1
|
Avcı İİ, Zeren G, Sungur MA, Akdeniz E, Şimşek B, Yılmaz MF, Can F, Gürkan U, Karagöz A, Tanboğa İH, Karabay CY. Enhanced Stent Imaging System Guided Percutaneous Coronary Intervention Is Linked to Optimize Stent Placement. Angiology 2024; 75:54-61. [PMID: 36178093 DOI: 10.1177/00033197221130203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Stent under-expansion is a predictor of restenosis and stent thrombosis. It remains uncertain whether enhanced stent imaging (ESI) (CLEARstent) guidance can improve stent under-expansion. Our aim was to assess the effect of using ESI on stent under-expansion, after percutaneous coronary intervention (PCI) in a single center, cross-sectional observational study. Participants attending our cardiology clinic with stable angina or acute coronary syndrome, from March to September 2020 were recruited. A total of 164 patients who underwent post-PCI ESI (CLEARstent) were compared with 77 age- and sex-matched control patients. Post-procedural minimal lumen diameter (MLD) was calculated. The patients in the ESI-guided PCI group, had a median age of 61 (54-69 IQR 25-75) years and 76.8% (n = 126) were males. The patients in ESI-guided PCI group had a greater minimal lumen diameter compared with the X-ray guided PCI group (βeta coefficient:2.88 (95% CI:2.58-2.99) vs βeta coefficient 2.55 (95% CI 2.34-2.63), P < .001). Our finding supports the use of the ESI system to optimize stent placement as expressed by the MLD.
Collapse
Affiliation(s)
- İlhan İlker Avcı
- Department of Cardiology, Dr Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Gönül Zeren
- Department of Cardiology, Dr Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Mustafa Azmi Sungur
- Department of Cardiology, Dr Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Evliya Akdeniz
- Faculty of Medicine, Department of Cardiology, Başkent University, Istanbul, Turkey
| | - Barış Şimşek
- Department of Cardiology, Dr Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Mehmet Fatih Yılmaz
- Department of Cardiology, Dr Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Fatma Can
- Department of Cardiology, Dr Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Ufuk Gürkan
- Department of Cardiology, Dr Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Ali Karagöz
- Department of Cardiology, Kartal Kosuyolu Research and Education Hospital, Turkey
| | - İbrahim Halil Tanboğa
- Cardiology, Hisar Intercontinental Hospital, Nisantasi University Medical School, Istanbul, Turkey
| | - Can Yücel Karabay
- Department of Cardiology, Dr Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
2
|
Wu J, Qiao H. Medical Imaging Technology and Imaging Agents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1199:15-38. [PMID: 37460725 DOI: 10.1007/978-981-32-9902-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Medical imaging is a technology that studies the interaction between human body and irradiations of X-ray, ultrasound, magnetic field, etc. and represents anatomical structures of human organs/tissues with the implication of irradiation attenuation in the form of grayscales. With these medical images, detailed information on health status and disease diagnosis may be judged by clinical physicians to determine an appropriate therapy approach. This chapter will give a systematic introduction on the modalities, classifications, basic principles, and biomedical applications of traditional medical imaging along with the types, construction, and major features of the corresponding contrast agents or imaging probes.
Collapse
Affiliation(s)
- Jieting Wu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Huanhuan Qiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
| |
Collapse
|
3
|
Li J, Shang C, Rong Y, Sun J, Cheng Y, He B, Wang Z, Li M, Ma J, Fu B, Ji X. Review on Laser Technology in Intravascular Imaging and Treatment. Aging Dis 2022; 13:246-266. [PMID: 35111372 PMCID: PMC8782552 DOI: 10.14336/ad.2021.0711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/11/2021] [Indexed: 12/14/2022] Open
Abstract
Blood vessels are one of the most essential organs, which nourish all tissues in our body. Once there are intravascular plaques or vascular occlusion, other organs and circulatory systems will not work properly. Therefore, it is necessary to detect abnormal blood vessels by intravascular imaging technologies for subsequent vascular treatment. The emergence of lasers and fiber optics promotes the development of intravascular imaging and treatment. Laser imaging techniques can obtain deep vascular images owing to light scattering and absorption properties. Moreover, photothermal and photomechanical effects of laser make it possible to treat vascular diseases accurately. In this review, we present the research progress and applications of laser techniques in intravascular imaging and treatment. Firstly, we introduce intravascular optical coherent tomography and intravascular photoacoustic imaging, which can obtain various information of plaques. Multimodal intravascular imaging techniques provide more information about intravascular plaques, which have an essential influence on intravascular imaging. Secondly, two laser techniques including laser angioplasty and endovenous laser ablation are discussed for the treatment of arterial and venous diseases, respectively. Finally, the outlook of laser techniques in blood vessels, as well as the integration of laser imaging and treatment are prospected in the section of discussions.
Collapse
Affiliation(s)
- Jing Li
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Ce Shang
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Yao Rong
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.
- Medical Engineering Devices of Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Jingxuan Sun
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.
| | - Yuan Cheng
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.
| | - Boqu He
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.
| | - Zihao Wang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.
| | - Ming Li
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Jianguo Ma
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.
| | - Bo Fu
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.
- Key Laboratory of Big Data-Based Precision Medicine Ministry of Industry and Information Technology, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China.
| | - Xunming Ji
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Neurosurgery Department of Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Shi Y, Jiang N, Bikkannavar P, Cordeiro MF, Yetisen AK. Ophthalmic sensing technologies for ocular disease diagnostics. Analyst 2021; 146:6416-6444. [PMID: 34591045 DOI: 10.1039/d1an01244d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Point-of-care diagnosis and personalized treatments are critical in ocular physiology and disease. Continuous sampling of tear fluid for ocular diagnosis is a need for further exploration. Several techniques have been developed for possible ophthalmological applications, from traditional spectroscopies to wearable sensors. Contact lenses are commonly used devices for vision correction, as well as for other therapeutic and cosmetic purposes. They are increasingly being developed into ocular sensors, being used to sense and monitor biochemical analytes in tear fluid, ocular surface temperature, intraocular pressure, and pH value. These sensors have had success in detecting ocular conditions, optimizing pharmaceutical treatments, and tracking treatment efficacy in point-of-care settings. However, there is a paucity of new and effective instrumentation reported in ophthalmology. Hence, this review will summarize the applied ophthalmic technologies for ocular diagnostics and tear monitoring, including both conventional and biosensing technologies. Besides applications of smart readout devices for continuous monitoring, targeted biomarkers are also discussed for the convenience of diagnosis of various ocular diseases. A further discussion is also provided for future aspects and market requirements related to the commercialization of novel types of contact lens sensors.
Collapse
Affiliation(s)
- Yuqi Shi
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| | - Nan Jiang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | | | - M Francesca Cordeiro
- UCL Institute of Ophthalmology, London, UK.,ICORG, Imperial College London, London, UK
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| |
Collapse
|
5
|
Ezeani M, Noor A, Alt K, Lal S, Donnelly PS, Hagemeyer CE, Niego B. Collagen-Targeted Peptides for Molecular Imaging of Diffuse Cardiac Fibrosis. J Am Heart Assoc 2021; 10:e022139. [PMID: 34514814 PMCID: PMC8649514 DOI: 10.1161/jaha.121.022139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Cardiac fibrosis is the excessive deposition of extracellular matrix in the heart, triggered by a cardiac insult, aging, genetics, or environmental factors. Molecular imaging of the cardiac extracellular matrix with targeted probes could improve diagnosis and treatment of heart disease. However, although this technology has been used to demonstrate focal scarring arising from myocardial infarction, its capacity to demonstrate extracellular matrix expansion and diffuse cardiac fibrosis has not been assessed. Methods and Results Here, we report the use of collagen-targeted peptides labeled with near-infrared fluorophores for the detection of diffuse cardiac fibrosis in the β2-AR (β-2-adrenergic receptor) overexpressing mouse model and in ischemic human hearts. Two approaches were evaluated, the first based on a T peptide that binds matrix metalloproteinase-2-proteolyzed collagen IV, and the second on the cyclic peptide EP-3533, which targets collagen I. The systemic and cardiac uptakes of both peptides (intravenously administered) were quantified ex vivo by near-infrared imaging of whole organs, tissue sections, and heart lysates. The peptide accumulation profiles corresponded to an immunohistochemically-validated increase in collagen types I and IV in hearts of transgenic mice versus littermate controls. The T peptide could encouragingly demonstrate both the intermediate (7 months old) and severe (11 months old) cardiomyopathic phenotypes. Co-immunostainings of fluorescent peptides and collagens, as well as reduced collagen binding of a control peptide, confirmed the collagen specificity of the tracers. Qualitative analysis of heart samples from patients with ischemic cardiomyopathy compared with nondiseased donors supported the collagen-enhancement capabilities of these peptides also in the clinical settings. Conclusions Together, these observations demonstrate the feasibility and translation potential of molecular imaging with collagen-binding peptides for noninvasive imaging of diffuse cardiac fibrosis.
Collapse
Affiliation(s)
- Martin Ezeani
- NanoBiotechnology Laboratory Australian Centre for Blood Diseases Central Clinical School Monash University Melbourne Australia
| | - Asif Noor
- School of Chemistry Bio21 Molecular Science and Biotechnology Institute University of Melbourne Australia
| | - Karen Alt
- NanoTheranostics Laboratory Australian Centre for Blood Diseases Central Clinical School Monash University Melbourne Australia
| | - Sean Lal
- School of Medical Sciences Faculty of Medicine and Health University of Sydney Australia
| | - Paul S Donnelly
- School of Chemistry Bio21 Molecular Science and Biotechnology Institute University of Melbourne Australia
| | - Christoph E Hagemeyer
- NanoBiotechnology Laboratory Australian Centre for Blood Diseases Central Clinical School Monash University Melbourne Australia
| | - Be'eri Niego
- NanoBiotechnology Laboratory Australian Centre for Blood Diseases Central Clinical School Monash University Melbourne Australia
| |
Collapse
|
6
|
Abstract
Advances in our understanding of the natural history and biology of atherosclerotic vascular disease led to the concept of a vulnerable plaque (VP), which is predisposed toward more rapid progression and acute coronary events. With newer technologies, we now have at our disposal high-quality imaging studies, both invasive and noninvasive, which promise in identifying plaque characteristics that make it more vulnerable. Upcoming trials aim to evaluate the utility of imaging VP in predicting clinical events. We discuss the role of VP imaging in managing atherosclerotic vascular disease.
Collapse
|
7
|
Clarke JRD, Duarte Lau F, Zarich SW. Determining the Significance of Coronary Plaque Lesions: Physiological Stenosis Severity and Plaque Characteristics. J Clin Med 2020; 9:jcm9030665. [PMID: 32131474 PMCID: PMC7141262 DOI: 10.3390/jcm9030665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 01/10/2023] Open
Abstract
The evaluation of coronary lesions has evolved in recent years. Physiologic-guided revascularization (particularly with pressure-derived fractional flow reserve (FFR)) has led to superior outcomes compared to traditional angiographic assessment. A greater importance, therefore, has been placed on the functional significance of an epicardial lesion. Despite the improvements in the limitations of angiography, insights into the relationship between hemodynamic significance and plaque morphology at the lesion level has shown that determining the implications of epicardial lesions is rather complex. Investigators have sought greater understanding by correlating ischemia quantified by FFR with plaque characteristics determined on invasive and non-invasive modalities. We review the background of the use of these diagnostic tools in coronary artery disease and discuss the implications of analyzing physiological stenosis severity and plaque characteristics concurrently.
Collapse
Affiliation(s)
- John-Ross D. Clarke
- Department of Internal Medicine, Yale-New Haven Health/Bridgeport Hospital, Bridgeport, CT 06610, USA;
- Correspondence: or ; Tel.: +1-203-260-4510
| | - Freddy Duarte Lau
- Department of Internal Medicine, Yale-New Haven Health/Bridgeport Hospital, Bridgeport, CT 06610, USA;
| | - Stuart W. Zarich
- The Heart and Vascular Institute, Yale-New Haven Health/Bridgeport Hospital, Bridgeport, CT 06610, USA;
| |
Collapse
|
8
|
Iwai T, Kataoka Y, Otsuka F, Asaumi Y, Nicholls SJ, Noguchi T, Yasuda S. Chronic kidney disease and coronary atherosclerosis: evidences from intravascular imaging. Expert Rev Cardiovasc Ther 2019; 17:707-716. [DOI: 10.1080/14779072.2019.1676150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Takamasa Iwai
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Yu Kataoka
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Fumiyuki Otsuka
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Yasuhide Asaumi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | | | - Teruo Noguchi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| |
Collapse
|
9
|
|
10
|
Demonstration of Shot-noise-limited Swept Source OCT Without Balanced Detection. Sci Rep 2017; 7:1183. [PMID: 28446793 PMCID: PMC5430670 DOI: 10.1038/s41598-017-01339-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/28/2017] [Indexed: 11/08/2022] Open
Abstract
Optical coherence tomography (OCT) has been utilized in a rapidly growing number of clinical and scientific applications. In particular, swept source OCT (SS-OCT) has attracted many attentions due to its excellent performance. So far however, the limitations of existing photon detectors have prevented achieving shot-noise-limited sensitivity without using balanced-detection scheme in SS-OCT, even when superconducting single-photon detectors were used. Unfortunately, balanced-detection increases OCT system size and cost, as it requires many additional components to boost the laser power and maintain near ideal balanced performance across the whole optical bandwidth. Here we show for the first time that a photon detector is capable of achieving shot noise limited performance without using the balanced-detection technique in SS-OCT. We built a system using a so-called electron-injection photodetector, with a cutoff-wavelength of 1700 nm. Our system achieves a shot-noise-limited sensitivity of about -105 dB at a reference laser power of ~350 nW, which is more than 30 times lower laser power compared with the best-reported results. The high sensitivity of the electron-injection detector allows utilization of micron-scale tunable laser sources (e.g. VCSEL) and eliminates the need for fiber amplifiers and highly precise couplers, which are an essential part of the conventional SS-OCT systems.
Collapse
|
11
|
Feng Z, Wu BH, Zhao YX, Gao J, Qiao LF, Yang AL, Lin XF, Jin XM. Invisibility Cloak Printed on a Photonic Chip. Sci Rep 2016; 6:28527. [PMID: 27329510 PMCID: PMC4916488 DOI: 10.1038/srep28527] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/02/2016] [Indexed: 11/18/2022] Open
Abstract
Invisibility cloak capable of hiding an object can be achieved by properly manipulating electromagnetic field. Such a remarkable ability has been shown in transformation and ray optics. Alternatively, it may be realistic to create a spatial cloak by means of confining electromagnetic field in three-dimensional arrayed waveguides and introducing appropriate collective curvature surrounding an object. We realize the artificial structure in borosilicate by femtosecond laser direct writing, where we prototype up to 5,000 waveguides to conceal millimeter-scale volume. We characterize the performance of the cloak by normalized cross correlation, tomography analysis and continuous three-dimensional viewing angle scan. Our results show invisibility cloak can be achieved in waveguide optics. Furthermore, directly printed invisibility cloak on a photonic chip may enable controllable study and novel applications in classical and quantum integrated photonics, such as invisualising a coupling or swapping operation with on-chip circuits of their own.
Collapse
Affiliation(s)
- Zhen Feng
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Institute of Natural Sciences &Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bing-Hong Wu
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Institute of Natural Sciences &Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu-Xi Zhao
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Institute of Natural Sciences &Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Gao
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Institute of Natural Sciences &Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lu-Feng Qiao
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Institute of Natural Sciences &Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ai-Lin Yang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Institute of Natural Sciences &Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao-Feng Lin
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Institute of Natural Sciences &Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xian-Min Jin
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Institute of Natural Sciences &Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
12
|
Shah N, Ussen B, Mahmoudi M. Adjunctive intra-coronary imaging for the assessment of coronary artery disease. JRSM Cardiovasc Dis 2016; 5:2048004016658142. [PMID: 27540480 PMCID: PMC4959304 DOI: 10.1177/2048004016658142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/13/2016] [Indexed: 01/08/2023] Open
Abstract
Atherosclerotic coronary artery disease remains a leading cause of worldwide morbidity and mortality. Invasive angiography currently remains the gold standard method of diagnosing and treating coronary disease; however, more sophisticated adjunctive interventional technologies have been developed to combat the inter and intra-observer variability frequently encountered in the assessment of lesion severity. Intravascular imaging now plays a key role in optimising percutaneous coronary interventions and provides invaluable information as part of the interventional cardiologist's diagnostic arsenal. The principles, technical aspects and uses of two modalities of intracoronary imaging, intravascular ultrasound and optical coherence tomography, are discussed. We additionally provide examples of cases where the adjunctive intracoronary imaging was superior to angiography alone in successfully identifying and treating acute coronary syndromes.
Collapse
Affiliation(s)
- Nikunj Shah
- Department of Cardiology, Ashford & St Peter's Hospitals NHS Foundation Trust, UK; Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Bassey Ussen
- Department of Cardiology, Ashford & St Peter's Hospitals NHS Foundation Trust, UK
| | - Michael Mahmoudi
- Department of Cardiology, University Hospital Southampton NHS Foundation Trust, UK
| |
Collapse
|
13
|
Dai N, Lu S, Li X, Xu Y, Li W. Application of fractional flow reserve and optical coherence tomography examinations in a patient presenting with recurrent angina: a case report. J Med Case Rep 2015; 9:182. [PMID: 26307058 PMCID: PMC4550013 DOI: 10.1186/s13256-015-0664-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 08/03/2015] [Indexed: 11/16/2022] Open
Abstract
Introduction We present the different roles of fractional flow reserve and optical coherence tomography in guiding treatment in a patient with recurrent chest pain. Case presentation A 66-year-old Chinese woman presented to our department for the third time for her recurrent chest pain. Her physical examination was unremarkable; her previous two angiography examinations indicated that there was a stenosis of 50 to 70% in her proximal left anterior descending coronary artery. Optimal medical therapy was applied, but her symptoms did not disappear. Coronary angiography was conducted again after admission, accompanied by fractional flow reserve and optical coherence tomography. A lesion of 50 to 70% in her left anterior descending coronary artery was detected in an angiogram as before; her fractional flow reserve measure was a negative result of 0.88. However, a plaque rupture was found at the location of the lesion in the optical coherence tomography imaging. A stent was implanted in her left anterior descending coronary artery; she made no complaint of chest pain during follow-up of 1.5 years after her discharge. Conclusions Fractional flow reserve is considered the “gold standard” to detect ischemia-causing lesions and provide hemodynamic information of a stenosis. However, lack of structural information of a stenosis limits the application of fractional flow reserve and coronary pressure may lie sometimes. We should choose the best strategy for patients according to different examinations and patients’ symptoms, never a single test.
Collapse
Affiliation(s)
- Neng Dai
- Cardiology Department, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - ShaoTang Lu
- Cardiology Department, DongTai People's Hospital, DongTai, Jiangsu Province, China.
| | - XianKai Li
- Cardiology Department, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - YaWei Xu
- Cardiology Department, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - WeiMing Li
- Cardiology Department, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Costopoulos C, Brown AJ, Teng Z, Hoole SP, West NEJ, Samady H, Bennett MR. Intravascular ultrasound and optical coherence tomography imaging of coronary atherosclerosis. Int J Cardiovasc Imaging 2015; 32:189-200. [DOI: 10.1007/s10554-015-0701-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/01/2015] [Indexed: 11/30/2022]
|
15
|
Chung EJ, Nord K, Sugimoto MJ, Wonder E, Tirrell M. Monocyte-targeting supramolecular micellar assemblies: a molecular diagnostic tool for atherosclerosis. Adv Healthc Mater 2015; 4:367-76. [PMID: 25156590 PMCID: PMC4336846 DOI: 10.1002/adhm.201400336] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/18/2014] [Indexed: 01/27/2023]
Abstract
Atherosclerosis is a multifactorial inflammatory disease that can progress silently for decades and result in myocardial infarction, stroke, and death. Diagnostic imaging technologies have made great strides to define the degree of atherosclerotic plaque burden through the severity of arterial stenosis. However, current technologies cannot differentiate more lethal "vulnerable plaques," and are not sensitive enough for preventive medicine. Imaging early molecular markers and quantifying the extent of disease progression continues to be a major challenge in the field. To this end, monocyte-targeting, peptide amphiphile micelles (PAMs) are engineered through the incorporation of the chemokine receptor CCR2-binding motif of monocyte chemoattractant protein-1 (MCP-1) and MCP-1 PAMs are evaluated preclinically as diagnostic tools for atherosclerosis. Monocyte-targeting is desirable as the influx of monocytes is a marker of early lesions, accumulation of monocytes is linked to atherosclerosis progression, and rupture-prone plaques have higher numbers of monocytes. MCP-1 PAMs bind to monocytes in vitro, and MCP-1 PAMs detect and discriminate between early- and late-stage atherosclerotic aortas. Moreover, MCP-1 PAMs are found to be eliminated via renal clearance and the mononuclear phagocyte system (MPS) without adverse side effects. Thus, MCP-1 PAMs are a promising new class of diagnostic agents capable of monitoring the progression of atherosclerosis.
Collapse
Affiliation(s)
- E. J. Chung
- Institute for Molecular Engineering, University of Chicago, 5747 S. Ellis Ave., Chicago, IL 60637, USA
| | - K. Nord
- Institute for Molecular Engineering, University of Chicago, 5747 S. Ellis Ave., Chicago, IL 60637, USA
| | | | | | - M. Tirrell
- Institute for Molecular Engineering, University of Chicago, 5747 S. Ellis Ave., Chicago, IL 60637, USA
| |
Collapse
|
16
|
Kataoka Y, Nicholls SJ. Imaging of atherosclerotic plaques in obesity: excessive fat accumulation, plaque progression and vulnerability. Expert Rev Cardiovasc Ther 2014; 12:1471-89. [PMID: 25355677 DOI: 10.1586/14779072.2014.975210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Obesity is becoming a major health issue in the world due to sedentary lifestyles and increasing intake of Western diets. Obesity is associated with metabolic abnormalities and atherosclerotic cardiovascular diseases. Adipose tissue has been increasingly considered to play a critical role in inducing metabolic disturbances and promoting atherogenesis. Arterial wall imaging permits direct visualization of atheroma burden in various vascular beds. In addition, recent advances in imaging technology help characterize components, microstructures and functional features of atherosclerotic plaques. These imaging modalities have contributed to elucidating factors associated with atherosclerosis in obese patients. Also, it provides opportunities to evaluate the effect of novel therapies on plaques in the setting of obesity. The findings of recent imaging studies and the clinical implications will be reviewed.
Collapse
Affiliation(s)
- Yu Kataoka
- South Australian Health & Medical Research Institute, University of Adelaide, Adelaide, SA, 5000, Australia
| | | |
Collapse
|
17
|
Confocal Microscopy Patterns in Nonmelanoma Skin Cancer and Clinical Applications. ACTAS DERMO-SIFILIOGRAFICAS 2014. [DOI: 10.1016/j.adengl.2014.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
18
|
Giannopoulos A, S Chatzizisis Y, D Giannoglou G. Optical coherence tomography: an arrow in our quiver. Expert Rev Cardiovasc Ther 2014; 10:539-41. [DOI: 10.1586/erc.12.44] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Evaluation of Cytotoxic Effects of Different Concentrations of Porous Hollow Au Nanoparticles (PHAuNPs) on Cells. JOURNAL OF NANOTECHNOLOGY 2014. [DOI: 10.1155/2014/631248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nanoparticles (NPs) have been introduced as a suitable alternative in manyin vivobioapplications. The risks of utilizing nanoparticles continue to be an ongoing research. Furthermore, the various chemicals used in their synthesis influence the cytotoxic effects of nanoparticles. We have investigated the cytotoxicity of Porous Hollow Au Nanoparticles (PHAuNPs) on cancer cell lines PC-3, PC-3ML, and MDA-MB-231 and the normal cell line PNT1A. Cell proliferation for the different cells in the presence of different concentrations of the PHAuNPs was assessed after 24 hours and 72 hours of incubation using MTT assay. The study also included the cytotoxic evaluation of pegylated PHAuNPs. Identical cell seeding densities, particle concentrations, and incubation times were employed for these two types of Au nanoparticles. Our results indicated that (1) impact on cell proliferation was concentration dependent and was different for the different cell types without cellular necrosis and (b) cellular proliferation might be impacted more based on the cell line.
Collapse
|
20
|
González S, Sánchez V, González-Rodríguez A, Parrado C, Ullrich M. Confocal microscopy patterns in nonmelanoma skin cancer and clinical applications. ACTAS DERMO-SIFILIOGRAFICAS 2013; 105:446-58. [PMID: 24002008 DOI: 10.1016/j.ad.2013.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/26/2013] [Accepted: 03/18/2013] [Indexed: 01/07/2023] Open
Abstract
Reflectance confocal microscopy is currently the most promising noninvasive diagnostic tool for studying cutaneous structures between the stratum corneum and the superficial reticular dermis. This tool gives real-time images parallel to the skin surface; the microscopic resolution is similar to that of conventional histology. Numerous studies have identified the main confocal features of various inflammatory skin diseases and tumors, demonstrating the good correlation of these features with certain dermatoscopic patterns and histologic findings. Confocal patterns and diagnostic algorithms have been shown to have high sensitivity and specificity in melanoma and nonmelanoma skin cancer. Possible present and future applications of this noninvasive technology are wide ranging and reach beyond its use in noninvasive diagnosis. This tool can also be used, for example, to evaluate dynamic skin processes that occur after UV exposure or to assess tumor response to noninvasive treatments such as photodynamic therapy. We explain the characteristic confocal features found in the main nonmelanoma skin tumors and discuss possible applications for this novel diagnostic technique in routine dermatology practice.
Collapse
Affiliation(s)
- S González
- Dermatology Service, Memorial Sloan-Kettering Cancer Center, New York, NY, EE. UU.; Servicio de Dermatología, Hospital Ramón y Cajal, Madrid, España.
| | - V Sánchez
- Servicio de Dermatología, Hospital Universitario Madrid Sanchinarro, Universidad CEU San Pablo, Madrid, España
| | | | - C Parrado
- Departamento de Histología y Anatomía Patológica, Universidad de Málaga, Málaga, España
| | - M Ullrich
- Skin Cancer Center Charité, Department of Dermatology, Charité University Medicine, Berlín, Alemania
| |
Collapse
|
21
|
|
22
|
Joos KM, Shen JH. Miniature real-time intraoperative forward-imaging optical coherence tomography probe. BIOMEDICAL OPTICS EXPRESS 2013; 4:1342-50. [PMID: 24009997 PMCID: PMC3756577 DOI: 10.1364/boe.4.001342] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/04/2013] [Accepted: 07/08/2013] [Indexed: 05/18/2023]
Abstract
Optical coherence tomography (OCT) has a tremendous global impact upon the ability to diagnose, treat, and monitor eye diseases. A miniature 25-gauge forward-imaging OCT probe with a disposable tip was developed for real-time intraoperative ocular imaging of posterior pole and peripheral structures to improve vitreoretinal surgery. The scanning range was 2 mm when the probe tip was held 3-4 mm from the tissue surface. The axial resolution was 4-6 µm and the lateral resolution was 25-35 µm. The probe was used to image cellophane tape and multiple ocular structures.
Collapse
|
23
|
Fernández-Friera L, García-Álvarez A, Ibáñez B. Imagining the future of diagnostic imaging. ACTA ACUST UNITED AC 2012; 66:134-43. [PMID: 24775390 DOI: 10.1016/j.rec.2012.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 01/21/2023]
Abstract
Cardiovascular imaging has become essential to achieving a better understanding of cardiovascular diseases. Due to the advent of new technology and the refinement of existing technologies, imaging's role has extended into the biological, functional, and hemodynamic diagnosis of multiple pathophysiologic processes. Current and future trends in cardiovascular imaging will focus on improving early diagnosis of vascular disease, so as to be able to promote cardiovascular health, and on its development as a useful tool in clinical decision-making. Imaging is also increasingly used to quantify the effect of novel therapies. The rapid development of molecular imaging and fusion imaging techniques improves our understanding of cardiovascular processes from the molecular and cellular points of view and makes it possible to design and test new preventive interventions. The proliferation and integration of imaging techniques in different clinical areas and their role in "translational imaging" plays an important part in the implementation of personalized therapeutic and preventive management strategies for patients with cardiovascular disease.
Collapse
Affiliation(s)
- Leticia Fernández-Friera
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) - Imaging in Experimental Cardiology Laboratory (IExC Lab), Madrid, Spain; Servicio de Cardiología, Hospital Universitario Montepríncipe, Madrid, Spain
| | - Ana García-Álvarez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) - Imaging in Experimental Cardiology Laboratory (IExC Lab), Madrid, Spain; Servicio de Cardiología, Hospital Clínic, Barcelona, Spain
| | - Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) - Imaging in Experimental Cardiology Laboratory (IExC Lab), Madrid, Spain; Instituto Cardiovascular, Hospital Clínico San Carlos, Madrid, Spain.
| |
Collapse
|
24
|
Choi DH, Hiro-Oka H, Shimizu K, Ohbayashi K. Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second. BIOMEDICAL OPTICS EXPRESS 2012; 3:3067-86. [PMID: 23243560 PMCID: PMC3521307 DOI: 10.1364/boe.3.003067] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/18/2012] [Accepted: 10/21/2012] [Indexed: 05/22/2023]
Abstract
An ultrafast frequency domain optical coherence tomography system was developed at A-scan rates between 2.5 and 10 MHz, a B-scan rate of 4 or 8 kHz, and volume-rates between 12 and 41 volumes/second. In the case of the worst duty ratio of 10%, the averaged A-scan rate was 1 MHz. Two optical demultiplexers at a center wavelength of 1310 nm were used for linear-k spectral dispersion and simultaneous differential signal detection at 320 wavelengths. The depth-range, sensitivity, sensitivity roll-off by 6 dB, and axial resolution were 4 mm, 97 dB, 6 mm, and 23 μm, respectively. Using FPGAs for FFT and a GPU for volume rendering, a real-time 4D display was demonstrated at a rate up to 41 volumes/second for an image size of 256 (axial) × 128 × 128 (lateral) voxels.
Collapse
Affiliation(s)
- Dong-hak Choi
- Center for Natural Science, Kitasato University, Kitasato 1-15-1,
Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Hideaki Hiro-Oka
- Center for Natural Science, Kitasato University, Kitasato 1-15-1,
Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Kimiya Shimizu
- Department of Ophthalmology, Kitasato University, Kitasato1-15-1,
Minamiku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Kohji Ohbayashi
- Graduate School of Medical Sciences, Kitasato University,
Kitasato1-15-1, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| |
Collapse
|
25
|
Jain M, Robinson BD, Scherr DS, Sterling J, Lee MM, Wysock J, Rubin MA, Maxfield FR, Zipfel WR, Webb WW, Mukherjee S. Multiphoton microscopy in the evaluation of human bladder biopsies. Arch Pathol Lab Med 2012; 136:517-26. [PMID: 22540300 DOI: 10.5858/arpa.2011-0147-oa] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Multiphoton microscopy (MPM) is a nonlinear imaging approach, providing cellular and subcellular details from fresh (unprocessed) tissue by exciting intrinsic tissue emissions. With miniaturization and substantially decreased cost on the horizon, MPM is an emerging imaging technique with many potential clinical applications. OBJECTIVES To assess the imaging ability and diagnostic accuracy of MPM for human bladder biopsies. DESIGN Seventy-seven fresh bladder biopsies were imaged by MPM and subsequently submitted for routine surgical pathology diagnosis. Twelve cases were excluded because of extensive cautery artifact that prohibited definitive diagnosis. Comparison was made between MPM imaging and gold standard sections for each specimen stained with hematoxylin-eosin. RESULTS In 57 of 65 cases (88%), accurate MPM diagnoses (benign or neoplastic) were given based on the architecture and/or the cytologic grade. The sensitivity and specificity of MPM in our study were 90.4% and 76.9%, respectively. A positive (neoplastic) diagnosis on MPM had a high predictive value (94%), and negative (benign) diagnoses were sustained on histopathology in two-thirds of cases. Architecture (papillary versus flat) was correctly determined in 56 of 65 cases (86%), and cytologic grade (benign/low grade versus high grade) was assigned correctly in 38 of 56 cases (68%). CONCLUSIONS The MPM images alone provided sufficient detail to classify most lesions as either benign or neoplastic using the same basic diagnostic criteria as histopathology (architecture and cytologic grade). Future developments in MPM technology may provide urologists and pathologists with additional screening and diagnostic tools for early detection of bladder cancer. Additional applications of such emerging technologies warrant exploration.
Collapse
Affiliation(s)
- Manu Jain
- Department of Urology, Weill Cornell Medical College, 1300 York Avenue, NewYork, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bec J, Xie H, Yankelevich DR, Zhou F, Sun Y, Ghata N, Aldredge R, Marcu L. Design, construction, and validation of a rotary multifunctional intravascular diagnostic catheter combining multispectral fluorescence lifetime imaging and intravascular ultrasound. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:106012. [PMID: 23224011 PMCID: PMC3461057 DOI: 10.1117/1.jbo.17.10.106012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/10/2012] [Accepted: 09/11/2012] [Indexed: 05/20/2023]
Abstract
We report the development and validation of an intravascular rotary catheter for bimodal interrogation of arterial pathologies. This is based on a point-spectroscopy scanning time-resolved fluorescence spectroscopy technique enabling reconstruction of fluorescence lifetime images (FLIm) and providing information on arterial intima composition and intravascular ultrasound (IVUS) providing information on arterial wall morphology. The catheter design allows for independent rotation of the ultrasonic and optical channels within an 8 Fr outer diameter catheter sheath and integrates a low volume flushing channel for blood removal in the optical pathways. In the current configuration, the two channels consist of (a) a standard 3 Fr IVUS catheter with single element transducer (40 MHz) and (b) a side-viewing fiber optic (400 μm core). Experiments conducted in tissue phantoms showed the ability of the catheter to operate in an intraluminal setting and to generate coregistered FLIm and IVUS in one pull-back scan. Current results demonstrate the feasibility of the catheter for simultaneous bimodal interrogation of arterial lumen and for generation of robust fluorescence lifetime data under IVUS guidance. These results facilitate further development of a FLIm-IVUS technique for intravascular diagnosis of atherosclerotic cardiovascular diseases including vulnerable plaques.
Collapse
Affiliation(s)
- Julien Bec
- University of California, Department of Biomedical Engineering, 451 Health Sciences Drive, Davis, California, 95616
| | - Hongtao Xie
- University of California, Department of Biomedical Engineering, 451 Health Sciences Drive, Davis, California, 95616
| | - Diego R. Yankelevich
- University of California, Department of Biomedical Engineering, 451 Health Sciences Drive, Davis, California, 95616
| | - Feifei Zhou
- University of California, Department of Biomedical Engineering, 451 Health Sciences Drive, Davis, California, 95616
| | - Yang Sun
- University of California, Department of Biomedical Engineering, 451 Health Sciences Drive, Davis, California, 95616
| | - Narugopal Ghata
- University of California, Mechanical and Aerospace Engineering, Davis, One Shields Avenue, Davis, California, 95616
| | - Ralph Aldredge
- University of California, Mechanical and Aerospace Engineering, Davis, One Shields Avenue, Davis, California, 95616
| | - Laura Marcu
- University of California, Department of Biomedical Engineering, 451 Health Sciences Drive, Davis, California, 95616
- Address all correspondence to: Laura Marcu, University of California Davis, One Shields Ave, Davis, California 95616. Tel: 530-752-0288; Fax: 530-754-5739; E-mail:
| |
Collapse
|
27
|
Dhawan AP, D'Alessandro B, Fu X. Optical imaging modalities for biomedical applications. IEEE Rev Biomed Eng 2012; 3:69-92. [PMID: 22275202 DOI: 10.1109/rbme.2010.2081975] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Optical photographic imaging is a well known imaging method that has been successfully translated into biomedical applications such as microscopy and endoscopy. Although several advanced medical imaging modalities are used today to acquire anatomical, physiological, metabolic, and functional information from the human body, optical imaging modalities including optical coherence tomography, confocal microscopy, multiphoton microscopy, multispectral endoscopy, and diffuse reflectance imaging have recently emerged with significant potential for non-invasive, portable, and cost-effective imaging for biomedical applications spanning tissue, cellular, and molecular levels. This paper reviews methods for modeling the propagation of light photons in a biological medium, as well as optical imaging from organ to cellular levels using visible and near-infrared wavelengths for biomedical and clinical applications.
Collapse
Affiliation(s)
- Atam P Dhawan
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | | | | |
Collapse
|
28
|
Kataoka Y, Uno K, Puri R, Nicholls SJ. Current imaging modalities for atherosclerosis. Expert Rev Cardiovasc Ther 2012; 10:457-71. [PMID: 22458579 DOI: 10.1586/erc.12.28] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Atherosclerotic disease is responsible for nearly half of all deaths in the western world. During the past three decades, considerable efforts have been made towards detection and assessment of atherosclerosis plaques in various vascular beds using different imaging techniques. Recently, both noninvasive and invasive modalities have frequently been used to refine cardiovascular risk assessment in high-risk individuals, to evaluate the natural history of atheroma burden and to reveal the impact of anti-atherosclerotic medical therapies on disease progression. In this review, we provide an overview of the currently available imaging modalities. This article will underscore arterial wall imaging to assess the impact of medical therapies on atherosclerosis and to develop the effective therapeutic strategies, resulting in the prevention of cardiovascular complications.
Collapse
Affiliation(s)
- Yu Kataoka
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
29
|
Cheng KHY, Lam EY, Standish BA, Yang VXD. Speckle reduction of endovascular optical coherence tomography using a generalized divergence measure. OPTICS LETTERS 2012; 37:2871-2873. [PMID: 22825162 DOI: 10.1364/ol.37.002871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Endovascular optical coherence tomography (EV-OCT) is an emerging intravascular imaging technique for observing blood vessel walls. Fluctuating speckle noise, especially during rapid pull-back, can severely degrade the visibility of morphological structures. Moreover, the speckle pattern varies in different parts of the image due to beam divergence and is further complicated by interpolation through the coordinate transformation necessary for displaying the rotary scanning images, challenging the use of frequency domain analysis. In this study, a computationally efficient method using a generalized divergence regularization procedure is presented to suppress speckle noise in EV-OCT images. Results show substantial smoothing of the grainy appearance and enhanced visualization of deeper structures as demonstrated in porcine carotid arteries.
Collapse
Affiliation(s)
- Kyle H Y Cheng
- Biophotonics and Bioengineering Laboratory, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | | | | | | |
Collapse
|
30
|
Pachiyappan A, Das UN, Murthy TV, Tatavarti R. Automated diagnosis of diabetic retinopathy and glaucoma using fundus and OCT images. Lipids Health Dis 2012; 11:73. [PMID: 22695250 PMCID: PMC3477058 DOI: 10.1186/1476-511x-11-73] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 05/11/2012] [Indexed: 02/01/2023] Open
Abstract
We describe a system for the automated diagnosis of diabetic retinopathy and glaucoma using fundus and optical coherence tomography (OCT) images. Automatic screening will help the doctors to quickly identify the condition of the patient in a more accurate way. The macular abnormalities caused due to diabetic retinopathy can be detected by applying morphological operations, filters and thresholds on the fundus images of the patient. Early detection of glaucoma is done by estimating the Retinal Nerve Fiber Layer (RNFL) thickness from the OCT images of the patient. The RNFL thickness estimation involves the use of active contours based deformable snake algorithm for segmentation of the anterior and posterior boundaries of the retinal nerve fiber layer. The algorithm was tested on a set of 89 fundus images of which 85 were found to have at least mild retinopathy and OCT images of 31 patients out of which 13 were found to be glaucomatous. The accuracy for optical disk detection is found to be 97.75%. The proposed system therefore is accurate, reliable and robust and can be realized.
Collapse
|
31
|
Cheng KHY, Sun C, Cruz JP, Marotta TR, Spears J, Montanera WJ, Thind A, Courtney B, Standish BA, Yang VXD. Comprehensive data visualization for high resolution endovascular carotid arterial wall imaging. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:056003. [PMID: 22612126 DOI: 10.1117/1.jbo.17.5.056003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Carotid angioplasty and stenting is a minimally invasive endovascular procedure that may benefit from in vivo high resolution imaging for monitoring the physical placement of the stent and potential complications. The purpose of this pilot study was to evaluate the ability of optical coherence tomography to construct high resolution 2D and 3D images of stenting in porcine carotid artery. Four Yorkshire pigs were anaesthetized and catheterized. A state-of-the-art optical coherence tomography (OCT) system and an automated injector were used to obtain both healthy and stented porcine carotid artery images. Data obtained were then processed for visualization. The state-of-the-art OCT system was able to capture high resolution images of both healthy and stented carotid arteries. High quality 3D images of healthy and stented carotid arteries were constructed, clearly depicting vessel wall morphological features, stent apposition and thrombus formation over the inserted stent. The results demonstrate that OCT can be used to generate high quality 3D images of carotid arterial stents for accurate diagnosis of stent apposition and complications under appropriate imaging conditions.
Collapse
Affiliation(s)
- Kyle H Y Cheng
- Biophotonics and Bioengineering Laboratory, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tsantis S, Kagadis GC, Katsanos K, Karnabatidis D, Bourantas G, Nikiforidis GC. Automatic vessel lumen segmentation and stent strut detection in intravascular optical coherence tomography. Med Phys 2012; 39:503-13. [PMID: 22225321 DOI: 10.1118/1.3673067] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Optical coherence tomography (OCT) is a catheter-based imaging method that employs near-infrared light to produce high-resolution cross-sectional intravascular images. The authors propose a segmentation technique for automatic lumen area extraction and stent strut detection in intravascular OCT images for the purpose of quantitative analysis of neointimal hyperplasia (NIH). METHODS A clinical dataset of frequency-domain OCT scans of the human femoral artery was analyzed. First, a segmentation method based on the Markov random field (MRF) model was employed for lumen area identification. Second, textural and edge information derived from local intensity distribution and continuous wavelet transform (CWT) analysis were integrated to extract the inner luminal contour. Finally, the stent strut positions were detected via the introduction of each strut wavelet response across scales into a feature extraction and classification scheme in order to optimize the strut position detection. RESULTS The inner lumen contour and the position of stent strut were extracted with very high accuracy. Compared with manual segmentation by an expert vascular physician the automatic segmentation had an average overlap value of 0.937 ± 0.045 for all OCT images included in the study. The strut detection accuracy had an area under the curve (AUC) value of 0.95, together with sensitivity and specificity average values of 0.91 and 0.96, respectively. CONCLUSIONS A robust automatic segmentation technique integrating textural and edge information for vessel lumen border extraction and strut detection in intravascular OCT images was designed and presented. The proposed algorithm may be employed for automated quantitative morphological analysis of in-stent neointimal hyperplasia.
Collapse
Affiliation(s)
- Stavros Tsantis
- Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 265 04, Greece
| | | | | | | | | | | |
Collapse
|
33
|
Cheng KHY, Sun C, Vuong B, Lee KKC, Mariampillai A, Marotta TR, Spears J, Montanera WJ, Herman PR, Kiehl TR, Standish BA, Yang VXD. Endovascular optical coherence tomography intensity kurtosis: visualization of vasa vasorum in porcine carotid artery. BIOMEDICAL OPTICS EXPRESS 2012; 3:388-99. [PMID: 22435088 PMCID: PMC3296528 DOI: 10.1364/boe.3.000388] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/24/2012] [Accepted: 01/24/2012] [Indexed: 05/15/2023]
Abstract
Application of speckle variance optical coherence tomography (OCT) to endovascular imaging faces difficulty of extensive motion artifacts inherently associated with arterial pulsations in addition to other physiological movements. In this study, we employed a technique involving a fourth order statistical method, kurtosis, operating on the endovascular OCT intensity images to visualize the vasa vasorum of carotid artery in vivo and identify its flow dynamic in a porcine model. The intensity kurtosis technique can distinguish vasa vasorum from the surrounding tissues in the presence of extensive time varying noises and dynamic motions of the arterial wall. Imaging of vasa vasorum and its proliferation, may compliment the growing knowledge of structural endovascular OCT in assessment and treatment of atherosclerosis in coronary and carotid arteries.
Collapse
Affiliation(s)
- Kyle H. Y. Cheng
- Biophotonics and Bioengineering Laboratory, Ryerson University, Toronto, Ontario, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Cuiru Sun
- Biophotonics and Bioengineering Laboratory, Ryerson University, Toronto, Ontario, Canada
- Department of Electrical and Computer Engineering, Ryerson University, Toronto, Ontario, Canada
| | - Barry Vuong
- Biophotonics and Bioengineering Laboratory, Ryerson University, Toronto, Ontario, Canada
- Department of Electrical and Computer Engineering, Ryerson University, Toronto, Ontario, Canada
| | - Kenneth K. C. Lee
- Biophotonics and Bioengineering Laboratory, Ryerson University, Toronto, Ontario, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Mariampillai
- Biophotonics and Bioengineering Laboratory, Ryerson University, Toronto, Ontario, Canada
- Department of Electrical and Computer Engineering, Ryerson University, Toronto, Ontario, Canada
| | - Thomas R. Marotta
- Department of Medical Imaging, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Julian Spears
- Department of Medical Imaging, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Pathology, University of Toronto, Toronto, Ontario, Canada
| | - Walter J. Montanera
- Department of Medical Imaging, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Peter. R. Herman
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Tim-Rasmus Kiehl
- Department of Pathology, University of Toronto, Toronto, Ontario, Canada
| | - Beau A. Standish
- Biophotonics and Bioengineering Laboratory, Ryerson University, Toronto, Ontario, Canada
- Department of Electrical and Computer Engineering, Ryerson University, Toronto, Ontario, Canada
| | - Victor X. D. Yang
- Biophotonics and Bioengineering Laboratory, Ryerson University, Toronto, Ontario, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Electrical and Computer Engineering, Ryerson University, Toronto, Ontario, Canada
- Department of Medical Imaging, St. Michael’s Hospital, Toronto, Ontario, Canada
- Division of Neurosurgery, St. Michael’s Hospital, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Karnabatidis D, Katsanos K, Paraskevopoulos I, Diamantopoulos A, Spiliopoulos S, Siablis D. Frequency-domain intravascular optical coherence tomography of the femoropopliteal artery. Cardiovasc Intervent Radiol 2011; 34:1172-81. [PMID: 21191586 DOI: 10.1007/s00270-010-0092-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 12/07/2010] [Indexed: 02/08/2023]
Abstract
PURPOSE Optical coherence tomography (OCT) is a catheter-based imaging method that employs near-infrared light to produce high-resolution intravascular images. The authors report the safety and feasibility and illustrate common imaging findings of frequency-domain OCT (FD-OCT) imaging of the femoropopliteal artery in a series of 20 patients who underwent infrainguinal angioplasty. METHODS After crossing the lesion of interest, OCT was performed with a dextrose saline flush technique with simultaneous obstructive manual groin compression. An automatic pullback FD-OCT device was employed (each scan acquiring 54 mm of vessel lumen in 271 consecutive frames). OCT images were acquired before and after balloon dilatation and following provisional stenting if necessary and were evaluated for baseline characteristics of plaque or in-stent restenosis (ISR), vessel wall trauma after angioplasty, presence of thrombus, stent apposition, and tissue prolapse. Imaging follow-up was not included in this study's protocol. RESULTS Twenty-seven obstructive lesions (18 cases of de novo atherosclerosis and 9 of ISR) of the femoropopliteal artery were imaged and 148 acquisitions were analyzed in total. High-resolution intravascular OCT imaging with effective blood clearance was achieved in 93.9%. Failure was mainly attributed to preocclusive proximal lesions and/or collateral flow. Mixed features of lipid pool areas, calcium deposits, necrotic core, and fibrosis were identified in all of the imaged atherosclerotic lesions, whereas ISR was purely fibrotic. After balloon angioplasty, OCT identified extensive intimal tears in all cases and one case of severe dissection that biplane subtraction angiography failed to identify. CONCLUSIONS Infrainguinal frequency-domain optical coherence tomography is safe and feasible and may provide intravascular high-resolution imaging of the femoropopliteal artery during infrainguinal angioplasty procedures.
Collapse
Affiliation(s)
- Dimitris Karnabatidis
- Department of Radiology, School of Medicine, Patras University Hospital, Patras 26504, Greece.
| | | | | | | | | | | |
Collapse
|
35
|
pH-responsive switching of near-infrared absorption of a diradical complex of PtII and 3,4-diaminobenzoate formed in aqueous solutions. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2011.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Imaging assessment of cardiovascular disease in systemic lupus erythematosus. Clin Dev Immunol 2011; 2012:694143. [PMID: 22110536 PMCID: PMC3202117 DOI: 10.1155/2012/694143] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/26/2011] [Accepted: 08/26/2011] [Indexed: 11/17/2022]
Abstract
Systemic lupus erythematosus is a multisystem, autoimmune disease known to be one of the strongest risk factors for atherosclerosis. Patients with SLE have an excess cardiovascular risk compared with the general population, leading to increased cardiovascular morbidity and mortality. Although the precise explanation for this is yet to be established, it seems to be associated with the presence of an accelerated atherosclerotic process, arising from the combination of traditional and lupus-specific risk factors. Moreover, cardiovascular-disease associated mortality in patients with SLE has not improved over time. One of the main reasons for this is the poor performance of standard risk stratification tools on assessing the cardiovascular risk of patients with SLE. Therefore, establishing alternative ways to identify patients at increased risk efficiently is essential. With recent developments in several imaging techniques, the ultimate goal of cardiovascular assessment will shift from assessing symptomatic patients to diagnosing early cardiovascular disease in asymptomatic patients which will hopefully help us to prevent its progression. This review will focus on the current status of the imaging tools available to assess cardiac and vascular function in patients with SLE.
Collapse
|
37
|
Kubo T, Ino Y, Tanimoto T, Kitabata H, Tanaka A, Akasaka T. Optical coherence tomography imaging in acute coronary syndromes. Cardiol Res Pract 2011; 2011:312978. [PMID: 21941666 PMCID: PMC3177459 DOI: 10.4061/2011/312978] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 07/25/2011] [Indexed: 12/03/2022] Open
Abstract
Optical coherence tomography (OCT) is a high-resolution imaging technique that offers microscopic visualization of coronary plaques. The clear and detailed images of OCT generate an intense interest in adopting this technique for both clinical and research purposes. Recent studies have shown that OCT is useful for the assessment of coronary atherosclerotic plaques, in particular the assessment of plaque rupture, erosion, and intracoronary thrombus in patients with acute coronary syndrome. In addition, OCT may enable identifying thin-cap fibroatheroma, the proliferation of vasa vasorum, and the distribution of macrophages surrounding vulnerable plaques. With its ability to view atherosclerotic lesions in vivo with such high resolution, OCT provides cardiologists with the tool they need to better understand the thrombosis-prone vulnerable plaques and acute coronary syndromes. This paper reviews the possibility of OCT for identification of vulnerable plaques in vivo.
Collapse
Affiliation(s)
- Takashi Kubo
- Department of Cardiovascular Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8510, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Yu SS, Ortega RA, Reagan BW, McPherson JA, Sung HJ, Giorgio TD. Emerging applications of nanotechnology for the diagnosis and management of vulnerable atherosclerotic plaques. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 3:620-46. [PMID: 21834059 DOI: 10.1002/wnan.158] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An estimated 16 million people in the United States have coronary artery disease (CAD), and approximately 325,000 people die annually from cardiac arrest. About two-thirds of unexpected cardiac deaths occur without prior recognition of cardiac disease. A vast majority of these deaths are attributable to the rupture of 'vulnerable atherosclerotic plaques'. Clinically, plaque vulnerability is typically assessed through imaging techniques, and ruptured plaques leading to acute myocardial infarction are treated through angioplasty or stenting. Despite significant advances, it is clear that current imaging methods are insufficiently capable for elucidating plaque composition--which is a key determinant of vulnerability. Further, the exciting improvement in the treatment of CAD afforded by stenting procedures has been buffered by significant undesirable host-implant effects, including restenosis and late thrombosis. Nanotechnology has led to some potential solutions to these problems by yielding constructs that interface with plaque cellular components at an unprecedented size scale. By leveraging the innate ability of macrophages to phagocytose nanoparticles, contrast agents can now be targeted to plaque inflammatory activity. Improvements in nano-patterning procedures have now led to increased ability to regenerate tissue isotropy directly on stents, enabling gradual regeneration of normal, physiologic vascular structures. Advancements in immunoassay technologies promise lower costs for biomarker measurements, and in the near future, may enable the addition of routine blood testing to the clinician's toolbox--decreasing the costs of atherosclerosis-related medical care. These are merely three examples among many stories of how nanotechnology continues to promise advances in the diagnosis and treatment of vulnerable atherosclerotic plaques.
Collapse
Affiliation(s)
- Shann S Yu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | | | | | | | | | | |
Collapse
|
39
|
Marschall S, Sander B, Mogensen M, Jørgensen TM, Andersen PE. Optical coherence tomography-current technology and applications in clinical and biomedical research. Anal Bioanal Chem 2011; 400:2699-720. [PMID: 21547430 DOI: 10.1007/s00216-011-5008-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/25/2011] [Accepted: 04/08/2011] [Indexed: 12/21/2022]
Abstract
Optical coherence tomography (OCT) is a noninvasive imaging technique that provides real-time two- and three-dimensional images of scattering samples with micrometer resolution. By mapping the local reflectivity, OCT visualizes the morphology of the sample. In addition, functional properties such as birefringence, motion, or the distributions of certain substances can be detected with high spatial resolution. Its main field of application is biomedical imaging and diagnostics. In ophthalmology, OCT is accepted as a clinical standard for diagnosing and monitoring the treatment of a number of retinal diseases, and OCT is becoming an important instrument for clinical cardiology. New applications are emerging in various medical fields, such as early-stage cancer detection, surgical guidance, and the early diagnosis of musculoskeletal diseases. OCT has also proven its value as a tool for developmental biology. The number of companies involved in manufacturing OCT systems has increased substantially during the last few years (especially due to its success in opthalmology), and this technology can be expected to continue to spread into various fields of application.
Collapse
Affiliation(s)
- Sebastian Marschall
- DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Roskilde, Denmark
| | | | | | | | | |
Collapse
|
40
|
Cox TR, Erler JT. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech 2011; 4:165-78. [PMID: 21324931 PMCID: PMC3046088 DOI: 10.1242/dmm.004077] [Citation(s) in RCA: 1069] [Impact Index Per Article: 82.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dynamic remodeling of the extracellular matrix (ECM) is essential for development, wound healing and normal organ homeostasis. Life-threatening pathological conditions arise when ECM remodeling becomes excessive or uncontrolled. In this Perspective, we focus on how ECM remodeling contributes to fibrotic diseases and cancer, which both present challenging obstacles with respect to clinical treatment, to illustrate the importance and complexity of cell-ECM interactions in the pathogenesis of these conditions. Fibrotic diseases, which include pulmonary fibrosis, systemic sclerosis, liver cirrhosis and cardiovascular disease, account for over 45% of deaths in the developed world. ECM remodeling is also crucial for tumor malignancy and metastatic progression, which ultimately cause over 90% of deaths from cancer. Here, we discuss current methodologies and models for understanding and quantifying the impact of environmental cues provided by the ECM on disease progression, and how improving our understanding of ECM remodeling in these pathological conditions is crucial for uncovering novel therapeutic targets and treatment strategies. This can only be achieved through the use of appropriate in vitro and in vivo models to mimic disease, and with technologies that enable accurate monitoring, imaging and quantification of the ECM.
Collapse
Affiliation(s)
- Thomas R. Cox
- Cancer Research UK Tumour Cell Signalling Unit, Section of Cell and Molecular Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Janine T. Erler
- Cancer Research UK Tumour Cell Signalling Unit, Section of Cell and Molecular Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
41
|
Current and Future Trends in Medical Imaging and Image Analysis. Med Image Anal 2011. [DOI: 10.1002/9780470918548.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Goto I, Itoh T, Kimura T, Fusazaki T, Matsui H, Sugawara S, Komuro K, Nakamura M. Morphological and Quantitative Analysis of Vascular Wall and Neointimal Hyperplasia After Coronary Stenting - Comparison of Bare-Metal and Sirolimus-Eluting Stents Using Optical Coherence Tomography -. Circ J 2011; 75:1633-40. [DOI: 10.1253/circj.cj-10-1237] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Iwao Goto
- Division of Cardiology, Department of Internal Medicine and Memorial Heart Center, Iwate Medical University
| | - Tomonori Itoh
- Division of Cardiology, Department of Internal Medicine and Memorial Heart Center, Iwate Medical University
| | - Takumi Kimura
- Division of Cardiology, Department of Internal Medicine and Memorial Heart Center, Iwate Medical University
| | - Tetsuya Fusazaki
- Division of Cardiology, Department of Internal Medicine and Memorial Heart Center, Iwate Medical University
| | - Hiroki Matsui
- Division of Cardiology, Department of Internal Medicine and Memorial Heart Center, Iwate Medical University
| | - Shoma Sugawara
- Division of Cardiology, Department of Internal Medicine and Memorial Heart Center, Iwate Medical University
| | - Kentaro Komuro
- Division of Cardiology, Department of Internal Medicine and Memorial Heart Center, Iwate Medical University
| | - Motoyuki Nakamura
- Division of Cardiology, Department of Internal Medicine and Memorial Heart Center, Iwate Medical University
| |
Collapse
|
43
|
Gao W. Quantitatively characterizing fluctuations of dielectric susceptibility of tissue with Fourier domain optical coherence tomography. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2010; 27:2588-2592. [PMID: 21119743 DOI: 10.1364/josaa.27.002588] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A new model of Fourier domain optical coherence tomography (FDOCT) is proposed, valid within the first Born approximation, which takes the fluctuations of the dielectric susceptibility of tissue into account. It is shown that the spectral electrical power at the detector in the FDOCT system is proportional to the Fourier component of the spatial correlation function of the dielectric susceptibility of the tissue, proportional to the squares of the spectrum of the incident light field and the amplitude reflectance of the reference mirror. One possible application of the obtained result is to use the measured spectral data of the spatial correlation function of the dielectric susceptibility to quantitatively characterize properties of tissue.
Collapse
Affiliation(s)
- Wanrong Gao
- Department of Optical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing,Jiangsu 210094, China.
| |
Collapse
|
44
|
Zhang K, Kang JU. Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT. OPTICS EXPRESS 2010; 18:23472-87. [PMID: 21164690 PMCID: PMC3358119 DOI: 10.1364/oe.18.023472] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 10/14/2010] [Accepted: 10/15/2010] [Indexed: 05/20/2023]
Abstract
We implemented fast Gaussian gridding (FGG)-based non-uniform fast Fourier transform (NUFFT) on the graphics processing unit (GPU) architecture for ultrahigh-speed, real-time Fourier-domain optical coherence tomography (FD-OCT). The Vandermonde matrix-based non-uniform discrete Fourier transform (NUDFT) as well as the linear/cubic interpolation with fast Fourier transform (InFFT) methods are also implemented on GPU to compare their performance in terms of image quality and processing speed. The GPU accelerated InFFT/NUDFT/NUFFT methods are applied to process both the standard half-range FD-OCT and complex full-range FD-OCT (C-FD-OCT). GPU-NUFFT provides an accurate approximation to GPU-NUDFT in terms of image quality, but offers >10 times higher processing speed. Compared with the GPU-InFFT methods, GPU-NUFFT has improved sensitivity roll-off, higher local signal-to-noise ratio and immunity to side-lobe artifacts caused by the interpolation error. Using a high speed CMOS line-scan camera, we demonstrated the real-time processing and display of GPU-NUFFT-based C-FD-OCT at a camera-limited rate of 122 k line/s (1024 pixel/A-scan).
Collapse
Affiliation(s)
- Kang Zhang
- Department of Electrical and Computer Engineering, The Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, USA.
| | | |
Collapse
|
45
|
Kang JU, Han JH, Liu X, Zhang K, Song CG, Gehlbach P. Endoscopic Functional Fourier Domain Common Path Optical Coherence Tomography for Microsurgery. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2010; 16:781-792. [PMID: 22899880 PMCID: PMC3418670 DOI: 10.1109/jstqe.2009.2031597] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A single-arm interferometer based optical coherence tomography (OCT) system known as common-path OCT (CPOCT) is rapidly progressing towards practical application. Due in part to the simplicity and robustness of its design, Fourier Domain CPOCT (FD-CP-OCT) offers advantages in many endoscopic sensing and imaging applications. FD-CP-OCT uses simple, interchangeable fiber optic probes that are easily integrated into small and delicate surgical tools. The system is capable of providing not only high resolution imaging but also optical sensing. Here, we report progress towards practical application of FD-CP-OCT in the setting of delicate microsurgical procedures such as intraocular retinal surgery. To meet the challenges presented by the microsurgical requirements of these procedures, we have developed and initiated the validation of applicable fiber optic probes. By integrating these probes into our developing imaging system, we have obtained high resolution OCT images and have also completed a demonstration of their potential sensing capabilities. Specifically, we utilize multiple SLEDs to demonstrate sub 3-micron axial resolution in water; we propose a technique to quantitatively evaluate the spatial distribution of oxygen saturation levels in tissue; and we present evidence supportive of the technology's surface sensing and tool guidance potential by demonstrating topological and motion compensation capabilities.
Collapse
Affiliation(s)
- Jin U Kang
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218 USA (phone: 410-516-8186; fax: 410-516-5566; )
| | | | | | | | | | | |
Collapse
|
46
|
Akasaka T, Kubo T, Mizukoshi M, Tanaka A, Kitabata H, Tanimoto T, Imanishi T. Pathophysiology of acute coronary syndrome assessed by optical coherence tomography. J Cardiol 2010; 56:8-14. [DOI: 10.1016/j.jjcc.2010.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 05/07/2010] [Indexed: 11/29/2022]
|
47
|
Fleming CP, Quan KJ, Rollins AM. Toward guidance of epicardial cardiac radiofrequency ablation therapy using optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:041510. [PMID: 20799788 PMCID: PMC2912935 DOI: 10.1117/1.3449569] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 03/18/2010] [Accepted: 03/29/2010] [Indexed: 05/18/2023]
Abstract
Radiofrequency ablation (RFA) is the standard of care to cure many cardiac arrhythmias. Epicardial ablation for the treatment of ventricular tachycardia has limited success rates due in part to the presence of epicardial fat, which prevents proper rf energy delivery, inadequate contact of ablation catheter with tissue, and increased likelihood of complications with energy delivery in close proximity to coronary vessels. A method to directly visualize the epicardial surface during RFA could potentially provide feedback to reduce complications and titrate rf energy dose by detecting critical structures, assessing probe contact, and confirming energy delivery by visualizing lesion formation. Currently, there is no technology available for direct visualization of the heart surface during epicardial RFA therapy. We demonstrate that optical coherence tomography (OCT) imaging has the potential to fill this unmet need. Spectral domain OCT at 1310 nm is employed to image the epicardial surface of freshly excised swine hearts using a microscope integrated bench-top scanner and a forward imaging catheter probe. OCT image features are observed that clearly distinguish untreated myocardium, ablation lesions, epicardial fat, and coronary vessels, and assess tissue contact with catheter-based imaging. These results support the potential for real-time guidance of epicardial RFA therapy using OCT imaging.
Collapse
Affiliation(s)
- Christine P Fleming
- Case Western Reserve University, Biomedical Engineering Department, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
48
|
Kang JU, Han JH, Liu X, Zhang K. Common-Path Optical Coherence Tomography for Biomedical Imaging and Sensing. ACTA ACUST UNITED AC 2010; 14:1-13. [PMID: 20657808 DOI: 10.3807/josk.2010.14.1.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This paper describes a development of a fiber optic common-path optical coherence tomography (OCT) based imaging and guided system that possess ability to reliably identify optically transparent targets that are on the micron scale; ability to maintain a precise and safe position from the target; ability to provide spectroscopic imaging; ability to imaging biological target in 3-D. The system is based on a high resolution fiber optic Common-Path OCT (CP-OCT) that can be integrated into various mini-probes and tools. The system is capable of obtaining >70K A-scan per second with a resolution better than 3 μm. We have demonstrated that the system is capable of one-dimensional real-time depth tracking, tool motion limiting and motion compensation, oxygen-saturation level imaging, and high resolution 3-D images for various biomedical applications.
Collapse
Affiliation(s)
- Jin U Kang
- Department of Electrical and Computer Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
49
|
Koh AS, Chia S. Update on Clinical Imaging of Coronary Plaque in Acute Coronary Syndrome. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2010. [DOI: 10.47102/annals-acadmedsg.v39n3p203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Current evidence suggests that understanding coronary artery disease extends beyond identifying and treating traditional risk factors. Progression of coronary plaque contributes to the development of acute coronary syndrome (ACS). In this article, we reviewed current literature for modalities to image coronary plaque as well as discussed the role of emerging techniques that can improve our understanding of the pathophysiology of ACS.
Key words: Coronary disease, Myocardial infarction, Vulnerable plaque
Collapse
|
50
|
Abstract
This article provides a systematic approach to vulnerable plaques. It is divided into 4 sections. The first section is devoted to definition, incidence, anatomic distribution, and clinical presentation. The second section is devoted to plaque composition, setting up the foundations to understand plaque vulnerability. The third section relates to invasive plaque imaging. The fourth section is devoted to therapy, from conservative pharmacologic options to aggressive percutaneous coronary intervention alternatives.
Collapse
Affiliation(s)
- Pedro R Moreno
- Zena and Michael A. Wiener Cardiovascular Institute and The Marie-Josee and Henry R. Kravis Cardiovascular Health Center, The Mount Sinai School of Medicine, Box 1030, New York, NY 10029, USA.
| |
Collapse
|