1
|
Marín-Quílez A, Díaz-Ajenjo L, Di Buduo CA, Zamora-Cánovas A, Lozano ML, Benito R, González-Porras JR, Balduini A, Rivera J, Bastida JM. Inherited Thrombocytopenia Caused by Variants in Crucial Genes for Glycosylation. Int J Mol Sci 2023; 24:5109. [PMID: 36982178 PMCID: PMC10049517 DOI: 10.3390/ijms24065109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Protein glycosylation, including sialylation, involves complex and frequent post-translational modifications, which play a critical role in different biological processes. The conjugation of carbohydrate residues to specific molecules and receptors is critical for normal hematopoiesis, as it favors the proliferation and clearance of hematopoietic precursors. Through this mechanism, the circulating platelet count is controlled by the appropriate platelet production by megakaryocytes, and the kinetics of platelet clearance. Platelets have a half-life in blood ranging from 8 to 11 days, after which they lose the final sialic acid and are recognized by receptors in the liver and eliminated from the bloodstream. This favors the transduction of thrombopoietin, which induces megakaryopoiesis to produce new platelets. More than two hundred enzymes are responsible for proper glycosylation and sialylation. In recent years, novel disorders of glycosylation caused by molecular variants in multiple genes have been described. The phenotype of the patients with genetic alterations in GNE, SLC35A1, GALE and B4GALT is consistent with syndromic manifestations, severe inherited thrombocytopenia, and hemorrhagic complications.
Collapse
Affiliation(s)
- Ana Marín-Quílez
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-U765, 30003 Murcia, Spain
| | - Lorena Díaz-Ajenjo
- IBSAL, CIC, IBMCC, Universidad de Salamanca-CSIC, 37007 Salamanca, Spain
| | | | - Ana Zamora-Cánovas
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-U765, 30003 Murcia, Spain
| | - María Luisa Lozano
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-U765, 30003 Murcia, Spain
| | - Rocío Benito
- IBSAL, CIC, IBMCC, Universidad de Salamanca-CSIC, 37007 Salamanca, Spain
| | - José Ramón González-Porras
- Department of Hematology, Complejo Asistencial Universitario de Salamanca (CAUSA), Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca (USAL), 37007 Salamanca, Spain
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - José Rivera
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-U765, 30003 Murcia, Spain
| | - José María Bastida
- Department of Hematology, Complejo Asistencial Universitario de Salamanca (CAUSA), Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca (USAL), 37007 Salamanca, Spain
| |
Collapse
|
2
|
Park JH, Marquardt T. Treatment Options in Congenital Disorders of Glycosylation. Front Genet 2021; 12:735348. [PMID: 34567084 PMCID: PMC8461064 DOI: 10.3389/fgene.2021.735348] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Despite advances in the identification and diagnosis of congenital disorders of glycosylation (CDG), treatment options remain limited and are often constrained to symptomatic management of disease manifestations. However, recent years have seen significant advances in treatment and novel therapies aimed both at the causative defect and secondary disease manifestations have been transferred from bench to bedside. In this review, we aim to give a detailed overview of the available therapies and rising concepts to treat these ultra-rare diseases.
Collapse
Affiliation(s)
- Julien H Park
- Department of General Pediatrics, Metabolic Diseases, University Children's Hospital Münster, Münster, Germany
| | - Thorsten Marquardt
- Department of General Pediatrics, Metabolic Diseases, University Children's Hospital Münster, Münster, Germany
| |
Collapse
|
3
|
Diamanti A, Calvitti G, Martinelli D, Santariga E, Capriati T, Bolasco G, Iughetti L, Pujia A, Knafelz D, Maggiore G. Etiology and Management of Pediatric Intestinal Failure: Focus on the Non-Digestive Causes. Nutrients 2021; 13:nu13030786. [PMID: 33673586 PMCID: PMC7997222 DOI: 10.3390/nu13030786] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Intestinal failure (IF) is defined as reduction in functioning gut mass below the minimal amount necessary for adequate digestion and absorption. In most cases, IF results from intrinsic diseases of the gastrointestinal tract (digestive IF) (DIF); few cases arise from digestive vascular components, gut annexed (liver and pancreas) and extra-digestive organs or from systemic diseases (non-digestive IF) (NDIF). The present review revised etiology and treatments of DIF and NDIF, with special focus on the pathophysiological mechanisms, whereby NDIF develops. Methods: We performed a comprehensive search of published literature from January 2010 to the present by selecting the following search strings: “intestinal failure” OR “home parenteral nutrition” OR “short bowel syndrome” OR “chronic pseudo-obstruction” OR “chronic intestinal pseudo-obstruction” OR “autoimmune enteropathy” OR “long-term parenteral nutrition”. Results: We collected overall 1656 patients with well-documented etiology of IF: 1419 with DIF (86%) and 237 with NDIF (14%), 55% males and 45% females. Among DIF cases, 66% had SBS and among NDIF cases 90% had malabsorption/maldigestion. Conclusions: The improved availability of diagnostic and therapeutic tools has increased prevalence and life expectancy of rare and severe diseases responsible for IF. The present review greatly expands the spectrum of knowledge on the pathophysiological mechanisms through which the diseases not strictly affecting the intestine can cause IF. In view of the rarity of the majority of pediatric IF diseases, the development of IF Registries is strongly required; in fact, through information flow within the network, the Registries could improve IF knowledge and management.
Collapse
Affiliation(s)
- Antonella Diamanti
- Hepatology Gastroenterology and Nutrition Unit, “Bambino Gesù” Children Hospital, 00165 Rome, Italy; (T.C.); (G.B.); (D.K.); (G.M.)
- Correspondence: ; Tel.: +39-0668592189
| | - Giacomo Calvitti
- Pediatric Unit, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy; (G.C.); (L.I.)
| | - Diego Martinelli
- Metabolic Diseases Unit, “Bambino Gesù” Children Hospital, 00165 Rome, Italy;
| | - Emma Santariga
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (E.S.); (A.P.)
| | - Teresa Capriati
- Hepatology Gastroenterology and Nutrition Unit, “Bambino Gesù” Children Hospital, 00165 Rome, Italy; (T.C.); (G.B.); (D.K.); (G.M.)
| | - Giulia Bolasco
- Hepatology Gastroenterology and Nutrition Unit, “Bambino Gesù” Children Hospital, 00165 Rome, Italy; (T.C.); (G.B.); (D.K.); (G.M.)
| | - Lorenzo Iughetti
- Pediatric Unit, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy; (G.C.); (L.I.)
| | - Arturo Pujia
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (E.S.); (A.P.)
| | - Daniela Knafelz
- Hepatology Gastroenterology and Nutrition Unit, “Bambino Gesù” Children Hospital, 00165 Rome, Italy; (T.C.); (G.B.); (D.K.); (G.M.)
| | - Giuseppe Maggiore
- Hepatology Gastroenterology and Nutrition Unit, “Bambino Gesù” Children Hospital, 00165 Rome, Italy; (T.C.); (G.B.); (D.K.); (G.M.)
- Medical Sciences Department Ferrara University, 44121 Ferrara, Italy
| |
Collapse
|
4
|
Lipiński P, Bogdańska A, Socha P, Tylki-Szymańska A. Liver Involvement in Congenital Disorders of Glycosylation and Deglycosylation. Front Pediatr 2021; 9:696918. [PMID: 34291020 PMCID: PMC8286991 DOI: 10.3389/fped.2021.696918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Congenital disorders of glycosylation (CDG) and NGLY1-CDDG (NGLY1-congenital disorder of deglycosylation) usually represent multisystem (especially neurovisceral) diseases with liver involvement reported in some of them. The aim of the study was to characterize the liver phenotype in CDG and NGLY1-CDDG patients hospitalized in our Institute, and to find the most specific features of liver disease among them. Material and Methods: The study involved 39 patients (from 35 families) with CDG, and two patients (from two families) with NGLY1-CDDG, confirmed molecularly, for whom detailed characteristics of liver involvement were available. They were enrolled based on the retrospective analysis of their medical records. Results: At the time of the first consultation, 13/32 patients were diagnosed with hepatomegaly; none of them with splenomegaly. As many as 23/32 persons had elevated serum transaminases, including 16 (70%) who had mildly elevated levels. During the long-term follow-up (available for 19 patients), serum transaminases normalized in 15/19 (79%) of them, including a spontaneous normalization in 12/15 (80%) of them. The GGT activity was observed to be normal in all study cases. Protein C, protein S and antithrombin activities in plasma were observed in 16 patients, and they were decreased in all of them. Conclusions: It is necessary to conduct a long-term follow-up of liver disease in CDG to obtain comprehensive data.
Collapse
Affiliation(s)
- Patryk Lipiński
- Department of Pediatrics, Nutrition and Metabolic Diseases, Children's Memorial Health Institute, Warsaw, Poland
| | - Anna Bogdańska
- Department of Biochemistry, Radioimmunology and Experimental Medicine, Children's Memorial Health Institute, Warsaw, Poland
| | - Piotr Socha
- Department of Gastroenterology, Hepatology, Feeding Difficulties and Pediatrics, Children's Memorial Health Institute, Warsaw, Poland
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
5
|
Abdel Ghaffar TY, Ng BG, Elsayed SM, El Naghi S, Helmy S, Mohammed N, El Hennawy A, Freeze HH. MPI-CDG from a hepatic perspective: Report of two Egyptian cases and review of literature. JIMD Rep 2020; 56:20-26. [PMID: 33204592 PMCID: PMC7653262 DOI: 10.1002/jmd2.12159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/16/2020] [Accepted: 08/03/2020] [Indexed: 12/24/2022] Open
Abstract
MPI-CDG is a rare congenital disorder of glycosylation (CDG) which presents with hepato-gastrointestinal symptoms and hypoglycemia. We report on hepatic evaluation of two pediatric patients who presented to us with gastrointestinal symptoms. Analysis of carbohydrate deficient transferrin (CDT) showed a Type 1 pattern and molecular analysis confirmed the diagnosis of MPI-CDG. Oral mannose therapy was markedly effective in one patient but was only partially effective in the other who showed progressive portal hypertension.
Collapse
Affiliation(s)
- Tawhida Y. Abdel Ghaffar
- Yassin Abdel Ghaffar Charity Centre for Liver Disease and ResearchCairoEgypt
- Department of Paediatrics, Faculty of MedicineAin Shams UniversityCairoEgypt
| | - Bobby G. Ng
- Sanford Burnham Prebys Medical Discovery Institute. Human Genetics ProgramLa JollaCaliforniaUSA
| | - Solaf M. Elsayed
- Yassin Abdel Ghaffar Charity Centre for Liver Disease and ResearchCairoEgypt
- Department of Medical genetics, Faculty of MedicineAin Shams UniversityCairoEgypt
| | - Suzan El Naghi
- Yassin Abdel Ghaffar Charity Centre for Liver Disease and ResearchCairoEgypt
- Department of PaediatricsNational Hepatology & Tropical Medicine Research InstituteCairoEgypt
| | - Sarah Helmy
- Yassin Abdel Ghaffar Charity Centre for Liver Disease and ResearchCairoEgypt
| | - Nermine Mohammed
- Yassin Abdel Ghaffar Charity Centre for Liver Disease and ResearchCairoEgypt
| | | | - Hudson H. Freeze
- Sanford Burnham Prebys Medical Discovery Institute. Human Genetics ProgramLa JollaCaliforniaUSA
| |
Collapse
|
6
|
Lopez RN, Day AS. Primary intestinal lymphangiectasia in children: A review. J Paediatr Child Health 2020; 56:1719-1723. [PMID: 32463559 DOI: 10.1111/jpc.14837] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
Primary intestinal lymphangiectasia is an uncommon condition that usually presents early in childhood. This incurable condition is consequent to underlying lymphatic abnormalities that lead to loss of lymphatic contents into the intestinal lumen. This article outlines an approach to the assessment of children presenting with characteristic features and consideration of other conditions that could lead to enteric protein loss. An overview of the management of primary intestinal lymphangiectasia is outlined.
Collapse
Affiliation(s)
- Robert N Lopez
- Department of Gastroenterology, Hepatology and Liver Transplantation, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - Andrew S Day
- Department of Paediatrics, University of Otago, Christchurch, New Zealand.,Department of Paediatrics, Christchurch Hospital, Christchurch, New Zealand
| |
Collapse
|
7
|
Platelets and Defective N-Glycosylation. Int J Mol Sci 2020; 21:ijms21165630. [PMID: 32781578 PMCID: PMC7460655 DOI: 10.3390/ijms21165630] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
N-glycans are covalently linked to an asparagine residue in a simple acceptor sequence of proteins, called a sequon. This modification is important for protein folding, enhancing thermodynamic stability, and decreasing abnormal protein aggregation within the endoplasmic reticulum (ER), for the lifetime and for the subcellular localization of proteins besides other functions. Hypoglycosylation is the hallmark of a group of rare genetic diseases called congenital disorders of glycosylation (CDG). These diseases are due to defects in glycan synthesis, processing, and attachment to proteins and lipids, thereby modifying signaling functions and metabolic pathways. Defects in N-glycosylation and O-glycosylation constitute the largest CDG groups. Clotting and anticlotting factor defects as well as a tendency to thrombosis or bleeding have been described in CDG patients. However, N-glycosylation of platelet proteins has been poorly investigated in CDG. In this review, we highlight normal and deficient N-glycosylation of platelet-derived molecules and discuss the involvement of platelets in the congenital disorders of N-glycosylation.
Collapse
|
8
|
Čechová A, Altassan R, Borgel D, Bruneel A, Correia J, Girard M, Harroche A, Kiec-Wilk B, Mohnike K, Pascreau T, Pawliński Ł, Radenkovic S, Vuillaumier-Barrot S, Aldamiz-Echevarria L, Couce ML, Martins EG, Quelhas D, Morava E, de Lonlay P, Witters P, Honzík T. Consensus guideline for the diagnosis and management of mannose phosphate isomerase-congenital disorder of glycosylation. J Inherit Metab Dis 2020; 43:671-693. [PMID: 32266963 PMCID: PMC7574589 DOI: 10.1002/jimd.12241] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/17/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022]
Abstract
Mannose phosphate isomerase-congenital disorder of glycosylation (MPI-CDG) deficiency is a rare subtype of congenital disorders of protein N-glycosylation. It is characterised by deficiency of MPI caused by pathogenic variants in MPI gene. The manifestation of MPI-CDG is different from other CDGs as the patients suffer dominantly from gastrointestinal and hepatic involvement whereas they usually do not present intellectual disability or neurological impairment. It is also one of the few treatable subtypes of CDGs with proven effect of oral mannose. This article covers a complex review of the literature and recommendations for the management of MPI-CDG with an emphasis on the clinical aspect of the disease. A team of international experts elaborated summaries and recommendations for diagnostics, differential diagnosis, management, and treatment of each system/organ involvement based on evidence-based data and experts' opinions. Those guidelines also reveal more questions about MPI-CDG which need to be further studied.
Collapse
Affiliation(s)
- Anna Čechová
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ruqaiah Altassan
- Medical Genetic Department, King Faisal Specialist Hospital and Research Center, Alfaisal University, Riyadh, Saudi Arabia
| | - Delphine Borgel
- Service d’Hématologie Biologique, Hôpital Necker, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Paris, France
| | - Arnaud Bruneel
- Department of Biochemistry, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France
- INSERM UMR1193, Mécanismes Cellulaires et Moléculaires de l’Adaptation au Stress et Cancérogenèse, Université Paris-Saclay, Châtenay-Malabry, France
| | - Joana Correia
- Centro de Referência Doenças Hereditárias do Metabolismo - Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal
| | - Muriel Girard
- Reference Center of Liver Diseases, Necker Hospital, Assistance Publique-Hôpitaux de Paris, University Paris Descartes, Paris, France
| | - Annie Harroche
- Hemophilia Care Centre, Hematology Unit, Hôpital Necker, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Beata Kiec-Wilk
- Department of Metabolic Diseases JUMC, Krakow and NSSU University Hospital, Krakow, Poland
| | - Klaus Mohnike
- Department of Paediatrics, Otto-von-Guericke University, Magdeburg, Germany
| | - Tiffany Pascreau
- Service d’Hématologie Biologique, Hôpital Necker, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Paris, France
| | - Łukasz Pawliński
- Department of Metabolic Diseases JUMC, Krakow and NSSU University Hospital, Krakow, Poland
| | - Silvia Radenkovic
- Metabolomics Expertise Center, CCB-VIB, Leuven, Belgium
- Department of Clinical Genomics and Laboratory of Medical Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sandrine Vuillaumier-Barrot
- Department of Biochemistry, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France
- INSERM U1149, Centre de Recherche sur l’Inflammation (CRI) and Universitá Paris 7 Denis Diderot, Paris, France
| | - Luis Aldamiz-Echevarria
- Group of Metabolism, Biocruces Bizkaia Health Research Institute, Linked Clinical Group of Rare Diseases CIBER (CIBERER), Barakaldo, Spain
| | - Maria Luz Couce
- Department of Pediatrics, Congenital Metabolic Unit, University Clinical Hospital of Santiago, University of Santiago de Compostela, IDIS, CIBERER, MetabERN, Santiago de Compostela, Spain
| | - Esmeralda G. Martins
- Centro de Referência Doenças Hereditárias do Metabolismo - Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal
| | - Dulce Quelhas
- Centro de Genética Médica Jacinto de Magalhães, Centro de Referência Doenças Hereditárias do Metabolismo - Centro Hospitalar Universitário do Porto (CHUP), Unit for Multidisciplinary Research in Biomedicine, ICBAS, UP, Porto, Portugal
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
| | - Pascale de Lonlay
- Reference Center of Inherited Metabolic Diseases, Necker Hospital, APHP, University Paris Descartes, Filière G2M, MetabERN, Paris, France
| | - Peter Witters
- Department of Paediatrics and Metabolic Center, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Tomáš Honzík
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
9
|
Brucker WJ, Croteau SE, Prensner JR, Cullion K, Heeney MM, Lo J, McAlvin JB, Peeler K, Shah N, Yee CSK, Berry GT, Bodamer O. An emerging role for endothelial barrier support therapy for congenital disorders of glycosylation. J Inherit Metab Dis 2020; 43:880-890. [PMID: 32064623 DOI: 10.1002/jimd.12225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/23/2022]
Abstract
Congenital disorders of glycosylation (CDGs) are clinically heterogeneous disorders defined by a decreased ability to modify biomolecules with oligosaccharides. Critical disruptions in protein recognition, interaction, binding, and anchoring lead to broad physiological effects. Patients present with endocrinopathy, immunodeficiency, hepatopathy, coagulopathy, and neurodevelopmental impairment. Patients may experience mortality/morbidity associated with shock physiology that is frequently culture negative and poorly responsive to standard care. Oedema, pleural and pericardial effusions, ascites, proteinuria, and protein-losing enteropathy are observed with an exaggerated inflammatory response. The negative serum protein steady state results from several mechanisms including reduced hepatic synthesis and secretion, increased consumption, and extravasation. Disruption of the glycocalyx, a layer of glycosylated proteins that lines the endothelium preventing thrombosis and extravasation, is a suspected cause of endothelial dysfunction in CDG patients. We performed a retrospective review of CDG patients admitted to our institution with acute illness over the past 2 years. Longitudinal clinical and laboratory data collected during the sick and well states were assessed for biomarkers of inflammation and efficacy of interventions. Six patients representing 4 CDG subtypes and 14 hospitalisations were identified. Acute D-dimer elevation, proteinuria, decreased serum total protein levels, coagulation proteins, and albumin were observed with acute illness. Infusion of fresh frozen plasma, and in some cases protein C concentrate, was associated with clinical and biomarker improvement. This was notable with intra-patient comparison of treated vs untreated courses. Use of endothelial barrier support therapy may reduce endothelial permeability by restoring both regulatory serum protein homeostasis and supporting the glycocalyx and is likely a critical component of care for this population.
Collapse
Affiliation(s)
- William J Brucker
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Stacy E Croteau
- Dana Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts
| | - John R Prensner
- Dana Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts
| | - Kate Cullion
- Division of Medical Critical Care, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Matthew M Heeney
- Dana Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts
| | - Jeffrey Lo
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - James B McAlvin
- Division of Medical Critical Care, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Katherine Peeler
- Division of Medical Critical Care, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nidhi Shah
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Christina S K Yee
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Gerard T Berry
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Olaf Bodamer
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
Therapeutic approaches in Congenital Disorders of Glycosylation (CDG) involving N-linked glycosylation: an update. Genet Med 2020; 22:268-279. [PMID: 31534212 PMCID: PMC8720509 DOI: 10.1038/s41436-019-0647-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023] Open
Abstract
Congenital disorders of glycosylation (CDG) are a group of clinically and genetically heterogeneous metabolic disorders. Over 150 CDG types have been described. Most CDG types are ultrarare disorders. CDG types affecting N-glycosylation are the most common type of CDG with emerging therapeutic possibilities. This review is an update on the available therapies for disorders affecting the N-linked glycosylation pathway. In the first part of the review, we highlight the clinical presentation, general principles of management, and disease-specific therapies for N-linked glycosylation CDG types, organized by organ system. The second part of the review focuses on the therapeutic strategies currently available and under development. We summarize the successful (pre-) clinical application of nutritional therapies, transplantation, activated sugars, gene therapy, and pharmacological chaperones and outline the anticipated expansion of the therapeutic possibilities in CDG. We aim to provide a comprehensive update on the treatable aspects of CDG types involving N-linked glycosylation, with particular emphasis on disease-specific treatment options for the involved organ systems; call for natural history studies; and present current and future therapeutic strategies for CDG.
Collapse
|
11
|
Paderi J, Prestwich GD, Panitch A, Boone T, Stuart K. Glycan Therapeutics: Resurrecting an Almost Pharma‐Forgotten Drug Class. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- John Paderi
- Symic Bio, Inc. 5980 Horton St. 94608 Emeryville CA USA
| | - Glenn D. Prestwich
- Symic Bio, Inc. 5980 Horton St. 94608 Emeryville CA USA
- Department of Medicinal ChemistryUniversity of Utah 84112 Salt Lake City UT USA
- Washington State University Health Sciences Spokane 99210 Spokane WA USA
| | - Alyssa Panitch
- Symic Bio, Inc. 5980 Horton St. 94608 Emeryville CA USA
- University of California 95616 Davis CA USA
| | - Tom Boone
- Symic Bio, Inc. 5980 Horton St. 94608 Emeryville CA USA
| | - Kate Stuart
- Symic Bio, Inc. 5980 Horton St. 94608 Emeryville CA USA
| |
Collapse
|
12
|
Brasil S, Pascoal C, Francisco R, Marques-da-Silva D, Andreotti G, Videira PA, Morava E, Jaeken J, Dos Reis Ferreira V. CDG Therapies: From Bench to Bedside. Int J Mol Sci 2018; 19:ijms19051304. [PMID: 29702557 PMCID: PMC5983582 DOI: 10.3390/ijms19051304] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/14/2018] [Accepted: 04/21/2018] [Indexed: 12/20/2022] Open
Abstract
Congenital disorders of glycosylation (CDG) are a group of genetic disorders that affect protein and lipid glycosylation and glycosylphosphatidylinositol synthesis. More than 100 different disorders have been reported and the number is rapidly increasing. Since glycosylation is an essential post-translational process, patients present a large range of symptoms and variable phenotypes, from very mild to extremely severe. Only for few CDG, potentially curative therapies are being used, including dietary supplementation (e.g., galactose for PGM1-CDG, fucose for SLC35C1-CDG, Mn2+ for TMEM165-CDG or mannose for MPI-CDG) and organ transplantation (e.g., liver for MPI-CDG and heart for DOLK-CDG). However, for the majority of patients, only symptomatic and preventive treatments are in use. This constitutes a burden for patients, care-givers and ultimately the healthcare system. Innovative diagnostic approaches, in vitro and in vivo models and novel biomarkers have been developed that can lead to novel therapeutic avenues aiming to ameliorate the patients’ symptoms and lives. This review summarizes the advances in therapeutic approaches for CDG.
Collapse
Affiliation(s)
- Sandra Brasil
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
| | - Carlota Pascoal
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Lisboa, Portugal.
| | - Rita Francisco
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Lisboa, Portugal.
| | - Dorinda Marques-da-Silva
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Lisboa, Portugal.
| | - Giuseppina Andreotti
- Istituto di Chimica Biomolecolare-Consiglio Nazionale delle Ricerche (CNR), 80078 Pozzuoli, Italy.
| | - Paula A Videira
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Lisboa, Portugal.
| | - Eva Morava
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA.
| | - Jaak Jaeken
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Center for Metabolic Diseases, Universitaire Ziekenhuizen (UZ) and Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium.
| | - Vanessa Dos Reis Ferreira
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
| |
Collapse
|
13
|
Bennett DC, Cazet A, Charest J, Contessa JN. MPDU1 regulates CEACAM1 and cell adhesion in vitro and in vivo. Glycoconj J 2018; 35:265-274. [PMID: 29671116 DOI: 10.1007/s10719-018-9819-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 11/27/2022]
Abstract
N-linked glycosylation (NLG) is a co-translational modification that is essential for the folding, stability, and trafficking of transmembrane (TM) and secretory glycoproteins. Efficient NLG requires the stepwise synthesis and en bloc transfer of a 14-sugar carbohydrate known as a lipid-linked oligosaccharide (LLO). The genetics of LLO biosynthesis have been established in yeast and Chinese hamster systems, but human models of LLO biosynthesis are lacking. In this study we report that Kato III human gastric cancer cells represent a model of deficient LLO synthesis, possessing a homozygous deletion of the LLO biosynthesis factor, MPDU1. Kato III cells lacking MPDU1 have all the hallmarks of a glycosylation-deficient cell line, including altered sensitivity to lectins and the formation of truncated LLOs. Analysis of transcription using an expression microarray and protein levels using a proteome antibody array reveal changes in the expression of several membrane proteins, including the metalloprotease ADAM-15 and the cell adhesion molecule CEACAM1. Surprisingly, the restoration of MPDU1 expression in Kato III cells demonstrated a clear phenotype of increased cell-cell adhesion, a finding that was confirmed in vivo through analysis of tumor xenografts. These experiments also confirmed that protein levels of CEACAM-1, which functions in cell adhesion, is dependent on LLO biosynthesis in vivo. Kato III cells and the MPDU1-rescued Kato IIIM cells therefore provide a novel model to examine the consequences of defective LLO biosynthesis both in vitro and in vivo.
Collapse
Affiliation(s)
- Daniel C Bennett
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Aurelie Cazet
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Jon Charest
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Joseph N Contessa
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
14
|
SLC39A8 deficiency: biochemical correction and major clinical improvement by manganese therapy. Genet Med 2017; 20:259-268. [PMID: 28749473 DOI: 10.1038/gim.2017.106] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/01/2017] [Indexed: 02/08/2023] Open
Abstract
PurposeSLC39A8 deficiency is a severe inborn error of metabolism that is caused by impaired function of manganese metabolism in humans. Mutations in SLC39A8 lead to impaired function of the manganese transporter ZIP8 and thus manganese deficiency. Due to the important role of Mn2+ as a cofactor for a variety of enzymes, the resulting phenotype is complex and severe. The manganese-dependence of β-1,4-galactosyltransferases leads to secondary hypoglycosylation, making SLC39A8 deficiency both a disorder of trace element metabolism and a congenital disorder of glycosylation. Some hypoglycosylation disorders have previously been treated with galactose administration. The development of an effective treatment of the disorder by high-dose manganese substitution aims at correcting biochemical, and hopefully, clinical abnormalities.MethodsTwo SCL39A8 deficient patients were treated with 15 and 20 mg MnSO4/kg bodyweight per day. Glycosylation and blood manganese were monitored closely. In addition, magnetic resonance imaging was performed to detect potential toxic effects of manganese.ResultsAll measured enzyme dysfunctions resolved completely and considerable clinical improvement regarding motor abilities, hearing, and other neurological manifestations was observed.ConclusionHigh-dose manganese substitution was effective in two patients with SLC39A8 deficiency. Close therapy monitoring by glycosylation assays and blood manganese measurements is necessary to prevent manganese toxicity.
Collapse
|
15
|
Marques-da-Silva D, Dos Reis Ferreira V, Monticelli M, Janeiro P, Videira PA, Witters P, Jaeken J, Cassiman D. Liver involvement in congenital disorders of glycosylation (CDG). A systematic review of the literature. J Inherit Metab Dis 2017; 40:195-207. [PMID: 28108845 DOI: 10.1007/s10545-016-0012-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/15/2022]
Abstract
Congenital disorders of glycosylation (CDG) are a rapidly growing family of genetic diseases caused by defects in glycosylation. Nearly 100 CDG types are known so far. Patients present a great phenotypic diversity ranging from poly- to mono-organ/system involvement and from very mild to extremely severe presentation. In this literature review, we summarize the liver involvement reported in CDG patients. Although liver involvement is present in only a minority of the reported CDG types (22 %), it can be debilitating or even life-threatening. Sixteen of the patients we collated here developed cirrhosis, 10 had liver failure. We distinguish two main groups: on the one hand, the CDG types with predominant or isolated liver involvement including MPI-CDG, TMEM199-CDG, CCDC115-CDG, and ATP6AP1-CDG, and on the other hand, the CDG types associated with liver disease but not as a striking, unique or predominant feature, including PMM2-CDG, ALG1-CDG, ALG3-CDG, ALG6-CDG, ALG8-CDG, ALG9-CDG, PGM1-CDG, and COG-CDG. This review aims to facilitate CDG patient identification and to understand CDG liver involvement, hopefully leading to earlier diagnosis, and better management and treatment.
Collapse
Affiliation(s)
- D Marques-da-Silva
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisboa, Portugal
- Portuguese Association for CDG, Lisboa, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - V Dos Reis Ferreira
- Portuguese Association for CDG, Lisboa, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - M Monticelli
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisboa, Portugal
- Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - P Janeiro
- Departamento de Pediatria, Unidade de Doenças Metabólicas, CHLN, Hospital de Sta. Maria, Lisboa, Portugal
| | - P A Videira
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisboa, Portugal
- Portuguese Association for CDG, Lisboa, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - P Witters
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- Center for Metabolic Diseases, UZ and KU Leuven, Leuven, Belgium
| | - J Jaeken
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal.
- Center for Metabolic Diseases, UZ and KU Leuven, Leuven, Belgium.
| | - D Cassiman
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal.
- Center for Metabolic Diseases, UZ and KU Leuven, Leuven, Belgium.
| |
Collapse
|
16
|
Janssen MCH, de Kleine RH, van den Berg AP, Heijdra Y, van Scherpenzeel M, Lefeber DJ, Morava E. Successful liver transplantation and long-term follow-up in a patient with MPI-CDG. Pediatrics 2014; 134:e279-83. [PMID: 24982104 DOI: 10.1542/peds.2013-2732] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Hepatopathy is the most common feature in the Congenital Disorders of Glycosylation (CDG). More than 70 subtypes have been identified in this growing group of inborn errors. Most defects present as multisystem disease, whereas phosphomannose isomerase deficiency (MPI-CDG) presents with exclusive hepato-intestinal phenotype. MPI-CDG has been considered as one of the very few treatable disorders of glycosylation; several patients showed significant improvement of their life-threatening protein-losing enteropathy and coagulation disorder on oral mannose supplementation therapy. However, patients who have MPI-CDG develop progressive liver insufficiency during a later course of disease. A patient who had MPI-CDG developed progressive liver fibrosis, despite oral mannose supplementation and repeated fractionated heparin therapy. She showed mannose therapy-associated hemolytic jaundice. She developed severe dyspnea and exercise intolerance owing to pulmonary involvement, necessitating liver transplant. After transplantation her physical exercise tolerance, pulmonary functions, and metabolic parameters became fully restored. She is still doing well 2 years after transplantation now. In conclusion, we here report on the first successful liver transplantation in CDG.
Collapse
Affiliation(s)
| | | | - Arie P van den Berg
- Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, Netherlands; and
| | | | - Monique van Scherpenzeel
- Neurology, andLaboratory of Genetic, Endocrine, and Metabolic Disease, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Dirk J Lefeber
- Neurology, andLaboratory of Genetic, Endocrine, and Metabolic Disease, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Eva Morava
- Tulane Hayward Genetics Centre, New Orleans, Louisiana
| |
Collapse
|
17
|
Wolthuis DFGJ, Janssen MC, Cassiman D, Lefeber DJ, Morava E, Morava-Kozicz E. Defining the phenotype and diagnostic considerations in adults with congenital disorders of N-linked glycosylation. Expert Rev Mol Diagn 2014; 14:217-24. [PMID: 24524732 DOI: 10.1586/14737159.2014.890052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Congenital disorders of N-glycosylation (CDG) form a rapidly growing group of more than 20 inborn errors of metabolism. Most patients are identified at the pediatric age with multisystem disease. There is no systematic review on the long-term outcome and clinical presentation in adult patients. Here, we review the adult phenotype in 78 CDG patients diagnosed with 18 different forms of N-glycosylation defects. Characteristics include intellectual disability, speech disorder and abnormal gait. After puberty, symptoms might remain non-progressive and patients may lead a socially functional life. Thrombosis and progressive symptoms, such as peripheral neuropathy, scoliosis and visual demise are specifically common in PMM2-CDG. Especially in adult patients, diagnostic glycosylation screening can be mildly abnormal or near-normal, hampering diagnosis. Features of adult CDG patients significantly differ from the pediatric phenotype. Non-syndromal intellectual disability, or congenital malformations in different types of CDG and decreasing sensitivity of screening might be responsible for the CDG cases remaining undiagnosed until adulthood.
Collapse
Affiliation(s)
- David F G J Wolthuis
- Hayward Genetics Center, Tulane University Medical School, New Orleans, LA, 70112, USA
| | | | | | | | | | | |
Collapse
|
18
|
Socio-emotional Problems in Children with CDG. JIMD Rep 2013; 11:139-48. [PMID: 23733602 DOI: 10.1007/8904_2013_233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/05/2013] [Accepted: 04/12/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Congenital disorders of glycosylation (CDG) form a group of inherited metabolic diseases. Although the clinical presentation shows extreme variability, the nervous system is frequently affected. Several parents of our patients diagnosed with CDG reported behavioral problems, including mood swings, depressive behavior, and anxiety. This raised the question whether patients with CDG have an increased risk for socio-emotional problems. METHODS We evaluated 18 children with confirmed CDG. The Child Behavior Checklist (CBCL) was used to screen for socio-emotional problems. To determine the disease progression and severity in CDG, the Nijmegen Paediatric CDG Rating Scale (NPCRS) was used. RESULTS were compared to "norm scores" and to children with mitochondrial disorders and children with other chronic metabolic disorders with multisystem involvement. RESULTS RESULTS showed a high prevalence of socio-emotional problems in children with CDG. Mean total scores, scores on withdrawn/depressed behavior, social problems, and somatic complaints were significantly increased. More than two thirds of our CDG patients have abnormal scores on CBCL. The mean score on social problems was significantly higher compared to our two control groups of patients with other chronic metabolic disorders. CONCLUSIONS Patients with CDG have an increased risk of developing socio-emotional problems. A standard screening for psychological problems is recommended for the early detection of psychological problems in CDG patients.
Collapse
|
19
|
Therapies and therapeutic approaches in Congenital Disorders of Glycosylation. Glycoconj J 2012; 30:77-84. [DOI: 10.1007/s10719-012-9447-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 09/03/2012] [Indexed: 01/05/2023]
|
20
|
Hayashi H, Yamashita Y. Role of N-glycosylation in cell surface expression and protection against proteolysis of the intestinal anion exchanger SLC26A3. Am J Physiol Cell Physiol 2011; 302:C781-95. [PMID: 22159084 DOI: 10.1152/ajpcell.00165.2011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SLC26A3 is a Cl(-)/HCO(3)(-) exchanger that plays a major role in Cl(-) absorption from the intestine. Its mutation causes congenital chloride-losing diarrhea. It has been shown that SLC26A3 are glycosylated, with the attached carbohydrate being extracellular and perhaps modulating function. However, the role of glycosylation has yet to be clearly determined. We used the approaches of biochemical modification and site-directed mutagenesis to prevent glycosylation. Deglycosylation experiments with glycosidases indicated that the mature glycosylated form of SLC26A3 exists at the plasma membrane, and a putative large second extracellular loop contains all of the N-linked carbohydrates. Deglycosylation of SLC26A3 causes depression of transport activity compared with wild-type, although robust intracellular pH changes were still observed, suggesting that N-glycosylation is not absolutely necessary for transport activity. To localize glycosylation sites, we mutated the five consensus sites by replacing asparagine (N) with glutamine. Immnoblotting suggests that SLC26A3 is glycosylated at N153, N161, and N165. Deglycosylation of SLC26A3 causes a defect in cell surface processing with decreased cell surface expression. We also assessed whether SLC26A3 is protected from tryptic digestion. While the mature glycosylated SLC26A3 showed little breakdown after treatment with trypsin, deglycosylated SLC26A3 exhibited increased susceptibility to trypsin, suggesting that the oligosaccharides protect SLC26A3 from tryptic digestion. In conclusion, our data indicate that N-glycosylation of SLC26A3 is important for cell surface expression and for protection from proteolytic degradation that may contribute to the understanding of pathogenesis of congenital disorders of glycosylation.
Collapse
Affiliation(s)
- Hisayoshi Hayashi
- Laboratory of Physiology, School of Food and Nutritional Sciences, Univ. of Shizuoka, Suruga-ku, Shizuoka, Japan.
| | | |
Collapse
|
21
|
Brodszki N, Länsberg JK, Dictor M, Gyllstedt E, Ewers SB, Larsson MK, Eklund EA. A novel treatment approach for paediatric Gorham-Stout syndrome with chylothorax. Acta Paediatr 2011; 100:1448-53. [PMID: 21605166 DOI: 10.1111/j.1651-2227.2011.02361.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIM To expand the treatment options in paediatric Gorham-Stout syndrome (GSS) when conventional therapy is ineffective. METHOD Two children with biopsy confirmed GSS, a rare disorder with progressive lymphangiomatosis, were treated with a combination of interferon-α-2b, low anticoagulant, low molecular weight heparin, radiotherapy and surgery. RESULTS The combined therapy resolved the symptoms in the acute phase, and both patients have since been free of symptoms for >2 years. CONCLUSION The successful addition of a low anticoagulant, low molecular weight heparin (tafoxiparin) to the treatment protocol in two paediatric cases of the GSS may justify the use of this approach in similar cases.
Collapse
Affiliation(s)
- Nicholas Brodszki
- Department of Clinical Sciences, Section for Paediatrics, The BUT team, Lund University, Sweden
| | | | | | | | | | | | | |
Collapse
|
22
|
Sarrazin S, Lamanna WC, Esko JD. Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004952. [PMID: 21690215 DOI: 10.1101/cshperspect.a004952] [Citation(s) in RCA: 1032] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heparan sulfate proteoglycans are found at the cell surface and in the extracellular matrix, where they interact with a plethora of ligands. Over the last decade, new insights have emerged regarding the mechanism and biological significance of these interactions. Here, we discuss changing views on the specificity of protein-heparan sulfate binding and the activity of HSPGs as receptors and coreceptors. Although few in number, heparan sulfate proteoglycans have profound effects at the cellular, tissue, and organismal level.
Collapse
Affiliation(s)
- Stephane Sarrazin
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
23
|
Abstract
Heparan sulfate proteoglycans are found at the cell surface and in the extracellular matrix, where they interact with a plethora of ligands. Over the last decade, new insights have emerged regarding the mechanism and biological significance of these interactions. Here, we discuss changing views on the specificity of protein-heparan sulfate binding and the activity of HSPGs as receptors and coreceptors. Although few in number, heparan sulfate proteoglycans have profound effects at the cellular, tissue, and organismal level.
Collapse
Affiliation(s)
- Stephane Sarrazin
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
24
|
Roehl HH, Pacifici M. Shop talk: Sugars, bones, and a disease called multiple hereditary exostoses. Dev Dyn 2010; 239:1901-4. [DOI: 10.1002/dvdy.22290] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
25
|
The clinical spectrum of phosphomannose isomerase deficiency, with an evaluation of mannose treatment for CDG-Ib. Biochim Biophys Acta Mol Basis Dis 2008; 1792:841-3. [PMID: 19101627 DOI: 10.1016/j.bbadis.2008.11.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 11/15/2008] [Accepted: 11/24/2008] [Indexed: 11/22/2022]
Abstract
Phosphomannose isomerase (PMI) deficiency or congenital disorders of glycosylation type Ib (CDG Ib) is the only CDG that can be treated. Despite variable severity leading to dramatically different prognoses, clinical presentation is relatively homogeneous with liver and digestive features associated with hyperinsulinism and inconstant thrombosis. A feature of CDG is that coagulation factors are decreased. In our experience, mannose given orally at least 4 times per day not only transformed lethal CDG Ib into a treatable disease, but also improved the general condition and digestive symptoms of all reported patients but one. Liver disease, however, still persisted. Heparin can be used as an alternative to mannose in certain patients, particularly in the treatment of enteropathy.
Collapse
|