthias Prigge
- Research Group Neuromodulatory Networks, Leibniz Institute for NeurobiologyMagdeburgGermany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseUnited States
- Center for Behavioral Brain Sciences, CBBSMagdeburgGermany
| | - Peter Hegemann
- Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu BerlinBerlinGermany
| |
Collapse
|
3
|
Shikakura T, Cheng C, Hasegawa T, Hayashi S. Exploring Protonation State, Ion Binding, and Photoactivated Channel Opening of an Anion Channelrhodopsin by Molecular Simulations. J Phys Chem B 2024; 128:8613-8627. [PMID: 39207723 DOI: 10.1021/acs.jpcb.4c03216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Channelrhodopsins are light-gated ion channels with a retinal chromophore found in microbes and are widely used in optogenetics, a field of neuroscience that utilizes light to regulate neuronal activity. GtACR1, an anion conducting channelrhodopsin derived from Guillardia theta, has attracted attention for its application as a neuronal silencer in optogenetics because of its high conductivity and selectivity. However, atomistic mechanisms of channel photoactivation and ion conduction have not yet been elucidated. In the present study, we investigated the molecular characteristics of GtACR1 and its photoactivation processes by molecular simulations. The QM/MM RWFE-SCF method which combines highly accurate quantum chemistry calculations with long-time molecular dynamics (MD) simulations were used to model protein structures of the wild-type and mutants with different protonation states of key groups and to calculate absorption energies for verification of the models. The QM/MM modeling together with MD simulations of free-energy calculations favors protonation of a key counterion carboxyl group of Asp234 with a strong binding of a chloride ion in the extracellular pocket in the dark state. A channel open state was also successfully modeled by the QM/MM RWFE-SCF free-energy optimizations, providing atomistic insights into the channel activation mechanism.
Collapse
Affiliation(s)
- Takafumi Shikakura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Cheng Cheng
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Taisuke Hasegawa
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
4
|
Bertalan É, Konno M, Del Carmen Marín M, Bagherzadeh R, Nagata T, Brown L, Inoue K, Bondar AN. Hydrogen-Bonding and Hydrophobic Interaction Networks as Structural Determinants of Microbial Rhodopsin Function. J Phys Chem B 2024; 128:7407-7426. [PMID: 39024507 DOI: 10.1021/acs.jpcb.4c02946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Microbial pump rhodopsins are highly versatile light-driven membrane proteins that couple protein conformational dynamics with ion translocation across the cell membranes. Understanding how microbial pump rhodopsins use specific amino acid residues at key functional sites to control ion selectivity and ion pumping direction is of general interest for membrane transporters, and could guide site-directed mutagenesis for optogenetics applications. To enable direct comparisons between proteins with different sequences we implement, for the first time, a unique numbering scheme for the microbial pump rhodopsin residues, NS-mrho. We use NS-mrho to show that distinct microbial pump rhodopsins typically have hydrogen-bond networks that are less conserved than anticipated from the amino acid residue conservation, whereas their hydrophobic interaction networks are largely conserved. To illustrate the role of the hydrogen-bond networks as structural elements that determine the functionality of microbial pump rhodopsins, we performed experiments, atomic-level simulations, and hydrogen bond network analyses on GR, the outward proton pump from Gloeobacter violaceus, and KR2, the outward sodium pump from Krokinobacter eikastus. The experiments indicate that multiple mutations that recover KR2 amino acid residues in GR not only fail to convert it into a sodium pump, but completely inactivate GR by abolishing photoisomerization of the retinal chromophore. This observation could be attributed to the drastically altered hydrogen-bond interaction network identified with simulations and network analyses. Taken together, our findings suggest that functional specificity could be encoded in the collective hydrogen-bond network of microbial pump rhodopsins.
Collapse
Affiliation(s)
- Éva Bertalan
- Department of Mathematics and Natural Sciences, RWTH Aachen University, Templergraben 59, 52062 Aachen, Germany
| | - Masae Konno
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwano-ha, Kashiwa 277-8581, Chiba, Japan
| | - María Del Carmen Marín
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwano-ha, Kashiwa 277-8581, Chiba, Japan
| | - Reza Bagherzadeh
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwano-ha, Kashiwa 277-8581, Chiba, Japan
| | - Takashi Nagata
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwano-ha, Kashiwa 277-8581, Chiba, Japan
| | - Leonid Brown
- Department of Physics, University of Guelph, 488 Gordon Street, Guelph, Ontario N1G 2W1, Canada
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwano-ha, Kashiwa 277-8581, Chiba, Japan
| | - Ana-Nicoleta Bondar
- Institute of Computational Biomedicine, Forschungszentrum Jülich, IAS-5/INM-9, Wilhelm-Johnen Straße, 5428 Jülich, Germany
- Faculty of Physics, University of Bucharest, Atomiştilor 405, 077125 Măgurele, Romania
| |
Collapse
|
5
|
Sela M, Church JR, Schapiro I, Schneidman-Duhovny D. RhoMax: Computational Prediction of Rhodopsin Absorption Maxima Using Geometric Deep Learning. J Chem Inf Model 2024; 64:4630-4639. [PMID: 38829021 PMCID: PMC11200256 DOI: 10.1021/acs.jcim.4c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
Microbial rhodopsins (MRs) are a diverse and abundant family of photoactive membrane proteins that serve as model systems for biophysical techniques. Optogenetics utilizes genetic engineering to insert specialized proteins into specific neurons or brain regions, allowing for manipulation of their activity through light and enabling the mapping and control of specific brain areas in living organisms. The obstacle of optogenetics lies in the fact that light has a limited ability to penetrate biological tissues, particularly blue light in the visible spectrum. Despite this challenge, most optogenetic systems rely on blue light due to the scarcity of red-shifted opsins. Finding additional red-shifted rhodopsins would represent a major breakthrough in overcoming the challenge of limited light penetration in optogenetics. However, determining the wavelength absorption maxima for rhodopsins based on their protein sequence is a significant hurdle. Current experimental methods are time-consuming, while computational methods lack accuracy. The paper introduces a new computational approach called RhoMax that utilizes structure-based geometric deep learning to predict the absorption wavelength of rhodopsins solely based on their sequences. The method takes advantage of AlphaFold2 for accurate modeling of rhodopsin structures. Once trained on a balanced train set, RhoMax rapidly and precisely predicted the maximum absorption wavelength of more than half of the sequences in our test set with an accuracy of 0.03 eV. By leveraging computational methods for absorption maxima determination, we can drastically reduce the time needed for designing new red-shifted microbial rhodopsins, thereby facilitating advances in the field of optogenetics.
Collapse
Affiliation(s)
- Meitar Sela
- The
Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Jonathan R. Church
- Fritz
Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Igor Schapiro
- Fritz
Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Dina Schneidman-Duhovny
- The
Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
6
|
Di Prima D, Reinholdt P, Kongsted J. Color Tuning in Bovine Rhodopsin through Polarizable Embedding. J Phys Chem B 2024. [PMID: 38489248 DOI: 10.1021/acs.jpcb.3c07891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Bovine rhodopsin is among the most studied proteins in the rhodopsin family. Its primary activation mechanism is the photoisomerization of 11-cis retinal, triggered by the absorption of a UV-visible photon. Different mutants of the same rhodopsin show different absorption wavelengths due to the influence of the specific amino acid residues forming the cavity in which the retinal chromophore is embedded, and rhodopsins activated at different wavelengths are, for example, exploited in the field of optogenetics. In this letter, we present a procedure for systematically investigating color tuning in models of bovine rhodopsin and a set of its mutants embedded in a membrane bilayer. Vertical excitation energy calculations were carried out with the polarizable embedding potential for describing the environment surrounding the chromophore. We show that polarizable embedding outperformed regular electrostatic embedding in determining both the vertical excitation energies and associated oscillator strengths of the systems studied.
Collapse
Affiliation(s)
- Duccio Di Prima
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| |
Collapse
|
7
|
Cárdenas G, Ledentu V, Huix-Rotllant M, Olivucci M, Ferré N. Automatic Rhodopsin Modeling with Multiple Protonation Microstates. J Phys Chem A 2023; 127:9365-9380. [PMID: 37877699 DOI: 10.1021/acs.jpca.3c05413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Automatic Rhodopsin Modeling (ARM) is a simulation protocol providing QM/MM models of rhodopsins capable of reproducing experimental electronic absorption and emission trends. Currently, ARM is restricted to a single protonation microstate for each rhodopsin model. Herein, we incorporate an extension of the minimal electrostatic model (MEM) into the ARM protocol to account for all relevant protonation microstates at a given pH. The new ARM+MEM protocol determines the most important microstates contributing to the description of the absorption spectrum. As a test case, we have applied this methodology to simulate the pH-dependent absorption spectrum of a toy model, showing that the single-microstate picture breaks down at certain pH values. Subsequently, we applied ARM+MEM toAnabaenasensory rhodopsin, confirming an improved description of its absorption spectrum when the titration of several key residues is considered.
Collapse
Affiliation(s)
| | | | | | - Massimo Olivucci
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100 Siena, Italy
| | - Nicolas Ferré
- Aix-Marseille Univ, CNRS, ICR, 13013 Marseille, France
| |
Collapse
|
8
|
Tajima S, Kim YS, Fukuda M, Jo Y, Wang PY, Paggi JM, Inoue M, Byrne EFX, Kishi KE, Nakamura S, Ramakrishnan C, Takaramoto S, Nagata T, Konno M, Sugiura M, Katayama K, Matsui TE, Yamashita K, Kim S, Ikeda H, Kim J, Kandori H, Dror RO, Inoue K, Deisseroth K, Kato HE. Structural basis for ion selectivity in potassium-selective channelrhodopsins. Cell 2023; 186:4325-4344.e26. [PMID: 37652010 PMCID: PMC7615185 DOI: 10.1016/j.cell.2023.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/11/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
KCR channelrhodopsins (K+-selective light-gated ion channels) have received attention as potential inhibitory optogenetic tools but more broadly pose a fundamental mystery regarding how their K+ selectivity is achieved. Here, we present 2.5-2.7 Å cryo-electron microscopy structures of HcKCR1 and HcKCR2 and of a structure-guided mutant with enhanced K+ selectivity. Structural, electrophysiological, computational, spectroscopic, and biochemical analyses reveal a distinctive mechanism for K+ selectivity; rather than forming the symmetrical filter of canonical K+ channels achieving both selectivity and dehydration, instead, three extracellular-vestibule residues within each monomer form a flexible asymmetric selectivity gate, while a distinct dehydration pathway extends intracellularly. Structural comparisons reveal a retinal-binding pocket that induces retinal rotation (accounting for HcKCR1/HcKCR2 spectral differences), and design of corresponding KCR variants with increased K+ selectivity (KALI-1/KALI-2) provides key advantages for optogenetic inhibition in vitro and in vivo. Thus, discovery of a mechanism for ion-channel K+ selectivity also provides a framework for next-generation optogenetics.
Collapse
Affiliation(s)
- Seiya Tajima
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan
| | - Yoon Seok Kim
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Masahiro Fukuda
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan
| | - YoungJu Jo
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Peter Y Wang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Joseph M Paggi
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Masatoshi Inoue
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Eamon F X Byrne
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Koichiro E Kishi
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan
| | - Seiwa Nakamura
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan
| | | | - Shunki Takaramoto
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan
| | - Takashi Nagata
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan
| | - Masae Konno
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Masahiro Sugiura
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Japan
| | - Toshiki E Matsui
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan
| | - Keitaro Yamashita
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Suhyang Kim
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan
| | - Hisako Ikeda
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan
| | - Jaeah Kim
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Japan
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA; CNC Program, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| | - Hideaki E Kato
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan; FOREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| |
Collapse
|
9
|
Nishikawa K, Kuroiwa R, Tamogami J, Unno M, Fujisawa T. Raman Optical Activity of Retinal Chromophore in Sensory Rhodopsin II. J Phys Chem B 2023; 127:7244-7250. [PMID: 37556781 DOI: 10.1021/acs.jpcb.3c02391] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Raman optical activity (ROA) spectroscopy was used to study the conformation of the retinal chromophore in sensory rhodopsin II (SRII), which is a blue-green light sensor of microbes. The ROA spectrum consisted of the negative vibrational bands of the chromophore, whose relative intensities are similar to those of the parent Raman spectrum. This spectral feature was explained by the left-handed helical twist of the retinal chromophore on the basis of quantum chemical calculations. On the other hand, we found that the chromophore conformation based on the crystal structures of SRII has a right-handed helical twist, which does not agree with the observation. This specific result suggests that the consistency with chiro-optical properties can be a key criterion for the accurate prediction and/or evaluation of chromophore conformation in retinal-binding proteins.
Collapse
Affiliation(s)
- Kouhei Nishikawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Ryosuke Kuroiwa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Jun Tamogami
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| |
Collapse
|
10
|
Kojima K, Kawanishi S, Nishimura Y, Hasegawa M, Nakao S, Nagata Y, Yoshizawa S, Sudo Y. A blue-shifted anion channelrhodopsin from the Colpodellida alga Vitrella brassicaformis. Sci Rep 2023; 13:6974. [PMID: 37117398 PMCID: PMC10147648 DOI: 10.1038/s41598-023-34125-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023] Open
Abstract
Microbial rhodopsins, a family of photoreceptive membrane proteins containing the chromophore retinal, show a variety of light-dependent molecular functions. Channelrhodopsins work as light-gated ion channels and are widely utilized for optogenetics, which is a method for controlling neural activities by light. Since two cation channelrhodopsins were identified from the chlorophyte alga Chlamydomonas reinhardtii, recent advances in genomic research have revealed a wide variety of channelrhodopsins including anion channelrhodopsins (ACRs), describing their highly diversified molecular properties (e.g., spectral sensitivity, kinetics and ion selectivity). Here, we report two channelrhodopsin-like rhodopsins from the Colpodellida alga Vitrella brassicaformis, which are phylogenetically distinct from the known channelrhodopsins. Spectroscopic and electrophysiological analyses indicated that these rhodopsins are green- and blue-sensitive pigments (λmax = ~ 550 and ~ 440 nm) that exhibit light-dependent ion channeling activities. Detailed electrophysiological analysis revealed that one of them works as a monovalent anion (Cl-, Br- and NO3-) channel and we named it V. brassicaformis anion channelrhodopsin-2, VbACR2. Importantly, the absorption maximum of VbACR2 (~ 440 nm) is blue-shifted among the known ACRs. Thus, we identified the new blue-shifted ACR, which leads to the expansion of the molecular diversity of ACRs.
Collapse
Affiliation(s)
- Keiichi Kojima
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan.
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan.
| | - Shiho Kawanishi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Yosuke Nishimura
- Research Center for Bioscience and Nanoscience (CeBN), Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa, 237-0061, Japan
| | - Masumi Hasegawa
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa, 237-0061, Japan
| | - Shin Nakao
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Yuya Nagata
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
| | - Yuki Sudo
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan.
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
11
|
Kishi KE, Kato HE. Pump-like channelrhodopsins: Not just bridging the gap between ion pumps and ion channels. Curr Opin Struct Biol 2023; 79:102562. [PMID: 36871323 DOI: 10.1016/j.sbi.2023.102562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 03/06/2023]
Abstract
Channelrhodopsins are microbial rhodopsins that work as light-gated ion channels. Their importance has become increasingly recognized due to their ability to control the membrane potential of specific cells in a light-dependent manner. This technology, termed optogenetics, has revolutionized neuroscience, and numerous channelrhodopsin variants have been isolated or engineered to expand the utility of optogenetics. Pump-like channelrhodopsins (PLCRs), one of the recently discovered channelrhodopsin subfamilies, have attracted broad attention due to their high sequence similarity to ion-pumping rhodopsins and their distinct properties, such as high light sensitivity and ion selectivity. In this review, we summarize the current understanding of the structure-function relationships of PLCRs and discuss the challenges and opportunities of channelrhodopsin research.
Collapse
Affiliation(s)
- Koichiro E Kishi
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan. https://twitter.com/K_E_Kishi
| | - Hideaki E Kato
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan; FOREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| |
Collapse
|
12
|
Hatakeyama A, Sugano E, Sayama T, Watanabe Y, Suzuki T, Tabata K, Endo Y, Sakajiri T, Fukuda T, Ozaki T, Tomita H. Properties of a Single Amino Acid Residue in the Third Transmembrane Domain Determine the Kinetics of Ambient Light-Sensitive Channelrhodopsin. Int J Mol Sci 2023; 24:ijms24055054. [PMID: 36902480 PMCID: PMC10003734 DOI: 10.3390/ijms24055054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Channelrhodopsins have been utilized in gene therapy to restore vision in patients with retinitis pigmentosa and their channel kinetics are an important factor to consider in such applications. We investigated the channel kinetics of ComV1 variants with different amino acid residues at the 172nd position. Patch clamp methods were used to record the photocurrents induced by stimuli from diodes in HEK293 cells transfected with plasmid vectors. The channel kinetics (τon and τoff) were considerably altered by the replacement of the 172nd amino acid and was dependent on the amino acid characteristics. The size of amino acids at this position correlated with τon and decay, whereas the solubility correlated with τon and τoff. Molecular dynamic simulation indicated that the ion tunnel constructed by H172, E121, and R306 widened due to H172A variant, whereas the interaction between A172 and the surrounding amino acids weakened compared with H172. The bottleneck radius of the ion gate constructed with the 172nd amino acid affected the photocurrent and channel kinetics. The 172nd amino acid in ComV1 is a key residue for determining channel kinetics as its properties alter the radius of the ion gate. Our findings can be used to improve the channel kinetics of channelrhodopsins.
Collapse
|
13
|
Fan LZ, Kim DK, Jennings JH, Tian H, Wang PY, Ramakrishnan C, Randles S, Sun Y, Thadhani E, Kim YS, Quirin S, Giocomo L, Cohen AE, Deisseroth K. All-optical physiology resolves a synaptic basis for behavioral timescale plasticity. Cell 2023; 186:543-559.e19. [PMID: 36669484 PMCID: PMC10327443 DOI: 10.1016/j.cell.2022.12.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 10/19/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023]
Abstract
Learning has been associated with modifications of synaptic and circuit properties, but the precise changes storing information in mammals have remained largely unclear. We combined genetically targeted voltage imaging with targeted optogenetic activation and silencing of pre- and post-synaptic neurons to study the mechanisms underlying hippocampal behavioral timescale plasticity. In mice navigating a virtual-reality environment, targeted optogenetic activation of individual CA1 cells at specific places induced stable representations of these places in the targeted cells. Optical elicitation, recording, and modulation of synaptic transmission in behaving mice revealed that activity in presynaptic CA2/3 cells was required for the induction of plasticity in CA1 and, furthermore, that during induction of these place fields in single CA1 cells, synaptic input from CA2/3 onto these same cells was potentiated. These results reveal synaptic implementation of hippocampal behavioral timescale plasticity and define a methodology to resolve synaptic plasticity during learning and memory in behaving mammals.
Collapse
Affiliation(s)
- Linlin Z Fan
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Doo Kyung Kim
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Joshua H Jennings
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - He Tian
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Peter Y Wang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Sawyer Randles
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Yanjun Sun
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Elina Thadhani
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Yoon Seok Kim
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sean Quirin
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Lisa Giocomo
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA; Department of Physics, Harvard University, Cambridge, MA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford, CA, USA.
| |
Collapse
|
14
|
Bi X, Beck C, Gong Y. A kinetic-optimized CoChR variant with enhanced high-frequency spiking fidelity. Biophys J 2022; 121:4166-4178. [PMID: 36151721 PMCID: PMC9675021 DOI: 10.1016/j.bpj.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/09/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022] Open
Abstract
Channelrhodopsins are a promising toolset for noninvasive optical manipulation of genetically identifiable neuron populations. Existing channelrhodopsins have generally suffered from a trade-off between two desired properties: fast channel kinetics and large photocurrent. Such a trade-off hinders spatiotemporally precise optogenetic activation during both one-photon and two-photon photostimulation. Furthermore, the simultaneous use of spectrally separated genetically encoded indicators and channelrhodopsins has generally suffered from non-negligible crosstalk in photocurrent or fluorescence. These limitations have hindered crosstalk-free dual-channel experiments needed to establish relationships between multiple neural populations. Recent large-scale transcriptome sequencing revealed one potent optogenetic actuator, the channelrhodopsin from species Chloromonas oogama (CoChR), which possessed high cyan light-driven photocurrent but slow channel kinetics. We rationally designed and engineered a kinetic-optimized CoChR variant that was faster than native CoChR while maintaining large photocurrent amplitude. When expressed in cultured hippocampal pyramidal neurons, our CoChR variant improved high-frequency spiking fidelity under one-photon illumination. Our CoChR variant's blue-shifted excitation spectrum enabled simultaneous cyan photostimulation and red calcium imaging with negligible photocurrent crosstalk.
Collapse
Affiliation(s)
- Xiaoke Bi
- Department of Biomedical Engineering, Duke University, Durham, North Carolina.
| | - Connor Beck
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Yiyang Gong
- Department of Biomedical Engineering, Duke University, Durham, North Carolina.
| |
Collapse
|
15
|
Astashkin R, Kovalev K, Bukhdruker S, Vaganova S, Kuzmin A, Alekseev A, Balandin T, Zabelskii D, Gushchin I, Royant A, Volkov D, Bourenkov G, Koonin E, Engelhard M, Bamberg E, Gordeliy V. Structural insights into light-driven anion pumping in cyanobacteria. Nat Commun 2022; 13:6460. [PMID: 36309497 PMCID: PMC9617919 DOI: 10.1038/s41467-022-34019-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 10/11/2022] [Indexed: 12/25/2022] Open
Abstract
Transmembrane ion transport is a key process in living cells. Active transport of ions is carried out by various ion transporters including microbial rhodopsins (MRs). MRs perform diverse functions such as active and passive ion transport, photo-sensing, and others. In particular, MRs can pump various monovalent ions like Na+, K+, Cl-, I-, NO3-. The only characterized MR proposed to pump sulfate in addition to halides belongs to the cyanobacterium Synechocystis sp. PCC 7509 and is named Synechocystis halorhodopsin (SyHR). The structural study of SyHR may help to understand what makes an MR pump divalent ions. Here we present the crystal structure of SyHR in the ground state, the structure of its sulfate-bound form as well as two photoreaction intermediates, the K and O states. These data reveal the molecular origin of the unique properties of the protein (exceptionally strong chloride binding and proposed pumping of divalent anions) and sheds light on the mechanism of anion release and uptake in cyanobacterial halorhodopsins. The unique properties of SyHR highlight its potential as an optogenetics tool and may help engineer different types of anion pumps with applications in optogenetics.
Collapse
Affiliation(s)
- R Astashkin
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - K Kovalev
- European Molecular Biology Laboratory, Hamburg unit c/o DESY, Hamburg, Germany
| | - S Bukhdruker
- European Synchrotron Radiation Facility Grenoble, Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - S Vaganova
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - A Kuzmin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - A Alekseev
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - T Balandin
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | | | - I Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - A Royant
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
- European Synchrotron Radiation Facility Grenoble, Grenoble, France
| | - D Volkov
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - G Bourenkov
- European Molecular Biology Laboratory, Hamburg unit c/o DESY, Hamburg, Germany
| | - E Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - M Engelhard
- Department Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| | - E Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - V Gordeliy
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France.
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany.
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
16
|
Tucker K, Sridharan S, Adesnik H, Brohawn SG. Cryo-EM structures of the channelrhodopsin ChRmine in lipid nanodiscs. Nat Commun 2022; 13:4842. [PMID: 35977941 PMCID: PMC9385719 DOI: 10.1038/s41467-022-32441-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/01/2022] [Indexed: 12/03/2022] Open
Abstract
Microbial channelrhodopsins are light-gated ion channels widely used for optogenetic manipulation of neuronal activity. ChRmine is a bacteriorhodopsin-like cation channelrhodopsin (BCCR) more closely related to ion pump rhodopsins than other channelrhodopsins. ChRmine displays unique properties favorable for optogenetics including high light sensitivity, a broad, red-shifted activation spectrum, cation selectivity, and large photocurrents, while its slow closing kinetics impedes some applications. The structural basis for ChRmine function, or that of any other BCCR, is unknown. Here, we present cryo-EM structures of ChRmine in lipid nanodiscs in apo (opsin) and retinal-bound (rhodopsin) forms. The structures reveal an unprecedented trimeric architecture with a lipid filled central pore. Large electronegative cavities on either side of the membrane facilitate high conductance and selectivity for cations over protons. The retinal binding pocket structure suggests channel properties could be tuned with mutations and we identify ChRmine variants with ten-fold decreased and two-fold increased closing rates. A T119A mutant shows favorable properties relative to wild-type and previously reported ChRmine variants for optogenetics. These results provide insight into structural features that generate an ultra-potent microbial opsin and provide a platform for rational engineering of channelrhodopsins with improved properties that could expand the scale, depth, and precision of optogenetic experiments.
Collapse
Affiliation(s)
- Kyle Tucker
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA, 94720, USA
| | - Savitha Sridharan
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Hillel Adesnik
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA.
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA.
| | - Stephen G Brohawn
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA.
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA.
- California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
17
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
18
|
Archaeal Lipids Regulating the Trimeric Structure Dynamics of Bacteriorhodopsin for Efficient Proton Release and Uptake. Int J Mol Sci 2022; 23:ijms23136913. [PMID: 35805918 PMCID: PMC9278134 DOI: 10.3390/ijms23136913] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
S-TGA-1 and PGP-Me are native archaeal lipids associated with the bacteriorhodopsin (bR) trimer and contribute to protein stabilization and native dynamics for proton transfer. However, little is known about the underlying molecular mechanism of how these lipids regulate bR trimerization and efficient photocycling. Here, we explored the specific binding of S-TGA-1 and PGP-Me with the bR trimer and elucidated how specific interactions modulate the bR trimeric structure and proton release and uptake using long-term atomistic molecular dynamic simulations. Our results showed that S-TGA-1 and PGP-Me are essential for stabilizing the bR trimer and maintaining the coherent conformational dynamics necessary for proton transfer. The specific binding of S-TGA-1 with W80 and K129 regulates proton release on the extracellular surface by forming a “Glu-shared” model. The interaction of PGP-Me with K40 ensures proton uptake by accommodating the conformation of the helices to recruit enough water molecules on the cytoplasmic side. The present study results could fill in the theoretical gaps of studies on the functional role of archaeal lipids and could provide a reference for other membrane proteins containing similar archaeal lipids.
Collapse
|
19
|
Swanson JL, Chin PS, Romero JM, Srivastava S, Ortiz-Guzman J, Hunt PJ, Arenkiel BR. Advancements in the Quest to Map, Monitor, and Manipulate Neural Circuitry. Front Neural Circuits 2022; 16:886302. [PMID: 35719420 PMCID: PMC9204427 DOI: 10.3389/fncir.2022.886302] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
Neural circuits and the cells that comprise them represent the functional units of the brain. Circuits relay and process sensory information, maintain homeostasis, drive behaviors, and facilitate cognitive functions such as learning and memory. Creating a functionally-precise map of the mammalian brain requires anatomically tracing neural circuits, monitoring their activity patterns, and manipulating their activity to infer function. Advancements in cell-type-specific genetic tools allow interrogation of neural circuits with increased precision. This review provides a broad overview of recombination-based and activity-driven genetic targeting approaches, contemporary viral tracing strategies, electrophysiological recording methods, newly developed calcium, and voltage indicators, and neurotransmitter/neuropeptide biosensors currently being used to investigate circuit architecture and function. Finally, it discusses methods for acute or chronic manipulation of neural activity, including genetically-targeted cellular ablation, optogenetics, chemogenetics, and over-expression of ion channels. With this ever-evolving genetic toolbox, scientists are continuing to probe neural circuits with increasing resolution, elucidating the structure and function of the incredibly complex mammalian brain.
Collapse
Affiliation(s)
- Jessica L. Swanson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Pey-Shyuan Chin
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Juan M. Romero
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Snigdha Srivastava
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Joshua Ortiz-Guzman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Patrick J. Hunt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
20
|
Beck C, Gong Y. Engineering rhodopsins' activation spectra using a FRET-based approach. Biophys J 2022; 121:1765-1776. [PMID: 35331688 PMCID: PMC9117881 DOI: 10.1016/j.bpj.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/01/2021] [Accepted: 03/18/2022] [Indexed: 11/16/2022] Open
Abstract
In the past decade, optogenetics has become a nearly ubiquitous tool in neuroscience because it enables researchers to manipulate neural activity with high temporal resolution and genetic specificity. Rational engineering of optogenetic tools has produced channelrhodopsins with a wide range of kinetics and photocurrent magnitude. Genome mining for previously unidentified species of rhodopsin has uncovered optogenetic tools with diverse spectral sensitivities. However, rational engineering of a rhodopsin has thus far been unable to re-engineer spectral sensitivity while preserving full photocurrent. Here, we developed and characterized ChroME-mTFP, a rhodopsin-fluorescent protein fusion that drives photocurrent through Förster resonance energy transfer (FRET). This FRET-opsin mechanism artificially broadened the activation spectrum of the blue-green-light-activated rhodopsin ChroME by approximately 50 nm, driving higher photocurrent at blue-shifted excitation wavelengths without sacrificing kinetics. The excitation spectra's increase at short wavelengths enabled us to optogenetically excite neurons at lower excitation powers with shorter wavelengths of light. Increasing this rhodopsin's sensitivity to shorter, bluer wavelengths pushes it toward dual-channel, crosstalk-free optogenetic stimulation and imaging with green-light-activated sensors. However, this iteration of FRET-opsin suffers from some imaging-light-induced photocurrent crosstalk from green or yellow light due to maintained, low-efficiency excitation at longer wavelengths.
Collapse
Affiliation(s)
- Connor Beck
- Department of Biomedical Engineering, Duke University, Durham, North Carolina.
| | - Yiyang Gong
- Department of Biomedical Engineering, Duke University, Durham, North Carolina.
| |
Collapse
|
21
|
Taguchi M, Oyama R, Kaneso M, Hayashi S. Hybrid QM/MM Free-Energy Evaluation of Drug-Resistant Mutational Effect on the Binding of an Inhibitor Indinavir to HIV-1 Protease. J Chem Inf Model 2022; 62:1328-1344. [PMID: 35212226 DOI: 10.1021/acs.jcim.1c01193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A human immunodeficiency virus-1 (HIV-1) protease is a homodimeric aspartic protease essential for the replication of HIV. The HIV-1 protease is a target protein in drug discovery for antiretroviral therapy, and various inhibitor molecules of transition state analogues have been developed. However, serious drug-resistant mutants have emerged. For understanding the molecular mechanism of the drug resistance, an accurate examination of the impacts of the mutations on ligand binding and enzymatic activity is necessary. Here, we present a molecular simulation study on the ligand binding of indinavir, a potent transition state analogue inhibitor, to the wild-type protein and a V82T/I84V drug-resistant mutant of the HIV-1 protease. We employed a hybrid ab initio quantum mechanical/molecular mechanical (QM/MM) free-energy optimization technique which combines a highly accurate QM description of the ligand molecule and its interaction with statistically ample conformational sampling of the MM protein environment by long-time molecular dynamics simulations. Through the free-energy calculations of protonation states of catalytic groups at the binding pocket and of the ligand-binding affinity changes upon the mutations, we successfully reproduced the experimentally observed significant reduction of the binding affinity upon the drug-resistant mutations and elucidated the underlying molecular mechanism. The present study opens the way for understanding the molecular mechanism of drug resistance through the direct quantitative comparison of ligand binding and enzymatic reaction with the same accuracy.
Collapse
Affiliation(s)
- Masahiko Taguchi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.,Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - Ryo Oyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masahiro Kaneso
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
22
|
Kishi KE, Kim YS, Fukuda M, Inoue M, Kusakizako T, Wang PY, Ramakrishnan C, Byrne EFX, Thadhani E, Paggi JM, Matsui TE, Yamashita K, Nagata T, Konno M, Quirin S, Lo M, Benster T, Uemura T, Liu K, Shibata M, Nomura N, Iwata S, Nureki O, Dror RO, Inoue K, Deisseroth K, Kato HE. Structural basis for channel conduction in the pump-like channelrhodopsin ChRmine. Cell 2022; 185:672-689.e23. [PMID: 35114111 PMCID: PMC7612760 DOI: 10.1016/j.cell.2022.01.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/13/2021] [Accepted: 01/11/2022] [Indexed: 12/24/2022]
Abstract
ChRmine, a recently discovered pump-like cation-conducting channelrhodopsin, exhibits puzzling properties (large photocurrents, red-shifted spectrum, and extreme light sensitivity) that have created new opportunities in optogenetics. ChRmine and its homologs function as ion channels but, by primary sequence, more closely resemble ion pump rhodopsins; mechanisms for passive channel conduction in this family have remained mysterious. Here, we present the 2.0 Å resolution cryo-EM structure of ChRmine, revealing architectural features atypical for channelrhodopsins: trimeric assembly, a short transmembrane-helix 3, a twisting extracellular-loop 1, large vestibules within the monomer, and an opening at the trimer interface. We applied this structure to design three proteins (rsChRmine and hsChRmine, conferring further red-shifted and high-speed properties, respectively, and frChRmine, combining faster and more red-shifted performance) suitable for fundamental neuroscience opportunities. These results illuminate the conduction and gating of pump-like channelrhodopsins and point the way toward further structure-guided creation of channelrhodopsins for applications across biology.
Collapse
Affiliation(s)
- Koichiro E Kishi
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan
| | - Yoon Seok Kim
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Masahiro Fukuda
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan
| | - Masatoshi Inoue
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Tsukasa Kusakizako
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Peter Y Wang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Eamon F X Byrne
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Elina Thadhani
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Joseph M Paggi
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Toshiki E Matsui
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan
| | - Keitaro Yamashita
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Takashi Nagata
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Masae Konno
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Sean Quirin
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Maisie Lo
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Tyler Benster
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Tomoko Uemura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Sakyo, Japan
| | - Kehong Liu
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Sakyo, Japan
| | - Mikihiro Shibata
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma, Kanazawa, Japan; High-Speed AFM for Biological Application Unit, Institute for Frontier Science Initiative, Kanazawa University, Kakuma, Kanazawa, Japan
| | - Norimichi Nomura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Sakyo, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Sakyo, Japan; RIKEN SPring-8 Center, Kouto, Sayo-cho, Sayo-gun, Hyogo, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Keiichi Inoue
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA; CNC Program, Stanford University, Palo Alto, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| | - Hideaki E Kato
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan; FOREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| |
Collapse
|
23
|
Bondar AN. Mechanisms of long-distance allosteric couplings in proton-binding membrane transporters. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 128:199-239. [PMID: 35034719 DOI: 10.1016/bs.apcsb.2021.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Membrane transporters that use proton binding and proton transfer for function couple local protonation change with changes in protein conformation and water dynamics. Changes of protein conformation might be required to allow transient formation of hydrogen-bond networks that bridge proton donor and acceptor pairs separated by long distances. Inter-helical hydrogen-bond networks adjust rapidly to protonation change, and ensure rapid response of the protein structure and dynamics. Membrane transporters with known three-dimensional structures and proton-binding groups inform on general principles of protonation-coupled protein conformational dynamics. Inter-helical hydrogen bond motifs between proton-binding carboxylate groups and a polar sidechain are observed in unrelated membrane transporters, suggesting common principles of coupling protonation change with protein conformational dynamics.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- University of Bucharest, Faculty of Physics, Măgurele, Romania; Forschungszentrum Jülich, Institute of Computational Biomedicine, Jülich, Germany.
| |
Collapse
|
24
|
Shim JG, Kang NR, Chuon K, Cho SG, Meas S, Jung KH. Mutational analyses identify a single amino acid critical for color tuning in proteorhodopsins. FEBS Lett 2022; 596:784-795. [PMID: 35090057 DOI: 10.1002/1873-3468.14297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022]
Abstract
Microbial rhodopsins are light-activated proteins that contain seven transmembrane alpha-helices. Spectral tuning in microbial rhodopsins is a useful optogenetic tool. In this study, we report a new site that controls spectral tuning. In the proteorhodopsins ISR34 and ISR36, a single amino-acid substitution at Cys189 caused an absorption maximum shift of 44 nm, indicating spectral tuning at a specific site. Comparison of single amino acid substitutions was conducted using photochemical and photobiological approaches. The maximum absorption for red-shift was measured for mutations at positions 189 and 105 in ISR34, both residues being equally important. Structural changes resulting from amino acid substitutions are related to pKa values, pumping activity, and spectral tuning.
Collapse
Affiliation(s)
- Jin-Gon Shim
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, 04107, Korea
| | - Na-Rae Kang
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, 04107, Korea
| | - Kimleng Chuon
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, 04107, Korea
| | - Shin-Gyu Cho
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, 04107, Korea
| | - Seanghun Meas
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, 04107, Korea
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, 04107, Korea
| |
Collapse
|
25
|
Govorunova EG, Sineshchekov OA, Spudich JL. Emerging Diversity of Channelrhodopsins and Their Structure-Function Relationships. Front Cell Neurosci 2022; 15:800313. [PMID: 35140589 PMCID: PMC8818676 DOI: 10.3389/fncel.2021.800313] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cation and anion channelrhodopsins (CCRs and ACRs, respectively) from phototactic algae have become widely used as genetically encoded molecular tools to control cell membrane potential with light. Recent advances in polynucleotide sequencing, especially in environmental samples, have led to identification of hundreds of channelrhodopsin homologs in many phylogenetic lineages, including non-photosynthetic protists. Only a few CCRs and ACRs have been characterized in detail, but there are indications that ion channel function has evolved within the rhodopsin superfamily by convergent routes. The diversity of channelrhodopsins provides an exceptional platform for the study of structure-function evolution in membrane proteins. Here we review the current state of channelrhodopsin research and outline perspectives for its further development.
Collapse
|
26
|
Broser M. Far-Red Absorbing Rhodopsins, Insights From Heterodimeric Rhodopsin-Cyclases. Front Mol Biosci 2022; 8:806922. [PMID: 35127823 PMCID: PMC8815786 DOI: 10.3389/fmolb.2021.806922] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
The recently discovered Rhodopsin-cyclases from Chytridiomycota fungi show completely unexpected properties for microbial rhodopsins. These photoreceptors function exclusively as heterodimers, with the two subunits that have very different retinal chromophores. Among them is the bimodal photoswitchable Neorhodopsin (NeoR), which exhibits a near-infrared absorbing, highly fluorescent state. These are features that have never been described for any retinal photoreceptor. Here these properties are discussed in the context of color-tuning approaches of retinal chromophores, which have been extensively studied since the discovery of the first microbial rhodopsin, bacteriorhodopsin, in 1971 (Oesterhelt et al., Nature New Biology, 1971, 233 (39), 149-152). Further a brief review about the concept of heterodimerization is given, which is widely present in class III cyclases but is unknown for rhodopsins. NIR-sensitive retinal chromophores have greatly expanded our understanding of the spectral range of natural retinal photoreceptors and provide a novel perspective for the development of optogenetic tools.
Collapse
Affiliation(s)
- Matthias Broser
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
27
|
Abstract
Rhodopsins are photoreceptive membrane proteins consisting of a common heptahelical transmembrane architecture that contains a retinal chromophore. Rhodopsin was first discovered in the animal retina in 1876, but a different type of rhodopsin, bacteriorhodopsin, was reported to be present in the cell membrane of an extreme halophilic archaeon, Halobacterium salinarum, 95 years later. Although these findings were made by physiological observation of pigmented tissue and cell bodies, recent progress in genomic and metagenomic analyses has revealed that there are more than 10,000 microbial rhodopsins and 9000 animal rhodopsins with large diversity and tremendous new functionality. In this Cell Science at a Glance article and accompanying poster, we provide an overview of the diversity of functions, structures, color discrimination mechanisms and optogenetic applications of these two rhodopsin families, and will also highlight the third distinctive rhodopsin family, heliorhodopsin.
Collapse
Affiliation(s)
- Takashi Nagata
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan.,PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
28
|
Pro219 is an electrostatic color determinant in the light-driven sodium pump KR2. Commun Biol 2021; 4:1185. [PMID: 34645937 PMCID: PMC8514524 DOI: 10.1038/s42003-021-02684-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 09/19/2021] [Indexed: 11/13/2022] Open
Abstract
Color tuning in animal and microbial rhodopsins has attracted the interest of many researchers, as the color of their common retinal chromophores is modulated by the amino acid residues forming the chromophore cavity. Critical cavity amino acid residues are often called “color switches”, as the rhodopsin color is effectively tuned through their substitution. Well-known color switches are the L/Q and A/TS switches located in the C and G helices of the microbial rhodopsin structure respectively. Recently, we reported on a third G/P switch located in the F helix of the light-driven sodium pumps of KR2 and JsNaR causing substantial spectral red-shifts in the latter with respect to the former. In order to investigate the molecular-level mechanism driving such switching function, here we present an exhaustive mutation, spectroscopic and computational investigation of the P219X mutant set of KR2. To do so, we study the changes in the absorption band of the 19 possible mutants and construct, semi-automatically, the corresponding hybrid quantum mechanics/molecular mechanics models. We found that the P219X feature a red-shifted light absorption with the only exception of P219R. The analysis of the corresponding models indicate that the G/P switch induces red-shifting variations via electrostatic interactions, while replacement-induced chromophore geometrical (steric) distortions play a minor role. However, the same analysis indicates that the P219R blue-shifted variant has a more complex origin involving both electrostatic and steric changes accompanied by protonation state and hydrogen bond networks modifications. These results make it difficult to extract simple rules or formulate theories for predicting how a switch operates without considering the atomistic details and environmental consequences of the side chain replacement. Nakajima, Pedraza-González et al. provide a comprehensive investigation of amino acid mutations at position 219 of the sodium pump rhodopsin, KR2, and their role in the color tuning of the retinal chromophore. They prepared P219X (X= A, C, D, E, F, G, H, I, K, L, M, N, Q, R, S, T, V, W, Y) mutants of KR2, and find that all mutants are red-shifted, except for P219R, highlighting its role as a color determinant in the light-driven pump KR2.
Collapse
|
29
|
Kawamura I, Seki H, Tajima S, Makino Y, Shigeta A, Okitsu T, Wada A, Naito A, Sudo Y. Structure of a retinal chromophore of dark-adapted middle rhodopsin as studied by solid-state nuclear magnetic resonance spectroscopy. Biophys Physicobiol 2021; 18:177-185. [PMID: 34434690 PMCID: PMC8354847 DOI: 10.2142/biophysico.bppb-v18.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/12/2021] [Indexed: 12/01/2022] Open
Abstract
Middle rhodopsin (MR) found from the archaeon Haloquadratum walsbyi is evolutionarily located between two different types of rhodopsins, bacteriorhodopsin (BR) and sensory rhodopsin II (SRII). Some isomers of the chromophore retinal and the photochemical reaction of MR are markedly different from those of BR and SRII. In this study, to obtain the structural information regarding its active center (i.e., retinal), we subjected MR embedded in lipid bilayers to solid-state magic-angle spinning nuclear magnetic resonance (NMR) spectroscopy. The analysis of the isotropic 13C chemical shifts of the retinal chromophore revealed the presence of three types of retinal configurations of dark-adapted MR: (13-trans, 15-anti (all-trans)), (13-cis, 15-syn), and 11-cis isomers. The higher field resonance of the 20-C methyl carbon in the all-trans retinal suggested that Trp182 in MR has an orientation that is different from that in other microbial rhodopsins, owing to the changes in steric hindrance associated with the 20-C methyl group in retinal. 13Cζ signals of Tyr185 in MR for all-trans and 13-cis, 15-syn isomers were discretely observed, representing the difference in the hydrogen bond strength of Tyr185. Further, 15N NMR analysis of the protonated Schiff base corresponding to the all-trans and 13-cis, 15-syn isomers in MR showed a strong electrostatic interaction with the counter ion. Therefore, the resulting structural information exhibited the property of stable retinal conformations of dark-adapted MR.
Collapse
Affiliation(s)
- Izuru Kawamura
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan.,Graduate School of Engineering Science, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Hayato Seki
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Seiya Tajima
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Yoshiteru Makino
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan.,Present address: Graduate School of Medicine, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Arisu Shigeta
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Takashi Okitsu
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Akira Naito
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
30
|
Adam S, Wiebeler C, Schapiro I. Structural Factors Determining the Absorption Spectrum of Channelrhodopsins: A Case Study of the Chimera C1C2. J Chem Theory Comput 2021; 17:6302-6313. [PMID: 34255519 DOI: 10.1021/acs.jctc.1c00160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Channelrhodopsins are photosensitive proteins that trigger flagella motion in single-cell algae and have been successfully utilized in optogenetic applications. In optogenetics, light is used to activate neural cells in living organisms, which can be achieved by exploiting the ion channel signaling of channelrhodopsins. Tailoring channelrhodopsins for such applications includes the tuning of the absorption maximum. In order to establish rational design and to obtain a desired spectral shift, a basic understanding of the absorption spectrum is required. We have studied the chimera C1C2 as a representative of this protein family and the first member with an available crystal structure. For this purpose, we sampled the conformations of C1C2 using quantum mechanical/molecular mechanical molecular dynamics and subjected the resulting snapshots of the trajectory to excitation energy calculations using ADC(2) and simplified time-dependent density functional theory. In contrast to previous reports, we found that different hydrogen-bonding networks-involving the retinal protonated Schiff base, the putative counterions E162 and D292, and water molecules-had only a small impact on the absorption spectrum. However, in the case of deprotonated E162, increasing the distance to the Schiff base hydrogen-bonding partner led to a systematic blue shift. The β-ionone ring rotation was identified as another important contributor. Yet the most important factors were found to be the bond length alternation and bond order alternation that were linearly correlated to the absorption maximum by up to 62 and 82%, respectively. We ascribe this novel insight into the structural basis of the absorption spectrum to our enhanced protein setup that includes membrane embedding as well as long and extensive sampling.
Collapse
Affiliation(s)
- Suliman Adam
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Christian Wiebeler
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
31
|
Abstract
Schizorhodopsins (SzRs), a new rhodopsin family identified in Asgard archaea, are phylogenetically located at an intermediate position between type-1 microbial rhodopsins and heliorhodopsins. SzRs work as light-driven inward H+ pumps as xenorhodopsins in bacteria. Although E81 plays an essential role in inward H+ release, the H+ is not metastably trapped in such a putative H+ acceptor, unlike the other H+ pumps. It remains elusive why SzR exhibits different kinetic behaviors in H+ release. Here, we report the crystal structure of SzR AM_5_00977 at 2.1 Å resolution. The SzR structure superimposes well on that of bacteriorhodopsin rather than heliorhodopsin, suggesting that SzRs are classified with type-1 rhodopsins. The structure-based mutagenesis study demonstrated that the residues N100 and V103 around the β-ionone ring are essential for color tuning in SzRs. The cytoplasmic parts of transmembrane helices 2, 6, and 7 are shorter than those in the other microbial rhodopsins, and thus E81 is located near the cytosol and easily exposed to the solvent by light-induced structural change. We propose a model of untrapped inward H+ release; H+ is released through the water-mediated transport network from the retinal Schiff base to the cytosol by the side of E81. Moreover, most residues on the H+ transport pathway are not conserved between SzRs and xenorhodopsins, suggesting that they have entirely different inward H+ release mechanisms.
Collapse
|
32
|
Specific residues in the cytoplasmic domain modulate photocurrent kinetics of channelrhodopsin from Klebsormidium nitens. Commun Biol 2021; 4:235. [PMID: 33623126 PMCID: PMC7902849 DOI: 10.1038/s42003-021-01755-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/15/2021] [Indexed: 11/24/2022] Open
Abstract
Channelrhodopsins (ChRs) are light-gated ion channels extensively applied as optogenetics tools for manipulating neuronal activity. All currently known ChRs comprise a large cytoplasmic domain, whose function is elusive. Here, we report the cation channel properties of KnChR, one of the photoreceptors from a filamentous terrestrial alga Klebsormidium nitens, and demonstrate that the cytoplasmic domain of KnChR modulates the ion channel properties. KnChR is constituted of a 7-transmembrane domain forming a channel pore, followed by a C-terminus moiety encoding a peptidoglycan binding domain (FimV). Notably, the channel closure rate was affected by the C-terminus moiety. Truncation of the moiety to various lengths prolonged the channel open lifetime by more than 10-fold. Two Arginine residues (R287 and R291) are crucial for altering the photocurrent kinetics. We propose that electrostatic interaction between the rhodopsin domain and the C-terminus domain accelerates the channel kinetics. Additionally, maximal sensitivity was exhibited at 430 and 460 nm, the former making KnChR one of the most blue-shifted ChRs characterized thus far, serving as a novel prototype for studying the molecular mechanism of color tuning of the ChRs. Furthermore, KnChR would expand the optogenetics tool kit, especially for dual light applications when short-wavelength excitation is required. Tashiro et al. describe a new channelrhodopsin variant from a terrestrial algal species and the role of the C-terminal domain in regulatory function. This far-blue-shifted channelrhodopsin may contribute to optogenetic tool research in the future.
Collapse
|
33
|
Cheng C, Hayashi S. Ab Initio Evaluation of the Redox Potential of Cytochrome c. J Chem Theory Comput 2021; 17:1194-1207. [PMID: 33459006 DOI: 10.1021/acs.jctc.0c00889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Various biochemical activities of metabolism and biosynthesis are fulfilled by redox processes with explicit electron exchange, which furnish redox enzymes with high chemical reactivity. However, theoretical investigation of a redox process, which simultaneously involves a complex electronic change at a redox metal center and conformational reorganization of the surrounding protein environment coupled to the electronic change, requires computationally conflicting approaches, highly accurate quantum chemical calculations, and long-time molecular dynamics (MD) simulations, limiting the physicochemical understanding of biological redox processes. Here, we theoretically examined a redox process of cytochrome c by means of a hybrid molecular simulation technique, which enables one to consistently treat the redox center at the ab initio quantum chemistry level of theory and the protein reorganization with long-time MD simulations on the microsecond timescale. The calculations successfully evaluated a large absolute redox potential, 4.34 eV, with errors of only 0.03 to 0.34 eV to the experimental ones without any problem-specific empirical parameters. Through the long-time MD sampling, large and nonlinear reorganization of the protein environment was unveiled and the molecular determinants for the redox potential were identified. The present ab initio approach significantly expands the applicability of theoretical investigation to biological redox systems with more electronically complicated redox centers such as polynuclear transition metal complexes.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
34
|
Structure-Function Relationship of Channelrhodopsins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:35-53. [PMID: 33398806 DOI: 10.1007/978-981-15-8763-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Ion-translocating rhodopsins, especially channelrhodopsins (ChRs), have attracted broad attention as a powerful tool to modulate the membrane potential of cells with light (optogenetics). Because of recent biophysical, spectroscopic, and computational studies, including the structural determination of cation and anion ChRs, our understanding of the molecular mechanism underlying light-gated ion conduction has been greatly advanced. In this chapter, I first describe the background of rhodopsin family proteins including ChR, and how the optogenetics technology has been established from the discovery of first ChR in 2002. I later introduce the recent findings of the structure-function relationship of ChR by comparing the crystal structures of cation and anion ChRs. I further discuss the future goal in the fields of ChR research and optogenetic tool development.
Collapse
|
35
|
Inutsuka A, Ino D, Onaka T. Detection of neuropeptides in vivo and open questions for current and upcoming fluorescent sensors for neuropeptides. Peptides 2021; 136:170456. [PMID: 33245950 DOI: 10.1016/j.peptides.2020.170456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/27/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
During a stress response, various neuropeptides are secreted in a spatiotemporally coordinated way in the brain. For a precise understanding of peptide functions in a stress response, it is important to investigate when and where they are released, how they diffuse, and how they are broken down in the brain. In the past two decades, genetically encoded fluorescent calcium indicators have greatly advanced our knowledge of the functions of specific neuronal activity in regulation of behavioral changes and physiological responses during stress. In addition, various kinds of structural information on G-protein-coupled receptors (GPCRs) for neuropeptides have been revealed. Recently, genetically encoded fluorescent sensors have been developed for detection of neurotransmitters by making use of conformational changes induced by ligand binding. In this review, we summarize the recent and upcoming advances of techniques for detection of neuropeptides and then present several open questions that will be solved by application of recent or upcoming technical advances in detection of neuropeptides in vivo.
Collapse
Affiliation(s)
- Ayumu Inutsuka
- Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| | - Daisuke Ino
- Department of Histology and Cell Biology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Tatsushi Onaka
- Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| |
Collapse
|
36
|
Inoue K. Diversity, Mechanism, and Optogenetic Application of Light-Driven Ion Pump Rhodopsins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:89-126. [PMID: 33398809 DOI: 10.1007/978-981-15-8763-4_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ion-transporting microbial rhodopsins are widely used as major molecular tools in optogenetics. They are categorized into light-gated ion channels and light-driven ion pumps. While the former passively transport various types of cations and anions in a light-dependent manner, light-driven ion pumps actively transport specific ions, such as H+, Na+, Cl-, against electrophysiological potential by using light energy. Since the ion transport by these pumps induces hyperpolarization of membrane potential and inhibit neural firing, light-driven ion-pumping rhodopsins are mostly applied as inhibitory optogenetics tools. Recent progress in genome and metagenome sequencing identified more than several thousands of ion-pumping rhodopsins from a wide variety of microbes, and functional characterization studies has been revealing many new types of light-driven ion pumps one after another. Since light-gated channels were reviewed in other chapters in this book, here the rapid progress in functional characterization, molecular mechanism study, and optogenetic application of ion-pumping rhodopsins were reviewed.
Collapse
Affiliation(s)
- Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Chiba, Japan.
- PRESTO, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
37
|
Abstract
The electromechanical function of the heart involves complex, coordinated activity over time and space. Life-threatening cardiac arrhythmias arise from asynchrony in these space-time events; therefore, therapies for prevention and treatment require fundamental understanding and the ability to visualize, perturb and control cardiac activity. Optogenetics combines optical and molecular biology (genetic) approaches for light-enabled sensing and actuation of electrical activity with unprecedented spatiotemporal resolution and parallelism. The year 2020 marks a decade of developments in cardiac optogenetics since this technology was adopted from neuroscience and applied to the heart. In this Review, we appraise a decade of advances that define near-term (immediate) translation based on all-optical electrophysiology, including high-throughput screening, cardiotoxicity testing and personalized medicine assays, and long-term (aspirational) prospects for clinical translation of cardiac optogenetics, including new optical therapies for rhythm control. The main translational opportunities and challenges for optogenetics to be fully embraced in cardiology are also discussed.
Collapse
|
38
|
Tsujimura M, Noji T, Saito K, Kojima K, Sudo Y, Ishikita H. Mechanism of absorption wavelength shifts in anion channelrhodopsin-1 mutants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148349. [PMID: 33248117 DOI: 10.1016/j.bbabio.2020.148349] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/05/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022]
Abstract
Using a quantum mechanical/molecular mechanical approach, we show the mechanisms of how the protein environment of Guillardia theta anion channelrhodopsin-1 (GtACR1) can shift the absorption wavelength. The calculated absorption wavelengths for GtACR1 mutants, M105A, C133A, and C237A are in agreement with experimentally measured wavelengths. Among 192 mutant structures investigated, mutations at Thr101, Cys133, Pro208, and Cys237 are likely to increase the absorption wavelength. In particular, T101A GtACR1 was expressed in HEK293T cells. The measured absorption wavelength is 10 nm higher than that of wild type, consistent with the calculated wavelength. (i) Removal of a polar residue from the Schiff base moiety, (ii) addition of a polar or acidic residue to the β-ionone ring moiety, and (iii) addition of a bulky residue to increase the planarity of the β-ionone and Schiff base moieties are the basis of increasing the absorption wavelength.
Collapse
Affiliation(s)
- Masaki Tsujimura
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Tomoyasu Noji
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
| |
Collapse
|
39
|
Tsujimura M, Ishikita H. Insights into the Protein Functions and Absorption Wavelengths of Microbial Rhodopsins. J Phys Chem B 2020; 124:11819-11826. [PMID: 33236904 DOI: 10.1021/acs.jpcb.0c08910] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Using a quantum mechanical/molecular mechanical approach, the absorption wavelength of the retinal Schiff base was calculated based on 13 microbial rhodopsin crystal structures. The results showed that the protein electrostatic environment decreases the absorption wavelength significantly in the cation-conducting rhodopsin but only slightly in the sensory rhodopsin. Among the microbial rhodopsins with different functions, the differences in the absorption wavelengths are caused by differences in the arrangement of the charged residues at the retinal Schiff base binding moiety, namely, one or two counterions at the three common positions. Among the microbial rhodopsins with similar functions, the differences in the polar residues at the retinal Schiff base binding site are responsible for the differences in the absorption wavelengths. Counterions contribute to an absorption wavelength shift of 50-120 nm, whereas polar groups contribute to a shift of up to ∼10 nm. It seems likely that protein function is directly associated with the absorption wavelength in microbial rhodopsins.
Collapse
Affiliation(s)
- Masaki Tsujimura
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
40
|
Kojima K, Shibukawa A, Sudo Y. The Unlimited Potential of Microbial Rhodopsins as Optical Tools. Biochemistry 2019; 59:218-229. [PMID: 31815443 DOI: 10.1021/acs.biochem.9b00768] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microbial rhodopsins, a photoactive membrane protein family, serve as fundamental tools for optogenetics, an innovative technology for controlling biological activities with light. Microbial rhodopsins are widely distributed in nature and have a wide variety of biological functions. Regardless of the many different known types of microbial rhodopsins, only a few of them have been used in optogenetics to control neural activity to understand neural networks. The efforts of our group have been aimed at identifying and characterizing novel rhodopsins from nature and also at engineering novel variant rhodopsins by rational design. On the basis of the molecular and functional characteristics of those novel rhodopsins, we have proposed new rhodopsin-based optogenetics tools to control not only neural activities but also "non-neural" activities. In this Perspective, we introduce the achievements and summarize future challenges in creating optogenetics tools using rhodopsins. The implementation of optogenetics deep inside an in vivo brain is the well-known challenge for existing rhodopsins. As a perspective to address this challenge, we introduce innovative optical illumination techniques using wavefront shaping that can reinforce the low light sensitivity of the rhodopsins and realize deep-brain optogenetics. The applications of our optogenetics tools could be extended to manipulate non-neural biological activities such as gene expression, apoptosis, energy production, and muscle contraction. We also discuss the potentially unlimited biotechnological applications of microbial rhodopsins in the future such as in photovoltaic devices and in drug delivery systems. We believe that advances in the field will greatly expand the potential uses of microbial rhodopsins as optical tools.
Collapse
Affiliation(s)
- Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama University , Okayama 700-8530 , Japan
| | - Atsushi Shibukawa
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama University , Okayama 700-8530 , Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama University , Okayama 700-8530 , Japan
| |
Collapse
|
41
|
Lee C, Sekharan S, Mertz B. Theoretical Insights into the Mechanism of Wavelength Regulation in Blue-Absorbing Proteorhodopsin. J Phys Chem B 2019; 123:10631-10641. [PMID: 31757123 DOI: 10.1021/acs.jpcb.9b08189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Choongkeun Lee
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Sivakumar Sekharan
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
- XtalPi Inc, 245 Main Street, 12th Floor, Cambridge, Massachusetts 01242, United States
| | - Blake Mertz
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
- WVU Cancer Institute, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
42
|
McManus TJ, Wells SA, Walker AB. Salt bridge impact on global rigidity and thermostability in thermophilic citrate synthase. Phys Biol 2019; 17:016002. [PMID: 31220825 DOI: 10.1088/1478-3975/ab2b5c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It has been suggested that structural rigidity is connected to thermostability, e.g. in enzymes from thermophilic microorganisms. We examine the importance of correctly handling salt bridges, and interactions which we term 'strong polars', when constructing the constraint network for global rigidity analysis in these systems. Through a comparison of rigidity in citrate synthases, we clarify the relationship between rigidity and thermostability. In particular, with our corrected handling of strong polar interactions, the difference in rigidity between mesophilic and thermophilic structures is detected more clearly than in previous studies. The increase in rigidity did not detract from the functional flexibility of the active site in all systems once their respective temperature range had been reached. We then examine the distribution of salt bridges in thermophiles that were previously unaccounted for in flexibility studies. We show that in hyperthermophiles these have stabilising roles in the active site; occuring in close proximity to key residues involved in catalysis and binding of the protein.
Collapse
Affiliation(s)
- T J McManus
- Department of Physics, University of Bath, Bath, BA2 7AY, United Kingdom
| | | | | |
Collapse
|
43
|
Shihoya W, Inoue K, Singh M, Konno M, Hososhima S, Yamashita K, Ikeda K, Higuchi A, Izume T, Okazaki S, Hashimoto M, Mizutori R, Tomida S, Yamauchi Y, Abe-Yoshizumi R, Katayama K, Tsunoda SP, Shibata M, Furutani Y, Pushkarev A, Béjà O, Uchihashi T, Kandori H, Nureki O. Crystal structure of heliorhodopsin. Nature 2019; 574:132-136. [DOI: 10.1038/s41586-019-1604-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 08/20/2019] [Indexed: 11/10/2022]
|
44
|
Misra R, Hirshfeld A, Sheves M. Molecular mechanism for thermal denaturation of thermophilic rhodopsin. Chem Sci 2019; 10:7365-7374. [PMID: 31489158 PMCID: PMC6713869 DOI: 10.1039/c9sc00855a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/18/2019] [Indexed: 12/29/2022] Open
Abstract
Understanding the factors affecting the stability and function of proteins at the molecular level is of fundamental importance. In spite of their use in bioelectronics and optogenetics, factors influencing thermal stability of microbial rhodopsins, a class of photoreceptor protein ubiquitous in nature are not yet well-understood. Here we report on the molecular mechanism for thermal denaturation of microbial retinal proteins, including, a highly thermostable protein, thermophilic rhodopsin (TR). External stimuli-dependent thermal denaturation of TR, the proton pumping rhodopsin of Thermus thermophilus bacterium, and other microbial rhodopsins are spectroscopically studied to decipher the common factors guiding their thermal stability. The thermal denaturation process of the studied proteins is light-catalyzed and the apo-protein is thermally less stable than the corresponding retinal-covalently bound opsin. In addition, changes in structure of the retinal chromophore affect the thermal stability of TR. Our results indicate that the hydrolysis of the retinal protonated Schiff base (PSB) is the rate-determining step for denaturation of the TR as well as other retinal proteins. Unusually high thermal stability of TR multilayers, in which PSB hydrolysis is restricted due to lack of bulk water, strongly supports this proposal. Our results also show that the protonation state of the PSB counter-ion does not affect the thermal stability of the studied proteins. Thermal photo-bleaching of an artificial TR pigment derived from non-isomerizable trans-locked retinal suggests, rather counterintuitively, that the photoinduced retinal trans-cis isomerization is not a pre-requisite for light catalyzed thermal denaturation of TR. Protein conformation alteration triggered by light-induced retinal excited state formation is likely to facilitate the PSB hydrolysis.
Collapse
Affiliation(s)
- Ramprasad Misra
- Department of Organic Chemistry , Weizmann Institute of Science , Rehovot 76100 , Israel .
| | - Amiram Hirshfeld
- Department of Organic Chemistry , Weizmann Institute of Science , Rehovot 76100 , Israel .
| | - Mordechai Sheves
- Department of Organic Chemistry , Weizmann Institute of Science , Rehovot 76100 , Israel .
| |
Collapse
|
45
|
Red-shifting mutation of light-driven sodium-pump rhodopsin. Nat Commun 2019; 10:1993. [PMID: 31040285 PMCID: PMC6491443 DOI: 10.1038/s41467-019-10000-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/12/2019] [Indexed: 11/08/2022] Open
Abstract
Microbial rhodopsins are photoreceptive membrane proteins that transport various ions using light energy. While they are widely used in optogenetics to optically control neuronal activity, rhodopsins that function with longer-wavelength light are highly demanded because of their low phototoxicity and high tissue penetration. Here, we achieve a 40-nm red-shift in the absorption wavelength of a sodium-pump rhodopsin (KR2) by altering dipole moment of residues around the retinal chromophore (KR2 P219T/S254A) without impairing its ion-transport activity. Structural differences in the chromophore of the red-shifted protein from that of the wildtype are observed by Fourier transform infrared spectroscopy. QM/MM models generated with an automated protocol show that the changes in the electrostatic interaction between protein and chromophore induced by the amino-acid replacements, lowered the energy gap between the ground and the first electronically excited state. Based on these insights, a natural sodium pump with red-shifted absorption is identified from Jannaschia seosinensis. Microbial rhodopsins are photoreceptive and widely used in optogenetics for which they should preferable function with longer-wavelength light. Here, authors achieve a 40-nm red-shift in the absorption wavelength of a sodium-pump rhodopsin (KR2) by altering the distribution of the retinal chromophore.
Collapse
|
46
|
Orozco-Gonzalez Y, Kabir MP, Gozem S. Electrostatic Spectral Tuning Maps for Biological Chromophores. J Phys Chem B 2019; 123:4813-4824. [DOI: 10.1021/acs.jpcb.9b00489] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Mohammad Pabel Kabir
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
47
|
Marín MDC, De Vico L, Dong SS, Gagliardi L, Truhlar DG, Olivucci M. Assessment of MC-PDFT Excitation Energies for a Set of QM/MM Models of Rhodopsins. J Chem Theory Comput 2019; 15:1915-1923. [PMID: 30721054 PMCID: PMC7096677 DOI: 10.1021/acs.jctc.8b01069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A methodology for the automatic production of quantum mechanical/molecular mechanical (QM/MM) models of retinal-binding rhodopsin proteins and subsequent prediction of their spectroscopic properties has been proposed recently by some of the authors. The technology employed for the evaluation of the excitation energies is called Automatic Rhodopsin Modeling (ARM), and it involves the use of the complete active space self-consistent field (CASSCF) method followed by a multiconfiguration second-order perturbation theory (in particular, CASPT2) calculation of external correlation energies. Although it was shown that ARM is capable of successfully reproducing and predicting spectroscopic property trends in chromophore-embedding protein sets, practical applications of such technology are limited by the high computational costs of the multiconfiguration perturbation theory calculations. In the present work we benchmark the more affordable multiconfiguration pair-density functional theory (MC-PDFT) method whose accuracy has been recently validated for retinal chromophores in the gas phase, indicating that MC-PDFT could potentially be used to analyze large (e.g., few hundreds) sets of rhodopsin proteins. Here, we test this theory for a set of rhodopsin QM/MM models whose experimental absorption maxima (λ a max) have been measured. The results indicate that MC-PDFT may be employed to calculate λ a max values for this important class of photoresponsive proteins.
Collapse
Affiliation(s)
- María Del Carmen Marín
- Department of Biotechnologies, Chemistry and Pharmacy , University of Siena , 53100 Siena , Italy
- Chemistry Department , Bowling Green State University , Bowling Green , 43403 Ohio , United States
| | - Luca De Vico
- Department of Biotechnologies, Chemistry and Pharmacy , University of Siena , 53100 Siena , Italy
| | - Sijia S Dong
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , Minneapolis , Minnesota 55455-0431 , United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , Minneapolis , Minnesota 55455-0431 , United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , Minneapolis , Minnesota 55455-0431 , United States
| | - Massimo Olivucci
- Department of Biotechnologies, Chemistry and Pharmacy , University of Siena , 53100 Siena , Italy
- Chemistry Department , Bowling Green State University , Bowling Green , 43403 Ohio , United States
- USIAS Institut d'Études Avanceés , Université de Strasbourg , 67083 Strasbourg , France
| |
Collapse
|
48
|
Krause BS, Kaufmann JCD, Kuhne J, Vierock J, Huber T, Sakmar TP, Gerwert K, Bartl FJ, Hegemann P. Tracking Pore Hydration in Channelrhodopsin by Site-Directed Infrared-Active Azido Probes. Biochemistry 2019; 58:1275-1286. [DOI: 10.1021/acs.biochem.8b01211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Benjamin S. Krause
- Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Joel C. D. Kaufmann
- Institut für Biologie, Biophysikalische Chemie, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
- Institut für medizinische Physik und Biophysik, Charité-Universitätsmedizin, Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jens Kuhne
- Lehrstuhl für Biophysik, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Johannes Vierock
- Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Thomas Huber
- Laboratory of Chemical Biology & Signal Transduction, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Thomas P. Sakmar
- Laboratory of Chemical Biology & Signal Transduction, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
- Department of Neurobiology, Care Sciences and Society, Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Alfred Nobels Allé 23, 141 57 Huddinge, Sweden
| | - Klaus Gerwert
- Lehrstuhl für Biophysik, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Franz J. Bartl
- Institut für Biologie, Biophysikalische Chemie, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
- Institut für medizinische Physik und Biophysik, Charité-Universitätsmedizin, Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Peter Hegemann
- Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| |
Collapse
|
49
|
NAKATSUKASA MASATO, MORIMOTO NAOKI, NISHIMURA TAKESHI. Sesamoids of the pollical metacarpophalangeal joint and the evolution of hominoid hands. ANTHROPOL SCI 2019. [DOI: 10.1537/ase.190908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- MASATO NAKATSUKASA
- Laboratory of Physical Anthropology, Graduate School of Science, Kyoto University, Kyoto
| | - NAOKI MORIMOTO
- Laboratory of Physical Anthropology, Graduate School of Science, Kyoto University, Kyoto
| | | |
Collapse
|
50
|
Understanding Colour Tuning Rules and Predicting Absorption Wavelengths of Microbial Rhodopsins by Data-Driven Machine-Learning Approach. Sci Rep 2018; 8:15580. [PMID: 30349075 PMCID: PMC6197263 DOI: 10.1038/s41598-018-33984-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/07/2018] [Indexed: 11/09/2022] Open
Abstract
The light-dependent ion-transport function of microbial rhodopsin has been widely used in optogenetics for optical control of neural activity. In order to increase the variety of rhodopsin proteins having a wide range of absorption wavelengths, the light absorption properties of various wild-type rhodopsins and their artificially mutated variants were investigated in the literature. Here, we demonstrate that a machine-learning-based (ML-based) data-driven approach is useful for understanding and predicting the light-absorption properties of microbial rhodopsin proteins. We constructed a database of 796 proteins consisting of microbial rhodopsin wildtypes and their variants. We then proposed an ML method that produces a statistical model describing the relationship between amino-acid sequences and absorption wavelengths and demonstrated that the fitted statistical model is useful for understanding colour tuning rules and predicting absorption wavelengths. By applying the ML method to the database, two residues that were not considered in previous studies are newly identified to be important to colour shift.
Collapse
|