1
|
Deng H, Rukhlenko OS, Joshi D, Hu X, Junk P, Tuliakova A, Kholodenko BN, Schwartz MA. cSTAR analysis identifies endothelial cell cycle as a key regulator of flow-dependent artery remodeling. SCIENCE ADVANCES 2025; 11:eado9970. [PMID: 39752487 PMCID: PMC11698091 DOI: 10.1126/sciadv.ado9970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 12/02/2024] [Indexed: 01/06/2025]
Abstract
Fluid shear stress (FSS) from blood flow sensed by vascular endothelial cells (ECs) determines vessel behavior, but regulatory mechanisms are only partially understood. We used cell state transition assessment and regulation (cSTAR), a powerful computational method, to elucidate EC transcriptomic states under low shear stress (LSS), physiological shear stress (PSS), high shear stress (HSS), and oscillatory shear stress (OSS) that induce vessel inward remodeling, stabilization, outward remodeling, or disease susceptibility, respectively. Combined with a publicly available database on EC transcriptomic responses to drug treatments, this approach inferred a regulatory network controlling EC states and made several notable predictions. Particularly, inhibiting cell cycle-dependent kinase (CDK) 2 was predicted to initiate inward remodeling and promote atherogenesis. In vitro, PSS activated CDK2 and induced late G1 cell cycle arrest. In mice, EC deletion of CDK2 triggered inward artery remodeling, pulmonary and systemic hypertension, and accelerated atherosclerosis. These results validate use of cSTAR and identify key determinants of normal and pathological artery remodeling.
Collapse
Affiliation(s)
- Hanqiang Deng
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Oleksii S. Rukhlenko
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Divyesh Joshi
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA
| | - Xiaoyue Hu
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Philipp Junk
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Anna Tuliakova
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Boris N. Kholodenko
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Martin A. Schwartz
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Biomedical Engineering, Yale School of Engineering, New Haven, CT 06510, USA
| |
Collapse
|
2
|
Huang L, Zhou Z, Deng T, Sun Y, Wang R, Wu R, Liu Y, Ye Y, Wang K, Yao C. A nomoscore of four genes for predicting the rupture risk in abdominal aortic aneurysm patients with osteoarthritis. Gene 2024; 931:148877. [PMID: 39173977 DOI: 10.1016/j.gene.2024.148877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) represents one of the most life-threatening cardiovascular diseases and is increasingly becoming a significant global public health concern. The aneurysms-osteoarthritis syndrome (AOS) has gained recognition, as patients with this syndrome often exhibit early-stage osteoarthritis (OA) and have a substantially increased risk of rupture, even with mild dilation of the aneurysm. The aim of this study was to discover potential biomarkers that can predict the occurrence of AAA rupture in patients with OA. METHODS Two gene expression profile datasets (GSE98278, GSE51588) and two single-cell RNA-seq datasets (GSE164678, GSE152583) were obtained from the GEO database. Functional enrichment analysis, PPI network construction, and machine learning algorithms, including LASSO, Random Forest, and SVM-RFE, were utilized to identify hub genes. In addition, a nomogram and ROC curves were generated to predict the risk of rupture in patients with AAA. Moreover, we analyzed the immune cell infiltration in the AAA tissue microenvironment by CIBERSORT and validated key gene expression in different macrophage subtypes through single-cell analysis. RESULTS A total of 105 intersecting DEGs that showed consistent changes between rAAA and OA dataset were identified. From these DEGs, four hub genes (PAK1, FCGR1B, LOX and PDPN) were selected by machine learning. High predictive performance was observed for the nomogram based on these hub genes, with an AUC of 0.975 (95 % CI: 0.942-1.000). Abnormal immune cell infiltration was detected in rAAA and correlated significantly with the hub genes. Ruptured AAA cases exhibited higher nomoscore values and lower M2 macrophage infiltration compared to stable AAA. Validation in animal models (PPE+BAPN-induced rAAA) confirmed the significant role of these biomarkers in AAA pathology. CONCLUSION The present study successfully identified four potential hub genes (PAK1, FCGR1B, LOX and PDPN) and developed a robust predictive nomogram to assess the risk of AAA rupture. The findings also shed light on the connection between hub genes and immune cell components in the microenvironment of rAAA. These findings support future research on key genes in AAA patients with OA, providing insights for novel management strategies for AAA.
Collapse
Affiliation(s)
- Lin Huang
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhihao Zhou
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Tang Deng
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yunhao Sun
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Rui Wang
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ridong Wu
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yunyan Liu
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yanchen Ye
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Kangjie Wang
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Chen Yao
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
3
|
Kumar R, Rao GN. Glucose-Regulated Protein 78, via Releasing β-Catenin from Adherens Junctions, Facilitates Its Interaction with STAT3 in Mediating Retinal Neovascularization. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2356-2381. [PMID: 39222910 PMCID: PMC11587869 DOI: 10.1016/j.ajpath.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/01/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Retinopathy due to neovascularization is one of the major causes of vision loss. To understand the mechanisms underlying retinal neovascularization the oxygen-induced retinopathy (OIR) model was used. Two-dimensional gel matrix-assisted laser desorption/ionization time-of-flight/time-of-flight analysis of normoxic and 24-hour post-OIR mice pups' retinas revealed that glucose-regulated protein 78 (GRP78) was one of the several molecules induced by OIR in the retinal endothelial cells (ECs). Vascular endothelial growth factor A (VEGFA) also induced GRP78 expression independent of endoplasmic reticulum stress response in human retinal microvascular endothelial cells, and its depletion reduced VEGFA-induced EC angiogenic responses. Consistent with these observations, EC-specific deletion of GRP78 inhibited OIR-induced retinal neovascularization. GRP78 bound with vascular endothelial-cadherin and released adherens junction, but not Wnt-mediated, β-catenin. β-catenin, in turn, via interacting with STAT3, triggered cyclin D1 expression. Furthermore, depletion of β-catenin or cyclin D1 levels negated VEGFA-induced EC angiogenic responses and OIR-induced retinal neovascularization. EC-specific deletion of GRP78 also suppressed OIR-induced vascular leakage. Studies of upstream signaling indicated that activating transcription factor 6 mediated GRP78 induction in the modulation of VEGFA-induced EC angiogenic responses and OIR-induced retinal neovascularization. Together, these observations revealed that GRP78, independent of its response to endoplasmic reticulum stress, is involved in mediating EC angiogenic responses by VEGFA and retinal neovascularization by OIR. In view of these findings, GRP78 emerges as a desirable target for drug development against diabetic retinopathy.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee.
| |
Collapse
|
4
|
Govatati S, Kumar R, Boro M, Traylor JG, Orr AW, Lusis AJ, Rao GN. TRIM13 reduces cholesterol efflux and increases oxidized LDL uptake leading to foam cell formation and atherosclerosis. J Biol Chem 2024; 300:107224. [PMID: 38537695 PMCID: PMC11053335 DOI: 10.1016/j.jbc.2024.107224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/25/2024] Open
Abstract
Impaired cholesterol efflux and/or uptake can influence arterial lipid accumulation leading to atherosclerosis. Here, we report that tripartite motif-containing protein 13 (TRIM13), a RING-type E3 ubiquitin ligase, plays a role in arterial lipid accumulation leading to atherosclerosis. Using molecular approaches and KO mouse model, we found that TRIM13 expression was induced both in the aorta and peritoneal macrophages (pMφ) of ApoE-/- mice in response to Western diet (WD) in vivo. Furthermore, proatherogenic cytokine interleukin-1β also induced TRIM13 expression both in pMφ and vascular smooth muscle cells. Furthermore, we found that TRIM13 via ubiquitination and degradation of liver X receptor (LXR)α/β downregulates the expression of their target genes ABCA1/G1 and thereby inhibits cholesterol efflux. In addition, TRIM13 by ubiquitinating and degrading suppressor of cytokine signaling 1/3 (SOCS1/3) mediates signal transducer and activator of transcription 1 (STAT1) activation, CD36 expression, and foam cell formation. In line with these observations, genetic deletion of TRIM13 by rescuing cholesterol efflux and inhibiting foam cell formation protects against diet-induced atherosclerosis. We also found that while TRIM13 and CD36 levels were increased, LXRα/β, ABCA1/G1, and SOCS3 levels were decreased both in Mφ and smooth muscle cells of stenotic human coronary arteries as compared to nonstenotic arteries. More intriguingly, the expression levels of TRIM13 and its downstream signaling molecules were correlated with the severity of stenotic lesions. Together, these observations reveal for the first time that TRIM13 plays a crucial role in diet-induced atherosclerosis, and that it could be a potential drug target against this vascular lesion.
Collapse
Affiliation(s)
- Suresh Govatati
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Raj Kumar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Monoranjan Boro
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - James G Traylor
- Department of Pathology, Louisiana State University Health Science Center, Shreveport, Louisiana, USA
| | - A Wayne Orr
- Department of Pathology, Louisiana State University Health Science Center, Shreveport, Louisiana, USA
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, California, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| |
Collapse
|
5
|
Kumar R, Rottner K, Rao GN. Requirement of Site-Specific Tyrosine Phosphorylation of Cortactin in Retinal Neovascularization and Vascular Leakage. Arterioscler Thromb Vasc Biol 2024; 44:366-390. [PMID: 38126170 PMCID: PMC10872470 DOI: 10.1161/atvbaha.123.320279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Retinal neovascularization is a major cause of vision impairment. Therefore, the purpose of this study is to investigate the mechanisms by which hypoxia triggers the development of abnormal and leaky blood vessels. METHODS A variety of cellular and molecular approaches as well as tissue-specific knockout mice were used to investigate the role of Cttn (cortactin) in retinal neovascularization and vascular leakage. RESULTS We found that VEGFA (vascular endothelial growth factor A) stimulates Cttn phosphorylation at Y421, Y453, and Y470 residues in human retinal microvascular endothelial cells. In addition, we observed that while blockade of Cttn phosphorylation at Y470 inhibited VEGFA-induced human retinal microvascular endothelial cell angiogenic events, suppression of Y421 phosphorylation protected endothelial barrier integrity from disruption by VEGFA. In line with these observations, while blockade of Cttn phosphorylation at Y470 negated oxygen-induced retinopathy-induced retinal neovascularization, interference with Y421 phosphorylation prevented VEGFA/oxygen-induced retinopathy-induced vascular leakage. Mechanistically, while phosphorylation at Y470 was required for its interaction with Arp2/3 and CDC6 facilitating actin polymerization and DNA synthesis, respectively, Cttn phosphorylation at Y421 leads to its dissociation from VE-cadherin, resulting in adherens junction disruption. Furthermore, whereas Cttn phosphorylation at Y470 residue was dependent on Lyn, its phosphorylation at Y421 residue required Syk activation. Accordingly, lentivirus-mediated expression of shRNA targeting Lyn or Syk levels inhibited oxygen-induced retinopathy-induced retinal neovascularization and vascular leakage, respectively. CONCLUSIONS The above observations show for the first time that phosphorylation of Cttn is involved in a site-specific manner in the regulation of retinal neovascularization and vascular leakage. In view of these findings, Cttn could be a novel target for the development of therapeutics against vascular diseases such as retinal neovascularization and vascular leakage.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Gadiparthi N. Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
6
|
Jiao L, Yi W, Chang YR, Cheng WL, Cao JL, Chao SP, Zhao F, Lu Z. Inhibition of P21-activated Kinase 1 Promotes Vascular Smooth Muscle Cells Apoptosis Through Reduction of Phosphorylation of Bad. Am J Hypertens 2024; 37:46-52. [PMID: 36634025 DOI: 10.1093/ajh/hpad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND P21-activated kinase 1 (Pak1) has an effect on cell apoptosis and has recently been reported to play an important role in various cardiovascular diseases, in which vascular smooth muscle cell (VSMC) apoptosis is a key process. Thus, we hypothesized that Pak1 may be a novel target to regulate VSMC behaviors. METHODS AND RESULTS In the present study, we found that the expression of Pak1 was dramatically upregulated in vascular smooth muscle cells (VSMCs) on H2O2 administration and was dependent on stimulation time. Through a loss-of-function approach, Pak1 knockdown increased apoptosis of VSMCs, as tested by TUNEL (TdT-mediated dUTP Nick-End Labeling) immunofluorescence staining, whereas it inhibited the proliferation of VSMCs examined by EdU staining. Moreover, we also noticed that Pak1 silencing promoted the mRNA and protein levels of pro-apoptosis genes but decreased anti-apoptosis marker expression. Importantly, we showed that Pak1 knockdown reduced the phosphorylation of Bad. Moreover, increased Pak1 expression was also noticed in carotid arteries on the wire jury. CONCLUSIONS Our study identified that Pak1 acted as a novel regulator of apoptosis of VSMCs partially through phosphorylation of Bad.
Collapse
Affiliation(s)
- Lin Jiao
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China
| | - Wenjuan Yi
- Department of Dermatology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Yu-Rong Chang
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China
| | - Wen-Lin Cheng
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China
| | - Jian-Lei Cao
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China
| | - Sheng-Ping Chao
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China
| | - Fang Zhao
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China
| |
Collapse
|
7
|
Deng H, Rukhlendo OS, Joshi D, Hu X, Junk P, Tuliakova A, Kholodenko BN, Schwartz MA. cSTAR analysis identifies endothelial cell cycle as a key regulator of flow-dependent artery remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563764. [PMID: 37961694 PMCID: PMC10634797 DOI: 10.1101/2023.10.24.563764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Fluid shear stress (FSS) from blood flow is sensed by vascular endothelial cells (ECs) to determine vessel stability, remodeling and susceptibility to atherosclerosis and other inflammatory diseases but the regulatory networks that govern these behaviors are only partially understood. We used cSTAR, a powerful new computational method, to define EC transcriptomic states under low shear stress (LSS) that triggers vessel inward remodeling, physiological shear stress (PSS) that stabilizes vessels, high shear stress (HSS) that triggers outward remodeling, and oscillatory shear stress (OSS) that confers disease susceptibility, all in comparison to cells under static conditions (STAT). We combined these results with the LINCS database where EC transcriptomic responses to drug treatments to define a preliminary regulatory network in which the cyclin-dependent kinases CDK1/2 play a central role in promoting vessel stability. Experimental analysis showed that PSS induced a strong late G1 cell cycle arrest in which CDK2 was activated. EC deletion of CDK2 in mice resulted in inward artery remodeling and both pulmonary and systemic hypertension. These results validate use of cSTAR to determine EC state and in vivo vessel behavior, reveal unexpected features of EC phenotype under different FSS conditions, and identify CDK2 as a key element within the EC regulatory network that governs artery remodeling.
Collapse
|
8
|
Song H, Li W, Li Y, Zhai B, Guo Y, Chen Y, Han R, Sun G, Jiang R, Li Z, Yan F, Li G, Liu X, Zhang Y, Tian Y, Kang X. Genome-wide association study of 17 serum biochemical indicators in a chicken F 2 resource population. BMC Genomics 2023; 24:98. [PMID: 36864386 PMCID: PMC9983160 DOI: 10.1186/s12864-023-09206-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Serum biochemical indicators are often regarded as direct reflections of animal metabolism and health. The molecular mechanisms underlying serum biochemical indicators metabolism of chicken (Gallus Gallus) have not been elucidated. Herein, we performed a genome-wide association study (GWAS) to identify the variation associated with serum biochemical indicators. The aim of this research was to broaden the understanding of the serum biochemical indicators in chickens. RESULTS A GWAS of serum biochemical indicators was carried out on 734 samples from an F2 Gushi× Anka chicken population. All chickens were genotyped by sequencing, 734 chickens and 321,314 variants were obtained after quality control. Based on these variants, a total of 236 single-nucleotide polymorphisms (SNPs) on 9 chicken chromosomes (GGAs) were identified to be significantly (-log10(P) > 5.72) associated with eight of seventeen serum biochemical indicators. Ten novel quantitative trait locis (QTLs) were identified for the 8 serum biochemical indicator traits of the F2 population. Literature mining revealed that the ALPL, BCHE, GGT2/GGT5 genes at loci GGA24, GGA9 and GGA15 might affect the alkaline phosphatase (AKP), cholinesterase (CHE) and γ-glutamyl transpeptidase (GGT) traits, respectively. CONCLUSION The findings of the present study may contribute to a better understanding of the molecular mechanisms of chicken serum biochemical indicator regulation and provide a theoretical basis for chicken breeding programs.
Collapse
Affiliation(s)
- Haijie Song
- College of Animal Science and Technology, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, 450002, Zhengzhou, China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, 450002, Zhengzhou, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, 450002, Zhengzhou, China
| | - Yuanfang Li
- College of Animal Science and Technology, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, 450002, Zhengzhou, China
| | - Bin Zhai
- College of Animal Science and Technology, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, 450002, Zhengzhou, China
| | - Yujie Guo
- College of Animal Science and Technology, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, 450002, Zhengzhou, China
| | - Yi Chen
- College of Animal Science and Technology, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, 450002, Zhengzhou, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, 450002, Zhengzhou, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, 450002, Zhengzhou, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, 450002, Zhengzhou, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, 450002, Zhengzhou, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, 450002, Zhengzhou, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, 450002, Zhengzhou, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, 450002, Zhengzhou, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, 450002, Zhengzhou, China
| | - Fengbin Yan
- College of Animal Science and Technology, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, 450002, Zhengzhou, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, 450002, Zhengzhou, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, 450002, Zhengzhou, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, 450002, Zhengzhou, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, 450002, Zhengzhou, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, 450002, Zhengzhou, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, 450002, Zhengzhou, China.
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, 450002, Zhengzhou, China.
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, 450002, Zhengzhou, China.
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, 450002, Zhengzhou, China.
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, 450002, Zhengzhou, China.
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, 450002, Zhengzhou, China.
| |
Collapse
|
9
|
Tan L, Lu J, Zhang C, Meng L, Zhu Q. The proatherosclerotic function of BCAT1 in atherosclerosis development of aged-apolipoprotein E-deficient mice. Biochem Biophys Res Commun 2022; 631:93-101. [DOI: 10.1016/j.bbrc.2022.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 11/29/2022]
|
10
|
Kumar R, Rao GN. Novel Role of Prereplication Complex Component Cell Division Cycle 6 in Retinal Neovascularization. Arterioscler Thromb Vasc Biol 2022; 42:407-427. [PMID: 35236105 PMCID: PMC8957605 DOI: 10.1161/atvbaha.121.317182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The major aim of this study is to investigate whether CDC6 (cell division cycle 6), a replication origin recognition complex component, plays a role in retinal neovascularization, and if so, to explore the underlying mechanisms. METHODS In this study, we used a variety of approaches including cellular and moleculer biological methodologies as well as global and tissue-specific knockout mice in combination with an oxygen-induced retinopathy model to study the role of CDC6 in retinal neovascularization. RESULTS VEGFA (vascular endothelial growth factor A)-induced CDC6 expression in a time-dependent manner in human retinal microvascular endothelial cells. In addition, VEGFA-induced CDC6 expression was dependent on PLCβ3 (phospholipase Cβ3)-mediated NFATc1 (nuclear factor of activated T cells c1) activation. Furthermore, while siRNA-mediated depletion of PLCβ3, NFATc1, or CDC6 levels blunted VEGFA-induced human retinal microvascular endothelial cell angiogenic events such as proliferation, migration, sprouting, and tube formation, CDC6 overexpression rescued these effects in NFATc1-deficient mouse retinal microvascular endothelial cells. In accordance with these observations, global knockdown of PLCβ3 or endothelial cell-specific deletion of NFATc1 or siRNA-mediated depletion of CDC6 levels substantially inhibited oxygen-induced retinopathy-induced retinal sprouting and neovascularization. In addition, retroviral-mediated overexpression of CDC6 rescued oxygen-induced retinopathy-induced retinal neovascularization from inhibition in PLCβ3 knockout mice and in endothelial cell-specific NFATc1-deficient mice. CONCLUSIONS The above observations clearly reveal that PLCβ3-mediated NFATc1 activation-dependent CDC6 expression plays a crucial role in VEGFA/oxygen-induced retinopathy-induced retinal neovascularization.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Physiology, University of Tennessee Health Science Center, Memphis
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis
| |
Collapse
|
11
|
p21-Activated kinase 1 (PAK1) in aging and longevity: An overview. Ageing Res Rev 2021; 71:101443. [PMID: 34390849 DOI: 10.1016/j.arr.2021.101443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
The p21-activated kinases (PAKs) belong to serine/threonine kinases family, regulated by ∼21 kDa small signaling G proteins RAC1 and CDC42. The mammalian PAK family comprises six members (PAK1-6) that are classified into two groups (I and II) based on their domain architecture and regulatory mechanisms. PAKs are implicated in a wide range of cellular functions. PAK1 has recently attracted increasing attention owing to its involvement in oncogenesis, tumor progression, and metastasis as well as several life-limiting diseases and pathological conditions. In Caenorhabditis elegans, PAK1 functions limit the lifespan under basal conditions by inhibiting forkhead transcription factor DAF-16. Interestingly, PAK depletion extended longevity and attenuated the onset of age-related phenotypes in a premature-aging mouse model and delayed senescence in mammalian fibroblasts. These observations implicate PAKs as not only oncogenic but also aging kinases. Therefore, PAK-targeting genetic and/or pharmacological interventions, particularly PAK1-targeting, could be a viable strategy for developing cancer therapies with relatively no side effects and promoting healthy longevity. This review describes PAK family proteins, their biological functions, and their role in regulating aging and longevity using C. elegans. Moreover, we discuss the effect of small-molecule PAK1 inhibitors on the lifespan and healthspan of C. elegans.
Collapse
|
12
|
Chang H, He KY, Li C, Ni YY, Li MN, Chen L, Hou M, Zhou Z, Xu ZP, Ji MJ. P21 activated kinase-1 (PAK1) in macrophages is required for promotion of Th17 cell response during helminth infection. J Cell Mol Med 2020; 24:14325-14338. [PMID: 33124146 PMCID: PMC7753984 DOI: 10.1111/jcmm.16050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
CD4+T cells differentiate into distinct functional effector and inhibitory subsets are facilitated by distinct cytokine cues present at the time of antigen recognition. Maintaining a balance between T helper 17 (Th17) and regulatory T (Treg) cells are critical for the control of the immunopathogenesis of liver diseases. Here, by using the mouse model of helminth Schistosoma japonicum (Sjaponicum) infection, we show that the hepatic mRNA levels of P21‐activated kinase 1 (PAK1), a key regulator of the actin cytoskeleton, adhesion and cell motility, are significantly increased and associated with the development of liver pathology during Sjaponicum infection. In addition, PAK1‐deficient mice are prone to suppression of Th17 cell responses but increased Treg cells. Furthermore, PAK1 enhances macrophage activation through promoting IRF1 nuclear translocation in an NF‐κB‐dependent pathway, resulting in promoting Th17 cell differentiation through inducing IL‐6 production. These findings highlight the importance of PAK1 in macrophages fate determination and suggest that PAK1/IRF1 axis‐dependent immunomodulation can ameliorate certain T cell–based immune pathologies.
Collapse
Affiliation(s)
- Hao Chang
- Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Kai-Yue He
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Chen Li
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yang-Yue Ni
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Mai-Ning Li
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Lin Chen
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Min Hou
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Zikai Zhou
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Peng Xu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Min-Jun Ji
- Center for Global Health, Nanjing Medical University, Nanjing, China.,Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Kumar R, Mani AM, Singh NK, Rao GN. PKCθ-JunB axis via upregulation of VEGFR3 expression mediates hypoxia-induced pathological retinal neovascularization. Cell Death Dis 2020; 11:325. [PMID: 32382040 PMCID: PMC7206019 DOI: 10.1038/s41419-020-2522-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/30/2022]
Abstract
Pathological retinal neovascularization is the most common cause of vision loss. PKCθ has been shown to play a role in type 2 diabetes, which is linked to retinal neovascularization. Based on these clues, we have studied the role of PKCθ and its downstream target genes JunB and VEGFR3 in retinal neovascularization using global and tissue-specific knockout mouse models along with molecular biological approaches. Here, we show that vascular endothelial growth factor A (VEGFA) induces PKCθ phosphorylation in human retinal microvascular endothelial cells (HRMVECs) and downregulation of its levels attenuates VEGFA-induced HRMVECs migration, sprouting and tube formation. Furthermore, the whole body deletion of PKCθ or EC-specific deletion of its target gene JunB inhibited hypoxia-induced retinal EC proliferation, tip cell formation and neovascularization. VEGFA also induced VEGFR3 expression via JunB downstream to PKCθ in the regulation of HRMVEC migration, sprouting, and tube formation in vitro and OIR-induced retinal EC proliferation, tip cell formation and neovascularization in vivo. In addition, VEGFA-induced VEGFR3 expression requires VEGFR2 activation upstream to PKCθ-JunB axis both in vitro and in vivo. Depletion of VEGFR2 or VEGFR3 levels attenuated VEGFA-induced HRMVEC migration, sprouting and tube formation in vitro and retinal neovascularization in vivo and it appears that these events were dependent on STAT3 activation. Furthermore, the observations using soluble VEGFR3 indicate that VEGFR3 mediates its effects on retinal neovascularization in a ligand dependent and independent manner downstream to VEGFR2. Together, these observations suggest that PKCθ-dependent JunB-mediated VEGFR3 expression targeting STAT3 activation is required for VEGFA/VEGFR2-induced retinal neovascularization.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Arul M Mani
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Nikhlesh K Singh
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
14
|
Roudbari Z, Coort SL, Kutmon M, Eijssen L, Melius J, Sadkowski T, Evelo CT. Identification of Biological Pathways Contributing to Marbling in Skeletal Muscle to Improve Beef Cattle Breeding. Front Genet 2020; 10:1370. [PMID: 32117419 PMCID: PMC7019052 DOI: 10.3389/fgene.2019.01370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/16/2019] [Indexed: 01/08/2023] Open
Abstract
Red meat is an important dietary source that provides part of the nutritional requirements. Intramuscular fat, known as marbling, is located throughout skeletal muscle. Marbling is a trait of major economic relevance that positively influences sensory quality aspects. The aim of the present study was to identify and better understand biological pathways defining marbling in beef cattle. Pathway analysis was performed in PathVisio with publicly available transcriptomic data from semitendinosus muscle of well-marbled and lean-marbled beef. Moreover, for Bos taurus we created a gene identifier mapping database with bridgeDb and a pathway collection in WikiPathways. The regulation of marbling is possibly the result of the interplay between signaling pathways in muscle, fat, and intramuscular connective tissue. Pathway analysis revealed 17 pathways that were significantly different between well-marbled and lean-marbled beef. The MAPK signaling pathway was enriched, and the signaling pathways that play a role in tissue development were also affected. Interestingly, pathways related to immune response and insulin signaling were enriched.
Collapse
Affiliation(s)
- Zahra Roudbari
- Department of Animal Science, Faculty of Agriculture, University of Jiroft, Jiroft, Iran.,Department of Bioinformatics-BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Susan L Coort
- Department of Bioinformatics-BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Martina Kutmon
- Department of Bioinformatics-BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands.,Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
| | - Lars Eijssen
- Department of Bioinformatics-BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Jonathan Melius
- Department of Bioinformatics-BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Tomasz Sadkowski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Chris T Evelo
- Department of Bioinformatics-BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands.,Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
15
|
Xiong W, Wang X, Dai D, Zhang B, Lu L, Tao R. The anti-inflammatory vasostatin-2 attenuates atherosclerosis in ApoE-/- mice and inhibits monocyte/macrophage recruitment. Thromb Haemost 2017; 117:401-414. [DOI: 10.1160/th16-06-0475] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/18/2016] [Indexed: 01/14/2023]
Abstract
SummaryWe showed previously that reduced level of vasostatin-2 (VS-2) correlates to the presence and severity of coronary artery disease. In this study, we aimed to figure out the role of chromogranin A (CGA) derived VS-2 in the development of atherosclerosis and monocyte/macrophage recruitment. Apolipoprotein E-deficient (ApoE-/-) mice fed a high-fat diet exhibited attenuated lesion size by 65 % and 41 % in En face and aortic root Oil red O staining, MOMA-2 positive area by 64 %, respectively, in VS-2 treatment group compared with PBS group. Proinflammatory cytokines tumour necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1) and vascular cell adhesion molecule-1 (VCAM-1) were all remarkably reduced in aortic tissues after VS-2 treatment. Mechanistically, in adhesion assay using intravital microscopy in vivo, VS-2 suppressed the number of leukocytes adhering to the wall of apoE-/- mice mesenteric arteries. In chemotactic assay, flow cytometry analysis of peritoneal lavage exudate from C57BL/6 mice showed VS-2 significantly decreased the recruiment number of inflammatory monocytes/macrophages in a thioglycollate-induced peritonitis model. Furthermore, fewer fluorescent latex beads labelled Ly-6Chi monocytes accumulated in aortic sinus lesions of apoE-/- mice after VS-2 treatment. In addition, according to the microarray of human monocyte/macrophage, we found VS-2 stimulation caused a dose-dependent decrease of Rac1 expression and inactivation of Pak1 in mice primary monocytes as well as THP-1 cells and inhibited MCP-1/CCL-5 induced transmigration in vitro. In conclusion, the Chromogranin A-derived VS-2 attenuates atherosclerosis in apoE-/- mice and, in addition to its anti-inflammatory property, also acts as an inhibitor in monocyte/macrophage recruitment.Supplementary Material to this article is available online at www.thrombosis-online.com.
Collapse
|
16
|
Jung C, Christiansen S, Kaul MG, Koziolek E, Reimer R, Heeren J, Adam G, Heine M, Ittrich H. Quantitative and qualitative estimation of atherosclerotic plaque burden in vivo at 7T MRI using Gadospin F in comparison to en face preparation evaluated in ApoE KO mice. PLoS One 2017; 12:e0180407. [PMID: 28771481 PMCID: PMC5542445 DOI: 10.1371/journal.pone.0180407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 06/15/2017] [Indexed: 12/18/2022] Open
Abstract
Background The aim of the study was to quantify atherosclerotic plaque burden by volumetric assessment and T1 relaxivity measurement at 7T MRI using Gadospin F (GDF) in comparison to en face based measurements. Methods and results 9-weeks old ApoE-/- (n = 5 for each group) and wildtype mice (n = 5) were set on high fat diet (HFD). Progression group received MRI at 9, 13, 17 and 21 weeks after HFD initiation. Regression group was reswitched to chow diet (CD) after 13 weeks HFD and monitored with MRI for 12 weeks. MRI was performed before and two hours after iv injection of GDF (100 μmol/kg) at 7T (Clinscan, Bruker) acquiring a 3D inversion recovery gradient echo sequence and T1 Mapping using Saturation Recovery sequences. Subsequently, aortas were prepared for en face analysis using confocal microscopy. Total plaque volume (TPV) and T1 relaxivity were estimated using ImageJ (V. 1.44p, NIH, USA). 2D and 3D en face analysis showed a strong and exponential increase of plaque burden over time, while plaque burden in regression group was less pronounced. Correspondent in vivo MRI measurements revealed a more linear increase of TPV and T1 relaxivity for regression group. A significant correlation was observed between 2D and 3D en face analysis (r = 0.79; p<0.001) as well as between 2D / 3D en face analysis and MRI (r = 0.79; p<0.001; r = 0.85; p<0.001) and delta R1 (r = 0.79; p<0.001; r = 0.69; p<0.01). Conclusion GDF-enhanced in vivo MRI is a powerful non-invasive imaging technique in mice allowing for reliable estimation of atherosclerotic plaque burden, monitoring of disease progression and regression in preclinical studies.
Collapse
Affiliation(s)
- Caroline Jung
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| | - Sabine Christiansen
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Gerhard Kaul
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Koziolek
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Nuclear Medicine, Berlin Experimental Radionuclide Imaging Center (BERIC), University Medical Center Charité, Berlin, Germany
| | - Rudolph Reimer
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Jörg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harald Ittrich
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
17
|
Singh NK, Janjanam J, Rao GN. p115 RhoGEF activates the Rac1 GTPase signaling cascade in MCP1 chemokine-induced vascular smooth muscle cell migration and proliferation. J Biol Chem 2017; 292:14080-14091. [PMID: 28655771 DOI: 10.1074/jbc.m117.777896] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/20/2017] [Indexed: 12/30/2022] Open
Abstract
Although the involvement of Rho proteins in the pathogenesis of vascular diseases is well studied, little is known about the role of their upstream regulators, the Rho guanine nucleotide exchange factors (RhoGEFs). Here, we sought to identify the RhoGEFs involved in monocyte chemotactic protein 1 (MCP1)-induced vascular wall remodeling. We found that, among the RhoGEFs tested, MCP1 induced tyrosine phosphorylation of p115 RhoGEF but not of PDZ RhoGEF or leukemia-associated RhoGEF in human aortic smooth muscle cells (HASMCs). Moreover, p115 RhoGEF inhibition suppressed MCP1-induced HASMC migration and proliferation. Consistent with these observations, balloon injury (BI) induced p115 RhoGEF tyrosine phosphorylation in rat common carotid arteries, and siRNA-mediated down-regulation of its levels substantially attenuated BI-induced smooth muscle cell migration and proliferation, resulting in reduced neointima formation. Furthermore, depletion of p115 RhoGEF levels also abrogated MCP1- or BI-induced Rac1-NFATc1-cyclin D1-CDK6-PKN1-CDK4-PAK1 signaling, which, as we reported previously, is involved in vascular wall remodeling. Our findings also show that protein kinase N1 (PKN1) downstream of Rac1-cyclin D1/CDK6 and upstream of CDK4-PAK1 in the p115 RhoGEF-Rac1-NFATc1-cyclin D1-CDK6-PKN1-CDK4-PAK1 signaling axis is involved in the modulation of vascular wall remodeling. Of note, we also observed that CCR2-Gi/o-Fyn signaling mediates MCP1-induced p115 RhoGEF and Rac1 GTPase activation. These findings suggest that p115 RhoGEF is critical for MCP1-induced HASMC migration and proliferation in vitro and for injury-induced neointima formation in vivo by modulating Rac1-NFATc1-cyclin D1-CDK6-PKN1-CDK4-PAK1 signaling.
Collapse
Affiliation(s)
- Nikhlesh K Singh
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163.
| | - Jagadeesh Janjanam
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Gadiparthi N Rao
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163.
| |
Collapse
|
18
|
Visualization of endothelial barrier damage prior to formation of atherosclerotic plaques. Histochem Cell Biol 2017; 148:117-127. [PMID: 28343238 DOI: 10.1007/s00418-017-1562-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2017] [Indexed: 01/09/2023]
Abstract
En-face fat staining is frequently used to visualize atherosclerotic lesions. This method, however, is not suitable to visualize endothelial barrier damage prior to microscopically detectable morphological alterations of the arterial wall such as sub-endothelial lipid deposition. To enable the investigation of early endothelial barrier damage and in particular the initial steps of atherosclerosis, a new method has to fulfill three requirements: (i) easy and fast to perform, (ii) low cost of applicability without requirement for highly sophisticated technical equipment, and (iii) reliable reproducibility of valid results. To this end, we used intracardial Evans blue dye injection after washout of blood and measured dye deposition within the aortic wall as a parameter of endothelial barrier leakiness, which is recognized as one of the earliest signs of atherosclerotic plaque formation. These analyses were performed in ApoE -/-, LDL receptor -/- and Cc1 -/- mouse models which have been reported to develop aortic plaques with or without high cholesterol diet. Our data show that sub-endothelial dye deposition is a reliable and reproducible readout parameter to assess endothelial barrier damage. Along these lines, measurements of aortic intima areas with Evans blue deposition in relation to total intima circumference enabled quantitative assessments of the results. Our technique enables the imaging of endothelial barrier damage prior to detectable aortic lipid deposition and plaque development. Thus, it will facilitate the detection of the initial vascular pathogenetic processes that lead to cardiovascular diseases. It will also enable the testing of new drugs and therapeutic procedures to prevent these disorders.
Collapse
|
19
|
Prasad EM, Mopuri R, Islam MS, Kodidhela LD. Cardioprotective effect of Vitex negundo on isoproterenol-induced myocardial necrosis in wistar rats: A dual approach study. Biomed Pharmacother 2017; 85:601-610. [DOI: 10.1016/j.biopha.2016.11.069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/13/2016] [Accepted: 11/14/2016] [Indexed: 12/18/2022] Open
|
20
|
Bai Y, Sun Q. Fine particulate matter air pollution and atherosclerosis: Mechanistic insights. Biochim Biophys Acta Gen Subj 2016; 1860:2863-8. [DOI: 10.1016/j.bbagen.2016.04.030] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/11/2016] [Accepted: 04/29/2016] [Indexed: 02/06/2023]
|
21
|
Wang T, Zhang L, Hu J, Duan Y, Zhang M, Lin J, Man W, Pan X, Jiang Z, Zhang G, Gao B, Wang H, Sun D. Mst1 participates in the atherosclerosis progression through macrophage autophagy inhibition and macrophage apoptosis enhancement. J Mol Cell Cardiol 2016; 98:108-16. [DOI: 10.1016/j.yjmcc.2016.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/31/2016] [Accepted: 08/01/2016] [Indexed: 10/21/2022]
|
22
|
Janjanam J, Chandaka GK, Kotla S, Rao GN. PLCβ3 mediates cortactin interaction with WAVE2 in MCP1-induced actin polymerization and cell migration. Mol Biol Cell 2015; 26:4589-606. [PMID: 26490115 PMCID: PMC4678017 DOI: 10.1091/mbc.e15-08-0570] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/13/2015] [Indexed: 12/24/2022] Open
Abstract
Monocyte chemotactic protein 1 (MCP1) stimulates vascular smooth muscle cell (VSMC) migration in vascular wall remodeling. However, the mechanisms underlying MCP1-induced VSMC migration have not been understood. Here we identify the signaling pathway associated with MCP1-induced human aortic smooth muscle cell (HASMC) migration. MCP1, a G protein-coupled receptor agonist, activates phosphorylation of cortactin on S405 and S418 residues in a time-dependent manner, and inhibition of its phosphorylation attenuates MCP1-induced HASMC G-actin polymerization, F-actin stress fiber formation, and migration. Cortactin phosphorylation on S405/S418 is found to be critical for its interaction with WAVE2, a member of the WASP family of cytoskeletal regulatory proteins required for cell migration. In addition, the MCP1-induced cortactin phosphorylation is dependent on PLCβ3-mediated PKCδ activation, and siRNA-mediated down-regulation of either of these molecules prevents cortactin interaction with WAVE2, affecting G-actin polymerization, F-actin stress fiber formation, and HASMC migration. Upstream, MCP1 activates CCR2 and Gαq/11 in a time-dependent manner, and down-regulation of their levels attenuates MCP1-induced PLCβ3 and PKCδ activation, cortactin phosphorylation, cortactin-WAVE2 interaction, G-actin polymerization, F-actin stress fiber formation, and HASMC migration. Together these findings demonstrate that phosphorylation of cortactin on S405 and S418 residues is required for its interaction with WAVE2 in MCP1-induced cytoskeleton remodeling, facilitating HASMC migration.
Collapse
Affiliation(s)
- Jagadeesh Janjanam
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Giri Kumar Chandaka
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Sivareddy Kotla
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| |
Collapse
|
23
|
Singh NK, Kotla S, Kumar R, Rao GN. Cyclic AMP Response Element Binding Protein Mediates Pathological Retinal Neovascularization via Modulating DLL4-NOTCH1 Signaling. EBioMedicine 2015; 2:1767-84. [PMID: 26870802 PMCID: PMC4740322 DOI: 10.1016/j.ebiom.2015.09.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/08/2015] [Accepted: 09/23/2015] [Indexed: 11/29/2022] Open
Abstract
Retinal neovascularization is the most common cause of moderate to severe vision loss in all age groups. Despite the use of anti-VEGFA therapies, this complication continues to cause blindness, suggesting a role for additional molecules in retinal neovascularization. Besides VEGFA and VEGFB, hypoxia induced VEGFC expression robustly. Based on this finding, we tested the role of VEGFC in pathological retinal angiogenesis. VEGFC induced proliferation, migration, sprouting and tube formation of human retinal microvascular endothelial cells (HRMVECs) and these responses require CREB-mediated DLL4 expression and NOTCH1 activation. Furthermore, down regulation of VEGFC levels substantially reduced tip cell formation and retinal neovascularization in vivo. In addition, we observed that CREB via modulating the DLL4-NOTCH1 signaling mediates VEGFC-induced tip cell formation and retinal neovascularization. In regard to upstream mechanism, we found that down regulation of p38β levels inhibited hypoxia-induced CREB-DLL4-NOTCH1 activation, tip cell formation, sprouting and retinal neovascularization. Based on these findings, it may be suggested that VEGFC besides its role in the regulation of lymphangiogenesis also plays a role in pathological retinal angiogenesis and this effect depends on p38β and CREB-mediated activation of DLL4-NOTCH1 signaling.
Collapse
Affiliation(s)
- Nikhlesh K Singh
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sivareddy Kotla
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Raj Kumar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|