1
|
Josserand M, Rubanova N, Stefanutti M, Roumeliotis S, Espenel M, Marshall OJ, Servant N, Gervais L, Bardin AJ. Chromatin state transitions in the Drosophila intestinal lineage identify principles of cell-type specification. Dev Cell 2023; 58:3048-3063.e6. [PMID: 38056452 DOI: 10.1016/j.devcel.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/20/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
Tissue homeostasis relies on rewiring of stem cell transcriptional programs into those of differentiated cells. Here, we investigate changes in chromatin occurring in a bipotent adult stem cells. Combining mapping of chromatin-associated factors with statistical modeling, we identify genome-wide transitions during differentiation in the adult Drosophila intestinal stem cell (ISC) lineage. Active, stem-cell-enriched genes transition to a repressive heterochromatin protein-1-enriched state more prominently in enteroendocrine cells (EEs) than in enterocytes (ECs), in which the histone H1-enriched Black state is preeminent. In contrast, terminal differentiation genes associated with metabolic functions follow a common path from a repressive, primed, histone H1-enriched Black state in ISCs to active chromatin states in EE and EC cells. Furthermore, we find that lineage priming has an important function in adult ISCs, and we identify histone H1 as a mediator of this process. These data define underlying principles of chromatin changes during adult multipotent stem cell differentiation.
Collapse
Affiliation(s)
- Manon Josserand
- Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, Genetics and Developmental Biology Department, 75248 Paris, France
| | - Natalia Rubanova
- Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, Genetics and Developmental Biology Department, 75248 Paris, France; Institut Curie Bioinformatics Core Facility, PSL Research University, INSERM U900, MINES ParisTech, Paris 75005, France
| | - Marine Stefanutti
- Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, Genetics and Developmental Biology Department, 75248 Paris, France
| | - Spyridon Roumeliotis
- Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, Genetics and Developmental Biology Department, 75248 Paris, France
| | - Marion Espenel
- Institut Curie, PSL University, ICGex Next-Generation Sequencing Platform, 75005 Paris, France
| | - Owen J Marshall
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Australia
| | - Nicolas Servant
- Institut Curie Bioinformatics Core Facility, PSL Research University, INSERM U900, MINES ParisTech, Paris 75005, France
| | - Louis Gervais
- Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, Genetics and Developmental Biology Department, 75248 Paris, France.
| | - Allison J Bardin
- Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, Genetics and Developmental Biology Department, 75248 Paris, France.
| |
Collapse
|
2
|
Gao H, Li Y, Tian Y, Zhang H, Kim K, Li B. Gene family expansion analysis and identification of the histone family in Spodoptera frugiperda. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101142. [PMID: 37713926 DOI: 10.1016/j.cbd.2023.101142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Spodoptera frugiperda, a major invasive pest, causes severe damage to various economically important crops. Previous comparative genomics studies have revealed a close association between the invasiveness of S. frugiperda and its genome. In recent years, a vast amount of genome from lepidopteran species has become available, offering an opportunity for a more detailed and comprehensive understanding of the biological characteristics of S. frugiperda. In this study, we conducted a comprehensive comparative genomics analysis of S. frugiperda using genome from 46 lepidopteran species. We found the highest number of gene family expansion events in S. frugiperda, indicating that gene family expansion is a crucial mechanism in its adaptive evolution. The expanded gene families are enriched in various biological processes, including nutrient metabolism, development, stress response, reproduction, and immune processes, suggesting that the expansion of these gene families likely contributes to the strong environmental adaptability of S. frugiperda. Furthermore, we identified the expansion of histone gene families in S. frugiperda which resulted from chromosome segmental duplications after the divergence from closely related species. Expression analysis of histone genes indicated that certain members might exert an influence on the growth and reproduction processes of S. frugiperda. Overall, our study deepens our understanding of the biological characteristics of S. frugiperda, providing a theoretical basis for the comprehensive management and sustained control of S. frugiperda and other lepidopteran pests in the future.
Collapse
Affiliation(s)
- Han Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Yanxiao Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Ying Tian
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Hui Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - KumChol Kim
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; Department of Life-Science, University of Science, Pyongyang, Democratic People's Republic of Korea
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
3
|
Sun Z, Nystul TG, Zhong G. Single-cell RNA sequencing identifies eggplant as a regulator of germ cell development in Drosophila. EMBO Rep 2023; 24:e56475. [PMID: 37603128 PMCID: PMC10561367 DOI: 10.15252/embr.202256475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023] Open
Abstract
Drosophila ovarian germline stem cells (GSCs) are a powerful model for stem cell research. In this study, we use single-cell RNA sequencing (scRNA-seq), an RNAi screen and bioinformatic analysis, to identify genes involved in germ cell differentiation, including 34 genes with upregulated expression during early germ cell development and 19 genes that may regulate germ cell differentiation. Among these, a gene we have named eggplant (eggpl) is highly expressed in GSCs and downregulated in early daughter cells. RNAi knockdown of eggpl causes germ cell proliferation and differentiation defects. In flies fed a rich yeast diet, the expression of eggpl is significantly lower and knockdown or knockout of eggpl phenocopies a rich diet. In addition, eggpl knockdown suppresses the reduction in germ cell proliferation caused by inhibition of the insulin effector PI3K. These findings suggest that downregulation of eggpl links nutritional status to germ cell proliferation and differentiation. Collectively, this study provides new insights into the signaling networks that regulate early germ cell development and identifies eggpl as a key player in this process.
Collapse
Affiliation(s)
- Zhipeng Sun
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural AffairsSouth China Agricultural UniversityGuangzhouChina
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of EducationSouth China Agricultural UniversityGuangzhouChina
| | | | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural AffairsSouth China Agricultural UniversityGuangzhouChina
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of EducationSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
4
|
Gleason RJ, Chen X. Epigenetic dynamics during germline development: insights from Drosophila and C. elegans. Curr Opin Genet Dev 2023; 78:102017. [PMID: 36549194 PMCID: PMC10100592 DOI: 10.1016/j.gde.2022.102017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
Gametogenesis produces the only cell type within a metazoan that contributes both genetic and epigenetic information to the offspring. Extensive epigenetic dynamics are required to express or repress gene expression in a precise spatiotemporal manner. On the other hand, early embryos must be extensively reprogrammed as they begin a new life cycle, involving intergenerational epigenetic inheritance. Seminal work in both Drosophila and C. elegans has elucidated the role of various regulators of epigenetic inheritance, including (1) histones, (2) histone-modifying enzymes, and (3) small RNA-dependent epigenetic regulation in the maintenance of germline identity. This review highlights recent discoveries of epigenetic regulation during the stepwise changes of transcription and chromatin structure that takes place during germline stem cell self-renewal, maintenance of germline identity, and intergenerational epigenetic inheritance. Findings from these two species provide precedence and opportunity to extend relevant studies to vertebrates.
Collapse
Affiliation(s)
- Ryan J. Gleason
- Department of Biology, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Xin Chen
- HHMI, Department of Biology, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
5
|
Szarka-Kovács AB, Takács Z, Bence M, Erdélyi M, Jankovics F. Drosophila MESR4 Gene Ensures Germline Stem Cell Differentiation by Promoting the Transcription of bag of marbles. Cells 2022; 11:cells11132056. [PMID: 35805140 PMCID: PMC9265997 DOI: 10.3390/cells11132056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022] Open
Abstract
Ovarian germline stem cells (GSCs) of Drosophila melanogaster provide a valuable in vivo model to investigate how the adult stem cell identity is maintained and the differentiation of the daughter cells is regulated. GSCs are embedded into a specialized cellular microenvironment, the so-called stem cell niche. Besides the complex signaling interactions between the germ cells and the niche cells, the germ cell intrinsic mechanisms, such as chromatin regulation and transcriptional control, are also crucial in the decision about self-renewal and differentiation. The key differentiation regulator gene is the bag of marbles (bam), which is transcriptionally repressed in the GSCs and de-repressed in the differentiating daughter cell. Here, we show that the transcription factor MESR4 functions in the germline to promote GSC daughter differentiation. We find that the loss of MESR4 results in the accumulation of GSC daughter cells which fail to transit from the pre-cystoblast (pre-CB) to the differentiated cystoblast (CB) stage. The forced expression of bam can rescue this differentiation defect. By a series of epistasis experiments and a transcriptional analysis, we demonstrate that MESR4 positively regulates the transcription of bam. Our results suggest that lack of repression alone is not sufficient, but MESR4-mediated transcriptional activation is also required for bam expression.
Collapse
Affiliation(s)
- Alexandra Brigitta Szarka-Kovács
- Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary; (A.B.S.-K.); (Z.T.); (M.B.)
- Doctoral School in Biology, University of Szeged, H-6720 Szeged, Hungary
| | - Zsanett Takács
- Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary; (A.B.S.-K.); (Z.T.); (M.B.)
| | - Melinda Bence
- Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary; (A.B.S.-K.); (Z.T.); (M.B.)
| | - Miklós Erdélyi
- Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary; (A.B.S.-K.); (Z.T.); (M.B.)
- Correspondence: (M.E.); (F.J.)
| | - Ferenc Jankovics
- Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary; (A.B.S.-K.); (Z.T.); (M.B.)
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
- Correspondence: (M.E.); (F.J.)
| |
Collapse
|
6
|
Dombrowski M, Engeholm M, Dienemann C, Dodonova S, Cramer P. Histone H1 binding to nucleosome arrays depends on linker DNA length and trajectory. Nat Struct Mol Biol 2022; 29:493-501. [PMID: 35581345 PMCID: PMC9113941 DOI: 10.1038/s41594-022-00768-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 04/01/2022] [Indexed: 01/17/2023]
Abstract
Throughout the genome, nucleosomes often form regular arrays that differ in nucleosome repeat length (NRL), occupancy of linker histone H1 and transcriptional activity. Here, we report cryo-EM structures of human H1-containing tetranucleosome arrays with four physiologically relevant NRLs. The structures show a zig-zag arrangement of nucleosomes, with nucleosomes 1 and 3 forming a stack. H1 binding to stacked nucleosomes depends on the NRL, whereas H1 always binds to the non-stacked nucleosomes 2 and 4. Short NRLs lead to altered trajectories of linker DNA, and these altered trajectories sterically impair H1 binding to the stacked nucleosomes in our structures. As the NRL increases, linker DNA trajectories relax, enabling H1 contacts and binding. Our results provide an explanation for why arrays with short NRLs are depleted of H1 and suited for transcription, whereas arrays with long NRLs show full H1 occupancy and can form transcriptionally silent heterochromatin regions. Cryo-EM structures of human H1-containing tetranucleosome arrays with distinct, physiological nucleosome repeat lengths reveal that nucleosomes assume a zig-zag arrangement and H1 binds to stacked nucleosomes with longer linker DNA.
Collapse
Affiliation(s)
- Marco Dombrowski
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Maik Engeholm
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Christian Dienemann
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Svetlana Dodonova
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany. .,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
7
|
McCarthy A, Sarkar K, Martin ET, Upadhyay M, Jang S, Williams ND, Forni PE, Buszczak M, Rangan P. Msl3 promotes germline stem cell differentiation in female Drosophila. Development 2022; 149:dev199625. [PMID: 34878097 PMCID: PMC8783043 DOI: 10.1242/dev.199625] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/19/2021] [Indexed: 01/07/2023]
Abstract
Gamete formation from germline stem cells (GSCs) is essential for sexual reproduction. However, the regulation of GSC differentiation is incompletely understood. Set2, which deposits H3K36me3 modifications, is required for GSC differentiation during Drosophila oogenesis. We discovered that the H3K36me3 reader Male-specific lethal 3 (Msl3) and histone acetyltransferase complex Ada2a-containing (ATAC) cooperate with Set2 to regulate GSC differentiation in female Drosophila. Msl3, acting independently of the rest of the male-specific lethal complex, promotes transcription of genes, including a germline-enriched ribosomal protein S19 paralog RpS19b. RpS19b upregulation is required for translation of RNA-binding Fox protein 1 (Rbfox1), a known meiotic cell cycle entry factor. Thus, Msl3 regulates GSC differentiation by modulating translation of a key factor that promotes transition to an oocyte fate.
Collapse
Affiliation(s)
- Alicia McCarthy
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
| | - Kahini Sarkar
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
| | - Elliot T. Martin
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
| | - Maitreyi Upadhyay
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Seoyeon Jang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nathan D. Williams
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Paolo E. Forni
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prashanth Rangan
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
| |
Collapse
|
8
|
The role of MOZ/KAT6A in hematological malignancies and advances in MOZ/KAT6A inhibitors. Pharmacol Res 2021; 174:105930. [PMID: 34626770 DOI: 10.1016/j.phrs.2021.105930] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 11/22/2022]
Abstract
Hematological malignancies, unlike solid tumors, are a group of malignancies caused by abnormal differentiation of hematopoietic stem cells. Monocytic leukemia zinc finger protein (MOZ), a member of the MYST (MOZ, Ybf2/Sas3, Sas2, Tip60) family, is a histone acetyltransferase. MOZ is involved in various cellular functions: generation and maintenance of hematopoietic stem cells, development of erythroid cells, B-lineage progenitors and myeloid cells, and regulation of cellular senescence. Studies have shown that MOZ is susceptible to translocation in chromosomal rearrangements to form fusion genes, leading to the fusion of MOZ with other cellular regulators to form MOZ fusion proteins. Different MOZ fusion proteins have different roles, such as in the development and progression of hematological malignancies and inhibition of cellular senescence. Thus, MOZ is an attractive target, and targeting MOZ to design small-molecule drugs can help to treat hematological malignancies. This review summarizes recent progress in biology and medicinal chemistry for the histone acetyltransferase MOZ. In the biology section, MOZ and cofactors, structures of MOZ and related HATs, MOZ and fusion proteins, and roles of MOZ in cancer are discussed. In medicinal chemistry, recent developments in MOZ inhibitors are summarized.
Collapse
|
9
|
Kato K, Kawaguchi A, Nagata K. Template activating factor-I epigenetically regulates the TERT transcription in human cancer cells. Sci Rep 2021; 11:17726. [PMID: 34489496 PMCID: PMC8421516 DOI: 10.1038/s41598-021-97009-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 08/19/2021] [Indexed: 11/09/2022] Open
Abstract
Telomere, the terminus of linear chromosome in eukaryotes, is composed of specific repeat DNA which is mainly synthesized by a protein complex called telomerase. The maintenance of telomere DNA is important for unlimited proliferative capacity of cancer cells. The telomerase activity is controlled by the expression level of telomerase reverse transcriptase (TERT), a catalytic unit of telomerase, in some species including human. Therefore, to reveal the regulatory mechanisms of the transcription of TERT gene is important for understanding the tumor development. We found that template activating factor-I (TAF-I), a multifunctional nuclear protein, is involved in the transcriptional activation of TERT for the maintenance of telomere DNA in HeLa cells. TAF-I maintains the histone H3 modifications involved in transcriptional activation and hypomethylated cytosines in CpG dinucleotides around the transcription start site (TSS) in the TERT gene locus. Collectively, TAF-I is involved in the maintenance of telomere DNA through the regulation of TERT transcription, then consequently the occurrence and/or recurrence of cancer cells.
Collapse
Affiliation(s)
- Kohsuke Kato
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan.
| | - Atsushi Kawaguchi
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan.,Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan.,Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Kyosuke Nagata
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
10
|
Sun J, Wang X, Xu R, Mao D, Shen D, Wang X, Qiu Y, Han Y, Lu X, Li Y, Che Q, Zheng L, Peng P, Kang X, Zhu R, Jia Y, Wang Y, Liu L, Chang Z, Ji J, Wang Z, Liu Q, Li S, Sun F, Ni J. HP1c regulates development and gut homeostasis by suppressing Notch signaling through Su(H). EMBO Rep 2021; 22:e51298. [PMID: 33594776 PMCID: PMC8024896 DOI: 10.15252/embr.202051298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/01/2021] [Accepted: 01/13/2021] [Indexed: 12/30/2022] Open
Abstract
Notch signaling and epigenetic factors are known to play critical roles in regulating tissue homeostasis in most multicellular organisms, but how Notch signaling coordinates with epigenetic modulators to control differentiation remains poorly understood. Here, we identify heterochromatin protein 1c (HP1c) as an essential epigenetic regulator of gut homeostasis in Drosophila. Specifically, we observe that HP1c loss-of-function phenotypes resemble those observed after Notch signaling perturbation and that HP1c interacts genetically with components of the Notch pathway. HP1c represses the transcription of Notch target genes by directly interacting with Suppressor of Hairless (Su(H)), the key transcription factor of Notch signaling. Moreover, phenotypes caused by depletion of HP1c in Drosophila can be rescued by expressing human HP1γ, suggesting that HP1γ functions similar to HP1c in Drosophila. Taken together, our findings reveal an essential role of HP1c in normal development and gut homeostasis by suppressing Notch signaling.
Collapse
Affiliation(s)
- Jin Sun
- Gene Regulatory LabSchool of MedicineTsinghua UniversityBeijingChina
- Shandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Xia Wang
- Gene Regulatory LabSchool of MedicineTsinghua UniversityBeijingChina
- School of Life SciencesPeking UniversityBeijingChina
| | - Rong‐Gang Xu
- Gene Regulatory LabSchool of MedicineTsinghua UniversityBeijingChina
| | - Decai Mao
- Gene Regulatory LabSchool of MedicineTsinghua UniversityBeijingChina
- Sichuan Academy of Grassland ScienceChengduChina
| | - Da Shen
- Gene Regulatory LabSchool of MedicineTsinghua UniversityBeijingChina
| | - Xin Wang
- Institute for TCM‐XMOE Key Laboratory of Bioinformatics/Bioinformatics DivisionBNRISTDepartment of AutomationTsinghua UniversityBeijingChina
| | - Yuhao Qiu
- Gene Regulatory LabSchool of MedicineTsinghua UniversityBeijingChina
- Tsinghua University‐Peking University Joint Center for Life SciencesBeijingChina
| | - Yuting Han
- Gene Regulatory LabSchool of MedicineTsinghua UniversityBeijingChina
| | - Xinyi Lu
- Gene Regulatory LabSchool of MedicineTsinghua UniversityBeijingChina
| | - Yutong Li
- Gene Regulatory LabSchool of MedicineTsinghua UniversityBeijingChina
| | - Qinyun Che
- Gene Regulatory LabSchool of MedicineTsinghua UniversityBeijingChina
| | - Li Zheng
- Gene Regulatory LabSchool of MedicineTsinghua UniversityBeijingChina
| | - Ping Peng
- Gene Regulatory LabSchool of MedicineTsinghua UniversityBeijingChina
- Tsinghua University‐Peking University Joint Center for Life SciencesBeijingChina
| | - Xuan Kang
- Research Center for Translational Medicine at East HospitalSchool of Life Sciences and TechnologyAdvanced Institute of Translational MedicineTongji UniversityShanghaiChina
| | - Ruibao Zhu
- Gene Regulatory LabSchool of MedicineTsinghua UniversityBeijingChina
- Tsinghua University‐Peking University Joint Center for Life SciencesBeijingChina
| | - Yu Jia
- Gene Regulatory LabSchool of MedicineTsinghua UniversityBeijingChina
- Tsinghua University‐Peking University Joint Center for Life SciencesBeijingChina
| | - Yinyin Wang
- State Key Laboratory of Membrane BiologySchool of Medicine and the School of Life SciencesTsinghua UniversityBeijingChina
| | - Lu‐Ping Liu
- Gene Regulatory LabSchool of MedicineTsinghua UniversityBeijingChina
| | - Zhijie Chang
- State Key Laboratory of Membrane BiologySchool of Medicine and the School of Life SciencesTsinghua UniversityBeijingChina
| | - Jun‐Yuan Ji
- Department of Molecular and Cellular MedicineCollege of MedicineTexas A&M Health Science CenterCollege StationTXUSA
| | - Zhao Wang
- School of Pharmaceutical SciencesTsinghua UniversityBeijingChina
| | - Qingfei Liu
- School of Pharmaceutical SciencesTsinghua UniversityBeijingChina
| | - Shao Li
- Institute for TCM‐XMOE Key Laboratory of Bioinformatics/Bioinformatics DivisionBNRISTDepartment of AutomationTsinghua UniversityBeijingChina
| | - Fang‐Lin Sun
- Research Center for Translational Medicine at East HospitalSchool of Life Sciences and TechnologyAdvanced Institute of Translational MedicineTongji UniversityShanghaiChina
| | - Jian‐Quan Ni
- Gene Regulatory LabSchool of MedicineTsinghua UniversityBeijingChina
- Tsingdao Advanced Research InstituteTongji UniversityQingdaoChina
| |
Collapse
|
11
|
Vidaurre V, Chen X. Epigenetic regulation of drosophila germline stem cell maintenance and differentiation. Dev Biol 2021; 473:105-118. [PMID: 33610541 DOI: 10.1016/j.ydbio.2021.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/26/2021] [Accepted: 02/06/2021] [Indexed: 12/13/2022]
Abstract
Gametogenesis is one of the most extreme cellular differentiation processes that takes place in Drosophila male and female germlines. This process begins at the germline stem cell, which undergoes asymmetric cell division (ACD) to produce a self-renewed daughter that preserves its stemness and a differentiating daughter cell that undergoes epigenetic and genomic changes to eventually produce haploid gametes. Research in molecular genetics and cellular biology are beginning to take advantage of the continually advancing genomic tools to understand: (1) how germ cells are able to maintain their identity throughout the adult reproductive lifetime, and (2) undergo differentiation in a balanced manner. In this review, we focus on the epigenetic mechanisms that address these two questions through their regulation of germline-soma communication to ensure germline stem cell identity and activity.
Collapse
Affiliation(s)
- Velinda Vidaurre
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Baltimore, MD, 21218, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Baltimore, MD, 21218, USA.
| |
Collapse
|
12
|
Zhao X, Tian GG, Fang Q, Pei X, Wang Z, Wu J. Comparison of RNA m 6A and DNA methylation profiles between mouse female germline stem cells and STO cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:431-439. [PMID: 33473328 PMCID: PMC7803632 DOI: 10.1016/j.omtn.2020.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/17/2020] [Indexed: 11/17/2022]
Abstract
N6-methyladenosine (m6A) methylation modification is the most prevalent and abundant internal modification of eukaryotic mRNAs. Increasing evidence has shown that mRNA m6A plays important roles in the development of stem cells. However, to the best of our knowledge, no reports about the roles of mRNA m6A in mouse female germline stem cells (mFGSCs) have been published. In this study, we compared the genome-wide profiles of mRNA m6A methylation and DNA methylation between FGSCs and sandosinbred mice (SIM) embryo-derived thioguanine and ouabain-resistant (STO) cells. qRT-PCR revealed that the expression levels of mRNA m6A-related genes (Mettl3, Alkbh5, Ythdf1, Ythdf2, Ythdc1, and Ythdc2) in FGSCs were significantly higher than those in STO cells. m6A RNA immunoprecipitation sequencing (MeRIP-seq) data further showed that the unique m6A-methylated mRNAs in FGSCs and STO cells were related to cell population proliferation and somatic development, respectively. Additionally, knockdown of Ythdf1 inhibited FGSC self-renewal. Comparison of methylated DNA immunoprecipitation sequencing (MeDIP-seq) results between FGSCs and STO cells identified that DNA methylation contributed to FGSC proliferation by suppressing the somatic program. These results suggested that m6A regulated FGSC self-renewal possibly through m6A binding protein YTHDF1, and DNA methylation repressed somatic programs in FGSCs to maintain FGSC characteristics.
Collapse
Affiliation(s)
- Xinyan Zhao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Geng G Tian
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Fang
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Zhaoxia Wang
- Laboratory Animal Center, Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ji Wu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.,Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai, China
| |
Collapse
|
13
|
Xia C, Tao Y, Li M, Che T, Qu J. Protein acetylation and deacetylation: An important regulatory modification in gene transcription (Review). Exp Ther Med 2020; 20:2923-2940. [PMID: 32855658 PMCID: PMC7444376 DOI: 10.3892/etm.2020.9073] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 04/24/2020] [Indexed: 12/16/2022] Open
Abstract
Cells primarily rely on proteins to perform the majority of their physiological functions, and the function of proteins is regulated by post-translational modifications (PTMs). The acetylation of proteins is a dynamic and highly specific PTM, which has an important influence on the functions of proteins, such as gene transcription and signal transduction. The acetylation of proteins is primarily dependent on lysine acetyltransferases and lysine deacetylases. In recent years, due to the widespread use of mass spectrometry and the emergence of new technologies, such as protein chips, studies on protein acetylation have been further developed. Compared with histone acetylation, acetylation of non-histone proteins has gradually become the focus of research due to its important regulatory mechanisms and wide range of applications. The discovery of specific protein acetylation sites using bioinformatic tools can greatly aid the understanding of the underlying mechanisms of protein acetylation involved in related physiological and pathological processes.
Collapse
Affiliation(s)
- Can Xia
- Department of Cell Biology, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yu Tao
- Department of Cell Biology, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Mingshan Li
- Department of Cell Biology, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Tuanjie Che
- Laboratory of Precision Medicine and Translational Medicine, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu 215153, P.R. China
| | - Jing Qu
- Department of Cell Biology, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
14
|
Duan T, Green N, Tootle TL, Geyer PK. Nuclear architecture as an intrinsic regulator of Drosophila female germline stem cell maintenance. CURRENT OPINION IN INSECT SCIENCE 2020; 37:30-38. [PMID: 32087561 PMCID: PMC7089816 DOI: 10.1016/j.cois.2019.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 05/08/2023]
Abstract
Homeostasis of Drosophila germline stem cells (GSC) depends upon the integration of intrinsic and extrinsic signals. This review highlights emerging data that support nuclear architecture as an intrinsic regulator of GSC maintenance and germ cell differentiation. Here, we focus on the nuclear lamina (NL) and the nucleolus, two compartments that undergo alterations in composition upon germ cell differentiation. Loss of NL or nucleolar components leads to GSC loss, resulting from activation of GSC quality control checkpoint pathways. We suggest that the NL and nucleolus integrate signals needed for the switch between GSC maintenance and germ cell differentiation, and propose regulation of nuclear actin pools as one mechanism that connects these compartments.
Collapse
Affiliation(s)
- Tingting Duan
- Departments of Biochemistry, University of Iowa, College of Medicine, Iowa City, IA 52242, USA
| | - Nicole Green
- Anatomy and Cell Biology, University of Iowa, College of Medicine, Iowa City, IA 52242, USA
| | - Tina L Tootle
- Anatomy and Cell Biology, University of Iowa, College of Medicine, Iowa City, IA 52242, USA
| | - Pamela K Geyer
- Departments of Biochemistry, University of Iowa, College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
15
|
Wang Q, Zhang Q, Gan Z, Li H, Yang Y, Zhang Y, Zhao X. Screening for reproductive biomarkers in Bactrian camel via iTRAQ analysis of proteomes. Reprod Domest Anim 2020; 55:189-199. [PMID: 31840896 DOI: 10.1111/rda.13607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022]
Abstract
Bactrian camel is an ancient and precious species of livestock; that is, unique resources exist in the desert and have important economic and scientific value. In recent years, the number of Bactrian camels has declined sharply. Due to its long reproductive cycle and seasonal oestrus, the mechanism of oestrus is unknown. To identify candidate biomarkers of reproduction, we performed a comprehensive proteomic analysis of serum from Bactrian camel in oestrus and non-oestrus, using isobaric tags for relative and absolute quantitation (iTRAQ) coupled with tandem mass spectrometry. We identified 359 proteins, of which 32 were differentially expressed: 11 were up-regulated and 21 were down-regulated in samples from camels in oestrus. We validated the differential expression of a subset of these proteins using qPCR and Western blot. Gene ontology annotation identified that the differentially expressed proteins function in cellular processes, metabolic processes and immune system processes. Notably, five of the differentially expressed proteins, PCGF5, histone H1.2, RBP4, FOLR1 and ANTXR2, are involved in reproductive regulatory processes in other animals. KEGG enrichment analysis demonstrated significant enrichment in several cardiac-related pathways, such as 'dilated cardiomyopathy', 'hypertrophic cardiomyopathy', 'cardiac muscle contraction' and 'adrenergic signalling in cardiomyopathy'. Our results suggest that candidate biomarker (PCGF5, histone H1.2, RBP4, FOLR1 and ANTXR2) discovery can aid in understanding reproduction in Bactrian camels. We conclude that the profiling of serum proteomes, followed by the measurement of selected proteins using more targeted methods, offers a promising approach for studying mechanisms of oestrus.
Collapse
Affiliation(s)
- Qi Wang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Quanwei Zhang
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
| | - Ze Gan
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Haijiang Li
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Yang Yang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China.,College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China.,College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
| |
Collapse
|
16
|
Sênos Demarco R, Uyemura BS, D'Alterio C, Jones DL. Mitochondrial fusion regulates lipid homeostasis and stem cell maintenance in the Drosophila testis. Nat Cell Biol 2019; 21:710-720. [PMID: 31160709 DOI: 10.1038/s41556-019-0332-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 04/23/2019] [Indexed: 01/02/2023]
Abstract
The capacity of stem cells to self-renew or differentiate has been attributed to distinct metabolic states. A genetic screen targeting regulators of mitochondrial dynamics revealed that mitochondrial fusion is required for the maintenance of male germline stem cells (GSCs) in Drosophila melanogaster. Depletion of Mitofusin (dMfn) or Opa1 led to dysfunctional mitochondria, activation of Target of rapamycin (TOR) and a marked accumulation of lipid droplets. Enhancement of lipid utilization by the mitochondria attenuated TOR activation and rescued the loss of GSCs that was caused by inhibition of mitochondrial fusion. Moreover, constitutive activation of the TOR-pathway target and lipogenesis factor Sterol regulatory element binding protein (SREBP) also resulted in GSC loss, whereas inhibition of SREBP rescued GSC loss triggered by depletion of dMfn. Our findings highlight a critical role for mitochondrial fusion and lipid homeostasis in GSC maintenance, providing insight into the potential impact of mitochondrial and metabolic diseases on the function of stem and/or germ cells.
Collapse
Affiliation(s)
- Rafael Sênos Demarco
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bradley S Uyemura
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Cecilia D'Alterio
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - D Leanne Jones
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA. .,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA. .,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Comparative transcriptomics of social insect queen pheromones. Nat Commun 2019; 10:1593. [PMID: 30962449 PMCID: PMC6453924 DOI: 10.1038/s41467-019-09567-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
Queen pheromones are chemical signals that mediate reproductive division of labor in eusocial animals. Remarkably, queen pheromones are composed of identical or chemically similar compounds in some ants, wasps and bees, even though these taxa diverged >150MYA and evolved queens and workers independently. Here, we measure the transcriptomic consequences of experimental exposure to queen pheromones in workers from two ant and two bee species (genera: Lasius, Apis, Bombus), and test whether they are similar across species. Queen pheromone exposure affected transcription and splicing at many loci. Many genes responded consistently in multiple species, and the set of pheromone-sensitive genes was enriched for functions relating to lipid biosynthesis and transport, olfaction, production of cuticle, oogenesis, and histone (de)acetylation. Pheromone-sensitive genes tend to be evolutionarily ancient, positively selected, peripheral in the gene coexpression network, hypomethylated, and caste-specific in their expression. Our results reveal how queen pheromones achieve their effects, and suggest that ants and bees use similar genetic modules to achieve reproductive division of labor.
Collapse
|
18
|
Gao Y, Mao Y, Xu RG, Zhu R, Zhang M, Sun J, Shen D, Peng P, Xie T, Ni JQ. Defining gene networks controlling the maintenance and function of the differentiation niche by an in vivo systematic RNAi screen. J Genet Genomics 2019; 46:19-30. [PMID: 30745214 DOI: 10.1016/j.jgg.2018.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/02/2018] [Accepted: 10/23/2018] [Indexed: 01/13/2023]
Abstract
In the Drosophila ovary, escort cells (ECs) extrinsically control germline stem cell (GSC) maintenance and progeny differentiation. However, the underlying mechanisms remain poorly understood. In this study, we identified 173 EC genes for their roles in controlling GSC maintenance and progeny differentiation by using an in vivo systematic RNAi approach. Of the identified genes, 10 and 163 are required in ECs to promote GSC maintenance and progeny differentiation, respectively. The genes required for progeny differentiation fall into different functional categories, including transcription, mRNA splicing, protein degradation, signal transduction and cytoskeleton regulation. In addition, the GSC progeny differentiation defects caused by defective ECs are often associated with BMP signaling elevation, indicating that preventing BMP signaling is a general functional feature of the differentiation niche. Lastly, exon junction complex (EJC) components, which are essential for mRNA splicing, are required in ECs to promote GSC progeny differentiation by maintaining ECs and preventing BMP signaling. Therefore, this study has identified the major regulators of the differentiation niche, which provides important insights into how stem cell progeny differentiation is extrinsically controlled.
Collapse
Affiliation(s)
- Yuan Gao
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Ying Mao
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Rong-Gang Xu
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China; Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Ruibao Zhu
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China; Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Ming Zhang
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jin Sun
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China; Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Da Shen
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China; Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Ping Peng
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China; Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Ting Xie
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO, 64110, USA.
| | - Jian-Quan Ni
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, 100084, China; Tsingdao Advanced Research Institute, Tongji University, Qingdao, 266000, China.
| |
Collapse
|
19
|
Cheng Y, Chen D. Fruit fly research in China. J Genet Genomics 2018; 45:583-592. [PMID: 30455037 DOI: 10.1016/j.jgg.2018.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/21/2018] [Accepted: 09/29/2018] [Indexed: 11/19/2022]
Abstract
Served as a model organism over a century, fruit fly has significantly pushed forward the development of global scientific research, including in China. The high similarity in genomic features between fruit fly and human enables this tiny insect to benefit the biomedical studies of human diseases. In the past decades, Chinese biologists have used fruit fly to make numerous achievements on understanding the fundamental questions in many diverse areas of biology. Here, we review some of the recent fruit fly studies in China, and mainly focus on those studies in the fields of stem cell biology, cancer therapy and regeneration medicine, neurological disorders and epigenetics.
Collapse
Affiliation(s)
- Ying Cheng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dahua Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
20
|
An efficient and multiple target transgenic RNAi technique with low toxicity in Drosophila. Nat Commun 2018; 9:4160. [PMID: 30297884 PMCID: PMC6175926 DOI: 10.1038/s41467-018-06537-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/12/2018] [Indexed: 01/19/2023] Open
Abstract
Being relatively simple and practical, Drosophila transgenic RNAi is the technique of top priority choice to quickly study genes with pleiotropic functions. However, drawbacks have emerged over time, such as high level of false positive and negative results. To overcome these shortcomings and increase efficiency, specificity and versatility, we develop a next generation transgenic RNAi system. With this system, the leaky expression of the basal promoter is significantly reduced, as well as the heterozygous ratio of transgenic RNAi flies. In addition, it has been first achieved to precisely and efficiently modulate highly expressed genes. Furthermore, we increase versatility which can simultaneously knock down multiple genes in one step. A case illustration is provided of how this system can be used to study the synthetic developmental effect of histone acetyltransferases. Finally, we have generated a collection of transgenic RNAi lines for those genes that are highly homologous to human disease genes.
Collapse
|
21
|
Mezquita-Pla J. Gordon H. Dixon's trace in my personal career and the quantic jump experienced in regulatory information. Syst Biol Reprod Med 2018; 64:448-468. [PMID: 30136864 DOI: 10.1080/19396368.2018.1503752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Even before Rosalin Franklin had discovered the DNA double helix, in her impressive X-ray diffraction image pattern, Erwin Schröedinger, described, in his excellent book, What is Life, how the finding of aperiodic crystals in biological systems surprised him (an aperiodic crystal, which, in my opinion is the material carrier of life). In the 21st century and still far from being able to define life, we are attending to a quick acceleration of knowledge on regulatory information. With the discovery of new codes and punctuation marks, we will greatly increase our understanding in front of an impressive avalanche of genomic sequences. Trifonov et al. defined a genetic code as a widespread DNA sequence pattern that carries a message with an impact on biology. These patterns are largely captured in transcribed messages that give meaning and identity to the particular cells. In this review, I will go through my personal career in and after my years of work in the laboratory of Gordon H. Dixon, extending toward the impressive acquisition of new knowledge on regulatory information and genetic codes provided by remarkable scientists in the field. Abbreviations: CA II: carbonic anhydridase II (chicken); Car2: carbonic anhydridase 2 (mouse); CpG islands: short (>0.5 kb) stretches of DNA with a G+C content ≥55%; DNMT1: DNA methyltransferases 1; DNMT3b: DNA methyltransferases 3B; DSB: double-strand DNA breaks; ERT: endogenous retrotransposon; ERV: endogenous retroviruses; ES cells: embryonic stem cells; GAPDH: glyceraldehide phosphate dehydrogenase; H1: histone H1; HATs: histone acetyltransferases; HDACs: histone deacetylases; H3K4me3: histone 3 trimethylated at lys 4; H3K79me2: histone 3 dimethylated at lys 79; HMG: high mobility group proteins; HMT: histone methyltransferase; HP1: heterochromatin protein 1; HR: homologous recombination; HSE: heat-shock element; ICRs: imprinted control regions; IRF: interferon regulatory factor; LDH-A/-B: lactate dehydrogenase A/B; LTR: long terminal repeats; MeCP2: methyl CpG binding protein 2; OCT4: octamer-binding transcription factor 4; PAF1: RNA Polymerase II associated factor 1; piRNA: PIWI-interacting RNA; poly(A) tails: poly-adenine tails; PRC2: polycomb repressive complex 2; PTMs: post-translational modifications; SIRT 1: sirtuin 1, silent information regulator; STAT3: signal transducer and activator of transcription; tRNAs: transfer RNA; tRFs: tRNA-derived fragments; TSS: transcription start site; TE: transposable elements; UB I: polyubiquitin I; UB II: polyubiquitin II; UBE 2N: ubiquitin conjugating enzyme E2N; 5'-UTR: 5'-untranslated sequences; 3'-UTR: 3'-untranslated sequences.
Collapse
Affiliation(s)
- Jovita Mezquita-Pla
- a Molecular Genetics and Control of Pluripotency Laboratory, Department of Biomedicine, IDIBAPS, Faculty of Medicine , University of Barcelona , Catalonia , Spain
| |
Collapse
|
22
|
Ali I, Conrad RJ, Verdin E, Ott M. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Chem Rev 2018; 118:1216-1252. [PMID: 29405707 PMCID: PMC6609103 DOI: 10.1021/acs.chemrev.7b00181] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Post-translational acetylation of lysine residues has emerged as a key regulatory mechanism in all eukaryotic organisms. Originally discovered in 1963 as a unique modification of histones, acetylation marks are now found on thousands of nonhistone proteins located in virtually every cellular compartment. Here we summarize key findings in the field of protein acetylation over the past 20 years with a focus on recent discoveries in nuclear, cytoplasmic, and mitochondrial compartments. Collectively, these findings have elevated protein acetylation as a major post-translational modification, underscoring its physiological relevance in gene regulation, cell signaling, metabolism, and disease.
Collapse
Affiliation(s)
- Ibraheem Ali
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Ryan J. Conrad
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, California 94945, United States
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| |
Collapse
|
23
|
Clémot M, Molla-Herman A, Mathieu J, Huynh JR, Dostatni N. The replicative histone chaperone CAF-1 is essential for the maintenance of identity and genome integrity in adult stem cells. Development 2018; 145:dev.161190. [DOI: 10.1242/dev.161190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 07/20/2018] [Indexed: 12/14/2022]
Abstract
Chromatin packaging and modifications are important to define the identity of stem cells. How chromatin properties are retained over multiple cycles of stem cell replication, while generating differentiating progeny at the same time, remains a challenging question. The chromatin assembly factor CAF-1 is a conserved histone chaperone, which assembles histones H3 and H4 onto newly synthesized DNA during replication and repair. Here, we investigated the role of CAF-1 in the maintenance of germline stem cells (GSCs) in Drosophila ovaries. We depleted P180, the large subunit of CAF-1, in germ cells and found that it was required in GSCs to maintain their identity. In the absence of P180, GSCs still harbor stem cell properties but concomitantly express markers of differentiation. In addition, P180-depleted germ cells exhibit elevated levels of DNA damage and de-repression of the transposable I-element. These DNA damages activate p53- and Chk2-dependent checkpoints pathways, leading to cell death and female sterility. Altogether, our work demonstrates that chromatin dynamics mediated by CAF-1 play an important role in both the regulation of stem cell identity and genome integrity.
Collapse
Affiliation(s)
- Marie Clémot
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics, Paris, France
| | - Anahi Molla-Herman
- Institut Curie, PSL Research University, CNRS, Inserm, Sorbonne Université, Genetics and Developmental Biology, Paris, France
| | - Juliette Mathieu
- Institut Curie, PSL Research University, CNRS, Inserm, Sorbonne Université, Genetics and Developmental Biology, Paris, France
| | - Jean-René Huynh
- Institut Curie, PSL Research University, CNRS, Inserm, Sorbonne Université, Genetics and Developmental Biology, Paris, France
| | - Nathalie Dostatni
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics, Paris, France
| |
Collapse
|
24
|
Emerging roles of linker histones in regulating chromatin structure and function. Nat Rev Mol Cell Biol 2017; 19:192-206. [PMID: 29018282 DOI: 10.1038/nrm.2017.94] [Citation(s) in RCA: 298] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Together with core histones, which make up the nucleosome, the linker histone (H1) is one of the five main histone protein families present in chromatin in eukaryotic cells. H1 binds to the nucleosome to form the next structural unit of metazoan chromatin, the chromatosome, which may help chromatin to fold into higher-order structures. Despite their important roles in regulating the structure and function of chromatin, linker histones have not been studied as extensively as core histones. Nevertheless, substantial progress has been made recently. The first near-atomic resolution crystal structure of a chromatosome core particle and an 11 Å resolution cryo-electron microscopy-derived structure of the 30 nm nucleosome array have been determined, revealing unprecedented details about how linker histones interact with the nucleosome and organize higher-order chromatin structures. Moreover, several new functions of linker histones have been discovered, including their roles in epigenetic regulation and the regulation of DNA replication, DNA repair and genome stability. Studies of the molecular mechanisms of H1 action in these processes suggest a new paradigm for linker histone function beyond its architectural roles in chromatin.
Collapse
|
25
|
Wang W, Wang Q, Wan D, Sun Y, Wang L, Chen H, Liu C, Petersen RB, Li J, Xue W, Zheng L, Huang K. Histone HIST1H1C/H1.2 regulates autophagy in the development of diabetic retinopathy. Autophagy 2017; 13:941-954. [PMID: 28409999 DOI: 10.1080/15548627.2017.1293768] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Autophagy plays critical and complex roles in many human diseases, including diabetes and its complications. However, the role of autophagy in the development of diabetic retinopathy remains uncertain. Core histone modifications have been reported involved in the development of diabetic retinopathy, but little is known about the histone variants. Here, we observed increased autophagy and histone HIST1H1C/H1.2, an important variant of the linker histone H1, in the retinas of type 1 diabetic rodents. Overexpression of histone HIST1H1C upregulates SIRT1 and HDAC1 to maintain the deacetylation status of H4K16, leads to upregulation of ATG proteins, then promotes autophagy in cultured retinal cell line. Histone HIST1H1C overexpression also promotes inflammation and cell toxicity in vitro. Knockdown of histone HIST1H1C reduces both the basal and stresses (including high glucose)-induced autophagy, and inhibits high glucose induced inflammation and cell toxicity. Importantly, AAV-mediated histone HIST1H1C overexpression in the retinas leads to increased autophagy, inflammation, glial activation and neuron loss, similar to the pathological changes identified in the early stage of diabetic retinopathy. Furthermore, knockdown of histone Hist1h1c by siRNA in the retinas of diabetic mice significantly attenuated the diabetes-induced autophagy, inflammation, glial activation and neuron loss. These results indicate that histone HIST1H1C may offer a novel therapeutic target for preventing diabetic retinopathy.
Collapse
Affiliation(s)
- Wenjun Wang
- a Hubei Key Laboratory of Cell Homeostasis , College of Life Sciences, Wuhan University , Wuhan , Hubei , China
| | - Qing Wang
- a Hubei Key Laboratory of Cell Homeostasis , College of Life Sciences, Wuhan University , Wuhan , Hubei , China
| | - Danyang Wan
- a Hubei Key Laboratory of Cell Homeostasis , College of Life Sciences, Wuhan University , Wuhan , Hubei , China
| | - Yue Sun
- a Hubei Key Laboratory of Cell Homeostasis , College of Life Sciences, Wuhan University , Wuhan , Hubei , China
| | - Lin Wang
- a Hubei Key Laboratory of Cell Homeostasis , College of Life Sciences, Wuhan University , Wuhan , Hubei , China
| | - Hong Chen
- b Tongji School of Pharmacy , Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Chengyu Liu
- b Tongji School of Pharmacy , Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Robert B Petersen
- c Departments of Pathology , Neuroscience, and Neurology, Case Western Reserve University , Cleveland , OH , USA
| | - Jianshuang Li
- a Hubei Key Laboratory of Cell Homeostasis , College of Life Sciences, Wuhan University , Wuhan , Hubei , China
| | - Weili Xue
- a Hubei Key Laboratory of Cell Homeostasis , College of Life Sciences, Wuhan University , Wuhan , Hubei , China
| | - Ling Zheng
- a Hubei Key Laboratory of Cell Homeostasis , College of Life Sciences, Wuhan University , Wuhan , Hubei , China
| | - Kun Huang
- b Tongji School of Pharmacy , Huazhong University of Science and Technology , Wuhan , Hubei , China.,d Centre for Biomedicine Research , Wuhan Institute of Biotechnology , Wuhan , China
| |
Collapse
|
26
|
Histone H1 defect in escort cells triggers germline tumor in Drosophila ovary. Dev Biol 2017; 424:40-49. [PMID: 28232075 DOI: 10.1016/j.ydbio.2017.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/19/2017] [Accepted: 02/19/2017] [Indexed: 12/19/2022]
Abstract
Drosophila ovary is recognized as one of the best model systems to study stem cell biology in vivo. We had previously identified an autonomous role of the histone H1 in germline stem cell (GSC) maintenance. Here, we found that histone H1 depletion in escort cells (ECs) resulted in an increase of spectrosome-containing cells (SCCs), an ovary tumor-like phenotype. Further analysis showed that the Dpp pathway is excessively activated in these SCC cells, while the expression of bam is attenuated. In the H1-depleted ECs, both transposon activity and DNA damage had increased dramatically, followed by EC apoptosis, which is consistent with the role of H1 in other somatic cells. Surprisingly, H1-depleted ECs acquired cap cell characteristics including dpp expression, and the resulting abnormal Dpp level inhibits SCC further differentiation. Most interestingly, double knockdown of H1 and dpp in ECs can reduce the number of SCCs to the normal level, indicating that the additional Dpp secreted by ECs contributes to the germline tumor. Taken together, our findings indicate that histone H1 is an important epigenetic factor in controlling EC characteristics and a key suppressor of germline tumor.
Collapse
|
27
|
Flora P, McCarthy A, Upadhyay M, Rangan P. Role of Chromatin Modifications in Drosophila Germline Stem Cell Differentiation. Results Probl Cell Differ 2017; 59:1-30. [PMID: 28247044 DOI: 10.1007/978-3-319-44820-6_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
During Drosophila oogenesis, germline stem cells (GSCs) self-renew and differentiate to give rise to a mature egg. Self-renewal and differentiation of GSCs are regulated by both intrinsic mechanisms such as regulation of gene expression in the germ line and extrinsic signaling pathways from the surrounding somatic niche. Epigenetic mechanisms, including histone-modifying proteins, nucleosome remodeling complexes, and histone variants, play a critical role in regulating intrinsic gene expression and extrinsic signaling cues from the somatic niche. In the GSCs, intrinsic epigenetic modifiers are required to maintain a stem cell fate by promoting expression of self-renewal factors and repressing the differentiation program. Subsequently, in the GSC daughters, epigenetic regulators activate the differentiation program to promote GSC differentiation. During differentiation, the GSC daughter undergoes meiosis to give rise to the developing egg, containing a compacted chromatin architecture called the karyosome. Epigenetic modifiers control the attachment of chromosomes to the nuclear lamina to aid in meiotic recombination and the release from the lamina for karyosome formation. The germ line is in close contact with the soma for the entirety of this developmental process. This proximity facilitates signaling from the somatic niche to the developing germ line. Epigenetic modifiers play a critical role in the somatic niche, modulating signaling pathways in order to coordinate the transition of GSC to an egg. Together, intrinsic and extrinsic epigenetic mechanisms modulate this exquisitely balanced program.
Collapse
Affiliation(s)
- Pooja Flora
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, USA
- University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Alicia McCarthy
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, USA
- University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Maitreyi Upadhyay
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, USA
- University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Prashanth Rangan
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, USA.
- University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA.
| |
Collapse
|
28
|
|