1
|
Zhao H, Dong Q, Hua H, Wu H, Ao L. Contemporary insights and prospects on ferroptosis in rheumatoid arthritis management. Front Immunol 2024; 15:1455607. [PMID: 39381004 PMCID: PMC11458427 DOI: 10.3389/fimmu.2024.1455607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024] Open
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease characterized primarily by persistent synovial inflammation and joint destruction. In recent years, ferroptosis, as a novel form of cell death, has garnered widespread attention due to its critical role in various diseases. This review explores the potential mechanisms of ferroptosis in RA and its relationship with the pathogenesis of RA, systematically analyzing the regulatory role of ferroptosis in synovial cells, chondrocytes, and immune cells. We emphasize the evaluation of ferroptosis-related pathways and their potential as therapeutic targets, including the development and application of inhibitors and activators. Although ferroptosis shows some promise in RA treatment, its dual role and safety issues in clinical application still require in-depth study. Future research should focus on elucidating the specific mechanisms of ferroptosis in RA pathology and developing more effective and safer therapeutic strategies to provide new treatment options for RA patients.
Collapse
Affiliation(s)
| | | | | | | | - Limei Ao
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Huhhot, Inner Mongolia, China
| |
Collapse
|
2
|
Liu Y, Luo H, Liu B, Zhou T, Zhang Z, Liu Z. Biomimetic NO Scavenging Hyaluronic Acid Nanoparticles Enable Targeted Delivery of MTX and Integrated Management of Rheumatoid Arthritis. Biomacromolecules 2024; 25:4557-4568. [PMID: 38899740 DOI: 10.1021/acs.biomac.4c00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Rheumatoid arthritis (RA) is a complicated chronic disorder of the immune system, featured with severe inflammatory joints, synovium hyperplasia, articular cartilage, and bone damage. In the RA microenvironment, RA-involved cells, overproduced nitric oxide (NO), and pro-inflammatory cytokines are highly interplayed and mutually reinforced, which form a vicious circle and play crucial roles in the formation and progression of RA. To comprehensively break the vicious circle and obtain the maximum benefits, we have developed neutrophil membrane-camouflaged NO scavenging nanoparticles based on an NO-responsive hyaluronic acid derivative for delivery of MTX. These multifunctional nanoparticles (NNO-NPs/MTX), by inheriting the membrane functions of the source cells, possess prolonged circulation and specific localization at the inflamed sites when administrated in the body. Remarkably, NNO-NPs/MTX can neutralize the pro-inflammatory cytokines via the outer membrane receptors, scavenge NO, and be responsively disassociated to release MTX for RA-involved cell regulation and HA for lubrication in the RA sites. In a collagen-induced arthritis mouse model, NNO-NPs/MTX exhibits a significant anti-inflammation effect and effectively alleviates the characteristic RA symptoms such as synovial hyperplasia and cartilage destruction, realizing the synergistic and boosted therapeutic outcome against intractable RA. Thus, NNO-NPs/MTX provides a promising and potent platform to integrately treat RA.
Collapse
Affiliation(s)
- Yilin Liu
- Electrocardiogram Room, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, P.R. China
| | - Huajun Luo
- Xingguo County Maternal and Child Health Hospital, Xingguo 342400, P.R. China
| | - Bingbing Liu
- Department of Orthopedics, Gao'an People's Hospital, Gao'an 330800, P.R. China
| | - Ting Zhou
- Department of Ultrasound Medicine, Xingguo County People's Hospital, Xingguo 342400, P.R. China
| | - Zhipeng Zhang
- Xianning Medical College, Hubei University of Science & Technology, Xianning 437100, P.R. China
| | - Zhijian Liu
- Department of General Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, P.R. China
| |
Collapse
|
3
|
Xu Q, Xu XH, Liu ZZ, Zhu JB, Ding HH, Jin CC, Yan ZH. Efficacy and safety of ultrasound-guided percutaneous radiofrequency ablation for synovial hyperplasia. Int J Hyperthermia 2024; 41:2328113. [PMID: 38964750 DOI: 10.1080/02656736.2024.2328113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/03/2024] [Indexed: 07/06/2024] Open
Abstract
PURPOSE This study aimed to investigate the efficacy and safety of ultrasound-guided percutaneous radiofrequency ablation (RFA) for the treatment of synovial hyperplasia in the knee joints of antigen-induced arthritis (AIA) model rabbits. METHODS Forty Japanese large-eared white rabbits were divided into AIA and control groups. After successful induction of the AIA model, the knee joints were randomly assigned to RFA and non-RFA groups. The RFA group underwent ultrasound-guided RFA to treat synovial hyperplasia in the knee joint. Dynamic observation of various detection indices was conducted to evaluate the safety and effectiveness of the RFA procedure. RESULTS Successful synovial ablation was achieved in the RFA group, with no intraoperative or perioperative mortality. Postoperative the circumference of the knee joint reached a peak before decreasing in the third week after surgery. The incidence and diameter of postoperative skin ulcers were not significantly different compared to the non-RFA group (p > .05). Anatomical examination revealed an intact intermuscular fascia around the ablated area in the RFA group. The ablated synovial tissue initially presented as a white mass, which subsequently liquefied into a milky white viscous fluid. Gross articular cartilage was observed, along with liquefied necrosis of the synovium on pathological histology and infiltration of inflammatory cells in the surrounding soft tissue. CONCLUSION The experimental results demonstrated that ultrasound-guided RFA of the knee in the treatment of synovial hyperplasia in AIA model animals was both effective and safe.
Collapse
Affiliation(s)
- Qi Xu
- Department of Ultrasound, Third Affiliated Hospital of Shanghai University, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Xiao-Hui Xu
- Department of Medical and Health Care Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ze-Zheng Liu
- Department of Ultrasound, Third Affiliated Hospital of Shanghai University, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Jian-Bi Zhu
- Department of Ultrasound, Third Affiliated Hospital of Shanghai University, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Huan-Huan Ding
- Department of Ultrasound, Third Affiliated Hospital of Shanghai University, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Chun-Chun Jin
- Department of Ultrasound, Third Affiliated Hospital of Shanghai University, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Zhi-Han Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou, China
| |
Collapse
|
4
|
Guo X, Bourgeois FT, Cai T. Quantifying proportion of treatment effect by surrogate endpoint under heterogeneity. Stat Methods Med Res 2024; 33:1152-1162. [PMID: 38717356 DOI: 10.1177/09622802241247719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
When the primary endpoints in randomized clinical trials require long term follow-up or are costly to measure, it is often desirable to assess treatment effects on surrogate instead of clinical endpoints. Prior to adopting a surrogate endpoint for such purposes, the extent of its surrogacy on the primary endpoint must be assessed. There is a rich statistical literature on assessing surrogacy in the overall population, much of which is based on quantifying the proportion of treatment effect on the primary endpoint that is explained by the treatment effect on the surrogate endpoint. However, the surrogacy of an endpoint may vary across different patient subgroups according to baseline demographic characteristics, and limited methods are currently available to assess overall surrogacy in the presence of potential surrogacy heterogeneity. In this paper, we propose methods that incorporate covariates for baseline information, such as age, to improve overall surrogacy assessment. We use flexible semi-non-parametric modeling strategies to adjust for covariate effects and derive a robust estimate for the proportion of treatment effect of the covariate-adjusted surrogate endpoint. Simulation results suggest that the adjusted surrogate endpoint has greater proportion of treatment effect compared to the unadjusted surrogate endpoint. We apply the proposed method to data from a clinical trial of infliximab and assess the adequacy of the surrogate endpoint in the presence of age heterogeneity.
Collapse
Affiliation(s)
- Xinzhou Guo
- Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong, China
- Harvard-MIT Center for Regulatory Science, Harvard Medical School, Boston, MA, USA
| | - Florence T Bourgeois
- Harvard-MIT Center for Regulatory Science, Harvard Medical School, Boston, MA, USA
- Pediatric Therapeutics and Regulatory Science Initiative, Computational Health Informatics Program (CHIP), Boston Children's Hospital, Boston, MA, USA
| | - Tianxi Cai
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
5
|
Qu YQ, Song LL, Xu SW, Yu MSY, Kadioglu O, Michelangeli F, Law BYK, Efferth T, Lam CWK, Wong VKW. Pomiferin targets SERCA, mTOR, and P-gp to induce autophagic cell death in apoptosis-resistant cancer cells, and reverses the MDR phenotype in cisplatin-resistant tumors in vivo. Pharmacol Res 2023; 191:106769. [PMID: 37061145 DOI: 10.1016/j.phrs.2023.106769] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/23/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Drug resistance in cancer has been classified as innate resistance or acquired resistance, which were characterized by apoptotic defects and ABC transporters overexpression respectively. Therefore, to preclude or reverse these resistance mechanisms could be a promising strategy to improve chemotherapeutic outcomes. In this study, a natural product from Osage Orange, pomiferin, was identified as a novel autophagy activator that circumvents innate resistance by triggering autophagic cell death via SERCA inhibition and activation of the CaMKKβ-AMPK-mTOR signaling cascade. In addition, pomiferin also directly inhibited the P-gp (MDR1/ABCB1) efflux and reversed acquired resistance by potentiating the accumulation and efficacy of the chemotherapeutic agent, cisplatin. In vivo study demonstrated that pomiferin triggered calcium-mediated tumor suppression and exhibited an anti-metastatic effect in the LLC-1 lung cancer-bearing mouse model. Moreover, as an adjuvant, pomiferin potentiated the anti-tumor effect of the chemotherapeutic agent, cisplatin, in RM-1 drug-resistant prostate cancer-bearing mouse model by specially attenuating ABCB1-mediated drug efflux, but not ABCC5, thereby promoting the accumulation of cisplatin in tumors. Collectively, pomiferin may serve as a novel effective agent for circumventing drug resistance in clinical applications.
Collapse
Affiliation(s)
- Yuan-Qing Qu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Lin-Lin Song
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Su-Wei Xu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Department of Basic Medicine of Zhuhai Health School, Zhuhai, China
| | - Margaret Sum Yee Yu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany
| | | | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany
| | | | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
6
|
Hebing RC, Lin M, Bulatovic Calasan M, Muller IB, Mahmoud S, Heil S, Struys EA, van den Bemt BJ, Twisk JW, Lems W, Nurmohamed MT, Jansen G, de Jonge R. Pharmacokinetics of oral and subcutaneous methotrexate in red and white blood cells in patients with early rheumatoid arthritis: the methotrexate monitoring trial. Ann Rheum Dis 2023; 82:460-467. [PMID: 36543526 DOI: 10.1136/ard-2022-223398] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To investigate the pharmacokinetics of methotrexate polyglutamate (MTX-PG) accumulation in red blood cells (RBCs) and peripheral blood mononuclear cells (PBMCs) in patients with early rheumatoid arthritis (RA) after oral and subcutaneous MTX treatment. METHODS In a clinical prospective cohort study (Methotrexate Monitoring study), newly diagnosed patients with RA were randomised for oral or subcutaneous MTX. At 1, 2, 3 and 6 months after therapy initiation, blood was collected and RBCs and PBMCs were isolated. MTX-PG1-6 concentrations were determined by mass spectrometry methods using stable isotopes of MTX-PG1-6 as internal standards. RESULTS 43 patients (mean age: 58.5 years, 77% female) were included. PBMCs and RBCs revealed disparate pharmacokinetic profiles in both absolute MTX-PG accumulation levels and distribution profiles. Intracellular MTX-PG accumulation in PBMCs was significantly (p<0.001) 10-fold to 20-fold higher than RBCs at all time points, regardless of the administration route. MTX-PG distribution in PBMCs was composed of mostly MTX-PG1 (PG1>PG2>PG3). Remarkably, the distribution profile in PBMCs remained constant over 6 months. RBCs accumulated mainly MTX-PG1 and lower levels of MTX-PG2-5 at t=1 month. After 3 months, MTX-PG3 was the main PG-moiety in RBCs, a profile retained after 6 months of MTX therapy. Subcutaneous MTX administration results in higher RBC drug levels than after oral administration, especially shortly after treatment initiation. CONCLUSIONS This is the first study reporting disparate MTX-PG accumulation profiles in RBCs versus PBMCs in newly diagnosed patients with RA during 6 months oral or subcutaneous MTX administration. This analysis can contribute to improved MTX therapeutic drug monitoring for patients with RA. TRIAL REGISTRATION NUMBER NTR 7149.
Collapse
Affiliation(s)
- Renske Cf Hebing
- Reade, Amsterdam Rheumatology and Immunology Center, Amsterdam, The Netherlands
- Rheumatology, Amsterdam UMC VUMC Site, Amsterdam, The Netherlands
| | - Marry Lin
- Clinical Chemistry, Amsterdam UMC VUMC Site, Amsterdam, The Netherlands
| | - Maja Bulatovic Calasan
- Clinical Chemistry, Amsterdam UMC VUMC Site, Amsterdam, The Netherlands
- Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ittai B Muller
- Clinical Chemistry, Amsterdam UMC VUMC Site, Amsterdam, The Netherlands
| | - Sohaila Mahmoud
- Reade, Amsterdam Rheumatology and Immunology Center, Amsterdam, The Netherlands
| | - Sandra Heil
- Clinical Chemistry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eduard A Struys
- Clinical Chemistry, Amsterdam UMC VUMC Site, Amsterdam, The Netherlands
| | | | - Jos Wr Twisk
- Methodology and Applied Biostatistics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Willem Lems
- Reade, Amsterdam Rheumatology and Immunology Center, Amsterdam, The Netherlands
- Rheumatology, Amsterdam UMC VUMC Site, Amsterdam, The Netherlands
| | - Michael T Nurmohamed
- Reade, Amsterdam Rheumatology and Immunology Center, Amsterdam, The Netherlands
- Rheumatology, Amsterdam UMC VUMC Site, Amsterdam, The Netherlands
| | - Gerrit Jansen
- Rheumatology, Amsterdam UMC VUMC Site, Amsterdam, The Netherlands
| | - Robert de Jonge
- Clinical Chemistry, Amsterdam UMC VUMC Site, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Franczak M, Toenshoff I, Jansen G, Smolenski RT, Giovannetti E, Peters GJ. The Influence of Mitochondrial Energy and 1C Metabolism on the Efficacy of Anticancer Drugs: Exploring Potential Mechanisms of Resistance. Curr Med Chem 2023; 30:1209-1231. [PMID: 35366764 DOI: 10.2174/0929867329666220401110418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/06/2022] [Accepted: 01/24/2022] [Indexed: 11/22/2022]
Abstract
Mitochondria are the main energy factory in living cells. To rapidly proliferate and metastasize, neoplastic cells increase their energy requirements. Thus, mitochondria become one of the most important organelles for them. Indeed, much research shows the interplay between cancer chemoresistance and altered mitochondrial function. In this review, we focus on the differences in energy metabolism between cancer and normal cells to better understand their resistance and how to develop drugs targeting energy metabolism and nucleotide synthesis. One of the differences between cancer and normal cells is the higher nicotinamide adenine dinucleotide (NAD+) level, a cofactor for the tricarboxylic acid cycle (TCA), which enhances their proliferation and helps cancer cells survive under hypoxic conditions. An important change is a metabolic switch called the Warburg effect. This effect is based on the change of energy harvesting from oxygen-dependent transformation to oxidative phosphorylation (OXPHOS), adapting them to the tumor environment. Another mechanism is the high expression of one-carbon (1C) metabolism enzymes. Again, this allows cancer cells to increase proliferation by producing precursors for the synthesis of nucleotides and amino acids. We reviewed drugs in clinical practice and development targeting NAD+, OXPHOS, and 1C metabolism. Combining novel drugs with conventional antineoplastic agents may prove to be a promising new way of anticancer treatment.
Collapse
Affiliation(s)
- Marika Franczak
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Isabel Toenshoff
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Vrije Universiteit Amsterdam, The Netherlands.,Amsterdam University College, Amsterdam, The Netherlands
| | - Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands
| | | | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Vrije Universiteit Amsterdam, The Netherlands.,Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Godefridus J Peters
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland.,Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Vrije Universiteit Amsterdam, The Netherlands
| |
Collapse
|
8
|
Rafik ST, Zeitoun TM, Shalaby TI, Barakat MK, Ismail CA. Methotrexate conjugated gold nanoparticles improve rheumatoid vascular dysfunction in rat adjuvant-induced arthritis: gold revival. Inflammopharmacology 2023; 31:321-335. [PMID: 36482036 PMCID: PMC9958144 DOI: 10.1007/s10787-022-01104-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022]
Abstract
Endothelial vasomotor dysfunction and accelerated atherosclerosis encompass the features of rheumatoid vascular dysfunction (RVD), increasing cardiovascular morbidity and mortality among rheumatoid arthritis (RA) patients. Methotrexate, among DMARDs, effectively reduces cardiovascular events, but its non-selectivity together with its pharmacokinetic variability often limit drug adherence and contribute to its potential toxicity. Thus, methotrexate was conjugated to gold nanoparticles (MTX/AuNPs) and its effect on RVD in rats' adjuvant-induced arthritis was evaluated. A comparative study between MTX/AuNPs, free MTX, and AuNPs treatments on joint inflammation, vascular reactivity and architecture, smooth muscle phenotype, systemic inflammation, and atherogenic profile was done. Since MTX/AuNPs effect was superior, it appears that conjugation of MTX to AuNPs demonstrated a synergistic action. MTX immunomodulatory action combined with AuNPs anti-atherogenic potential yielded prompt control of whole features of RVD. These findings highlight the usefulness of nanoparticles-targeted drug-delivery system in refining rheumatoid-induced vascular dysfunction treatment and reviving gold use in RA.
Collapse
Affiliation(s)
- Salma T. Rafik
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Teshreen M. Zeitoun
- Department of Histology and Cell Biology, Faculty of Medicine, El-Moassat Medical Hospital, Alexandria University, Alexandria, Egypt
| | - Thanaa I. Shalaby
- Department of Medical Biophysics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mervat K. Barakat
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Cherine A. Ismail
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Yan S, Peng Y, Wu Z, Cheng L, Li H, Xu H, Huang Y, Zhang W, Li Y. Distinct metabolic biomarkers to distinguish IgG4-related disease from Sjogren's syndrome and pancreatic cancer and predict disease prognosis. BMC Med 2022; 20:497. [PMID: 36575511 PMCID: PMC9795602 DOI: 10.1186/s12916-022-02700-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/09/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The pathogenesis of immunoglobulin G4-related disease (IgG4-RD) remains unclear. IgG4-RD often mimics other diseases, including pancreatic cancer (PC) and Sjogren's syndrome (SS), which may easily lead to misdiagnosis. This study was performed to explore the metabolite changes and potential biomarkers of IgG4-RD and other misdiagnosed diseases. METHODS Untargeted liquid chromatography-tandem mass spectrometry metabolomics profiling of plasma samples from a cohort comprising healthy controls (HCs) and patients with IgG4-RD (n = 87), PC (n = 33), and SS (n = 31) was performed. A random forest machine learning model was used to verify the relevance of the identified metabolites in the diagnosis of different diseases and the prediction of disease prognosis. RESULTS The ATP-binding cassette transporter pathway was found to be most closely related to IgG4-RD, which was significantly up-regulated in the IgG4-RD group than in all the matched groups. Five metabolites were proved to be valuable biomarkers for IgG4-RD. Caftaric acid, maltotetraose, D-glutamic acid, 1-stearoyl-2-arachidonoyl-sn-glycero-3-phosphoserine, and hydroxyproline were useful in distinguishing between IgG4-RD, PC, SS, and HC [area under the curve (AUC) = 1]. A combination of phenylalanine betaine, 1-(1z-hexadecenyl)-sn-glycero-3-phosphocholine, Pi 40:8, uracil, and N1-methyl-2-pyridone-5-carboxamide showed a moderate value in predicting relapse in patients with IgG4-RD (AUC = 0.8). CONCLUSIONS Our findings revealed the metabolite changes of IgG4-RD and provide new insights for deepening our understanding of IgG4-RD despite the lack of validation in external cohorts. Metabolomic biomarkers have significance in the clinical diagnosis and disease prognosis of IgG4-RD.
Collapse
Affiliation(s)
- Songxin Yan
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yu Peng
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ziyan Wu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linlin Cheng
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haolong Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Honglin Xu
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuan Huang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wen Zhang
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
10
|
Wang J, Zhang SX, Chang JS, Cheng T, Jiang XJ, Su QY, Zhang JQ, Luo J, Li XF. Low-dose IL-2 improved clinical symptoms by restoring reduced regulatory T cells in patients with refractory rheumatoid arthritis: A randomized controlled trial. Front Immunol 2022; 13:947341. [PMID: 36524114 PMCID: PMC9744779 DOI: 10.3389/fimmu.2022.947341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
Background Regulatory T cells (Tregs) have been found to play crucial roles in immune tolerance. However, the status of Tregs in refractory rheumatoid arthritis (RA) is still unclear. Moreover, low-dose interleukin-2 (IL-2) has been reported to selectively promote the expansion of Tregs. This study investigated the status of CD4+ Tregs and low-dose IL-2 therapy in patients with refractory RA. Methods The absolute number of CD4+CD25+FOXP3+ Treg (CD4 Treg), CD4+IL17+ T (Th17), and other subsets in peripheral blood (PB) from 41 patients with refractory RA and 40 healthy donors was characterized by flow cytometry combined with an internal microsphere counting standard. Twenty-six patients with refractory RA were treated with daily subcutaneous injections of 0.5 million IU of human IL-2 for five consecutive days. Then, its effects on CD4 Treg and Th17 cells in PB were analyzed. Results A decrease in the absolute number of PB CD4 Tregs rather than the increase in the number of Th17 was found to contribute to an imbalance between Th17 and CD4 Tregs in these patients, suggesting an essential role of CD4 Tregs in sustained high disease activity. Low-dose IL-2 selectively increased the number of CD4 Tregs and rebalanced the ratio of Th17 and CD4 Tregs, leading to increased clinical symptom remission without the observed side effects. Conclusions An absolute decrease of PB CD4 Tregs in patients with refractory RA was associated with continuing disease activation but not the increase of Th17 cells. Low-dose IL-2, a potential therapeutic candidate, restored decreased CD4 Tregs and promoted the rapid remission of patients with refractory RA without overtreatment and the observed side effects. Clinical trial registration http://www.chictr.org.cn/showproj.aspx?proj=13909, identifier ChiCTR-INR-16009546.
Collapse
Affiliation(s)
- Jia Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Jia-Song Chang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Ting Cheng
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Xiao-Jing Jiang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Qin-Yi Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Jia-Qi Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Jing Luo
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Xiao-Feng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| |
Collapse
|
11
|
Yang J, Li Z, Wang L, Yun X, Zeng Y, Ng JP, Lo H, Wang Y, Zhang K, Law BYK, Wong VKW. The role of non-coding RNAs (miRNA and lncRNA) in the clinical management of rheumatoid arthritis. Pharmacol Res 2022; 186:106549. [DOI: 10.1016/j.phrs.2022.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
|
12
|
Sciacca E, Surace AEA, Alaimo S, Pulvirenti A, Rivellese F, Goldmann K, Ferro A, Latora V, Pitzalis C, Lewis MJ. Network analysis of synovial RNA sequencing identifies gene-gene interactions predictive of response in rheumatoid arthritis. Arthritis Res Ther 2022; 24:166. [PMID: 35820911 PMCID: PMC9275048 DOI: 10.1186/s13075-022-02803-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND To determine whether gene-gene interaction network analysis of RNA sequencing (RNA-Seq) of synovial biopsies in early rheumatoid arthritis (RA) can inform our understanding of RA pathogenesis and yield improved treatment response prediction models. METHODS We utilized four well curated pathway repositories obtaining 10,537 experimentally evaluated gene-gene interactions. We extracted specific gene-gene interaction networks in synovial RNA-Seq to characterize histologically defined pathotypes in early RA and leverage these synovial specific gene-gene networks to predict response to methotrexate-based disease-modifying anti-rheumatic drug (DMARD) therapy in the Pathobiology of Early Arthritis Cohort (PEAC). Differential interactions identified within each network were statistically evaluated through robust linear regression models. Ability to predict response to DMARD treatment was evaluated by receiver operating characteristic (ROC) curve analysis. RESULTS Analysis comparing different histological pathotypes showed a coherent molecular signature matching the histological changes and highlighting novel pathotype-specific gene interactions and mechanisms. Analysis of responders vs non-responders revealed higher expression of apoptosis regulating gene-gene interactions in patients with good response to conventional synthetic DMARD. Detailed analysis of interactions between pairs of network-linked genes identified the SOCS2/STAT2 ratio as predictive of treatment success, improving ROC area under curve (AUC) from 0.62 to 0.78. We identified a key role for angiogenesis, observing significant statistical interactions between NOS3 (eNOS) and both CAMK1 and eNOS activator AKT3 when comparing responders and non-responders. The ratio of CAMKD2/NOS3 enhanced a prediction model of response improving ROC AUC from 0.63 to 0.73. CONCLUSIONS We demonstrate a novel, powerful method which harnesses gene interaction networks for leveraging biologically relevant gene-gene interactions leading to improved models for predicting treatment response.
Collapse
Affiliation(s)
- Elisabetta Sciacca
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Anna E A Surace
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Salvatore Alaimo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alfredo Pulvirenti
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Felice Rivellese
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Katriona Goldmann
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Alfredo Ferro
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Vito Latora
- School of Mathematical Sciences, Queen Mary University of London, London, UK.,Dipartimento di Fisica ed Astronomia, Università di Catania and INFN, I-95123, Catania, Italy
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Myles J Lewis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK. .,Digital Environment Research Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
13
|
Taurine and N-Bromotaurine in Topical Treatment of Psoriasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:99-111. [DOI: 10.1007/978-3-030-93337-1_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Muller IB, Lin M, Lems WF, Ter Wee MM, Wojtuszkiewicz A, Nurmohamed MT, Cloos J, Assaraf YG, Jansen G, de Jonge R. Association of altered folylpolyglutamate synthetase pre-mRNA splicing with methotrexate unresponsiveness in early rheumatoid arthritis. Rheumatology (Oxford) 2021; 60:1273-1281. [PMID: 32940699 PMCID: PMC7937028 DOI: 10.1093/rheumatology/keaa428] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/23/2020] [Indexed: 02/06/2023] Open
Abstract
Objectives An efficient pharmacological response to MTX treatment in RA patients relies on the retention and accumulation of intracellular MTX-polyglutamates catalysed by the enzyme folylpolyglutamate synthetase (FPGS). We recently identified a partial retention of FPGS intron 8 (8PR) as a prominent splice variant conferring FPGS dysfunction and decreased MTX polyglutamylation in acute lymphoblastic leukaemia. Here, we explored the association between FPGS 8PR levels and lack of MTX responsiveness in RA patients. Methods Thirty-six patients undergoing MTX treatment were enrolled from the Combinatie behandeling Reumatoide Artritis (COBRA)-light trial. RNA was isolated from blood samples at baseline, 13 weeks and 26 weeks of therapy, from patients in either COBRA-light (n = 21) or COBRA (n = 15) treatment arms. RT-qPCR analysis was used to assess RNA levels of FPGS 8PR over wild-type FPGS (8WT). Results In the COBRA-light treatment arm, higher baseline ratios of 8PR/8WT were significantly associated with higher 44-joint disease activity score (DAS44) at 13 and 26 weeks. Higher baseline ratios of 8PR/8WT also trended towards not obtaining low disease activity (DAS <1.6) and becoming a EULAR non-responder at 13 and 26 weeks. In the COBRA-treatment arm, a significant association was observed between high baseline 8PR/8WT ratios and higher DAS44 score at 26 weeks. Higher 8PR/8WT ratios were associated with non-response at week 26 based on both low disease activity and EULAR criteria. Conclusion This study is the first to associate alterations in FPGS pre-mRNA splicing levels with reduced responsiveness to MTX treatment in RA patients. Trial registration ISRCTN55552928.
Collapse
Affiliation(s)
- Ittai B Muller
- Department of Clinical Chemistry, Amsterdam, The Netherlands
| | - Marry Lin
- Department of Clinical Chemistry, Amsterdam, The Netherlands
| | - Willem F Lems
- Amsterdam Rheumatology and Immunology Center, Amsterdam, The Netherlands
| | - Marieke M Ter Wee
- Amsterdam Rheumatology and Immunology Center, Amsterdam, The Netherlands.,Department of Epidemiology and Biostatistics, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Anna Wojtuszkiewicz
- Department of Hematology, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Michael T Nurmohamed
- Amsterdam Rheumatology and Immunology Center, location Reade, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, Amsterdam, The Netherlands
| | - Robert de Jonge
- Department of Clinical Chemistry, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Jansen G, de Rotte MCFJ, de Jonge R. Smoking and Methotrexate Inefficacy in Rheumatoid Arthritis: What About Underlying Molecular Mechanisms? J Rheumatol 2021; 48:1495-1497. [PMID: 34329189 DOI: 10.3899/jrheum.210217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The study by Safy-Khan, et al in the current issue of The Journal of Rheumatology 1 reports that in a methotrexate (MTX)-based treatment regimen for patients with early arthritis, current smoking was significantly associated with a smaller reduction of Disease Activity Score in 28 joints (DAS28) over time compared to noncurrent smoking. This negative effect of current smoking on DAS28 was dose-dependent: patients who smoked 10-19 cigarettes per day did worse than patients who smoked 1-9 cigarettes per day.
Collapse
Affiliation(s)
- Gerrit Jansen
- G. Jansen, PhD, Biochemist, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, location VUmc; M.C. de Rotte, PhD, Clinical Chemist, R. de Jonge, PhD, Professor of Clinical Chemistry, Department of Clinical Chemistry, Amsterdam University Medical Center, Amsterdam, the Netherlands. The authors declare no conflicts of interest relevant to this article. Address correspondence to Dr. G. Jansen, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, location VUmc, CCA - Rm 2.46, De Boelelaan 1117, 1081 HV Amsterdam, Amsterdam, the Netherlands,
| | - Maurits C F J de Rotte
- G. Jansen, PhD, Biochemist, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, location VUmc; M.C. de Rotte, PhD, Clinical Chemist, R. de Jonge, PhD, Professor of Clinical Chemistry, Department of Clinical Chemistry, Amsterdam University Medical Center, Amsterdam, the Netherlands. The authors declare no conflicts of interest relevant to this article. Address correspondence to Dr. G. Jansen, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, location VUmc, CCA - Rm 2.46, De Boelelaan 1117, 1081 HV Amsterdam, Amsterdam, the Netherlands,
| | - Robert de Jonge
- G. Jansen, PhD, Biochemist, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, location VUmc; M.C. de Rotte, PhD, Clinical Chemist, R. de Jonge, PhD, Professor of Clinical Chemistry, Department of Clinical Chemistry, Amsterdam University Medical Center, Amsterdam, the Netherlands. The authors declare no conflicts of interest relevant to this article. Address correspondence to Dr. G. Jansen, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, location VUmc, CCA - Rm 2.46, De Boelelaan 1117, 1081 HV Amsterdam, Amsterdam, the Netherlands,
| |
Collapse
|
16
|
Disease-drug and drug-drug interaction in COVID-19: Risk and assessment. Biomed Pharmacother 2021; 139:111642. [PMID: 33940506 PMCID: PMC8078916 DOI: 10.1016/j.biopha.2021.111642] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is announced as a global pandemic in 2020. Its mortality and morbidity rate are rapidly increasing, with limited medications. The emergent outbreak of COVID-19 prompted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) keeps spreading. In this infection, a patient's immune response plays pivotal role in the pathogenesis. This inflammatory factor was shown by its mediators that, in severe cases, reach the cytokine at peaks. Hyperinflammatory state may sparks significant imbalances in transporters and drug metabolic machinery, and subsequent alteration of drug pharmacokinetics may result in unexpected therapeutic response. The present scenario has accounted for the requirement for therapeutic opportunities to relive and overcome this pandemic. Despite the diminishing developments of COVID-19, there is no drug still approved to have significant effects with no side effect on the treatment for COVID-19 patients. Based on the evidence, many antiviral and anti-inflammatory drugs have been authorized by the Food and Drug Administration (FDA) to treat the COVID-19 patients even though not knowing the possible drug-drug interactions (DDI). Remdesivir, favipiravir, and molnupiravir are deemed the most hopeful antiviral agents by improving infected patient’s health. Dexamethasone is the first known steroid medicine that saved the lives of seriously ill patients. Some oligopeptides and proteins have also been using. The current review summarizes medication updates to treat COVID-19 patients in an inflammatory state and their interaction with drug transporters and drug-metabolizing enzymes. It gives an opinion on the potential DDI that may permit the individualization of these drugs, thereby enhancing the safety and efficacy.
Collapse
|
17
|
Hyaluronic Acid-Coated MTX-PEI Nanoparticles for Targeted Rheumatoid Arthritis Therapy. CRYSTALS 2021. [DOI: 10.3390/cryst11040321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Methotrexate (MTX) is an anchor drug for the treatment of rheumatoid arthritis (RA); however, long-term and high-dose usage of MTX for patients can cause many side effects and toxic reactions. To address these difficulties, selectively delivering MTX to the inflammatory site of a joint is promising in the treatment of RA. In this study, we prepared MTX-PEI@HA nanoparticles (NPs), composed of hyaluronic acid (HA) as the hydrophilic negative electrical shell, and MTX-linked branched polyethyleneimine (MTX-PEI) NPs as the core. MTX-PEI@HA NPs were prepared in the water phase by a one-pot method. The polymeric NPs were selectively internalized via CD44 receptor-mediated endocytosis in the activated macrophages. In the in vivo mice mode study, treatment with MTX-PEI@HA NPs mitigated inflammatory arthritis with notable safety at a high dose of MTX. We highlight the distinct advantages of aqueous-synthesized NPs coated with HA for arthritis-selective targeted delivery, thus verifying MTX-PEI@HA NPs as a promising MTX-based nanoplatform for treatment of RA.
Collapse
|
18
|
Cetin R, Quandt E, Kaulich M. Functional Genomics Approaches to Elucidate Vulnerabilities of Intrinsic and Acquired Chemotherapy Resistance. Cells 2021; 10:cells10020260. [PMID: 33525637 PMCID: PMC7912423 DOI: 10.3390/cells10020260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Drug resistance is a commonly unavoidable consequence of cancer treatment that results in therapy failure and disease relapse. Intrinsic (pre-existing) or acquired resistance mechanisms can be drug-specific or be applicable to multiple drugs, resulting in multidrug resistance. The presence of drug resistance is, however, tightly coupled to changes in cellular homeostasis, which can lead to resistance-coupled vulnerabilities. Unbiased gene perturbations through RNAi and CRISPR technologies are invaluable tools to establish genotype-to-phenotype relationships at the genome scale. Moreover, their application to cancer cell lines can uncover new vulnerabilities that are associated with resistance mechanisms. Here, we discuss targeted and unbiased RNAi and CRISPR efforts in the discovery of drug resistance mechanisms by focusing on first-in-line chemotherapy and their enforced vulnerabilities, and we present a view forward on which measures should be taken to accelerate their clinical translation.
Collapse
Affiliation(s)
- Ronay Cetin
- Institute of Biochemistry II, Goethe University Frankfurt-Medical Faculty, University Hospital, 60590 Frankfurt am Main, Germany;
| | - Eva Quandt
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Barcelona, Spain;
| | - Manuel Kaulich
- Institute of Biochemistry II, Goethe University Frankfurt-Medical Faculty, University Hospital, 60590 Frankfurt am Main, Germany;
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, 60590 Frankfurt am Main, Germany
- Correspondence: ; Tel.: +49-(0)-69-6301-5450
| |
Collapse
|
19
|
Azizi M, Valizadeh H, Shahgolzari M, Talebi M, Baybordi E, Dadpour MR, Salehi R, Mehrmohammadi M. Synthesis of Self-Targeted Carbon Dot with Ultrahigh Quantum Yield for Detection and Therapy of Cancer. ACS OMEGA 2020; 5:24628-24638. [PMID: 33015480 PMCID: PMC7528278 DOI: 10.1021/acsomega.0c03215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/25/2020] [Indexed: 05/11/2023]
Abstract
This study aims to engineer a new type of ultrahigh quantum yield carbon dots (CDs) from methotrexate (MTX-CDs) with self-targeting, imaging, and therapeutic effects on MDA-MB 231 breast cancer cells. CDs were synthesized via a straightforward thermal method using a methotrexate (MTX) drug source. The physicochemical characteristics of the prepared MTX-CDs were studied using Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray powder diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). TEM and DLS revealed which MTX-CDs have homogeneous spherical morphology with a smaller average size of 5.4 ± 2.2 nm, polydispersity index (PDI) of 0.533, and positive surface charge of around +3.93 mV. Results of FT-IR spectroscopy and high-resolution XPS indicated the presence of residues of MTX on CDs. Therefore, the synthesized MTX-CDs could be targeted and be taken up by FR-positive cell lines without the aid of additional targeting molecules. In vitro epifluorescence images demonstrated high-contrast cytoplasm biodistribution of MTX-CDs after 2 h of treatment. A much stronger fluorescent signal was detected in MDA-MB 231 compared to MCF 7, indicating their ability to precisely target FR. The highest cytotoxic and apoptotic effects were observed in MTX-CDs compared to free MTX obtained by the MTT assay, cell cycle arrest, and annexin V-FITC apoptosis techniques. Results revealed that the novel engineered MTX-CDs were capable of inducing apoptosis (70.2% apoptosis) at a lower concentration (3.2 μM) compared to free MTX, which was proved by annexin V and cell cycle. This work highlights the potential application of CDs for constructing an intelligent nanomedicine with integration of diagnostic, targeting, and therapeutic functions.
Collapse
Affiliation(s)
- Mehdi Azizi
- Department
of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5154853431, Iran
- Proteomics
Research Centre, Tabriz University of Medical
Sciences, Tabriz 5154853431, Iran
- Student
Research Committee, Tabriz University of
Medical Sciences, Tabriz 5154853431, Iran
| | - Hadi Valizadeh
- Department
of Pharmaceutics, Faculty of Pharmacy, Tabriz
University of Medical Sciences, Tabriz 5154853431, Iran
| | - Mehdi Shahgolzari
- Drug
Applied Research Center and Department of Medical Nanotechnology,
Faculty of Advanced Medical Sciences, Tabriz
University of Medical Sciences, Tabriz 5154853431, Iran
| | - Mehdi Talebi
- Department
of Applied Cell Science, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5154853431, Iran
| | | | - Mohammad Reza Dadpour
- Department
of Horticulture, Faculty of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | - Roya Salehi
- Drug
Applied Research Center and Department of Medical Nanotechnology,
Faculty of Advanced Medical Sciences, Tabriz
University of Medical Sciences, Tabriz 5154853431, Iran
- . Phone: +98-4133355921. Fax: +98-4133355789
| | - Mohammad Mehrmohammadi
- Department
of Biomedical Engineering, Wayne State University, Detroit, Michigan 48201, United States
- Department
of Obstetrics and Gynecology, Wayne State
University, Detroit, Michigan 48201, United
States
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
- . Phone: (313)
577-8883. Fax: (313) 577-8333
| |
Collapse
|
20
|
Roszkiewicz J, Michałek D, Ryk A, Swacha Z, Szmyd B, Smolewska E. The impact of single nucleotide polymorphisms in
ADORA2A
and
ADORA3
genes on the early response to methotrexate and presence of therapy side effects in children with juvenile idiopathic arthritis: Results of a preliminary study. Int J Rheum Dis 2020; 23:1505-1513. [DOI: 10.1111/1756-185x.13972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/10/2020] [Accepted: 08/31/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Justyna Roszkiewicz
- Department of Paediatric Cardiology and Rheumatology Medical University of Lodz Lodz Poland
| | - Dominika Michałek
- Department of Biostatistics and Translational Medicine Medical University of Lodz Lodz Poland
| | - Aleksandra Ryk
- Department of Biostatistics and Translational Medicine Medical University of Lodz Lodz Poland
| | - Zbigniew Swacha
- Clinic of Dermatology Military Medical Institute Warsaw Poland
| | - Bartosz Szmyd
- Department of Paediatrics, Oncology and Haematology Medical University of Lodz Lodz Poland
| | - Elżbieta Smolewska
- Department of Paediatric Cardiology and Rheumatology Medical University of Lodz Lodz Poland
| |
Collapse
|
21
|
Drug-resistance in rheumatoid arthritis: the role of p53 gene mutations, ABC family transporters and personal factors. Curr Opin Pharmacol 2020; 54:59-71. [PMID: 32942096 DOI: 10.1016/j.coph.2020.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that is associated with chronic inflammation in joints, which contribute to synovial membrane hyperplasia and cartilage damage. Conventional disease-modifying antirheumatic drugs (DMARDs), such as methotrexate (MTX) and leflunomide (LEF), are the common RA therapy to reduce inflammation and disease progression. Recently, drug-resistance in RA with conventional treatment has become an issue. Mutations in p53 tumor suppressor gene and overexpression of ABCB1/MDR-1/P-gp transporters may contribute to antirheumatic drug-resistance in RA. Biologic DMARDs (bDMARDs) are often prescribed, when conventional DMARDs fail to treat RA, by targeting proinflammatory mediators such as tumor necrosis factor-α (TNF-α) and interleukin (IL)-6. The efficacy of bDMARDs is affected by personal factors, for example, age, smoking, body mass index (BMI), immunogenicity, and genetic polymorphisms. This review highlights the role of p53 gene mutations, ABC family transporters and personal factors in antirheumatic drug-resistance, which may lead to new personalized therapies against RA with an increased drug-sensitivity.
Collapse
|
22
|
A multi-omics analysis reveals the unfolded protein response regulon and stress-induced resistance to folate-based antimetabolites. Nat Commun 2020; 11:2936. [PMID: 32522993 PMCID: PMC7287054 DOI: 10.1038/s41467-020-16747-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Stress response pathways are critical for cellular homeostasis, promoting survival through adaptive changes in gene expression and metabolism. They play key roles in numerous diseases and are implicated in cancer progression and chemoresistance. However, the underlying mechanisms are only poorly understood. We have employed a multi-omics approach to monitor changes to gene expression after induction of a stress response pathway, the unfolded protein response (UPR), probing in parallel the transcriptome, the proteome, and changes to translation. Stringent filtering reveals the induction of 267 genes, many of which have not previously been implicated in stress response pathways. We experimentally demonstrate that UPR‐mediated translational control induces the expression of enzymes involved in a pathway that diverts intermediate metabolites from glycolysis to fuel mitochondrial one‐carbon metabolism. Concomitantly, the cells become resistant to the folate-based antimetabolites Methotrexate and Pemetrexed, establishing a direct link between UPR‐driven changes to gene expression and resistance to pharmacological treatment. The unfolded protein response (UPR) is a stress response pathway implicated in numerous diseases and chemotherapy resistance. Here, the authors define the UPR regulon with a multi-omics strategy, uncovering changes to mitochondrial one-carbon metabolism and concomitant resistance to folate-based therapeutics.
Collapse
|
23
|
Young E, Gould D, Hart S. Toward gene therapy in rheumatoid arthritis. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1736942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Emily Young
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - David Gould
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Stephen Hart
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
24
|
Colombo F, Durigutto P, De Maso L, Biffi S, Belmonte B, Tripodo C, Oliva R, Bardini P, Marini GM, Terreno E, Pozzato G, Rampazzo E, Bertrand J, Feuerstein B, Javurek J, Havrankova J, Pitzalis C, Nuñez L, Meroni P, Tedesco F, Sblattero D, Macor P. Targeting CD34+ cells of the inflamed synovial endothelium by guided nanoparticles for the treatment of rheumatoid arthritis. J Autoimmun 2019; 103:102288. [DOI: 10.1016/j.jaut.2019.05.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 11/30/2022]
|
25
|
Hu YH, Zhou L, Wang SS, Jing X, Guo HL, Sun F, Zhang Y, Chen F, Xu J, Ji X. Methotrexate Disposition in Pediatric Patients with Acute Lymphoblastic Leukemia: What Have We Learnt From the Genetic Variants of Drug Transporters. Curr Pharm Des 2019; 25:627-634. [PMID: 30931851 DOI: 10.2174/1381612825666190329141003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/25/2019] [Indexed: 11/22/2022]
Abstract
Background:
Methotrexate (MTX) is one of the leading chemotherapeutic agents with the bestdemonstrated
efficacies against childhood acute lymphoblastic leukemia (ALL). Due to the narrow therapeutic
range, significant inter- and intra-patient variabilities of MTX, non-effectiveness and/or toxicity occur abruptly to
cause chemotherapeutic interruption or discontinuation. The relationship between clinical outcome and the systemic
concentration of MTX has been well established, making the monitoring of plasma MTX levels critical in
the treatment of ALL. Besides metabolizing enzymes, multiple transporters are also involved in determining the
intracellular drug levels. In this mini-review, we focused on the genetic polymorphisms of MTX-disposition
related transporters and the potential association between the discussed genetic variants and MTX pharmacokinetics,
efficacy, and toxicity in the context of MTX treatment.
Methods:
We searched PubMed for citations published in English using the terms “methotrexate”, “transporter”,
“acute lymphoblastic leukemia”, “polymorphisms”, and “therapeutic drug monitoring”. The retrieval papers were
critically reviewed and summarized according to the aims of this mini-review.
Results:
Solute carrier (SLC) transporters (SLC19A1, SLCO1A2, SLCO1B1, and SLC22A8) and ATP-binding
cassette (ABC) transporters (ABCB1, ABCC2, ABCC3, ABCC4, ABCC5, and ABCG2) mediate MTX disposition.
Of note, the influences of polymorphisms of SLC19A1, SLCO1B1 and ABCB1 genes on the clinical outcome
of MTX have been extensively studied.
Conclusion:
Overall, the data critically reviewed in this mini-review article confirmed that polymorphisms in the
genes encoding SLC and ABC transporters confer higher sensitivity to altered plasma levels, MTX-induced toxicity,
and therapeutic response in pediatric patients with ALL. Pre-emptive determination may be helpful in individualizing
treatment.
Collapse
Affiliation(s)
- Ya-Hui Hu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Zhou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, China
| | - Shan-Shan Wang
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xia Jing
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hong-Li Guo
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Fang Sun
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Zhang
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Xu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xing Ji
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Pentecost A, Kim MJ, Jeon S, Ko YJ, Kwon IC, Gogotsi Y, Kim K, Spiller KL. Immunomodulatory nanodiamond aggregate-based platform for the treatment of rheumatoid arthritis. Regen Biomater 2019; 6:163-174. [PMID: 31198584 PMCID: PMC6547310 DOI: 10.1093/rb/rbz012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/14/2019] [Accepted: 03/05/2019] [Indexed: 12/19/2022] Open
Abstract
We previously demonstrated that octadecylamine-functionalized nanodiamond (ND-ODA) and dexamethasone (Dex)-adsorbed ND-ODA (ND-ODA-Dex) promoted anti-inflammatory and pro-regenerative behavior in human macrophages in vitro. In this study, we performed a pilot study to investigate if these immunomodulatory effects translate when used as a treatment for rheumatoid arthritis in mice. Following local injection in limbs of mice with collagen type II-induced arthritis, microcomputed tomography showed that mice treated with a low dose of ND-ODA and ND-ODA-Dex did not experience bone loss to the levels observed in non-treated arthritic controls. A low dose of ND-ODA and ND-ODA-Dex also reduced macrophage infiltration and expression of pro-inflammatory mediators iNOS and tumor necrosis factor-α compared to the arthritic control, while a high dose of ND-ODA increased expression of these markers. Overall, these results suggest that ND-ODA may be useful as an inherently immunomodulatory platform, and support the need for an in-depth study, especially with respect to the effects of dose.
Collapse
Affiliation(s)
- Amanda Pentecost
- Department of Materials Science and Engineering, College of Engineering, Drexel University, Philadelphia, PA, USA
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Min Ju Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
- Biomedical Research Institute, Center for Theragnosis, Korea Institute of Science and Technology, Seoul, South Korea
| | - Sangmin Jeon
- Biomedical Research Institute, Center for Theragnosis, Korea Institute of Science and Technology, Seoul, South Korea
| | - Young Ji Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
- Biomedical Research Institute, Center for Theragnosis, Korea Institute of Science and Technology, Seoul, South Korea
| | - Ick Chan Kwon
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
- Biomedical Research Institute, Center for Theragnosis, Korea Institute of Science and Technology, Seoul, South Korea
| | - Yury Gogotsi
- Department of Materials Science and Engineering, College of Engineering, Drexel University, Philadelphia, PA, USA
| | - Kwangmeyung Kim
- Biomedical Research Institute, Center for Theragnosis, Korea Institute of Science and Technology, Seoul, South Korea
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
27
|
Long MJC, Liu X, Aye Y. Chemical Biology Gateways to Mapping Location, Association, and Pathway Responsivity. Front Chem 2019; 7:125. [PMID: 30949469 PMCID: PMC6437114 DOI: 10.3389/fchem.2019.00125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 02/18/2019] [Indexed: 12/14/2022] Open
Abstract
Here we discuss, how by applying chemical concepts to biological problems, methods have been developed to map spatiotemporal regulation of proteins and small-molecule modulation of proteome signaling responses. We outline why chemical-biology platforms are ideal for such purposes. We further discuss strengths and weaknesses of chemical-biology protocols, contrasting them against classical genetic and biochemical approaches. We make these evaluations based on three parameters: occupancy; functional information; and spatial restriction. We demonstrate how the specific choice of chemical reagent and experimental set-up unite to resolve biological problems. Potential improvements/extensions as well as specific controls that in our opinion are often overlooked or employed incorrectly are also considered. Finally, we discuss some of the latest emerging methods to illuminate how chemical-biology innovations provide a gateway toward information hitherto inaccessible by conventional genetic/biochemical means. Finally, we also caution against solely relying on chemical-biology strategies and urge the field to undertake orthogonal validations to ensure robustness of results.
Collapse
Affiliation(s)
| | - Xuyu Liu
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Lausanne, Switzerland
| | - Yimon Aye
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Lausanne, Switzerland
| |
Collapse
|
28
|
Vejnović D, Milić V, Popović B, Damnjanović T, Maksimović N, Bunjevački V, Krajinović M, Novaković I, Damjanov N, Jekić B. Association of C35T polymorphism in dihydrofolate reductase gene with toxicity of methotrexate in rheumatoid arthritis patients. Expert Opin Drug Metab Toxicol 2019; 15:253-257. [DOI: 10.1080/17425255.2019.1563594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dubravka Vejnović
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Beograd, Serbia
| | - Vera Milić
- Institute of Rheumatology, Faculty of Medicine, University of Belgrade, Beograd, Serbia
| | - Branka Popović
- Institute of Human Genetics, Faculty of Dental Medicine, University of Belgrade, Beograd, Serbia
| | - Tatjana Damnjanović
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Beograd, Serbia
| | - Nela Maksimović
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Beograd, Serbia
| | - Vera Bunjevački
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Beograd, Serbia
| | - Maja Krajinović
- Canada Service d’Hématologie-Oncologie, Centre de Recherche, Hôpital Sainte-Justine, Montréal, Quebec, Canada
| | - Ivana Novaković
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Beograd, Serbia
| | - Nemanja Damjanov
- Institute of Rheumatology, Faculty of Medicine, University of Belgrade, Beograd, Serbia
| | - Biljana Jekić
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Beograd, Serbia
| |
Collapse
|
29
|
Abderrazak A, El Azreq MA, Naci D, Fortin PR, Aoudjit F. Alpha2beta1 Integrin (VLA-2) Protects Activated Human Effector T Cells From Methotrexate-Induced Apoptosis. Front Immunol 2018; 9:2269. [PMID: 30374344 PMCID: PMC6197073 DOI: 10.3389/fimmu.2018.02269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/12/2018] [Indexed: 01/18/2023] Open
Abstract
β1 integrins are critical for T cell migration, survival and costimulation. The integrin α2β1, which is a receptor for collagen, also named VLA-2, is a major costimulatory pathway of effector T cells and has been implicated in arthritis pathogenesis. Herein, we have examined its ability to promote methotrexate (MTX) resistance by enhancing effector T cells survival. Our results show that attachment of anti-CD3-activated human polarized Th17 cells to collagen but not to fibronectin or laminin led to a significant reduction of MTX-induced apoptosis. The anti-CD3+collagen-rescued cells still produce significant amounts of IL-17 and IFNγ upon their reactivation indicating that their inflammatory nature is preserved. Mechanistically, we found that the prosurvival role of anti-CD3+collagen involves activation of the MTX transporter ABCC1 (ATP Binding Cassette subfamily C Member 1). Finally, the protective effect of collagen/α2β1 integrin on MTX-induced apoptosis also occurs in memory CD4+ T cells isolated from rheumatoid arthritis (RA) patients suggesting its clinical relevance. Together these results show that α2β1 integrin promotes MTX resistance of effector T cells, and suggest that it could contribute to the development of MTX resistance that is seen in RA.
Collapse
Affiliation(s)
- Amna Abderrazak
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU De Québec-Université Laval, Québec, QC, Canada
| | - Mohammed-Amine El Azreq
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU De Québec-Université Laval, Québec, QC, Canada
| | - Dalila Naci
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU De Québec-Université Laval, Québec, QC, Canada
| | - Paul R Fortin
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU De Québec-Université Laval, Québec, QC, Canada.,Division de Rhumatologie, Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Fawzi Aoudjit
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU De Québec-Université Laval, Québec, QC, Canada.,Département de Microbiologie-Infectiologie et D'immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
30
|
Garcia H, Leblond V, Goldwasser F, Bouscary D, Raffoux E, Boissel N, Broutin S, Joly D. [Renal toxicity of high-dose methotrexate]. Nephrol Ther 2018; 14 Suppl 1:S103-S113. [PMID: 29606256 DOI: 10.1016/j.nephro.2018.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 02/09/2018] [Indexed: 10/17/2022]
Abstract
INTRODUCTION High-dose methotrexate (at least 1g/m2) is used to treat haematologic malignancies and osteosarcomas. Acute kidney injury is a well-known adverse-event after high-dose methotrexate and may lead to delayed drug elimination. Besides usual therapeutics (hyperhydration, urine alkalinisation, leucovorin rescue, renal replacement therapy), a costly specific enzymatic treatment (glucarpidase) is now available but its clinical impact remains elusive. PATIENTS AND METHODS We analysed high-dose methotrexate prescription charts in 11 clinical centres during the last 15 years to identify and describe adult patients who developed acute kidney injury (according to KDIGO classification). Glucarpidase use was recorded (French temporary regulatory approval criteria: methotrexate at least 10μmol/L at 48h or at least 3μmol/L at 48h associated with acute kidney injury). RESULTS Seventy-six acute kidney injury cases have been studied. Mean peak creatinine was 206μmol/L after a mean delay of 5.6 days, with 19 cases of stage 1 acute kidney injury (25%), 29 cases of stage 2 (38%) and 27 cases of stage 3 (36%). Anuria (one case) and need for renal replacement therapy (four cases) were unusual whereas fluid overload was often observed (29%). Three months after high-dose methotrexate treatment, mortality-rate was 17%, and 12% of surviving patients developed renal sequelae. CONCLUSION Sixty-one percent of patients received a glucarpidase perfusion during acute kidney injury. Despite a dramatic decrease of methotrexate serum levels, glucarpidase as compared with conservative treatment did not modify acute kidney injury stage, recovery delay, need for renal replacement therapy or the incidence of extrarenal toxicities. Net clinical benefit was not observed even after stratification according to eligibility criteria for glucarpidase use. Glucarpidase has probably no or little effects on methotrexate localized into tubular lumen or proximal tubular cells and that may account for the absence of nephroprotective effect for enzymatic treatment.
Collapse
Affiliation(s)
- Hugo Garcia
- Service de néphrologie, hôpital universitaire Pitié-Salpêtrière, 47, boulevard de l'Hôpital, 75013 Paris, France; Université Pierre-et-Marie-Curie Paris 6, Sorbonne universités, 47, boulevard de l'Hôpital, 75013 Paris, France.
| | - Véronique Leblond
- Université Pierre-et-Marie-Curie Paris 6, Sorbonne universités, 47, boulevard de l'Hôpital, 75013 Paris, France; Service d'hématologie clinique, hôpital universitaire Pitié-Salpêtrière, 47, boulevard de l'Hôpital, 75013 Paris, France
| | - François Goldwasser
- Service de cancérologie, hôpital Cochin, 27, rue du Faubourg-Saint-Jacques, 75014 Paris, France
| | - Didier Bouscary
- Service d'hématologie clinique, hôpital Cochin, 27, rue du Faubourg-Saint-Jacques, 75014 Paris, France
| | - Emmanuel Raffoux
- Service des maladies du sang, hôpital Saint-Louis, 1, avenue Claude-Vellefaux, 75010 Paris, France
| | - Nicolas Boissel
- Service des maladies du sang, hôpital Saint-Louis, 1, avenue Claude-Vellefaux, 75010 Paris, France
| | - Sophie Broutin
- Service de pharmacologie, institut Gustave-Roussy, 114, rue Édouard-Vaillant, 94800 Villejuif, France
| | - Dominique Joly
- Service de néphrologie, hôpital Necker-Enfants-Malade, 149, rue de Sèvres, 75015 Paris, France
| |
Collapse
|
31
|
Muller IB, Hebing RF, Jansen G, Nurmohamed MT, Lems WF, Peters GJ, de Jonge R. Personalized medicine in rheumatoid arthritis: methotrexate polyglutamylation revisited. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2018. [DOI: 10.1080/23808993.2018.1517025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Ittai B. Muller
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Renske F. Hebing
- Reade Research, Amsterdam Rheumatology and immunology Center, Amsterdam, The Netherlands
| | - Gerrit Jansen
- Amsterdam Rheumatology and immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Mike T. Nurmohamed
- Reade Research, Amsterdam Rheumatology and immunology Center, Amsterdam, The Netherlands
- Amsterdam Rheumatology and immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Willem F. Lems
- Amsterdam Rheumatology and immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Godefridus J. Peters
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Robert de Jonge
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Wu YJ, Wang C, Wei W. The effects of DMARDs on the expression and function of P-gp, MRPs, BCRP in the treatment of autoimmune diseases. Biomed Pharmacother 2018; 105:870-878. [DOI: 10.1016/j.biopha.2018.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/24/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022] Open
|
33
|
Chandrupatla DMSH, Molthoff CFM, Ritsema WIGR, Vos R, Elshof E, Matsuyama T, Low PS, Musters RJP, Hammond A, Windhorst AD, Lammertsma AA, van der Laken CJ, Brands R, Jansen G. Prophylactic and therapeutic activity of alkaline phosphatase in arthritic rats: single-agent effects of alkaline phosphatase and synergistic effects in combination with methotrexate. Transl Res 2018; 199:24-38. [PMID: 29802817 DOI: 10.1016/j.trsl.2018.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/09/2018] [Accepted: 04/03/2018] [Indexed: 12/16/2022]
Abstract
Alkaline phosphatase (AP) is a gate-keeper of innate immune system responses by detoxifying inflammation triggering moieties released from endogenous and external sources. We examined whether AP's broad mechanism of action constitutes a safe therapeutic, either as single agent or combined with methotrexate (MTX), for chronic inflammatory disorders, for example, rheumatoid arthritis (RA). A rat model for RA was used with repeated intra-articular methylated bovine serum albumin (mBSA) injections in 1 knee ("arthritic" knee), with the contralateral knee serving as internal control. AP (200 µg, subcut) was administered before mBSA injections (prophylactic setting) or after arthritis induction (therapeutic setting) or combined with MTX (0.3 mg/kg or 1 mg/kg; intraperitoneally). As end point of treatment outcome, macrophage infiltration in knees, liver, and spleen was assessed by immunohistochemistry (ED1 and ED2 expression), immunofluoresence (macrophage marker folate receptor-β [FRβ]), and [18F]fluoro-polyethylene glycol-folate positron emission tomography (PET) (macrophage imaging) and ex vivo tissue distribution. Single-agent AP treatment and combinations with MTX were well tolerated. Both prophylactic and therapeutic AP markedly reduced synovial macrophage infiltration in arthritic knees (ED1: 3.5- to 4-fold; ED2: 3.5- to 6-fold), comparable with MTX treatment. AP-MTX combinations slightly improved on single agent effects. PET monitoring and ex vivo tissue distribution studies corroborated the impact of AP, MTX, and AP-MTX on reducing synovial macrophage infiltration. Beyond localized articular effects, AP also revealed systemic anti-inflammatory effects by a 2-fold reduction of ED1, ED2, and FRβ+ macrophages in liver and spleen of arthritic rats. Collectively, single-agent AP and AP combined with MTX elicited local and systemic anti-arthritic activity in arthritic rats.
Collapse
Affiliation(s)
- Durga M S H Chandrupatla
- Amsterdam Rheumatology and immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Carla F M Molthoff
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Wayne I G R Ritsema
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Ricardo Vos
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Eline Elshof
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Takami Matsuyama
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - René J P Musters
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Anthony Hammond
- Department of Rheumatology, KIMS Hospital, Kent, United Kingdom
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Conny J van der Laken
- Amsterdam Rheumatology and immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Gerrit Jansen
- Amsterdam Rheumatology and immunology Center, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Choi G, Kim TH, Oh JM, Choy JH. Emerging nanomaterials with advanced drug delivery functions; focused on methotrexate delivery. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.01.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
Harris E, Ng B. Using subcutaneous methotrexate to prolong duration of methotrexate therapy in rheumatoid arthritis. Eur J Rheumatol 2018; 5:85-91. [PMID: 30185354 DOI: 10.5152/eurjrheum.2018.17113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/23/2017] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Our study aims to determine whether the use of subcutaneous methotrexate (SC MTX) is associated with prolonged MTX use and lower incidence of hepatotoxicity in rheumatoid arthritis (RA) patients on MTX monotherapy and multiple drug therapy. METHODS We conducted a retrospective cohort study using national databases of a large hospital system. Subjects had been diagnosed with RA and treated with MTX between September 30, 1999, and October 1, 2009. Outcomes of interest were the amount of time on MTX monotherapy or multiple disease-modifying anti-rheumatic drug (DMARD) therapy before addition of additional DMARDs or biologic agents, respectively. We conducted Cox regressions and Kaplan-Meier curves for association between SC MTX use and length of time before therapeutic change. We conducted chi-square tests for association between SC MTX use and elevated liver function tests (LFT). RESULTS MTX monotherapy: SC MTX was associated with a significantly lower likelihood of therapeutic change (HR 0.64, 95% CI 0.52-0.78). Multiple DMARD therapy: SC MTX was not associated with a lower risk of adding a biologic (HR 1.13, 95% CI 0.97-1.31). Liver enzymes: There was no significant association between use of SC MTX and decreased frequency of abnormal LFTs [p=0.09 for alanine aminotransferase (ALT), p=0.924 for aspartate aminotransferase (AST)]. CONCLUSION Use of SC MTX is associated with longer duration of MTX monotherapy before addition of other DMARDs/biologic agents in RA patients. Use of SC MTX is not associated with significantly longer duration of multiple DMARD therapy before addition of biologic agents. Use of oral MTX is not significantly associated with increased frequency of elevated LFTs.
Collapse
Affiliation(s)
- Emily Harris
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Bernard Ng
- Department of Rheumatology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
36
|
Saas P, Bonnefoy F, Toussirot E, Perruche S. Harnessing Apoptotic Cell Clearance to Treat Autoimmune Arthritis. Front Immunol 2017; 8:1191. [PMID: 29062314 PMCID: PMC5640883 DOI: 10.3389/fimmu.2017.01191] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022] Open
Abstract
Early-stage apoptotic cells possess immunomodulatory properties. Proper apoptotic cell clearance during homeostasis has been shown to limit subsequent immune responses. Based on these observations, early-stage apoptotic cell infusion has been used to prevent unwanted inflammatory responses in different experimental models of autoimmune diseases or transplantation. Moreover, this approach has been shown to be feasible without any toxicity in patients undergoing allogeneic hematopoietic cell transplantation to prevent graft-versus-host disease. However, whether early-stage apoptotic cell infusion can be used to treat ongoing inflammatory disorders has not been reported extensively. Recently, we have provided evidence that early-stage apoptotic cell infusion is able to control, at least transiently, ongoing collagen-induced arthritis. This beneficial therapeutic effect is associated with the modulation of antigen-presenting cell functions mainly of macrophages and plasmacytoid dendritic cells, as well as the induction of collagen-specific regulatory CD4+ T cells (Treg). Furthermore, the efficacy of this approach is not altered by the association with two standard treatments of rheumatoid arthritis (RA), methotrexate and tumor necrosis factor (TNF) inhibition. Here, in the light of these observations and recent data of the literature, we discuss the mechanisms of early-stage apoptotic cell infusion and how this therapeutic approach can be transposed to patients with RA.
Collapse
Affiliation(s)
- Philippe Saas
- INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Fédération Hospitalo-Universitaire INCREASE, LabEx LipSTIC, Université Bourgogne Franche-Comté, Besançon, France.,INSERM CIC-1431, University Hospital of Besançon, Clinical Investigation Center in Biotherapy, Fédération Hospitalo-Universitaire INCREASE, LabEx LipSTIC, Besançon, France
| | - Francis Bonnefoy
- INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Fédération Hospitalo-Universitaire INCREASE, LabEx LipSTIC, Université Bourgogne Franche-Comté, Besançon, France
| | - Eric Toussirot
- INSERM CIC-1431, University Hospital of Besançon, Clinical Investigation Center in Biotherapy, Fédération Hospitalo-Universitaire INCREASE, LabEx LipSTIC, Besançon, France.,Department of Rheumatology, University Hospital of Besançon, Besançon, France.,Department of Therapeutics, Université Bourgogne Franche-Comté, UPRES EA 4266, Pathogenic Agents and Inflammation, Besancon, France
| | - Sylvain Perruche
- INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Fédération Hospitalo-Universitaire INCREASE, LabEx LipSTIC, Université Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
37
|
Alam MM, Han HS, Sung S, Kang JH, Sa KH, Al Faruque H, Hong J, Nam EJ, Kim IS, Park JH, Kang YM. Endogenous inspired biomineral-installed hyaluronan nanoparticles as pH-responsive carrier of methotrexate for rheumatoid arthritis. J Control Release 2017; 252:62-72. [DOI: 10.1016/j.jconrel.2017.03.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/14/2017] [Accepted: 03/06/2017] [Indexed: 01/19/2023]
|
38
|
Cai Y, Xu P, Yang L, Xu K, Zhu J, Wu X, Jiang C, Yuan Q, Wang B, Li Y, Qiu Y. HMGB1-mediated autophagy decreases sensitivity to oxymatrine in SW982 human synovial sarcoma cells. Sci Rep 2016; 6:37845. [PMID: 27897164 PMCID: PMC5126735 DOI: 10.1038/srep37845] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/31/2016] [Indexed: 12/17/2022] Open
Abstract
Oxymatrine (OMT) is a type of alkaloid extracted from a traditional Chinese medicinal herb, Sophora flavescens. Although the antitumor activities of OMT have been observed in various cancers, there are no reports regarding the effects of OMT on human synovial sarcoma. In the present study, we analyzed the antitumor activities of OMT in SW982 human synovial sarcoma cells and determine whether high mobility group box protein 1 (HMGB1)-mediated autophagy was associated with its therapeutic effects. We found that OMT exhibited antitumor activity in SW982 cells and facilitated increases in autophagy. Inhibition of autophagy by 3-MA or ATG7 siRNA increased the level of apoptosis, which indicated that OMT-induced autophagy protected cells from the cytotoxicity of OMT. Administration of OMT to SW982 cells increased the expression of HMGB1. When HMGB1 was inhibited via HMGB1-siRNA, OMT-induced autophagy was decreased, and apoptosis was increased. Furthermore, we found that HMGB1-siRNA significantly increased the expression of p-Akt and p-mTOR. OMT-induced autophagy may be mediated by the Akt/mTOR pathway, and HMGB1 plays a vital role in the regulation of autophagy. Therefore, we believe that combining OMT with an inhibitor of autophagy or HMGB1 may make OMT more effective in the treatment of human synovial sarcoma.
Collapse
Affiliation(s)
- Yongsong Cai
- Department of Orthopaedics of the First Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, China
| | - Peng Xu
- Department of Joint Surgery, Xi’an Hong Hui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, 710054, China
| | - Le Yang
- Department of Joint Surgery, Xi’an Hong Hui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, 710054, China
| | - Ke Xu
- Department of Joint Surgery, Xi’an Hong Hui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, 710054, China
| | - Jialin Zhu
- Department of Joint Surgery, Xi’an Hong Hui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, 710054, China
| | - Xiaoqing Wu
- Department of Joint Surgery, Xi’an Hong Hui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, 710054, China
| | - Congshan Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, China
| | - Qiling Yuan
- Department of Orthopaedics of the First Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, China
| | - Bo Wang
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong University Health Science Center, Xi’an, 710061, China
| | - Yuanbo Li
- Department of Joint Surgery, Xi’an Hong Hui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, 710054, China
| | - Yusheng Qiu
- Department of Orthopaedics of the First Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, China
| |
Collapse
|
39
|
Choi G, Piao H, Kim MH, Choy JH. Enabling Nanohybrid Drug Discovery through the Soft Chemistry Telescope. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b02971] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Goeun Choi
- Center
for Intelligent Nano-Bio
Materials (CINBM), Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Huiyan Piao
- Center
for Intelligent Nano-Bio
Materials (CINBM), Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Myung Hun Kim
- Center
for Intelligent Nano-Bio
Materials (CINBM), Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Jin-Ho Choy
- Center
for Intelligent Nano-Bio
Materials (CINBM), Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
40
|
Bonnefoy F, Daoui A, Valmary-Degano S, Toussirot E, Saas P, Perruche S. Apoptotic cell infusion treats ongoing collagen-induced arthritis, even in the presence of methotrexate, and is synergic with anti-TNF therapy. Arthritis Res Ther 2016; 18:184. [PMID: 27516061 PMCID: PMC4982016 DOI: 10.1186/s13075-016-1084-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/29/2016] [Indexed: 12/20/2022] Open
Abstract
Background Apoptotic cell-based therapies have been proposed to treat chronic inflammatory diseases. The aim of this study was to investigate the effect of intravenous (i.v.) apoptotic cell infusion in ongoing collagen-induced arthritis (CIA) and the interaction of this therapy with other treatments used in rheumatoid arthritis (RA), including methotrexate (MTX) or anti-TNF therapy. Methods The effects of i.v. apoptotic cell infusion were evaluated in a CIA mouse model in DBA/1 mice immunized with bovine type II collagen. The number and functions of antigen-presenting cells (APC), regulatory CD4+ T cells (Treg), and circulating anti-collagen auto-antibodies were analyzed in CIA mice. Results Treatment of arthritic mice with i.v. apoptotic cell infusion significantly reduced the arthritis clinical score. This therapeutic approach modified T cell responses against the collagen auto-antigen with selective induction of collagen-specific Treg. In addition, we observed that APC from apoptotic-cell-treated animals were resistant to toll-like receptor ligand activation and favored ex vivo Treg induction, indicating APC reprogramming. Apoptotic cell injection-induced arthritis modulation was dependent on transforming growth factor (TGF)-β, as neutralizing anti-TGF-β antibody prevented the effects of apoptotic cells. Methotrexate did not interfere, while anti-TNF therapy was synergic with apoptotic-cell-based therapy. Conclusion Overall, our data demonstrate that apoptotic-cell-based therapy is efficient in treating ongoing CIA, compatible with current RA treatments, and needs to be evaluated in humans in the treatment of RA.
Collapse
Affiliation(s)
- Francis Bonnefoy
- INSERM UMR1098, F-25000, Besançon, France.,Université de Bourgogne Franche-Comté, SFR FED4234, F-25000, Besançon, France.,EFS Bourgogne Franche-Comté, F-25000, Besançon, France.,LabEX LipSTIC, ANR-11-LABX-0021, F-25000, Besançon, France.,FHU INCREASE, Besançon University Hospital, F-25000, Besançon, France
| | - Anna Daoui
- INSERM UMR1098, F-25000, Besançon, France.,Université de Bourgogne Franche-Comté, SFR FED4234, F-25000, Besançon, France.,EFS Bourgogne Franche-Comté, F-25000, Besançon, France.,LabEX LipSTIC, ANR-11-LABX-0021, F-25000, Besançon, France.,FHU INCREASE, Besançon University Hospital, F-25000, Besançon, France
| | | | - Eric Toussirot
- LabEX LipSTIC, ANR-11-LABX-0021, F-25000, Besançon, France.,FHU INCREASE, Besançon University Hospital, F-25000, Besançon, France.,INSERM CIC1431, Clinical Investigation Center Biotherapy, Besançon University Hospital, F-25000, Besançon, France.,Rheumatology Department, Besançon University Hospital, F-25000, Besançon, France
| | - Philippe Saas
- INSERM UMR1098, F-25000, Besançon, France.,Université de Bourgogne Franche-Comté, SFR FED4234, F-25000, Besançon, France.,EFS Bourgogne Franche-Comté, F-25000, Besançon, France.,LabEX LipSTIC, ANR-11-LABX-0021, F-25000, Besançon, France.,FHU INCREASE, Besançon University Hospital, F-25000, Besançon, France.,INSERM CIC1431, Clinical Investigation Center Biotherapy, Besançon University Hospital, F-25000, Besançon, France
| | - Sylvain Perruche
- INSERM UMR1098, F-25000, Besançon, France. .,Université de Bourgogne Franche-Comté, SFR FED4234, F-25000, Besançon, France. .,EFS Bourgogne Franche-Comté, F-25000, Besançon, France. .,LabEX LipSTIC, ANR-11-LABX-0021, F-25000, Besançon, France. .,FHU INCREASE, Besançon University Hospital, F-25000, Besançon, France. .,UMR1098 INSERM, Etablissement Français du Sang de BFC, 8 Rue du Dr JFX Girod, F-25000, Besançon, France.
| |
Collapse
|
41
|
Fukuda T, Oda K, Wada-Hiraike O, Sone K, Inaba K, Ikeda Y, Makii C, Miyasaka A, Kashiyama T, Tanikawa M, Arimoto T, Yano T, Kawana K, Osuga Y, Fujii T. Autophagy inhibition augments resveratrol-induced apoptosis in Ishikawa endometrial cancer cells. Oncol Lett 2016; 12:2560-2566. [PMID: 27698828 PMCID: PMC5038194 DOI: 10.3892/ol.2016.4978] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 06/16/2016] [Indexed: 12/17/2022] Open
Abstract
Resveratrol (RSV), a polyphenolic compound derived from red wine, inhibits the proliferation of various types of cancer. RSV induces apoptosis in cancer cells, while enhancing autophagy. Autophagy promotes cancer cell growth by driving cellular metabolism, which may counteract the effect of RSV. The present study aimed to elucidate the correlation between RSV and autophagy and to examine whether autophagy inhibition may enhance the antitumor effect of RSV in endometrial cancer cells. Cell proliferation, cell cycle progression and apoptosis were examined, following RSV exposure, by performing MTT assays, flow cytometry and annexin V staining, respectively, in an Ishikawa endometrial cancer cell line. Autophagy was evaluated by measuring the expression levels of light chain 3, II (LC3-II; an autophagy marker) by western blotting and immunofluorescence. Chloroquine (CQ) and small interfering RNAs targeting autophagy related (ATG) gene 5 (ATG5) or 7 (ATG7) were used to inhibit autophagy, and the effects in combination with RSV were assessed using MTT assays. RSV treatment suppressed cell proliferation in a dose-dependent manner in Ishikawa cells. In addition, RSV exposure increased the abundance of the sub-G1 population and induced apoptosis. LC3-II accumulation was observed following RSV treatment, indicating that RSV induced autophagy. Combination treatment with CQ and RSV more robustly suppressed growth inhibition and apoptosis, compared with RSV treatment alone. Knocking down ATG5 or ATG7 expression significantly augmented RSV-induced apoptosis. The results of the present study indicated that RSV-induced autophagy may counteract the antitumor effect of RSV in Ishikawa cells. Combination treatment with RSV and an autophagy inhibitor, such as CQ, may be an attractive therapeutic option for treating certain endometrial cancer cells.
Collapse
Affiliation(s)
- Tomohiko Fukuda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Katsutoshi Oda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kanako Inaba
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yuji Ikeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Chinami Makii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Aki Miyasaka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tomoko Kashiyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Michihiro Tanikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takahide Arimoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tetsu Yano
- Department of Obstetrics and Gynecology, National Center for Global Health and Medicine, Tokyo 162-0052, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
42
|
Atisha-Fregoso Y, Lima G, Pascual-Ramos V, Baños-Peláez M, Fragoso-Loyo H, Jakez-Ocampo J, Contreras-Yáñez I, Llorente L. Rheumatoid Arthritis Disease Activity Is Determinant for ABCB1 and ABCG2 Drug-Efflux Transporters Function. PLoS One 2016; 11:e0159556. [PMID: 27442114 PMCID: PMC4956301 DOI: 10.1371/journal.pone.0159556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/04/2016] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE To compare drug efflux function of ABCB1 and ABCG2 transporters in rheumatoid arthritis (RA) patients with active disease and in remission. METHODS Twenty two active RA patients (DAS28 ≥3.2) and 22 patients in remission (DAS28<2.6) were selected from an early RA clinic. All patients were evaluated at study inclusion and six months later. ABCB1 and ABCG2 functional activity was measured in peripheral lymphocytes by flow cytometry. The percentage of cells able to extrude substrates for ABCB1 and ABCG2 was recorded. RESULTS Active patients had higher ABCB1 and ABCG2 activity compared with patients in remission (median [interquartile range]): 3.9% (1.4-22.2) vs (1.3% (0.6-3.2), p = 0.003 and 3.9% (1.1-13.3) vs 0.9% (0.5-1.9) p = 0.006 respectively. Both transporters correlated with disease activity assessed by DAS28, rho = 0.45, p = 0.002 and rho = 0.47, p = 0.001 respectively. Correlation was observed between the time from the beginning of treatment and transporter activity: rho = 0.34, p = 0.025 for ABCB1 and rho = 0.35, p = 0.018 for ABCG2. The linear regression model showed that DAS28 and the time from the onset of treatment are predictors of ABCB1 and ABCG2 functional activity, even after adjustment for treatment. After six months we calculated the correlation between change in DAS28 and change in the functional activity in both transporters and found a moderate and significant correlation for ABCG2 (rho = 0.28, p = 0.04) and a non-significant correlation for ABCB1 (rho = 0.22, p = 0.11). CONCLUSIONS Patients with active RA have an increased function of ABCB1 and ABCG2, and disease activity is the main determinant of this phenomena.
Collapse
Affiliation(s)
- Yemil Atisha-Fregoso
- Division of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Guadalupe Lima
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Virginia Pascual-Ramos
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Miguel Baños-Peláez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Hilda Fragoso-Loyo
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Juan Jakez-Ocampo
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Irazú Contreras-Yáñez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Luis Llorente
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| |
Collapse
|
43
|
Spagnolo P, Bush A. Interstitial Lung Disease in Children Younger Than 2 Years. Pediatrics 2016; 137:peds.2015-2725. [PMID: 27245831 DOI: 10.1542/peds.2015-2725] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2015] [Indexed: 11/24/2022] Open
Abstract
Childhood interstitial lung disease (chILD) represents a highly heterogeneous group of rare disorders associated with substantial morbidity and mortality. Although our understanding of chILD remains limited, important advances have recently been made, the most important being probably the appreciation that disorders that present in early life are distinct from those occurring in older children and adults, albeit with some overlap. chILD manifests with diffuse pulmonary infiltrates and nonspecific respiratory signs and symptoms, making exclusion of common conditions presenting in a similar fashion an essential preliminary step. Subsequently, a systematic approach to diagnosis includes a careful history and physical examination, computed tomography of the chest, and some or all of bronchoscopy with bronchoalveolar lavage, genetic testing, and if diagnostic uncertainty persists, lung biopsy. This review focuses on chILD presenting in infants younger than 2 years of age and discusses recent advances in the classification, diagnostic approach, and management of chILD in this age range. We describe novel genetic entities, along with initiatives that aim at collecting clinical data and biologic samples from carefully characterized patients in a prospective and standardized fashion. Early referral to expert centers and timely diagnosis may have important implications for patient management and prognosis, but effective therapies are often lacking. Following massive efforts, international collaborations among the key stakeholders are finally starting to be in place. These have allowed the setting up and conducting of the first randomized controlled trial of therapeutic interventions in patients with chILD.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Medical University Clinic, Canton Hospital Baselland, and University of Basel, Liestal, Switzerland;
| | - Andrew Bush
- Royal Brompton Hospital and Harefield NHS Foundation Trust, London, United Kingdom; and National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
44
|
Shojaie N, Ghaffari SM. Simultaneous Analysis of Wnt and NF-κB Signaling Pathways in Doxorubicin Sensitive and Methotrexate Resistant PLC/ PRF/5 Cells. CELL JOURNAL 2016; 17:730-9. [PMID: 26862532 PMCID: PMC4746423 DOI: 10.22074/cellj.2016.3845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/21/2014] [Indexed: 11/07/2022]
Abstract
Objective Multi-drug resistance (MDR) is a controversial issue in traditional chemo-
therapy of aggressive cancers, including hepatocellular carcinoma. The major cause
of MDR is suggested to be the aberrant activation of the main signaling pathways
such as Wnt and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-
κB) which have key roles in the maintenance of cancer stem cells (CSCs). Therefore,
the evaluation of their alterations could be essential in chemo-resistant cancers such
as Hepatocellular carcinoma. The main purpose of this study was to investigate the
alteration of the mentioned pathways in the chemotherapy resistant cancer cells by
assessing their major molecular parameters.
Materials and Methods In this experimental study, methylthiazol tetrazolium (MTT)
assay, acridine orange/ethidium bromide (AO/EtBr) and Hoechst 33342 staining,
DNA fragmentation and colony formation methods were employed to investigate the
cytotoxic effects of methotrexate (MTX) and doxorubicin (DOX) on PLC/PRF/5 cells.
Moreover, the expression of 11 important genes involved in MDR was performed by
semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR).
Results PLC/PRF/5 cells (Alexander) were sensitive to DOX and normally resist-
ant to MTX. In addition, the results obtained from RT-PCR analysis revealed that
β-catenin expression was significantly reduced and ABCG2 significantly overex-
pressed 4.85 and 3.34 times (P value<0.05) in DOX and MTX treated cells, respec-
tively. Furthermore, a considerable expression of HIF-1α and p65 were detected only
in MTX-resistant cells.
Conclusion Anti-cancer drugs may have more than one target in tumor cells. They
not only participate in deregulation of Wnt but also alter NF-κB activation. Moreover,
HIF-1α was the only anti-apoptotic protein that was significantly induced in the chem-
oresistant cells.
Collapse
Affiliation(s)
- Nasrin Shojaie
- Biochemistry Group, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Seyed Mahmood Ghaffari
- Biochemistry Group, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
45
|
Micsik T, Lőrincz A, Gál J, Schwab R, Peták I. MDR-1 and MRP-1 activity in peripheral blood leukocytes of rheumatoid arthritis patients. Diagn Pathol 2015; 10:216. [PMID: 26715450 PMCID: PMC4696293 DOI: 10.1186/s13000-015-0447-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/28/2015] [Indexed: 01/07/2023] Open
Abstract
Background Rheumatoid Arthritis is a chronic disease leading to decreased quality of life with a rather variable response rate to Disease Modifying Anti Rheumatic Drugs. Methotrexate (MTX) is the gold standard therapy in Rheumatoid Arthritis. The Multidrug resistance Related Protein and Multi Drug Resistance protein 1, also called P-glycoprotein-170 transporters can alter the intracellular concentration of different drugs. Methotrexate is an MRP1 substrate and thus the functional activity of MRP1 might have a clinical impact on the efficiency of the Methotrexate-therapy in Rheumatoid Arthritis. Methods We have compared the functional Multidrug Activity Factors (MAF) of the MDR1 and MRP1 transporters of Peripheral Blood Leukocytes of 59 Rheumatoid Arthritis patients with various response rate to MTX-therapy (MTX-responder, MTX-resistant and MTX-intolerant RA-groups) and 47 non-RA controls in six different leukocyte subpopulations (neutrophil leukocytes, monocytes, lymphocytes, CD4+, CD8+ and CD19+ cells). There was a decreased MAF of RA patients compared to non- Rheumatoid Arthritis patients and healthy controls in the leukocyte subpopulations. There was a significant difference between the MAF values of the MTX-responder and MTX intolerant groups. But we have not found significant differences between the MAF values of the MTX-responder and MTX-resistant Rheumatoid Arthritis -groups. Results Our results suggest that MDR1 and MRP1 functional activity does not seem to affect the response rate to MTX-therapy of Rheumatoid Arthritis-patients, but it might be useful in predicting MTX-side effects. We have demonstrated the decreased functional MDR-activity on almost 60 Rheumatoid Arthritis patients, which can be interpreted as a sign of the immune-suppressive effect of the MTX-treatment.
Collapse
Affiliation(s)
- Tamás Micsik
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| | - András Lőrincz
- Rational Drug Design Laboratories CRC, Semmelweis University, Budapest, Hungary. .,Institute Of Materials And Environmental Chemistry,Research Centre for Natural Sciences, Biological Nanochemistry Research Group, Hungarian Academy of Sciences, 1117 Budapest, Magyar tudósok körútja 2. 1519, P.O. Box 286, Budapest, Hungary.
| | - János Gál
- Department of Rheumatology, Bács-Kiskun County Hospital, Kecskemét, Budapest, Hungary.
| | - Richard Schwab
- KPS Medical Biotechnology and Healthcare Services Ltd, Budapest, Hungary.
| | - István Peták
- KPS Medical Biotechnology and Healthcare Services Ltd, Budapest, Hungary. .,Department of Medical Chemistry and Pathobiochemistry, Pathobiochemistry Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
46
|
The anti-malarial chloroquine suppresses proliferation and overcomes cisplatin resistance of endometrial cancer cells via autophagy inhibition. Gynecol Oncol 2015; 137:538-45. [DOI: 10.1016/j.ygyno.2015.03.053] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 03/23/2015] [Indexed: 12/17/2022]
|
47
|
Jabeen S, Holmboe L, Alnæs GIG, Andersen AM, Hall KS, Kristensen VN. Impact of genetic variants of RFC1, DHFR and MTHFR in osteosarcoma patients treated with high-dose methotrexate. THE PHARMACOGENOMICS JOURNAL 2015; 15:385-90. [DOI: 10.1038/tpj.2015.11] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/13/2015] [Accepted: 01/28/2015] [Indexed: 12/20/2022]
|
48
|
Verbrugge SE, Scheper RJ, Lems WF, de Gruijl TD, Jansen G. Proteasome inhibitors as experimental therapeutics of autoimmune diseases. Arthritis Res Ther 2015; 17:17. [PMID: 25889583 PMCID: PMC4308859 DOI: 10.1186/s13075-015-0529-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Current treatment strategies for rheumatoid arthritis (RA) consisting of disease-modifying anti-rheumatic drugs or biological agents are not always effective, hence driving the demand for new experimental therapeutics. The antiproliferative capacity of proteasome inhibitors (PIs) has received considerable attention given the success of their first prototypical representative, bortezomib (BTZ), in the treatment of B cell and plasma cell-related hematological malignancies. Therapeutic application of PIs in an autoimmune disease setting is much less explored, despite a clear rationale of (immuno) proteasome involvement in (auto)antigen presentation, and PIs harboring the capacity to inhibit the activation of nuclear factor-κB and suppress the release of pro-inflammatory cytokines such as tumor necrosis factor alpha and interleukin-6. Here, we review the clinical positioning of (immuno) proteasomes in autoimmune diseases, in particular RA, systemic lupus erythematosus, Sjögren's syndrome and sclerodema, and elaborate on (pre)clinical data related to the impact of BTZ and next generation PIs on immune effector cells (T cells, B cells, dendritic cells, macrophages, osteoclasts) implicated in their pathophysiology. Finally, factors influencing long-term efficacy of PIs, their current (pre)clinical status and future perspectives as anti-inflammatory and anti-arthritic agents are discussed.
Collapse
Affiliation(s)
- Sue Ellen Verbrugge
- Department of Rheumatology, VU University Medical Center, 1081 HV, Amsterdam, The Netherlands.
| | - Rik J Scheper
- Department of Pathology, VU University Medical Center, 1081 HV, Amsterdam, The Netherlands.
| | - Willem F Lems
- Department of Rheumatology, VU University Medical Center, 1081 HV, Amsterdam, The Netherlands.
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center, 1081 HV, Amsterdam, The Netherlands.
| | - Gerrit Jansen
- Department of Rheumatology, VU University Medical Center, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
49
|
Gomollón F, Rubio S, Charro M, García-López S, Muñoz F, Gisbert JP, Domènech E. [Reccomendations of the Spanish Working Group on Crohn's Disease and Ulcerative Colitis (GETECCU) on the use of methotrexate in inflammatory bowel disease]. GASTROENTEROLOGIA Y HEPATOLOGIA 2014; 38:24-30. [PMID: 25454602 DOI: 10.1016/j.gastrohep.2014.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/09/2014] [Indexed: 12/17/2022]
Abstract
Methotrexate is an immunosuppressant that may be useful in several clinical scenarios in inflammatory bowel disease. In this article, we review the available evidence in Crohn's disease and ulcerative colitis and establish general recommendations for its use in clinical practice. Although the available data are limited, it is very likely that methotrexate is underused because its effectiveness is underestimated and its toxicity is overestimated. Both in induction therapy and in maintenance of remission, methotrexate is useful in Crohn's disease. When prescribed in combination with biologic agents, immunogenicity is less frequent and consequently long-term response could potentially be improved. There are few published studies, but several data suggest that methotrexate could also be useful in ulcerative colitis. Although myelotoxicity and liver toxicity are well known risks, methotrexate is a drug that is well tolerated in many patients, even in the long term.
Collapse
Affiliation(s)
- Fernando Gomollón
- Servicio de Aparato Digestivo, Hospital Clínico Universitario Lozano Blesa, Zaragoza, IIS Aragón, España Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD).
| | - Saioa Rubio
- Servicio de Aparato Digestivo, Hospital de Navarra, PamplonaEspaña
| | - Mara Charro
- Servicio de Aparato Digestivo, Hospital Royo Villanova, Zaragoza España
| | - Santiago García-López
- Servicio de Aparato Digestivo, Hospital Universitario Miguel Servet, Zaragoza, España
| | - Fernando Muñoz
- Servicio de Aparato Digestivo, Hospital de León, León España
| | - Javier P Gisbert
- Servicio de Aparato Digestivo, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid España, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)
| | - Eugeni Domènech
- Servicio de Aparato Digestivo, Hospital Germans Trías i Pujol, Badalona España, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)
| | | |
Collapse
|
50
|
Xu H, Wang J, Wang C, Chang G, Lin Y, Zhang H, Zhang H, Li Q, Pang T. Therapeutic effects of micheliolide on a murine model of rheumatoid arthritis. Mol Med Rep 2014; 11:489-93. [PMID: 25351212 DOI: 10.3892/mmr.2014.2767] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 09/29/2014] [Indexed: 11/06/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease and collagen-induced arthritis (CIA) is an animal model for RA. Micheliolide (MCL) is a novel compound with strong anti-inflammatory effects. The present study was conducted to evaluate the therapeutic effects of MCL on RA. Mice were randomly divided into four groups and the CIA model mice were treated with methotrexate (MTX), MCL and dimethyl sulfoxide. A score associated with the severity of arthritis was assigned on alternate days from the 22nd day for 60 days. Histopathological changes and the serum levels of cytokines were measured on day 85. The results demonstrated that the MCL treatment group had arthritis scores lower than the CIA group and higher than the MTX group; compared with the CIA group, MCL and MTX significantly reduced the swelling of the paws and suppressed the degeneration of articular cartilage. Expression levels of macrophage colony-stimulating factor (M-CSF), tissue inhibitors of metalloproteinases-1 (TIMP-1) and complement component 5a (C5/C5a) were lower in the mice with arthritis compared with normal mice, however, following treatment with MCL and MTX, all the mice exhibited significant recovery to differing degrees. Unlike the MTX group, the MCL group failed to recover the level of soluble intercellular adhesion molecule-1. In addition, the cytokine of B-lymphocyte chemoattractant (BLC) solely presented in the MCL group. These results suggest that MCL may be considered for use as a novel therapeutic treatment against RA and that changes in the expression of cytokines C5/C5a, TIMP-1, M-CSF and BLC may underlie the mechanism by which MCL effects changes in this disease.
Collapse
Affiliation(s)
- Hua Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China
| | - Jian Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China
| | - Chijuan Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China
| | - Guoqiang Chang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China
| | - Yani Lin
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China
| | - Hongju Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China
| | - Hairui Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China
| | - Qinghua Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China
| | - Tianxiang Pang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China
| |
Collapse
|