1
|
Soaita I, Megill E, Kantner D, Chatoff A, Cheong YJ, Clarke P, Arany Z, Snyder NW, Wellen KE, Trefely S. Dynamic protein deacetylation is a limited carbon source for acetyl-CoA-dependent metabolism. J Biol Chem 2023; 299:104772. [PMID: 37142219 PMCID: PMC10244699 DOI: 10.1016/j.jbc.2023.104772] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023] Open
Abstract
The ability of cells to store and rapidly mobilize energy reserves in response to nutrient availability is essential for survival. Breakdown of carbon stores produces acetyl-CoA (AcCoA), which fuels essential metabolic pathways and is also the acyl donor for protein lysine acetylation. Histones are abundant and highly acetylated proteins, accounting for 40% to 75% of cellular protein acetylation. Notably, histone acetylation is sensitive to AcCoA availability, and nutrient replete conditions induce a substantial accumulation of acetylation on histones. Deacetylation releases acetate, which can be recycled to AcCoA, suggesting that deacetylation could be mobilized as an AcCoA source to feed downstream metabolic processes under nutrient depletion. While the notion of histones as a metabolic reservoir has been frequently proposed, experimental evidence has been lacking. Therefore, to test this concept directly, we used acetate-dependent, ATP citrate lyase-deficient mouse embryonic fibroblasts (Acly-/- MEFs), and designed a pulse-chase experimental system to trace deacetylation-derived acetate and its incorporation into AcCoA. We found that dynamic protein deacetylation in Acly-/- MEFs contributed carbons to AcCoA and proximal downstream metabolites. However, deacetylation had no significant effect on acyl-CoA pool sizes, and even at maximal acetylation, deacetylation transiently supplied less than 10% of cellular AcCoA. Together, our data reveal that although histone acetylation is dynamic and nutrient-sensitive, its potential for maintaining cellular AcCoA-dependent metabolic pathways is limited compared to cellular demand.
Collapse
Affiliation(s)
- Ioana Soaita
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emily Megill
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, TempleUniversity, Philadelphia, Pennsylvania, USA
| | - Daniel Kantner
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, TempleUniversity, Philadelphia, Pennsylvania, USA
| | - Adam Chatoff
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, TempleUniversity, Philadelphia, Pennsylvania, USA
| | - Yuen Jian Cheong
- Epigenetics and Signalling Programs, Babraham Institute, Cambridge, UK
| | - Philippa Clarke
- Epigenetics and Signalling Programs, Babraham Institute, Cambridge, UK
| | - Zoltan Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Nathaniel W Snyder
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, TempleUniversity, Philadelphia, Pennsylvania, USA.
| | - Kathryn E Wellen
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Sophie Trefely
- Epigenetics and Signalling Programs, Babraham Institute, Cambridge, UK.
| |
Collapse
|
2
|
Wu D, Zhang Y, Tang Z, Chen X, Ling X, Li L, Cao W, Zheng W, Wu J, Tang H, Liu X, Luo X, Liu T. Creation of a Yeast Strain with Co‐Translationally Acylated Nucleosomes. Angew Chem Int Ed Engl 2022; 61:e202205570. [DOI: 10.1002/anie.202205570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Dan Wu
- State Key Laboratory of Natural and Biomimetic Drugs Chemical Biology Center Department of Molecular and Cellular, Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Yunfeng Zhang
- Center for Synthetic Biochemistry Institute of Synthetic Biology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Zhiheng Tang
- Department of Microbiology School of Basic Medical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Xiaoxu Chen
- State Key Laboratory of Natural and Biomimetic Drugs Chemical Biology Center Department of Molecular and Cellular, Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Xinyu Ling
- State Key Laboratory of Natural and Biomimetic Drugs Chemical Biology Center Department of Molecular and Cellular, Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Longtu Li
- Key Laboratory of Protein and Plant Gene Research School of Life Sciences and Peking-Tsinghua Center for Life Science Peking University Beijing 100871 China
| | - Wenbing Cao
- State Key Laboratory of Natural and Biomimetic Drugs Chemical Biology Center Department of Molecular and Cellular, Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Wei Zheng
- State Key Laboratory of Natural and Biomimetic Drugs Chemical Biology Center Department of Molecular and Cellular, Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Jiale Wu
- Key Laboratory of Protein and Plant Gene Research School of Life Sciences and Peking-Tsinghua Center for Life Science Peking University Beijing 100871 China
| | - Hongting Tang
- Center for Synthetic Biochemistry Institute of Synthetic Biology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Xiaoyun Liu
- Department of Microbiology School of Basic Medical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry Institute of Synthetic Biology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- CAS Key Laboratory of Quantitative Engineering Biology Institute of Synthetic Biology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Tao Liu
- State Key Laboratory of Natural and Biomimetic Drugs Chemical Biology Center Department of Molecular and Cellular, Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| |
Collapse
|
3
|
Wu D, Zhang Y, Tang Z, Chen X, Ling X, Li L, Cao W, Zheng W, Wu J, Tang H, Liu X, Luo X, Liu T. Creation of a Yeast Strain with Co‐Translationally Acylated Nucleosomes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dan Wu
- State Key Laboratory of Natural and Biomimetic Drugs Chemical Biology Center Department of Molecular and Cellular, Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Yunfeng Zhang
- Center for Synthetic Biochemistry Institute of Synthetic Biology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Zhiheng Tang
- Department of Microbiology School of Basic Medical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Xiaoxu Chen
- State Key Laboratory of Natural and Biomimetic Drugs Chemical Biology Center Department of Molecular and Cellular, Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Xinyu Ling
- State Key Laboratory of Natural and Biomimetic Drugs Chemical Biology Center Department of Molecular and Cellular, Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Longtu Li
- Key Laboratory of Protein and Plant Gene Research School of Life Sciences and Peking-Tsinghua Center for Life Science Peking University Beijing 100871 China
| | - Wenbing Cao
- State Key Laboratory of Natural and Biomimetic Drugs Chemical Biology Center Department of Molecular and Cellular, Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Wei Zheng
- State Key Laboratory of Natural and Biomimetic Drugs Chemical Biology Center Department of Molecular and Cellular, Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Jiale Wu
- Key Laboratory of Protein and Plant Gene Research School of Life Sciences and Peking-Tsinghua Center for Life Science Peking University Beijing 100871 China
| | - Hongting Tang
- Center for Synthetic Biochemistry Institute of Synthetic Biology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Xiaoyun Liu
- Department of Microbiology School of Basic Medical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry Institute of Synthetic Biology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- CAS Key Laboratory of Quantitative Engineering Biology Institute of Synthetic Biology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Tao Liu
- State Key Laboratory of Natural and Biomimetic Drugs Chemical Biology Center Department of Molecular and Cellular, Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| |
Collapse
|
4
|
Hansen BK, Gupta R, Baldus L, Lyon D, Narita T, Lammers M, Choudhary C, Weinert BT. Analysis of human acetylation stoichiometry defines mechanistic constraints on protein regulation. Nat Commun 2019; 10:1055. [PMID: 30837475 PMCID: PMC6401094 DOI: 10.1038/s41467-019-09024-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/11/2019] [Indexed: 12/21/2022] Open
Abstract
Lysine acetylation is a reversible posttranslational modification that occurs at thousands of sites on human proteins. However, the stoichiometry of acetylation remains poorly characterized, and is important for understanding acetylation-dependent mechanisms of protein regulation. Here we provide accurate, validated measurements of acetylation stoichiometry at 6829 sites on 2535 proteins in human cervical cancer (HeLa) cells. Most acetylation occurs at very low stoichiometry (median 0.02%), whereas high stoichiometry acetylation (>1%) occurs on nuclear proteins involved in gene transcription and on acetyltransferases. Analysis of acetylation copy numbers show that histones harbor the majority of acetylated lysine residues in human cells. Class I deacetylases target a greater proportion of high stoichiometry acetylation compared to SIRT1 and HDAC6. The acetyltransferases CBP and p300 catalyze a majority (65%) of high stoichiometry acetylation. This resource dataset provides valuable information for evaluating the impact of individual acetylation sites on protein function and for building accurate mechanistic models. Many human proteins are regulated by lysine acetylation, but the degree of acetylation at individual sites is poorly characterized. Here, the authors measure acetylation stoichiometry in the HeLa cell proteome, providing a resource to assess mechanistic constraints on acetylation-mediated protein regulation.
Collapse
Affiliation(s)
- Bogi Karbech Hansen
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Rajat Gupta
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Linda Baldus
- Institute of Biochemistry, Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, Greifswald, 17487, Germany.,Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, CECAD, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - David Lyon
- Disease Systems Biology Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Takeo Narita
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Michael Lammers
- Institute of Biochemistry, Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, Greifswald, 17487, Germany.,Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, CECAD, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Chunaram Choudhary
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark.
| | - Brian T Weinert
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
5
|
Yuan ZF, Sidoli S, Marchione DM, Simithy J, Janssen KA, Szurgot MR, Garcia BA. EpiProfile 2.0: A Computational Platform for Processing Epi-Proteomics Mass Spectrometry Data. J Proteome Res 2018; 17:2533-2541. [PMID: 29790754 DOI: 10.1021/acs.jproteome.8b00133] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epigenetics has become a fundamental scientific discipline with various implications for biology and medicine. Epigenetic marks, mostly DNA methylation and histone post-translational modifications (PTMs), play important roles in chromatin structure and function. Accurate quantification of these marks is an ongoing challenge due to the variety of modifications and their wide dynamic range of abundance. Here we present EpiProfile 2.0, an extended version of our 2015 software (v1.0), for accurate quantification of histone peptides based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. EpiProfile 2.0 is now optimized for data-independent acquisition through the use of precursor and fragment extracted ion chromatography to accurately determine the chromatographic profile and to discriminate isobaric forms of peptides. The software uses an intelligent retention time prediction trained on the analyzed samples to enable accurate peak detection. EpiProfile 2.0 supports label-free and isotopic labeling, different organisms, known sequence mutations in diseases, different derivatization strategies, and unusual PTMs (such as acyl-derived modifications). In summary, EpiProfile 2.0 is a universal and accurate platform for the quantification of histone marks via LC-MS/MS. Being the first software of its kind, we anticipate that EpiProfile 2.0 will play a fundamental role in epigenetic studies relevant to biology and translational medicine. EpiProfile is freely available at https://github.com/zfyuan/EpiProfile2.0_Family .
Collapse
Affiliation(s)
- Zuo-Fei Yuan
- Epigenetics Institute, Department of Biochemistry and Biophysics , Perelman School of Medicine University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Simone Sidoli
- Epigenetics Institute, Department of Biochemistry and Biophysics , Perelman School of Medicine University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Dylan M Marchione
- Department of Systems Pharmacology and Translational Therapeutics , Perelman School of Medicine University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Johayra Simithy
- Epigenetics Institute, Department of Biochemistry and Biophysics , Perelman School of Medicine University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Kevin A Janssen
- Epigenetics Institute, Department of Biochemistry and Biophysics , Perelman School of Medicine University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Mary R Szurgot
- Epigenetics Institute, Department of Biochemistry and Biophysics , Perelman School of Medicine University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics , Perelman School of Medicine University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
6
|
Shvartsburg AA, Haris A, Andrzejewski R, Entwistle A, Giles R. Differential Ion Mobility Separations in the Low-Pressure Regime. Anal Chem 2017; 90:936-943. [DOI: 10.1021/acs.analchem.7b03925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Alexandre A. Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Anisha Haris
- Shimadzu Research Laboratory, Wharfside, Trafford Wharf Road, Manchester M17 1GP, United Kingdom
| | - Roch Andrzejewski
- Shimadzu Research Laboratory, Wharfside, Trafford Wharf Road, Manchester M17 1GP, United Kingdom
| | - Andrew Entwistle
- Shimadzu Research Laboratory, Wharfside, Trafford Wharf Road, Manchester M17 1GP, United Kingdom
| | - Roger Giles
- Shimadzu Research Laboratory, Wharfside, Trafford Wharf Road, Manchester M17 1GP, United Kingdom
| |
Collapse
|
7
|
Epigenetic regulation of skeletal muscle metabolism. Clin Sci (Lond) 2017; 130:1051-63. [PMID: 27215678 DOI: 10.1042/cs20160115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/15/2016] [Indexed: 01/04/2023]
Abstract
Normal skeletal muscle metabolism is essential for whole body metabolic homoeostasis and disruptions in muscle metabolism are associated with a number of chronic diseases. Transcriptional control of metabolic enzyme expression is a major regulatory mechanism for muscle metabolic processes. Substantial evidence is emerging that highlights the importance of epigenetic mechanisms in this process. This review will examine the importance of epigenetics in the regulation of muscle metabolism, with a particular emphasis on DNA methylation and histone acetylation as epigenetic control points. The emerging cross-talk between metabolism and epigenetics in the context of health and disease will also be examined. The concept of inheritance of skeletal muscle metabolic phenotypes will be discussed, in addition to emerging epigenetic therapies that could be used to alter muscle metabolism in chronic disease states.
Collapse
|
8
|
Identification of absolute geometries of cis and trans molecular isomers by Coulomb Explosion Imaging. Sci Rep 2016; 6:38202. [PMID: 27910943 PMCID: PMC5133590 DOI: 10.1038/srep38202] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/04/2016] [Indexed: 01/13/2023] Open
Abstract
An experimental route to identify and separate geometric isomers by means of coincident Coulomb explosion imaging is presented, allowing isomer-resolved photoionization studies on isomerically mixed samples. We demonstrate the technique on cis/trans 1,2-dibromoethene (C2H2Br2). The momentum correlation between the bromine ions in a three-body fragmentation process induced by bromine 3d inner-shell photoionization is used to identify the cis and trans structures of the isomers. The experimentally determined momentum correlations and the isomer-resolved fragment-ion kinetic energies are matched closely by a classical Coulomb explosion model.
Collapse
|
9
|
Epiproteomics: quantitative analysis of histone marks and codes by mass spectrometry. Curr Opin Chem Biol 2016; 33:142-50. [PMID: 27371874 DOI: 10.1016/j.cbpa.2016.06.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/13/2016] [Accepted: 06/08/2016] [Indexed: 01/01/2023]
Abstract
Histones are a group of proteins with a high number of post-translational modifications, including methylation, acetylation, phosphorylation, and monoubiquitination, which play critical roles in every chromatin-templated activity. The quantitative analysis of these modifications using mass spectrometry (MS) has seen significant improvements over the last decade. It is now possible to perform large-scale surveys of dozens of histone marks and hundreds of their combinations on global chromatin. Here, we review the development of three MS strategies for analyzing histone modifications that have come to be known as Bottom Up, Middle Down, and Top Down. We also discuss challenges and innovative solutions for characterizing and quantifying complicated isobaric species arising from multiple modifications on the same histone molecule.
Collapse
|
10
|
Abshiru N, Rajan RE, Verreault A, Thibault P. Unraveling Site-Specific and Combinatorial Histone Modifications Using High-Resolution Mass Spectrometry in Histone Deacetylase Mutants of Fission Yeast. J Proteome Res 2016; 15:2132-42. [PMID: 27223649 DOI: 10.1021/acs.jproteome.5b01156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Histone deacetylases (HDACs) catalyze the removal of acetylation marks from lysine residues on histone and nonhistone substrates. Their activity is generally associated with essential cellular processes such as transcriptional repression and heterochromatin formation. Interestingly, abnormal activity of HDACs has been reported in various types of cancers, which makes them a promising therapeutic target for cancer treatment. In the current study, we aim to understand the mechanisms underlying the function of HDACs using an in-depth quantitative analysis of changes in histone acetylation levels in Schizosaccharomyces pombe (S. pombe) lacking major HDAC activities. We employed a targeted quantitative mass spectrometry approach to profile changes of acetylation and methylation at multiple lysine residues on the N-terminal tail of histones H3 and H4. Our analyses identified a number of histone acetylation sites that are significantly affected by S. pombe HDAC mutations. We discovered that mutation of the Class I HDAC known as Clr6 causes a major increase in the abundance of triacetylated H4 molecules at K5, K8, and K12. A clr6-1 hypomorphic mutation also increased the abundance of multiple acetyl-lysines in histone H3. In addition, our study uncovered a few crosstalks between histone acetylation and methylation upon deletion of HDACs Hos2 and Clr3. We anticipate that the results from this study will greatly improve our current understanding of the mechanisms involved in HDAC-mediated gene regulation and heterochromatin assembly.
Collapse
Affiliation(s)
- Nebiyu Abshiru
- Department of Chemistry, ‡Institute for Research in Immunology and Cancer (IRIC), §Molecular Biology Programme, and ⊥Department of Pathology and Cell Biology, Université de Montréal , Montréal, Québec H3C 3J7, Canada
| | - Roshan Elizabeth Rajan
- Department of Chemistry, ‡Institute for Research in Immunology and Cancer (IRIC), §Molecular Biology Programme, and ⊥Department of Pathology and Cell Biology, Université de Montréal , Montréal, Québec H3C 3J7, Canada
| | - Alain Verreault
- Department of Chemistry, ‡Institute for Research in Immunology and Cancer (IRIC), §Molecular Biology Programme, and ⊥Department of Pathology and Cell Biology, Université de Montréal , Montréal, Québec H3C 3J7, Canada
| | - Pierre Thibault
- Department of Chemistry, ‡Institute for Research in Immunology and Cancer (IRIC), §Molecular Biology Programme, and ⊥Department of Pathology and Cell Biology, Université de Montréal , Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
11
|
Mayne J, Ning Z, Zhang X, Starr AE, Chen R, Deeke S, Chiang CK, Xu B, Wen M, Cheng K, Seebun D, Star A, Moore JI, Figeys D. Bottom-Up Proteomics (2013-2015): Keeping up in the Era of Systems Biology. Anal Chem 2015; 88:95-121. [PMID: 26558748 DOI: 10.1021/acs.analchem.5b04230] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Janice Mayne
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Zhibin Ning
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Xu Zhang
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Amanda E Starr
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Rui Chen
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Shelley Deeke
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Cheng-Kang Chiang
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Bo Xu
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Ming Wen
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Kai Cheng
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Deeptee Seebun
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Alexandra Star
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Jasmine I Moore
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| |
Collapse
|