1
|
Cordeiro B, Ahn JJ, Gawde S, Ucciferri C, Alvarez-Sanchez N, Revelo XS, Stickle N, Massey K, Brooks DG, Guthridge JM, Pardo G, Winer DA, Axtell RC, Dunn SE. Obesity intensifies sex-specific interferon signaling to selectively worsen central nervous system autoimmunity in females. Cell Metab 2024; 36:2298-2314.e11. [PMID: 39168127 PMCID: PMC11463735 DOI: 10.1016/j.cmet.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/29/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
Obesity has been implicated in the rise of autoimmunity in women. We report that obesity induces a serum protein signature that is associated with T helper 1 (Th1), interleukin (IL)-17, and multiple sclerosis (MS) signaling pathways selectively in human females. Females, but not male mice, subjected to diet-induced overweightness/obesity (DIO) exhibited upregulated Th1/IL-17 inflammation in the central nervous system during experimental autoimmune encephalomyelitis, a model of MS. This was associated with worsened disability and a heightened expansion of myelin-specific Th1 cells in the peripheral lymphoid organs. Moreover, at steady state, DIO increased serum levels of interferon (IFN)-α and potentiated STAT1 expression and IFN-γ production by naive CD4+ T cells uniquely in female mice. This T cell phenotype was driven by increased adiposity and was prevented by the removal of ovaries or knockdown of the type I IFN receptor in T cells. Our findings offer a mechanistic explanation of how obesity enhances autoimmunity.
Collapse
Affiliation(s)
- Brendan Cordeiro
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| | | | - Saurabh Gawde
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, Oklahoma University Health Science Center, Oklahoma City, OK 73104, USA
| | - Carmen Ucciferri
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nuria Alvarez-Sanchez
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| | - Xavier S Revelo
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Natalie Stickle
- Bioinformatics and High Performance Computing Core, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Kaylea Massey
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - David G Brooks
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Joel M Guthridge
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Gabriel Pardo
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Multiple Sclerosis Center of Excellence, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Daniel A Winer
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Buck Institute for Research on Aging, Novato, CA 94945, USA; Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
| | - Robert C Axtell
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, Oklahoma University Health Science Center, Oklahoma City, OK 73104, USA.
| | - Shannon E Dunn
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Women's College Research Institute, Women's College Hospital, Toronto, ON M5G 1N8, Canada; Sunnybrook Research Institute, Sunnybrook Hospital, Toronto, ON M4M 3M5, Canada.
| |
Collapse
|
2
|
Lupi M, Avanzato D, Confalonieri S, Martino F, Pennisi R, Pupo E, Audrito V, Freddi S, Bertalot G, Montani F, Matoskova B, Sigismund S, Di Fiore PP, Lanzetti L. TBC1 domain-containing proteins are frequently involved in triple-negative breast cancers in connection with the induction of a glycolytic phenotype. Cell Death Dis 2024; 15:647. [PMID: 39231952 PMCID: PMC11375060 DOI: 10.1038/s41419-024-07037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Metabolic plasticity is a hallmark of cancer, and metabolic alterations represent a promising therapeutic target. Since cellular metabolism is controlled by membrane traffic at multiple levels, we investigated the involvement of TBC1 domain-containing proteins (TBC1Ds) in the regulation of cancer metabolism. These proteins are characterized by the presence of a RAB-GAP domain, the TBC1 domain, and typically function as attenuators of RABs, the master switches of membrane traffic. However, a number of TBC1Ds harbor mutations in their catalytic residues, predicting biological functions different from direct regulation of RAB activities. Herein, we report that several genes encoding for TBC1Ds are expressed at higher levels in triple-negative breast cancers (TNBC) vs. other subtypes of breast cancers (BC), and predict prognosis. Orthogonal transcriptomics/metabolomics analysis revealed that the expression of prognostic TBC1Ds correlates with elevated glycolytic metabolism in BC cell lines. In-depth investigations of the three top hits from the previous analyses (TBC1D31, TBC1D22B and TBC1D7) revealed that their elevated expression is causal in determining a glycolytic phenotype in TNBC cell lines. We further showed that the impact of TBC1D7 on glycolytic metabolism of BC cells is independent of its known participation in the TSC1/TSC2 complex and consequent downregulation of mTORC1 activity. Since TBC1D7 behaves as an independent prognostic biomarker in TNBC, it could be used to distinguish good prognosis patients who could be spared aggressive therapy from those with a poor prognosis who might benefit from anti-glycolytic targeted therapies. Together, our results highlight how TBC1Ds connect disease aggressiveness with metabolic alterations in TNBC. Given the high level of heterogeneity among this BC subtype, TBC1Ds could represent important tools in predicting prognosis and guiding therapy decision-making.
Collapse
Grants
- IG #22811 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- MFAG-2021 #26004 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- IG #24415 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- IG #23060 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- PRIN 2020 Prot. 2020R2BP2E Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN 2022 Prot. 2022W93FTW Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN 2020 Prot. 2020R2BP2E Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- Ricerca Corrente 2023-2024 Ministero della Salute (Ministry of Health, Italy)
- 5x1000 Ministero della Salute (Ministry of Health, Italy)
- Ricerca Corrente 2023-2024 Ministero della Salute (Ministry of Health, Italy)
- 5x1000 Ministero della Salute (Ministry of Health, Italy)
- Ricerca Finalizzata RF-2021-12373957 Ministero della Salute (Ministry of Health, Italy)
- Ricerca Corrente 2023-2024 Ministero della Salute (Ministry of Health, Italy)
- 5x1000 Ministero della Salute (Ministry of Health, Italy)
Collapse
Affiliation(s)
- Mariadomenica Lupi
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Daniele Avanzato
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Department of Veterinary Sciences, Infectious Diseases Unit, University of Torino, Turin, Italy
| | | | - Flavia Martino
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Rosa Pennisi
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | | | - Valentina Audrito
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, Alessandria, Italy
| | - Stefano Freddi
- IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| | - Giovanni Bertalot
- IEO, European Institute of Oncology IRCCS, Milan, Italy
- Unità Operativa Multizonale di Anatomia Patologica, APSS, Trento, Italy, and Centre for Medical Sciences - CISMed, University of Trento, Trento, Italy
| | | | | | - Sara Sigismund
- IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| | - Pier Paolo Di Fiore
- IEO, European Institute of Oncology IRCCS, Milan, Italy.
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy.
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Turin, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy.
| |
Collapse
|
3
|
Wang Q, Rong P, Zhang W, Yang X, Chen L, Cao Y, Liu M, Feng W, Ouyang Q, Chen Q, Li H, Liang H, Meng F, Wang HY, Chen S. TBC1D1 is an energy-responsive polarization regulator of macrophages via governing ROS production in obesity. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1899-1914. [PMID: 38902450 DOI: 10.1007/s11427-024-2628-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Energy status is linked to the production of reactive oxygen species (ROS) in macrophages, which is elevated in obesity. However, it is unclear how ROS production is upregulated in macrophages in response to energy overload for mediating the development of obesity. Here, we show that the Rab-GTPase activating protein (RabGAP) TBC1D1, a substrate of the energy sensor AMP-activated protein kinase (AMPK), is a critical regulator of macrophage ROS production and consequent adipose inflammation for obesity development. TBC1D1 deletion decreases, whereas an energy overload-mimetic non-phosphorylatable TBC1D1S231A mutation increases, ROS production and M1-like polarization in macrophages. Mechanistically, TBC1D1 and its downstream target Rab8a form an energy-responsive complex with NOX2 for ROS generation. Transplantation of TBC1D1S231A bone marrow aggravates diet-induced obesity whereas treatment with an ultra-stable TtSOD for removal of ROS selectively in macrophages alleviates both TBC1D1S231A mutation- and diet-induced obesity. Our findings therefore have implications for drug discovery to combat obesity.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Ping Rong
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Wen Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Xinyu Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Liang Chen
- College of Life Science, Anhui Medical University, Hefei, 230032, China
| | - Ye Cao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Minjun Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Weikuan Feng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Qian Ouyang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Qiaoli Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Hailong Li
- Redox Medical Center for Public Health, Medical College of Soochow University, Suzhou, 215123, China
| | - Hui Liang
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Fanguo Meng
- Redox Medical Center for Public Health, Medical College of Soochow University, Suzhou, 215123, China
| | - Hong-Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China.
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China.
| | - Shuai Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China.
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China.
| |
Collapse
|
4
|
Jollet M, Tramontana F, Jiang LQ, Borg ML, Savikj M, Kuefner MS, Massart J, de Castro Barbosa T, Mannerås-Holm L, Checa A, Pillon NJ, Chibalin AV, Björnholm M, Zierath JR. Diacylglycerol kinase delta overexpression improves glucose clearance and protects against the development of obesity. Metabolism 2024; 158:155939. [PMID: 38843995 DOI: 10.1016/j.metabol.2024.155939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND AND AIM Diacylglycerol kinase (DGK) isoforms catalyze an enzymatic reaction that removes diacylglycerol (DAG) and thereby terminates protein kinase C signaling by converting DAG to phosphatidic acid. DGKδ (type II isozyme) downregulation causes insulin resistance, metabolic inflexibility, and obesity. Here we determined whether DGKδ overexpression prevents these metabolic impairments. METHODS We generated a transgenic mouse model overexpressing human DGKδ2 under the myosin light chain promoter (DGKδ TG). We performed deep metabolic phenotyping of DGKδ TG mice and wild-type littermates fed chow or high-fat diet (HFD). Mice were also provided free access to running wheels to examine the effects of DGKδ overexpression on exercise-induced metabolic outcomes. RESULTS DGKδ TG mice were leaner than wild-type littermates, with improved glucose tolerance and increased skeletal muscle glycogen content. DGKδ TG mice were protected against HFD-induced glucose intolerance and obesity. DGKδ TG mice had reduced epididymal fat and enhanced lipolysis. Strikingly, DGKδ overexpression recapitulated the beneficial effects of exercise on metabolic outcomes. DGKδ overexpression and exercise had a synergistic effect on body weight reduction. Microarray analysis of skeletal muscle revealed common gene ontology signatures of exercise and DGKδ overexpression that were related to lipid storage, extracellular matrix, and glycerophospholipids biosynthesis pathways. CONCLUSION Overexpression of DGKδ induces adaptive changes in both skeletal muscle and adipose tissue, resulting in protection against HFD-induced obesity. DGKδ overexpression recapitulates exercise-induced adaptations on energy homeostasis and skeletal muscle gene expression profiles.
Collapse
Affiliation(s)
- Maxence Jollet
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Flavia Tramontana
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Lake Q Jiang
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Melissa L Borg
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Mladen Savikj
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Michael S Kuefner
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Julie Massart
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Thais de Castro Barbosa
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Louise Mannerås-Holm
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Antonio Checa
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Marie Björnholm
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden; Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Springer C, Binsch C, Weide D, Toska L, Cremer AL, Backes H, Scheel AK, Espelage L, Kotzka J, Sill S, Kurowski A, Kim D, Karpinski S, Schnurr TM, Hansen T, Hartwig S, Lehr S, Cames S, Brüning JC, Lienhard M, Herwig R, Börno S, Timmermann B, Al-Hasani H, Chadt A. Depletion of TBC1D4 Improves the Metabolic Exercise Response by Overcoming Genetically Induced Peripheral Insulin Resistance. Diabetes 2024; 73:1058-1071. [PMID: 38608276 DOI: 10.2337/db23-0463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
The Rab-GTPase-activating protein (RabGAP) TBC1D4 (AS160) represents a key component in the regulation of glucose transport into skeletal muscle and white adipose tissue (WAT) and is therefore crucial during the development of insulin resistance and type 2 diabetes. Increased daily activity has been shown to be associated with improved postprandial hyperglycemia in allele carriers of a loss-of-function variant in the human TBC1D4 gene. Using conventional Tbc1d4-deficient mice (D4KO) fed a high-fat diet, we show that moderate endurance exercise training leads to substantially improved glucose and insulin tolerance and enhanced expression levels of markers for mitochondrial activity and browning in WAT from D4KO animals. Importantly, in vivo and ex vivo analyses of glucose uptake revealed increased glucose clearance in interscapular brown adipose tissue and WAT from trained D4KO mice. Thus, chronic exercise is able to overcome the genetically induced insulin resistance caused by Tbc1d4 depletion. Gene variants in TBC1D4 may be relevant in future precision medicine as determinants of exercise response. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Christian Springer
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Christian Binsch
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Deborah Weide
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Laura Toska
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Anna L Cremer
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
| | - Heiko Backes
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
| | - Anna K Scheel
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Lena Espelage
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Jörg Kotzka
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Sebastian Sill
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Anette Kurowski
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
| | - Daebin Kim
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
| | - Sandra Karpinski
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
| | - Theresia M Schnurr
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sonja Hartwig
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Stefan Lehr
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Sandra Cames
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
| | | | - Ralf Herwig
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Stefan Börno
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| |
Collapse
|
6
|
Grupe K, Scherneck S. Mouse Models of Gestational Diabetes Mellitus and Its Subtypes: Recent Insights and Pitfalls. Int J Mol Sci 2023; 24:ijms24065982. [PMID: 36983056 PMCID: PMC10058162 DOI: 10.3390/ijms24065982] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is currently the most common complication of pregnancy and is defined as a glucose intolerance disorder with recognition during pregnancy. GDM is considered a uniform group of patients in conventional guidelines. In recent years, evidence of the disease's heterogeneity has led to a growing understanding of the value of dividing patients into different subpopulations. Furthermore, in view of the increasing incidence of hyperglycemia outside pregnancy, it is likely that many cases diagnosed as GDM are in fact patients with undiagnosed pre-pregnancy impaired glucose tolerance (IGT). Experimental models contribute significantly to the understanding of the pathogenesis of GDM and numerous animal models have been described in the literature. The aim of this review is to provide an overview of the existing mouse models of GDM, in particular those that have been obtained by genetic manipulation. However, these commonly used models have certain limitations in the study of the pathogenesis of GDM and cannot fully describe the heterogeneous spectrum of this polygenic disease. The polygenic New Zealand obese (NZO) mouse is introduced as a recently emerged model of a subpopulation of GDM. Although this strain lacks conventional GDM, it exhibits prediabetes and an IGT both preconceptionally and during gestation. In addition, it should be emphasized that the choice of an appropriate control strain is of great importance in metabolic studies. The commonly used control strain C57BL/6N, which exhibits IGT during gestation, is discussed in this review as a potential model of GDM.
Collapse
Affiliation(s)
- Katharina Grupe
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Mendelssohnstraße 1, D-38106 Braunschweig, Germany
| | - Stephan Scherneck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Mendelssohnstraße 1, D-38106 Braunschweig, Germany
| |
Collapse
|
7
|
Zhang T, Keele GR, Gyuricza IG, Vincent M, Brunton C, Bell TA, Hock P, Shaw GD, Munger SC, de Villena FPM, Ferris MT, Paulo JA, Gygi SP, Churchill GA. Multi-omics analysis identifies drivers of protein phosphorylation. Genome Biol 2023; 24:52. [PMID: 36944993 PMCID: PMC10031968 DOI: 10.1186/s13059-023-02892-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/09/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Phosphorylation of proteins is a key step in the regulation of many cellular processes including activation of enzymes and signaling cascades. The abundance of a phosphorylated peptide (phosphopeptide) is determined by the abundance of its parent protein and the proportion of target sites that are phosphorylated. RESULTS We quantified phosphopeptides, proteins, and transcripts in heart, liver, and kidney tissue samples of mice from 58 strains of the Collaborative Cross strain panel. We mapped ~700 phosphorylation quantitative trait loci (phQTL) across the three tissues and applied genetic mediation analysis to identify causal drivers of phosphorylation. We identified kinases, phosphatases, cytokines, and other factors, including both known and potentially novel interactions between target proteins and genes that regulate site-specific phosphorylation. Our analysis highlights multiple targets of pyruvate dehydrogenase kinase 1 (PDK1), a regulator of mitochondrial function that shows reduced activity in the NZO/HILtJ mouse, a polygenic model of obesity and type 2 diabetes. CONCLUSIONS Together, this integrative multi-omics analysis in genetically diverse CC strains provides a powerful tool to identify regulators of protein phosphorylation. The data generated in this study provides a resource for further exploration.
Collapse
Affiliation(s)
- Tian Zhang
- Harvard Medical School, Boston, MA, 02115, USA
| | | | | | | | | | - Timothy A Bell
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Pablo Hock
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Ginger D Shaw
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Martin T Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | | | | |
Collapse
|
8
|
Binsch C, Barbosa DM, Hansen-Dille G, Hubert M, Hodge SM, Kolasa M, Jeruschke K, Weiß J, Springer C, Gorressen S, Fischer JW, Lienhard M, Herwig R, Börno S, Timmermann B, Cremer AL, Backes H, Chadt A, Al-Hasani H. Deletion of Tbc1d4/As160 abrogates cardiac glucose uptake and increases myocardial damage after ischemia/reperfusion. Cardiovasc Diabetol 2023; 22:17. [PMID: 36707786 PMCID: PMC9881301 DOI: 10.1186/s12933-023-01746-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Type 2 Diabetes mellitus (T2DM) is a major risk factor for cardiovascular disease and associated with poor outcome after myocardial infarction (MI). In T2DM, cardiac metabolic flexibility, i.e. the switch between carbohydrates and lipids as energy source, is disturbed. The RabGTPase-activating protein TBC1D4 represents a crucial regulator of insulin-stimulated glucose uptake in skeletal muscle by controlling glucose transporter GLUT4 translocation. A human loss-of-function mutation in TBC1D4 is associated with impaired glycemic control and elevated T2DM risk. The study's aim was to investigate TBC1D4 function in cardiac substrate metabolism and adaptation to MI. METHODS Cardiac glucose metabolism of male Tbc1d4-deficient (D4KO) and wild type (WT) mice was characterized using in vivo [18F]-FDG PET imaging after glucose injection and ex vivo basal/insulin-stimulated [3H]-2-deoxyglucose uptake in left ventricular (LV) papillary muscle. Mice were subjected to cardiac ischemia/reperfusion (I/R). Heart structure and function were analyzed until 3 weeks post-MI using echocardiography, morphometric and ultrastructural analysis of heart sections, complemented by whole heart transcriptome and protein measurements. RESULTS Tbc1d4-knockout abolished insulin-stimulated glucose uptake in ex vivo LV papillary muscle and in vivo cardiac glucose uptake after glucose injection, accompanied by a marked reduction of GLUT4. Basal cardiac glucose uptake and GLUT1 abundance were not changed compared to WT controls. D4KO mice showed mild impairments in glycemia but normal cardiac function. However, after I/R D4KO mice showed progressively increased LV endsystolic volume and substantially increased infarction area compared to WT controls. Cardiac transcriptome analysis revealed upregulation of the unfolded protein response via ATF4/eIF2α in D4KO mice at baseline. Transmission electron microscopy revealed largely increased extracellular matrix (ECM) area, in line with decreased cardiac expression of matrix metalloproteinases of D4KO mice. CONCLUSIONS TBC1D4 is essential for insulin-stimulated cardiac glucose uptake and metabolic flexibility. Tbc1d4-deficiency results in elevated cardiac endoplasmic reticulum (ER)-stress response, increased deposition of ECM and aggravated cardiac damage following MI. Hence, impaired TBC1D4 signaling contributes to poor outcome after MI.
Collapse
Affiliation(s)
- C. Binsch
- grid.429051.b0000 0004 0492 602XMedical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz-Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf’m Hennekamp 65, 40225 Düsseldorf, Germany
| | - D. M. Barbosa
- grid.429051.b0000 0004 0492 602XMedical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz-Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf’m Hennekamp 65, 40225 Düsseldorf, Germany
| | - G. Hansen-Dille
- grid.429051.b0000 0004 0492 602XMedical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz-Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf’m Hennekamp 65, 40225 Düsseldorf, Germany
| | - M. Hubert
- grid.429051.b0000 0004 0492 602XMedical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz-Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf’m Hennekamp 65, 40225 Düsseldorf, Germany
| | - S. M. Hodge
- grid.429051.b0000 0004 0492 602XMedical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz-Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf’m Hennekamp 65, 40225 Düsseldorf, Germany
| | - M. Kolasa
- grid.429051.b0000 0004 0492 602XMedical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz-Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf’m Hennekamp 65, 40225 Düsseldorf, Germany
| | - K. Jeruschke
- grid.429051.b0000 0004 0492 602XMedical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz-Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf’m Hennekamp 65, 40225 Düsseldorf, Germany
| | - J. Weiß
- grid.429051.b0000 0004 0492 602XMedical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz-Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf’m Hennekamp 65, 40225 Düsseldorf, Germany
| | - C. Springer
- grid.429051.b0000 0004 0492 602XMedical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz-Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf’m Hennekamp 65, 40225 Düsseldorf, Germany
| | - S. Gorressen
- grid.411327.20000 0001 2176 9917Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany
| | - J. W. Fischer
- grid.411327.20000 0001 2176 9917Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany
| | - M. Lienhard
- grid.419538.20000 0000 9071 0620Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - R. Herwig
- grid.419538.20000 0000 9071 0620Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - S. Börno
- grid.419538.20000 0000 9071 0620Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - B. Timmermann
- grid.419538.20000 0000 9071 0620Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - A. L. Cremer
- grid.418034.a0000 0004 4911 0702Max Planck Institute for Metabolism Research, Cologne, Germany
| | - H. Backes
- grid.418034.a0000 0004 4911 0702Max Planck Institute for Metabolism Research, Cologne, Germany
| | - A. Chadt
- grid.429051.b0000 0004 0492 602XMedical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz-Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf’m Hennekamp 65, 40225 Düsseldorf, Germany ,grid.452622.5German Center for Diabetes Research, Partner Düsseldorf, Munich-Neuherberg, Germany
| | - H. Al-Hasani
- grid.429051.b0000 0004 0492 602XMedical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz-Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf’m Hennekamp 65, 40225 Düsseldorf, Germany ,grid.452622.5German Center for Diabetes Research, Partner Düsseldorf, Munich-Neuherberg, Germany
| |
Collapse
|
9
|
Wu N, Zhai X, Yuan F, Li J, Li D, Wang J, Zhang L, Shi Y, Ji G, He G, Liu B. Genetic variation in TBC1 domain family member 1 gene associates with the risk of lean NAFLD via high-density lipoprotein. Front Genet 2023; 13:1026725. [PMID: 36712867 PMCID: PMC9877292 DOI: 10.3389/fgene.2022.1026725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Objective: Non-alcoholic fatty liver disease (NAFLD) affects almost a quarter of the world's population. Although NAFLD often co-exists with obesity, a substantial proportion of NAFLD patients are lean which is relatively unexplored. This study aimed to examine the association between genetic variation in candidate genes, e.g., TBC1D1 and the risk of lean NAFLD in the elderly Chinese Han population. Methods: This is an extension of the research on physical examination in the Zhanjiang community center including 5387 residents, Shanghai, China, in 2017. According to the classification in adult Asian populations, participants were categorized into four groups: lean NAFLD (BMI <23, n = 106), non-lean NAFLD (BMI ≥23, n = 644), lean non-NAFLD (BMI <23, n = 216) and non-lean non-NAFLD (BMI ≥23, n = 253).116 NAFLD-related candidate genes, which cover 179 single nucleotide polymorphisms (SNPs) were included in the KEGG enrichment analysis. Independent samples t-test was adopted for the group comparison. The associations between genetic variations with the specific phenotype in five genetic models were analyzed with the "SNPassoc" R package and rechecked with logistic regression analysis. Mediation models were conducted to explore whether the certain phenotype can mediate the association between SNPs and the risk of lean NAFLD. Results: Compared with lean non-NAFLD individuals, lean NAFLD patients had higher BMI, low-density lipoprotein and triglyceride, and lower HDL. The AMPK signaling pathway, which includes TBC1D1 and ADIPOQ genes, was the most significant (p < .001). The A allele frequency of rs2279028 in TBC1D1 (p = .006) and G allele frequency of rs17366568 in ADIPOQ (p = .038) were significantly lower in lean NAFLD. The association between rs2279028 and the risk of lean NAFLD was mediated by HDL (p = .014). No significant mediation effect was found between rs17366568 and the risk of lean NAFLD. Conclusion: This study, for the first time, indicated that rs2279028 of TBC1D1 may contribute to the progression of lean NAFLD through HDL. This finding provides more evidence for exploring the mechanism of lean NAFLD and suggests practical solutions for the treatment of lean NAFLD.
Collapse
Affiliation(s)
- Na Wu
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangyu Zhai
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Fan Yuan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Li
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dong Li
- Zhangjiang Community Health Service Center of Pudong New District, Shanghai, China
| | - Jianying Wang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Zhang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Guang Ji, ; Guang He, ; Baocheng Liu, ,
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Guang Ji, ; Guang He, ; Baocheng Liu, ,
| | - Baocheng Liu
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Guang Ji, ; Guang He, ; Baocheng Liu, ,
| |
Collapse
|
10
|
E96V Mutation in the Kdelr3 Gene Is Associated with Type 2 Diabetes Susceptibility in Obese NZO Mice. Int J Mol Sci 2023; 24:ijms24010845. [PMID: 36614300 PMCID: PMC9820861 DOI: 10.3390/ijms24010845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Type 2 diabetes (T2D) represents a multifactorial metabolic disease with a strong genetic predisposition. Despite elaborate efforts in identifying the genetic variants determining individual susceptibility towards T2D, the majority of genetic factors driving disease development remain poorly understood. With the aim to identify novel T2D risk genes we previously generated an N2 outcross population using the two inbred mouse strains New Zealand obese (NZO) and C3HeB/FeJ (C3H). A linkage study performed in this population led to the identification of the novel T2D-associated quantitative trait locus (QTL) Nbg15 (NZO blood glucose on chromosome 15, Logarithm of odds (LOD) 6.6). In this study we used a combined approach of positional cloning, gene expression analyses and in silico predictions of DNA polymorphism on gene/protein function to dissect the genetic variants linking Nbg15 to the development of T2D. Moreover, we have generated congenic strains that associated the distal sublocus of Nbg15 to mechanisms altering pancreatic beta cell function. In this sublocus, Cbx6, Fam135b and Kdelr3 were nominated as potential causative genes associated with the Nbg15 driven effects. Moreover, a putative mutation in the Kdelr3 gene from NZO was identified, negatively influencing adaptive responses associated with pancreatic beta cell death and induction of endoplasmic reticulum stress. Importantly, knockdown of Kdelr3 in cultured Min6 beta cells altered insulin granules maturation and pro-insulin levels, pointing towards a crucial role of this gene in islets function and T2D susceptibility.
Collapse
|
11
|
Rapöhn I, Elias I, Weiner J, Pujol A, Kehr S, Chadt A, Al-Hasani H, Burkhardt R, Klöting N, Stumvoll M, Bosch F, Kovacs P, Heiker JT, Breitfeld J. Overexpressing high levels of human vaspin limits high fat diet-induced obesity and enhances energy expenditure in a transgenic mouse. Front Endocrinol (Lausanne) 2023; 14:1146454. [PMID: 37152954 PMCID: PMC10154460 DOI: 10.3389/fendo.2023.1146454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
Adipose tissue inflammation and insulin resistance are hallmarks in the development of metabolic diseases resulting from overweight and obesity, such as type 2 diabetes and non-alcoholic fatty liver disease. In obesity, adipocytes predominantly secrete proinflammatory adipokines that further promote adipose tissue dysfunction with negative effects on local and systemic insulin sensitivity. Expression of the serpin vaspin (SERPINA12) is also increased in obesity and type 2 diabetes, but exhibits compensatory roles in inflammation and insulin resistance. This has in part been demonstrated using vaspin-transgenic mice. We here report a new mouse line (h-vaspinTG) with transgenic expression of human vaspin in adipose tissue that reaches vaspin concentrations three orders of magnitude higher than wild type controls (>200 ng/ml). Phenotyping under chow and high-fat diet conditions included glucose-tolerance tests, measurements of energy expenditure and circulating parameters, adipose tissue and liver histology. Also, ex vivo glucose uptake in isolated adipocytes and skeletal muscle was analyzed in h-vaspinTG and littermate controls. The results confirmed previous findings, revealing a strong reduction in diet-induced weight gain, fat mass, hyperinsulinemia, -glycemia and -cholesterolemia as well as fatty liver. Insulin sensitivity in adipose tissue and muscle was not altered. The h-vaspinTG mice showed increased energy expenditure under high fat diet conditions, that may explain reduced weight gain and overall metabolic improvements. In conclusion, this novel human vaspin-transgenic mouse line will be a valuable research tool to delineate whole-body, tissue- and cell-specific effects of vaspin in health and disease.
Collapse
Affiliation(s)
- Inka Rapöhn
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Ivet Elias
- Center of Animal Biotechnology and Gene Therapy (CBATEG) and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Juliane Weiner
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Anna Pujol
- Center of Animal Biotechnology and Gene Therapy (CBATEG) and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Stephanie Kehr
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, Transfusion Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Michael Stumvoll
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy (CBATEG) and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - John T. Heiker
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- *Correspondence: John T. Heiker, ; Jana Breitfeld,
| | - Jana Breitfeld
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- *Correspondence: John T. Heiker, ; Jana Breitfeld,
| |
Collapse
|
12
|
Tengvall K, Sundström E, Wang C, Bergvall K, Wallerman O, Pederson E, Karlsson Å, Harvey ND, Blott SC, Olby N, Olivry T, Brander G, Meadows JRS, Roosje P, Leeb T, Hedhammar Å, Andersson G, Lindblad-Toh K. Bayesian model and selection signature analyses reveal risk factors for canine atopic dermatitis. Commun Biol 2022; 5:1348. [PMID: 36482174 PMCID: PMC9731970 DOI: 10.1038/s42003-022-04279-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Canine atopic dermatitis is an inflammatory skin disease with clinical similarities to human atopic dermatitis. Several dog breeds are at increased risk for developing this disease but previous genetic associations are poorly defined. To identify additional genetic risk factors for canine atopic dermatitis, we here apply a Bayesian mixture model adapted for mapping complex traits and a cross-population extended haplotype test to search for disease-associated loci and selective sweeps in four dog breeds at risk for atopic dermatitis. We define 15 associated loci and eight candidate regions under selection by comparing cases with controls. One associated locus is syntenic to the major genetic risk locus (Filaggrin locus) in human atopic dermatitis. One selection signal in common type Labrador retriever cases positions across the TBC1D1 gene (body weight) and one signal of selection in working type German shepherd controls overlaps the LRP1B gene (brain), near the KYNU gene (psoriasis). In conclusion, we identify candidate genes, including genes belonging to the same biological pathways across multiple loci, with potential relevance to the pathogenesis of canine atopic dermatitis. The results show genetic similarities between dog and human atopic dermatitis, and future across-species genetic comparisons are hereby further motivated.
Collapse
Affiliation(s)
- Katarina Tengvall
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Elisabeth Sundström
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Chao Wang
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Kerstin Bergvall
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ola Wallerman
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Eric Pederson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Åsa Karlsson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Naomi D Harvey
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK
| | - Sarah C Blott
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK
| | - Natasha Olby
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Thierry Olivry
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA
| | - Gustaf Brander
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jennifer R S Meadows
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Petra Roosje
- Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Åke Hedhammar
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Göran Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
13
|
Cai K, Deng L, Zheng D, Li L, He Z, Yu C. MICAL1 facilitates pancreatic cancer proliferation, migration, and invasion by activating WNT/β-catenin pathway. J Transl Med 2022; 20:528. [DOI: 10.1186/s12967-022-03749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/02/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background
MICAL1 is involved in the malignant processes of several types of cancer; however, the role of MICAL1 in pancreatic cancer (PC) has not been well-characterized. This study aimed to investigate the expression and function of MICAL1 in PC.
Methods
RT-qPCR and immunohistochemistry were used to detect MICAL1 expression in PC and adjacent nontumor tissues. Cell Counting Kit-8, EdU, clone formation, wound healing, and Transwell assays as well as animal models were used to investigate the effects of overexpression or inhibition of MICAL1 expression on the proliferation, invasion, and metastasis of PC cells. RNA-seq was used to explore the main pathway underlying the functions of MICAL1. Proteomics, mass spectrometry, and co-immunoprecipitation assays were used to investigate the interaction of proteins with MICAL1. Rescue experiments were conducted to validate these findings.
Results
Both MICAL1 mRNA and protein levels were upregulated in PC tissues compared with matched adjacent nontumor tissues. The expression level of MICAL1 was associated with the proliferative and metastatic status of PC. Repression of MICAL1 significantly inhibited PC cell growth, migration, and invasion in vitro and in vivo. RNA sequencing analysis indicated that MICAL1 was closely correlated with the WNT pathway. Overexpression of MICAL1 (1) promoted the phosphorylation of TBC1D1 at the Ser660 site, (2) facilitated the distribution of FZD7 on the cytomembrane, (3) inhibited the degradation of FZD7 in the lysosome, and (4) activated the WNT pathway.
Conclusions
MICAL1 was upregulated in PC and involved in stimulating the progression of PC cells by activating the WNT/β-catenin signaling pathway. Therefore, MICAL1 is a potential therapeutic target for PC.
Collapse
|
14
|
Reilly PF, Tjahjadi A, Miller SL, Akey JM, Tucci S. The contribution of Neanderthal introgression to modern human traits. Curr Biol 2022; 32:R970-R983. [PMID: 36167050 PMCID: PMC9741939 DOI: 10.1016/j.cub.2022.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neanderthals, our closest extinct relatives, lived in western Eurasia from 400,000 years ago until they went extinct around 40,000 years ago. DNA retrieved from ancient specimens revealed that Neanderthals mated with modern human contemporaries. As a consequence, introgressed Neanderthal DNA survives scattered across the human genome such that 1-4% of the genome of present-day people outside Africa are inherited from Neanderthal ancestors. Patterns of Neanderthal introgressed genomic sequences suggest that Neanderthal alleles had distinct fates in the modern human genetic background. Some Neanderthal alleles facilitated human adaptation to new environments such as novel climate conditions, UV exposure levels and pathogens, while others had deleterious consequences. Here, we review the body of work on Neanderthal introgression over the past decade. We describe how evolutionary forces shaped the genomic landscape of Neanderthal introgression and highlight the impact of introgressed alleles on human biology and phenotypic variation.
Collapse
Affiliation(s)
| | - Audrey Tjahjadi
- Department of Anthropology, Yale University, New Haven, CT, USA
| | | | - Joshua M Akey
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| | - Serena Tucci
- Department of Anthropology, Yale University, New Haven, CT, USA; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
15
|
Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7:298. [PMID: 36031641 PMCID: PMC9420733 DOI: 10.1038/s41392-022-01149-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Obesity is a complex, chronic disease and global public health challenge. Characterized by excessive fat accumulation in the body, obesity sharply increases the risk of several diseases, such as type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease, and is linked to lower life expectancy. Although lifestyle intervention (diet and exercise) has remarkable effects on weight management, achieving long-term success at weight loss is extremely challenging, and the prevalence of obesity continues to rise worldwide. Over the past decades, the pathophysiology of obesity has been extensively investigated, and an increasing number of signal transduction pathways have been implicated in obesity, making it possible to fight obesity in a more effective and precise way. In this review, we summarize recent advances in the pathogenesis of obesity from both experimental and clinical studies, focusing on signaling pathways and their roles in the regulation of food intake, glucose homeostasis, adipogenesis, thermogenesis, and chronic inflammation. We also discuss the current anti-obesity drugs, as well as weight loss compounds in clinical trials, that target these signals. The evolving knowledge of signaling transduction may shed light on the future direction of obesity research, as we move into a new era of precision medicine.
Collapse
|
16
|
Kuhn T, Kaiser K, Lebek S, Altenhofen D, Knebel B, Herwig R, Rasche A, Pelligra A, Görigk S, Khuong JMA, Vogel H, Schürmann A, Blüher M, Chadt A, Al-Hasani H. Comparative genomic analyses of multiple backcross mouse populations suggest SGCG as a novel potential obesity-modifier gene. Hum Mol Genet 2022; 31:4019-4033. [PMID: 35796564 DOI: 10.1093/hmg/ddac150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/10/2022] [Accepted: 07/01/2022] [Indexed: 11/14/2022] Open
Abstract
To nominate novel disease genes for obesity and type 2 diabetes (T2D), we recently generated two mouse backcross populations of the T2D-susceptible New Zealand Obese (NZO/HI) mouse strain and two genetically different, lean and T2D-resistant strains, 129P2/OlaHsd and C3HeB/FeJ. Comparative linkage analysis of our two female backcross populations identified seven novel body fat-associated quantitative trait loci (QTL). Only the locus Nbw14 (NZO body weight on chromosome 14) showed linkage to obesity-related traits in both backcross populations, indicating that the causal gene variant is likely specific for the NZO strain as NZO allele carriers in both crosses displayed elevated body weight and fat mass. To identify candidate genes for Nbw14, we used a combined approach of gene expression and haplotype analysis to filter for NZO-specific gene variants in gonadal white adipose tissue (gWAT), defined as the main QTL-target tissue. Only two genes, Arl11 and Sgcg, fulfilled our candidate criteria. In addition, expression QTL analysis revealed cis-signals for both genes within the Nbw14 locus. Moreover, retroviral overexpression of Sgcg in 3 T3-L1 adipocytes resulted in increased insulin-stimulated glucose uptake. In humans, mRNA levels of SGCG correlated with BMI and body fat mass exclusively in diabetic subjects, suggesting that SGCG may present a novel marker for metabolically unhealthy obesity. In conclusion, our comparative-cross analysis could substantially improve the mapping resolution of the obesity locus Nbw14. Future studies will shine light on the mechanism by which Sgcg may protect from the development of obesity.
Collapse
Affiliation(s)
- Tanja Kuhn
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Medical Faculty, Duesseldorf, D-40225, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, D-85764, Germany
| | - Katharina Kaiser
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Medical Faculty, Duesseldorf, D-40225, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, D-85764, Germany
| | - Sandra Lebek
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Medical Faculty, Duesseldorf, D-40225, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, D-85764, Germany
| | - Delsi Altenhofen
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Medical Faculty, Duesseldorf, D-40225, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, D-85764, Germany
| | - Birgit Knebel
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Medical Faculty, Duesseldorf, D-40225, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, D-85764, Germany
| | - Ralf Herwig
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, D-14195, Germany
| | - Axel Rasche
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, D-14195, Germany
| | - Angela Pelligra
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Medical Faculty, Duesseldorf, D-40225, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, D-85764, Germany
| | - Sarah Görigk
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Medical Faculty, Duesseldorf, D-40225, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, D-85764, Germany
| | - Jenny Minh-An Khuong
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Medical Faculty, Duesseldorf, D-40225, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, D-85764, Germany
| | - Heike Vogel
- German Center for Diabetes Research (DZD), Munich-Neuherberg, D-85764, Germany.,Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, D-14558, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), Munich-Neuherberg, D-85764, Germany.,Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, D-14558, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, D-04103, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Medical Faculty, Duesseldorf, D-40225, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, D-85764, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Medical Faculty, Duesseldorf, D-40225, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, D-85764, Germany
| |
Collapse
|
17
|
Metabolic Dysfunction in Motor Neuron Disease: Shedding Light through the Lens of Autophagy. Metabolites 2022; 12:metabo12070574. [PMID: 35888698 PMCID: PMC9317837 DOI: 10.3390/metabo12070574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) patients show a myriad of energetic abnormalities, such as weight loss, hypermetabolism, and dyslipidaemia. Evidence suggests that these indices correlate with and ultimately affect the duration of survival. This review aims to discuss ALS metabolic abnormalities in the context of autophagy, the primordial system acting at the cellular level for energy production during nutrient deficiency. As the primary pathway of protein degradation in eukaryotic cells, the fundamental role of cellular autophagy is the adaptation to metabolic demands. Therefore, autophagy is tightly coupled to cellular metabolism. We review evidence that the delicate balance between autophagy and metabolism is aberrant in ALS, giving rise to intracellular and systemic pathophysiology observations. Understanding the metabolism autophagy crosstalk can lead to the identification of novel therapeutic targets for ALS.
Collapse
|
18
|
Görigk S, Ouwens DM, Kuhn T, Altenhofen D, Binsch C, Damen M, Khuong JMA, Kaiser K, Knebel B, Vogel H, Schürmann A, Chadt A, Al-Hasani H. Nudix hydrolase NUDT19 regulates mitochondrial function and ATP production in murine hepatocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159153. [PMID: 35367353 DOI: 10.1016/j.bbalip.2022.159153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023]
Abstract
Changes in intracellular CoA levels are known to contribute to the development of non-alcoholic fatty liver disease (NAFLD) in type 2 diabetes (T2D) in human and rodents. However, the underlying genetic basis is still poorly understood. Due to their diverse susceptibility towards metabolic diseases, mouse inbred strains have been proven to serve as powerful tools for the identification of novel genetic factors that underlie the pathophysiology of NAFLD and diabetes. Transcriptome analysis of mouse liver samples revealed the nucleoside diphosphate linked moiety X-type motif Nudt19 as novel candidate gene responsible for NAFLD and T2D development. Knockdown (KD) of Nudt19 increased mitochondrial and glycolytic ATP production rates in Hepa 1-6 cells by 41% and 10%, respectively. The enforced utilization of glutamine or fatty acids as energy substrate reduced uncoupled respiration by 41% and 47%, respectively, in non-target (NT) siRNA transfected cells. This reduction was prevented upon Nudt19 KD. Furthermore, incubation with palmitate or oleate respectively increased mitochondrial ATP production by 31% and 20%, and uncoupled respiration by 23% and 30% in Nudt19 KD cells, but not in NT cells. The enhanced fatty acid oxidation in Nudt19 KD cells was accompanied by a 1.3-fold increased abundance of Pdk4. This study is the first to describe Nudt19 as regulator of hepatic lipid metabolism and potential mediator of NAFLD and T2D development.
Collapse
Affiliation(s)
- Sarah Görigk
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - D Margriet Ouwens
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Tanja Kuhn
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Delsi Altenhofen
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Christian Binsch
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Mareike Damen
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Jenny Minh-An Khuong
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Katharina Kaiser
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Birgit Knebel
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Heike Vogel
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, D-14558 Nuthetal, Germany; Research Group Genetics of Obesity, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany; Research Group Molecular and Clinical Life Science of Metabolic Diseases, Faculty of Health Sciences Brandenburg, University of Potsdam, Brandenburg, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, D-14558 Nuthetal, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
19
|
Fazakerley DJ, Koumanov F, Holman GD. GLUT4 On the move. Biochem J 2022; 479:445-462. [PMID: 35147164 PMCID: PMC8883492 DOI: 10.1042/bcj20210073] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/16/2022]
Abstract
Insulin rapidly stimulates GLUT4 translocation and glucose transport in fat and muscle cells. Signals from the occupied insulin receptor are translated into downstream signalling changes in serine/threonine kinases within timescales of seconds, and this is followed by delivery and accumulation of the glucose transporter GLUT4 at the plasma membrane. Kinetic studies have led to realisation that there are distinct phases of this stimulation by insulin. There is a rapid initial burst of GLUT4 delivered to the cell surface from a subcellular reservoir compartment and this is followed by a steady-state level of continuing stimulation in which GLUT4 recycles through a large itinerary of subcellular locations. Here, we provide an overview of the phases of insulin stimulation of GLUT4 translocation and the molecules that are currently considered to activate these trafficking steps. Furthermore, we suggest how use of new experimental approaches together with phospho-proteomic data may help to further identify mechanisms for activation of these trafficking processes.
Collapse
Affiliation(s)
- Daniel J Fazakerley
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, U.K
| | - Francoise Koumanov
- Department for Health, Centre for Nutrition, Exercise, and Metabolism, University of Bath, Bath, Somerset BA2 7AY, U.K
| | - Geoffrey D Holman
- Department of Biology and Biochemistry, University of Bath, Bath, Somerset BA2 7AY, U.K
| |
Collapse
|
20
|
Rab2A regulates the progression of nonalcoholic fatty liver disease downstream of AMPK-TBC1D1 axis by stabilizing PPARγ. PLoS Biol 2022; 20:e3001522. [PMID: 35061665 PMCID: PMC8809606 DOI: 10.1371/journal.pbio.3001522] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 02/02/2022] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects approximately a quarter of the population worldwide, and persistent overnutrition is one of the major causes. However, the underlying molecular basis has not been fully elucidated, and no specific drug has been approved for this disease. Here, we identify a regulatory mechanism that reveals a novel function of Rab2A in the progression of NAFLD based on energy status and PPARγ. The mechanistic analysis shows that nutrition repletion suppresses the phosphorylation of AMPK-TBC1D1 signaling, augments the level of GTP-bound Rab2A, and then increases the protein stability of PPARγ, which ultimately promotes the hepatic accumulation of lipids in vitro and in vivo. Furthermore, we found that blocking the AMPK-TBC1D1 pathway in TBC1D1S231A-knock-in (KI) mice led to a markedly increased GTP-bound Rab2A and subsequent fatty liver in aged mice. Our studies also showed that inhibition of Rab2A expression alleviated hepatic lipid deposition in western diet-induced obesity (DIO) mice by reducing the protein level of PPARγ and the expression of PPARγ target genes. Our findings not only reveal a new molecular mechanism regulating the progression of NAFLD during persistent overnutrition but also have potential implications for drug discovery to combat this disease. Non-alcoholic fatty liver disease (NAFLD) affects approximately a quarter of the global population; persistent overnutrition is one of the major causes, but the molecular mechanism remains unclear. This study shows that overnutrition suppresses the phosphorylation of AMPK and TBC1D1, augmenting the level of GTP-bound Rab2A and increasing the stability of PPARγ, which ultimately promotes the hepatic accumulation of lipids.
Collapse
|
21
|
de Wendt C, Espelage L, Eickelschulte S, Springer C, Toska L, Scheel A, Bedou AD, Benninghoff T, Cames S, Stermann T, Chadt A, Al-Hasani H. Contraction-Mediated Glucose Transport in Skeletal Muscle Is Regulated by a Framework of AMPK, TBC1D1/4, and Rac1. Diabetes 2021; 70:2796-2809. [PMID: 34561225 DOI: 10.2337/db21-0587] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022]
Abstract
The two closely related RabGTPase-activating proteins (RabGAPs) TBC1D1 and TBC1D4, both substrates for AMPK, play important roles in exercise metabolism and contraction-dependent translocation of GLUT4 in skeletal muscle. However, the specific contribution of each RabGAP in contraction signaling is mostly unknown. In this study, we investigated the cooperative AMPK-RabGAP signaling axis in the metabolic response to exercise/contraction using a novel mouse model deficient in active skeletal muscle AMPK combined with knockout of either Tbc1d1, Tbc1d4, or both RabGAPs. AMPK deficiency in muscle reduced treadmill exercise performance. Additional deletion of Tbc1d1 but not Tbc1d4 resulted in a further decrease in exercise capacity. In oxidative soleus muscle, AMPK deficiency reduced contraction-mediated glucose uptake, and deletion of each or both RabGAPs had no further effect. In contrast, in glycolytic extensor digitorum longus muscle, AMPK deficiency reduced contraction-stimulated glucose uptake, and deletion of Tbc1d1, but not Tbc1d4, led to a further decrease. Importantly, skeletal muscle deficient in AMPK and both RabGAPs still exhibited residual contraction-mediated glucose uptake, which was completely abolished by inhibition of the GTPase Rac1. Our results demonstrate a novel mechanistic link between glucose transport and the GTPase signaling framework in skeletal muscle in response to contraction.
Collapse
Affiliation(s)
- Christian de Wendt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Lena Espelage
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Samaneh Eickelschulte
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Christian Springer
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Laura Toska
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anna Scheel
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Awovi Didi Bedou
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Tim Benninghoff
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sandra Cames
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Torben Stermann
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| |
Collapse
|
22
|
Verbrugge SAJ, Alhusen JA, Kempin S, Pillon NJ, Rozman J, Wackerhage H, Kleinert M. Genes controlling skeletal muscle glucose uptake and their regulation by endurance and resistance exercise. J Cell Biochem 2021; 123:202-214. [PMID: 34812516 DOI: 10.1002/jcb.30179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 12/25/2022]
Abstract
Exercise improves the insulin sensitivity of glucose uptake in skeletal muscle. Due to that, exercise has become a cornerstone treatment for type 2 diabetes mellitus (T2DM). The mechanisms by which exercise improves skeletal muscle insulin sensitivity are, however, incompletely understood. We conducted a systematic review to identify all genes whose gain or loss of function alters skeletal muscle glucose uptake. We subsequently cross-referenced these genes with recently generated data sets on exercise-induced gene expression and signaling. Our search revealed 176 muscle glucose-uptake genes, meaning that their genetic manipulation altered glucose uptake in skeletal muscle. Notably, exercise regulates the expression or phosphorylation of more than 50% of the glucose-uptake genes or their protein products. This included many genes that previously have not been associated with exercise-induced insulin sensitivity. Interestingly, endurance and resistance exercise triggered some common but mostly unique changes in expression and phosphorylation of glucose-uptake genes or their protein products. Collectively, our work provides a resource of potentially new molecular effectors that play a role in the incompletely understood regulation of muscle insulin sensitivity by exercise.
Collapse
Affiliation(s)
- Sander A J Verbrugge
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, Neuherberg, Germany.,Exercise Biology Group, Department for Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Julia A Alhusen
- Molecular Endocrinology, Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum Munich, Helmholtz Diabetes Center (HMGU), Munich, Germany
| | - Shimon Kempin
- Exercise Biology Group, Department for Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jan Rozman
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Henning Wackerhage
- Exercise Biology Group, Department for Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Maximilian Kleinert
- Muscle Physiology and Metabolism Group, German Institute of Human Nutrition, Potsdam - Rehbrücke, Nuthetal, Germany.,Department of Nutrition, Exercise and Sports, Faculty of Science, Section of Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Ouni M, Gottmann P, Westholm E, Schwerbel K, Jähnert M, Stadion M, Rittig K, Vogel H, Schürmann A. MiR-205 is up-regulated in islets of diabetes-susceptible mice and targets the diabetes gene Tcf7l2. Acta Physiol (Oxf) 2021; 232:e13693. [PMID: 34028994 DOI: 10.1111/apha.13693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022]
Abstract
AIM MicroRNAs play an important role in the maintenance of cellular functions by fine-tuning gene expression levels. The aim of the current study was to identify genetically caused changes in microRNA expression which associate with islet dysfunction in diabetic mice. METHODS To identify novel microRNAs involved in islet dysfunction, transcriptome and miRNome analyses were performed in islets of obese, diabetes-susceptible NZO and diabetes-resistant B6-ob/ob mice and results combined with quantitative trait loci (QTL) and functional in vitro analysis. RESULTS In islets of NZO and B6-ob/ob mice, 94 differentially expressed microRNAs were detected, of which 11 are located in diabetes QTL. Focusing on conserved microRNAs exhibiting the strongest expression difference and which have not been linked to islet function, miR-205-5p was selected for further analysis. According to transcriptome data and target prediction analyses, miR-205-5p affects genes involved in Wnt and calcium signalling as well as insulin secretion. Over-expression of miR-205-5p in the insulinoma cell line INS-1 increased insulin expression, left-shifted the glucose-dependence of insulin secretion and supressed the expression of the diabetes gene TCF7L2. The interaction between miR-205-5p and TCF7L2 was confirmed by luciferase reporter assay. CONCLUSION MiR-205-5p was identified as relevant microRNA involved in islet dysfunction by interacting with TCF7L2.
Collapse
Affiliation(s)
- Meriem Ouni
- Department of Experimental Diabetology German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- German Center for Diabetes Research (DZD) München‐Neuherberg Germany
| | - Pascal Gottmann
- Department of Experimental Diabetology German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- German Center for Diabetes Research (DZD) München‐Neuherberg Germany
| | - Efraim Westholm
- Department of Experimental Diabetology German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- Unit of Islet Cell Exocytosis Department of Clinical Sciences Malmö Lund University Diabetes CentreLund University Malmö Sweden
| | - Kristin Schwerbel
- Department of Experimental Diabetology German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- German Center for Diabetes Research (DZD) München‐Neuherberg Germany
| | - Markus Jähnert
- Department of Experimental Diabetology German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- German Center for Diabetes Research (DZD) München‐Neuherberg Germany
| | - Mandy Stadion
- Department of Experimental Diabetology German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- German Center for Diabetes Research (DZD) München‐Neuherberg Germany
| | - Kilian Rittig
- Clinic for Angiology and Diabetology Frankfurt (Oder) Germany
- Institute of Nutritional Science University of Potsdam Brandenburg Germany
| | - Heike Vogel
- Department of Experimental Diabetology German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- German Center for Diabetes Research (DZD) München‐Neuherberg Germany
- Research Group Genetics of Obesity German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- Research Group Molecular and Clinical Life Science of Metabolic Diseases Faculty of Health Sciences Brandenburg University of Potsdam Brandenburg Germany
| | - Annette Schürmann
- Department of Experimental Diabetology German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- German Center for Diabetes Research (DZD) München‐Neuherberg Germany
- Institute of Nutritional Science University of Potsdam Brandenburg Germany
| |
Collapse
|
24
|
Barton JR, Snook AE, Waldman SA. From leptin to lasers: the past and present of mouse models of obesity. Expert Opin Drug Discov 2021; 16:777-790. [PMID: 33472452 PMCID: PMC8243785 DOI: 10.1080/17460441.2021.1877654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/14/2021] [Indexed: 10/22/2022]
Abstract
Introduction: Obesity is a prevalent condition that accounts for significant morbidity and mortality across the globe. Despite substantial effort, most obesity pharmacotherapies have proven unsafe or ineffective. The use of obese mouse models provides unique insight into the hormones and mechanisms that regulate appetite and metabolism. Paramount among these models are the 'obese' and 'diabetic' mice that revealed the powerful satiety hormone leptin, revolutionizing obesity research.Areas Covered: In this article, the authors discuss work on leptin therapy, and the clinical response to leptin in humans. The authors describe the use of modern mouse genetics to study targetable mechanisms for genetic forms of human obesity. Additionally, they describe mouse models of neuromodulation and their utility in unraveling neural circuits that govern appetite and metabolism.Expert opinion: Combining past and present models of obesity is required for the development of safe, effective, and impactful obesity therapy. Current research in obesity can benefit from repositories of genetically engineered mouse models to discover interactions between appetitive systems and circuits. Combining leptin therapy with other satiety signals comprising the gut-brain axis is a promising approach to induce significant enduring weight loss.
Collapse
Affiliation(s)
- Joshua R. Barton
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam E. Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Scott A. Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
25
|
Moffatt P, Boraschi-Diaz I, Bardai G, Rauch F. Muscle transcriptome in mouse models of osteogenesis imperfecta. Bone 2021; 148:115940. [PMID: 33812081 DOI: 10.1016/j.bone.2021.115940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Osteogenesis imperfecta (OI) is a heritable connective tissue disorder that is most often caused by mutations in collagen type I encoding genes. Even though bone fragility is the most conspicuous finding in OI, the muscle system is also affected. In the present study we explored the muscle phenotype related to collagen type I mutations on the transcriptome level. RNA sequencing was performed in gastrocnemius muscles of homozygous oim mice and of heterozygous Jrt mice, two models of severe OI. We found that oim and Jrt mice shared 27 differentially expressed genes, of which 11 were concordantly upregulated and 15 concordantly downregulated. Gene Set Enrichment Analysis revealed that in both oim and Jrt mice, genes involved in 'metabolism of lipids' were significantly enriched among upregulated genes. In addition, several genes coding for extracellular matrix components were upregulated in both oim and Jrt mice. Among downregulated genes, genes involved in 'muscle contraction' were enriched in both OI mouse models. These 'muscle contraction' genes coded for slow-twitch type I muscle fiber components. Another shared downregulated gene was Mss51, a metabolic stress-inducible factor that is found in mitochondria. These data show that two mouse models of severe OI share abnormalities in the expression of genes that code for extracellular matrix proteins, lipid and energy metabolism and structural proteins of type I muscle fibers. The muscle disturbances resulting from the collagen type I mutations in these mouse models could be viewed as a mild form of muscle dystrophy.
Collapse
Affiliation(s)
- Pierre Moffatt
- Shriners Hospital for Children-Canada, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Iris Boraschi-Diaz
- Shriners Hospital for Children-Canada, Montreal, Quebec, Canada; Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Ghalib Bardai
- Shriners Hospital for Children-Canada, Montreal, Quebec, Canada
| | - Frank Rauch
- Shriners Hospital for Children-Canada, Montreal, Quebec, Canada; Department of Pediatrics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
26
|
Rehman SU, Schallschmidt T, Rasche A, Knebel B, Stermann T, Altenhofen D, Herwig R, Schürmann A, Chadt A, Al-Hasani H. Alternative exon splicing and differential expression in pancreatic islets reveals candidate genes and pathways implicated in early diabetes development. Mamm Genome 2021; 32:153-172. [PMID: 33880624 PMCID: PMC8128753 DOI: 10.1007/s00335-021-09869-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/03/2021] [Indexed: 12/29/2022]
Abstract
Type 2 diabetes (T2D) has a strong genetic component. Most of the gene variants driving the pathogenesis of T2D seem to target pancreatic β-cell function. To identify novel gene variants acting at early stage of the disease, we analyzed whole transcriptome data to identify differential expression (DE) and alternative exon splicing (AS) transcripts in pancreatic islets collected from two metabolically diverse mouse strains at 6 weeks of age after three weeks of high-fat-diet intervention. Our analysis revealed 1218 DE and 436 AS genes in islets from NZO/Hl vs C3HeB/FeJ. Whereas some of the revealed genes present well-established markers for β-cell failure, such as Cd36 or Aldh1a3, we identified numerous DE/AS genes that have not been described in context with β-cell function before. The gene Lgals2, previously associated with human T2D development, was DE as well as AS and localizes in a quantitative trait locus (QTL) for blood glucose on Chr.15 that we reported recently in our N2(NZOxC3H) population. In addition, pathway enrichment analysis of DE and AS genes showed an overlap of only half of the revealed pathways, indicating that DE and AS in large parts influence different pathways in T2D development. PPARG and adipogenesis pathways, two well-established metabolic pathways, were overrepresented for both DE and AS genes, probably as an adaptive mechanism to cope for increased cellular stress. Our results provide guidance for the identification of novel T2D candidate genes and demonstrate the presence of numerous AS transcripts possibly involved in islet function and maintenance of glucose homeostasis.
Collapse
Affiliation(s)
- Sayeed Ur Rehman
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Tanja Schallschmidt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Axel Rasche
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Birgit Knebel
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Torben Stermann
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Delsi Altenhofen
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Ralf Herwig
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,German Institute of Human Nutrition, Potsdam, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany. .,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
27
|
Abstract
As the principal tissue for insulin-stimulated glucose disposal, skeletal muscle is a primary driver of whole-body glycemic control. Skeletal muscle also uniquely responds to muscle contraction or exercise with increased sensitivity to subsequent insulin stimulation. Insulin's dominating control of glucose metabolism is orchestrated by complex and highly regulated signaling cascades that elicit diverse and unique effects on skeletal muscle. We discuss the discoveries that have led to our current understanding of how insulin promotes glucose uptake in muscle. We also touch upon insulin access to muscle, and insulin signaling toward glycogen, lipid, and protein metabolism. We draw from human and rodent studies in vivo, isolated muscle preparations, and muscle cell cultures to home in on the molecular, biophysical, and structural elements mediating these responses. Finally, we offer some perspective on molecular defects that potentially underlie the failure of muscle to take up glucose efficiently during obesity and type 2 diabetes.
Collapse
|
28
|
Bledzka KM, Manaserh IH, Grondolsky J, Pfleger J, Roy R, Gao E, Chuprun JK, Koch WJ, Schumacher SM. A peptide of the amino-terminus of GRK2 induces hypertrophy and yet elicits cardioprotection after pressure overload. J Mol Cell Cardiol 2021; 154:137-153. [PMID: 33548241 DOI: 10.1016/j.yjmcc.2021.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/14/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptor (GPCR) kinase 2 (GRK2) expression and activity are elevated early on in response to several forms of cardiovascular stress and are a hallmark of heart failure. Interestingly, though, in addition to its well-characterized role in regulating GPCRs, mounting evidence suggests a GRK2 "interactome" that underlies a great diversity in its functional roles. Several such GRK2 interacting partners are important for adaptive and maladaptive myocyte growth; therefore, an understanding of domain-specific interactions with signaling and regulatory molecules could lead to novel targets for heart failure therapy. Herein, we subjected transgenic mice with cardiac restricted expression of a short, amino terminal fragment of GRK2 (βARKnt) to pressure overload and found that unlike their littermate controls or previous GRK2 fragments, they exhibited an increased left ventricular wall thickness and mass prior to cardiac stress that underwent proportional hypertrophic growth to controls after acute pressure overload. Importantly, despite this enlarged heart, βARKnt mice did not undergo the expected transition to heart failure observed in controls. Further, βARKnt expression limited adverse left ventricular remodeling and increased cell survival signaling. Proteomic analysis to identify βARKnt binding partners that may underlie the improved cardiovascular phenotype uncovered a selective functional interaction of both endogenous GRK2 and βARKnt with AKT substrate of 160 kDa (AS160). AS160 has emerged as a key downstream regulator of insulin signaling, integrating physiological and metabolic cues to couple energy demand to membrane recruitment of Glut4. Our preliminary data indicate that in βARKnt mice, cardiomyocyte insulin signaling is improved during stress, with a coordinate increase in spare respiratory activity and ATP production without metabolite switching. Surprisingly, these studies also revealed a significant decrease in gonadal fat weight, equivalent to human abdominal fat, in male βARKnt mice at baseline and following cardiac stress. These data suggest that the enhanced AS160-mediated signaling in the βARKnt mice may ameliorate pathological cardiac remodeling through direct modulation of insulin signaling within cardiomyocytes, and translate these to beneficial effects on systemic metabolism.
Collapse
Affiliation(s)
- Kamila M Bledzka
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Iyad H Manaserh
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jessica Grondolsky
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jessica Pfleger
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Rajika Roy
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Erhe Gao
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - J Kurt Chuprun
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Walter J Koch
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Sarah M Schumacher
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
29
|
Singh S, Periasamy M, Bal NC. Strain-specific differences in muscle Ca 2+ transport and mitochondrial electron transport chain proteins between FVB/N and C57BL/6J mice. ACTA ACUST UNITED AC 2021; 224:jeb.238634. [PMID: 33268531 DOI: 10.1242/jeb.238634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022]
Abstract
Genetically engineered mouse models have been used to determine the role of sarcolipin (SLN) in muscle. However, a few studies had difficulty in detecting SLN in FBV/N mice and questioned its relevance to muscle metabolism. It is known that genetic alteration of proteins in different inbred mice strains produces dissimilar functional outcomes. Therefore, here we compared the expression of SLN and key proteins involved in Ca2+ handling and mitochondrial metabolism between FVB/N and C57BL/6J mouse strains. Data suggest that SLN expression is less abundant in the skeletal muscles of FVB/N mice than in the C57BL/6J strain. The expression of Ca2+ transporters in the mitochondrial membranes was also lower in FVB/N than in C57BL/6J mice. Similarly, electron transport chain proteins in the mitochondria were less abundant in FVB/N mice, which may contribute to differences in energy metabolism. Future studies using different mouse strains should take these differences into account when interpreting their data.
Collapse
Affiliation(s)
- Sushant Singh
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - Muthu Periasamy
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA .,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Naresh C Bal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024 India
| |
Collapse
|
30
|
Benninghoff T, Espelage L, Eickelschulte S, Zeinert I, Sinowenka I, Müller F, Schöndeling C, Batchelor H, Cames S, Zhou Z, Kotzka J, Chadt A, Al-Hasani H. The RabGAPs TBC1D1 and TBC1D4 Control Uptake of Long-Chain Fatty Acids Into Skeletal Muscle via Fatty Acid Transporter SLC27A4/FATP4. Diabetes 2020; 69:2281-2293. [PMID: 32868338 DOI: 10.2337/db20-0180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022]
Abstract
The two closely related RabGTPase-activating proteins (RabGAPs) TBC1D1 and TBC1D4 play a crucial role in the regulation of GLUT4 translocation in response to insulin and contraction in skeletal muscle. In mice, deficiency in one or both RabGAPs leads to reduced insulin- and contraction-stimulated glucose uptake and to elevated fatty acid (FA) uptake and oxidation in both glycolytic and oxidative muscle fibers without altering mitochondrial copy number and the abundance of proteins for oxidative phosphorylation. Here we present evidence for a novel mechanism of skeletal muscle lipid utilization involving the two RabGAPs and the FA transporter SLC27A4/FATP4. Both RabGAPs control the uptake of saturated and unsaturated long-chain FAs (LCFAs) into skeletal muscle and knockdown (Kd) of a subset of RabGAP substrates, Rab8, Rab10, or Rab14, decreased LCFA uptake into these cells. In skeletal muscle from Tbc1d1 and Tbc1d4 knockout animals, SLC27A4/FATP4 abundance was increased and depletion of SLC27A4/FATP4 but not FAT/CD36 completely abrogated the enhanced FA oxidation in RabGAP-deficient skeletal muscle and cultivated C2C12 myotubes. Collectively, our data demonstrate that RabGAP-mediated control of skeletal muscle lipid metabolism converges with glucose metabolism at the level of downstream RabGTPases and involves regulated transport of LCFAs via SLC27A4/FATP4.
Collapse
Affiliation(s)
- Tim Benninghoff
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Lena Espelage
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Samaneh Eickelschulte
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Isabel Zeinert
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Isabelle Sinowenka
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Frank Müller
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Christina Schöndeling
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Hannah Batchelor
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Sandra Cames
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Zhou Zhou
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Jörg Kotzka
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| |
Collapse
|
31
|
Hook SC, Chadt A, Heesom KJ, Kishida S, Al-Hasani H, Tavaré JM, Thomas EC. TBC1D1 interacting proteins, VPS13A and VPS13C, regulate GLUT4 homeostasis in C2C12 myotubes. Sci Rep 2020; 10:17953. [PMID: 33087848 PMCID: PMC7578007 DOI: 10.1038/s41598-020-74661-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023] Open
Abstract
Proteins involved in the spaciotemporal regulation of GLUT4 trafficking represent potential therapeutic targets for the treatment of insulin resistance and type 2 diabetes. A key regulator of insulin- and exercise-stimulated glucose uptake and GLUT4 trafficking is TBC1D1. This study aimed to identify proteins that regulate GLUT4 trafficking and homeostasis via TBC1D1. Using an unbiased quantitative proteomics approach, we identified proteins that interact with TBC1D1 in C2C12 myotubes including VPS13A and VPS13C, the Rab binding proteins EHBP1L1 and MICAL1, and the calcium pump SERCA1. These proteins associate with TBC1D1 via its phosphotyrosine binding (PTB) domains and their interactions with TBC1D1 were unaffected by AMPK activation, distinguishing them from the AMPK regulated interaction between TBC1D1 and AMPKα1 complexes. Depletion of VPS13A or VPS13C caused a post-transcriptional increase in cellular GLUT4 protein and enhanced cell surface GLUT4 levels in response to AMPK activation. The phenomenon was specific to GLUT4 because other recycling proteins were unaffected. Our results provide further support for a role of the TBC1D1 PTB domains as a scaffold for a range of Rab regulators, and also the VPS13 family of proteins which have been previously linked to fasting glycaemic traits and insulin resistance in genome wide association studies.
Collapse
Affiliation(s)
- Sharon C Hook
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Alexandra Chadt
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Kate J Heesom
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Shosei Kishida
- Department of Biochemistry and Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hadi Al-Hasani
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Jeremy M Tavaré
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Elaine C Thomas
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
32
|
Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease. Pflugers Arch 2020; 472:1273-1298. [PMID: 32591906 PMCID: PMC7462924 DOI: 10.1007/s00424-020-02417-x] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022]
Abstract
A family of facilitative glucose transporters (GLUTs) is involved in regulating tissue-specific glucose uptake and metabolism in the liver, skeletal muscle, and adipose tissue to ensure homeostatic control of blood glucose levels. Reduced glucose transport activity results in aberrant use of energy substrates and is associated with insulin resistance and type 2 diabetes. It is well established that GLUT2, the main regulator of hepatic hexose flux, and GLUT4, the workhorse in insulin- and contraction-stimulated glucose uptake in skeletal muscle, are critical contributors in the control of whole-body glycemia. However, the molecular mechanism how insulin controls glucose transport across membranes and its relation to impaired glycemic control in type 2 diabetes remains not sufficiently understood. An array of circulating metabolites and hormone-like molecules and potential supplementary glucose transporters play roles in fine-tuning glucose flux between the different organs in response to an altered energy demand.
Collapse
|
33
|
Barbeau PA, Houad JM, Huber JS, Paglialunga S, Snook LA, Herbst EAF, Dennis KMJH, Simpson JA, Holloway GP. Ablating the Rab-GTPase activating protein TBC1D1 predisposes rats to high-fat diet-induced cardiomyopathy. J Physiol 2020; 598:683-697. [PMID: 31845331 DOI: 10.1113/jp279042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/12/2019] [Indexed: 01/08/2023] Open
Abstract
KEY POINTS Although the role of TBC1D1 within the heart remains unknown, expression of TBC1D1 increases in the left ventricle following an acute infarction, suggesting a biological importance within this tissue. We investigated the mechanistic role of TBC1D1 within the heart, aiming to establish the consequences of attenuating TBC1D1 signalling in the development of diabetic cardiomyopathy, as well as to determine potential sex differences. TBC1D1 ablation increased plasma membrane fatty acid binding protein content and myocardial palmitate oxidation. Following high-fat feeding, TBC1D1 ablation dramatically increased fibrosis and induced end-diastolic dysfunction in both male and female rats in the absence of changes in mitochondrial bioenergetics. Altogether, independent of sex, ablating TBC1D1 predisposes the left ventricle to pathological remodelling following high-fat feeding, and suggests TBC1D1 protects against diabetic cardiomyopathy. ABSTRACT TBC1D1, a Rab-GTPase activating protein, is involved in the regulation of glucose handling and substrate metabolism within skeletal muscle, and is essential for maintaining pancreatic β-cell mass and insulin secretion. However, the function of TBC1D1 within the heart is largely unknown. Therefore, we examined the role of TBC1D1 in the left ventricle and the functional consequence of ablating TBC1D1 on the susceptibility to high-fat diet-induced abnormalities. Since mutations within TBC1D1 (R125W) display stronger associations with clinical parameters in women, we further examined possible sex differences in the predisposition to diabetic cardiomyopathy. In control-fed animals, TBC1D1 ablation did not alter insulin-stimulated glucose uptake, or echocardiogram parameters, but increased accumulation of a plasma membrane fatty acid transporter and the capacity for palmitate oxidation. When challenged with an 8 week high-fat diet, TBC1D1 knockout rats displayed a four-fold increase in fibrosis compared to wild-type animals, and this was associated with diastolic dysfunction, suggesting a predisposition to diet-induced cardiomyopathy. Interestingly, high-fat feeding only induced cardiac hypertrophy in male TBC1D1 knockout animals, implicating a possible sex difference. Mitochondrial respiratory capacity and substrate sensitivity to pyruvate and ADP were not altered by diet or TBC1D1 ablation, nor were markers of oxidative stress, or indices of overt heart failure. Altogether, independent of sex, ablation of TBC1D1 not only increased the susceptibility to high-fat diet-induced diastolic dysfunction and left ventricular fibrosis, independent of sex, but also predisposed male animals to the development of cardiac hypertrophy. These data suggest that TBC1D1 may exert cardioprotective effects in the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Pierre-Andre Barbeau
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Jacy M Houad
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Jason S Huber
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Sabina Paglialunga
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Laelie A Snook
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Eric A F Herbst
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Kaitlyn M J H Dennis
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Jeremy A Simpson
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Graham P Holloway
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| |
Collapse
|
34
|
Vogel H, Kamitz A, Hallahan N, Lebek S, Schallschmidt T, Jonas W, Jähnert M, Gottmann P, Zellner L, Kanzleiter T, Damen M, Altenhofen D, Burkhardt R, Renner S, Dahlhoff M, Wolf E, Müller TD, Blüher M, Joost HG, Chadt A, Al-Hasani H, Schürmann A. A collective diabetes cross in combination with a computational framework to dissect the genetics of human obesity and Type 2 diabetes. Hum Mol Genet 2019; 27:3099-3112. [PMID: 29893858 PMCID: PMC6097155 DOI: 10.1093/hmg/ddy217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/29/2018] [Indexed: 12/16/2022] Open
Abstract
To explore the genetic determinants of obesity and Type 2 diabetes (T2D), the German Center for Diabetes Research (DZD) conducted crossbreedings of the obese and diabetes-prone New Zealand Obese mouse strain with four different lean strains (B6, DBA, C3H, 129P2) that vary in their susceptibility to develop T2D. Genome-wide linkage analyses localized more than 290 quantitative trait loci (QTL) for obesity, 190 QTL for diabetes-related traits and 100 QTL for plasma metabolites in the outcross populations. A computational framework was developed that allowed to refine critical regions and to nominate a small number of candidate genes by integrating reciprocal haplotype mapping and transcriptome data. The efficiency of the complex procedure was demonstrated for one obesity QTL. The genomic interval of 35 Mb with 502 annotated candidate genes was narrowed down to six candidates. Accordingly, congenic mice retained the obesity phenotype owing to an interval that contains three of the six candidate genes. Among these the phospholipase PLA2G4A exhibited an elevated expression in adipose tissue of obese human subjects and is therefore a critical regulator of the obesity locus. Together, our broad and complex approach demonstrates that combined- and comparative-cross analysis exhibits improved mapping resolution and represents a valid tool for the identification of disease genes.
Collapse
Affiliation(s)
- Heike Vogel
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal D-14558, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany
| | - Anne Kamitz
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal D-14558, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany
| | - Nicole Hallahan
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal D-14558, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany
| | - Sandra Lebek
- German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Tanja Schallschmidt
- German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal D-14558, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal D-14558, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany
| | - Pascal Gottmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal D-14558, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany
| | - Lisa Zellner
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal D-14558, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany
| | - Timo Kanzleiter
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal D-14558, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany
| | - Mareike Damen
- German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Delsi Altenhofen
- German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Ralph Burkhardt
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig D-04303, Germany
| | - Simone Renner
- German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Chair for Molecular Animal Breeding and Biotechnology, Gene Center.,Department of Veterinary Sciences, Center for Innovative Medical Models (CiMM), LMU Munich, D-81377 Munich, Germany
| | - Maik Dahlhoff
- German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Chair for Molecular Animal Breeding and Biotechnology, Gene Center.,Department of Veterinary Sciences, Center for Innovative Medical Models (CiMM), LMU Munich, D-81377 Munich, Germany
| | - Eckhard Wolf
- German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Chair for Molecular Animal Breeding and Biotechnology, Gene Center.,Department of Veterinary Sciences, Center for Innovative Medical Models (CiMM), LMU Munich, D-81377 Munich, Germany
| | - Timo D Müller
- German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg D-85764, Germany.,Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich D-80333, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig D-04103, Germany
| | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal D-14558, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany
| | - Alexandra Chadt
- German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal D-14558, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Institute of Nutritional Science, University of Potsdam, Nuthetal D-14558, Germany
| |
Collapse
|
35
|
Kluth O, Stadion M, Gottmann P, Aga H, Jähnert M, Scherneck S, Vogel H, Krus U, Seelig A, Ling C, Gerdes J, Schürmann A. Decreased Expression of Cilia Genes in Pancreatic Islets as a Risk Factor for Type 2 Diabetes in Mice and Humans. Cell Rep 2019; 26:3027-3036.e3. [DOI: 10.1016/j.celrep.2019.02.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 12/21/2018] [Accepted: 02/14/2019] [Indexed: 12/19/2022] Open
|
36
|
Caglayan E, Trappiel M, Behringer A, Berghausen EM, Odenthal M, Wellnhofer E, Kappert K. Pulmonary arterial remodelling by deficiency of peroxisome proliferator-activated receptor-γ in murine vascular smooth muscle cells occurs independently of obesity-related pulmonary hypertension. Respir Res 2019; 20:42. [PMID: 30813929 PMCID: PMC6391752 DOI: 10.1186/s12931-019-1003-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/11/2019] [Indexed: 11/30/2022] Open
Abstract
Background Obesity is associated with cardiovascular complications, including pulmonary hypertension (PH). Reports suggest that peroxisome proliferator-activated receptor-γ (PPARγ) has direct action in preventing vascular remodelling in PH. Here we dissected the specific role of high-fat-diet (HFD)-induced obesity and vascular smooth muscle cell (VSMC)-PPARγ for remodelling of small pulmonary arteries. Methods Wild-type (WT) and VSMC-specific PPARγ-knockout (SmPparγ−/−) mice were fed a low-fat-diet (LFD, 10% kcal from fat) or HFD (60% kcal from fat) for 24 weeks. Mice were metabolically phenotyped (e.g. weight development, insulin/glucose tolerance) at the beginning, and after 12 and 24 weeks, respectively. At 24 weeks additionally pulmonary pressure, heart structure, pulmonary vascular muscularization together with gene and protein expression in heart and lung tissues were determined. Results HFD increased right ventricular systolic pressure (RVSP) to a similar extent in WT and SmPparγ−/− mice. HFD decreased glucose tolerance and insulin sensitivity in both WT and SmPparγ−/− mice. Importantly, the increase in RVSP correlated with the degree of insulin resistance. However, VSMC-PPARγ deficiency increased pulmonary vascular muscularization independently of the diet-induced rise in RVSP. This increase was associated with elevated expression of early growth response protein 1 in heart and osteopontin in lung tissue. Conclusions Here we demonstrate a correlation of insulin resistance and pulmonary pressure. Further, deficiency of PPARγ in VSMCs diet-independently leads to increased pulmonary vascular muscularization.
Collapse
Affiliation(s)
- Evren Caglayan
- Klinik III für Innere Medizin, University of Cologne Heart Center, Cologne, Germany.,Center for Molecular Medine Cologne (CMMC), Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany.,Department of Cardiology, University Medicine Rostock, Rostock, Germany
| | - Manuela Trappiel
- Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Center for Cardiovascular Research (CCR), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Arnica Behringer
- Klinik III für Innere Medizin, University of Cologne Heart Center, Cologne, Germany.,Center for Molecular Medine Cologne (CMMC), Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Eva Maria Berghausen
- Klinik III für Innere Medizin, University of Cologne Heart Center, Cologne, Germany
| | | | - Ernst Wellnhofer
- Department of Cardiology, German Heart Center Berlin, Berlin, Germany
| | - Kai Kappert
- Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Center for Cardiovascular Research (CCR), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.
| |
Collapse
|
37
|
Tam V, Turcotte M, Meyre D. Established and emerging strategies to crack the genetic code of obesity. Obes Rev 2019; 20:212-240. [PMID: 30353704 DOI: 10.1111/obr.12770] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
Tremendous progress has been made in the genetic elucidation of obesity over the past two decades, driven largely by technological, methodological and organizational innovations. Current strategies for identifying obesity-predisposing loci/genes, including cytogenetics, linkage analysis, homozygosity mapping, admixture mapping, candidate gene studies, genome-wide association studies, custom genotyping arrays, whole-exome sequencing and targeted exome sequencing, have achieved differing levels of success, and the identified loci in aggregate explain only a modest fraction of the estimated heritability of obesity. This review outlines the successes and limitations of these approaches and proposes novel strategies, including the use of exceptionally large sample sizes, the study of diverse ethnic groups and deep phenotypes and the application of innovative methods and study designs, to identify the remaining obesity-predisposing genes. The use of both established and emerging strategies has the potential to crack the genetic code of obesity in the not-too-distant future. The resulting knowledge is likely to yield improvements in obesity prediction, prevention and care.
Collapse
Affiliation(s)
- V Tam
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - M Turcotte
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - D Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
38
|
Lundsgaard AM, Holm JB, Sjøberg KA, Bojsen-Møller KN, Myrmel LS, Fjære E, Jensen BAH, Nicolaisen TS, Hingst JR, Hansen SL, Doll S, Geyer PE, Deshmukh AS, Holst JJ, Madsen L, Kristiansen K, Wojtaszewski JFP, Richter EA, Kiens B. Mechanisms Preserving Insulin Action during High Dietary Fat Intake. Cell Metab 2019; 29:50-63.e4. [PMID: 30269983 DOI: 10.1016/j.cmet.2018.08.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/21/2018] [Accepted: 08/30/2018] [Indexed: 01/03/2023]
Abstract
Prolonged intervention studies investigating molecular metabolism are necessary for a deeper understanding of dietary effects on health. Here we provide mechanistic information about metabolic adaptation to fat-rich diets. Healthy, slightly overweight men ingested saturated or polyunsaturated fat-rich diets for 6 weeks during weight maintenance. Hyperinsulinemic clamps combined with leg balance technique revealed unchanged peripheral insulin sensitivity, independent of fatty acid type. Both diets increased fat oxidation potential in muscle. Hepatic insulin clearance increased, while glucose production, de novo lipogenesis, and plasma triacylglycerol decreased. High fat intake changed the plasma proteome in the immune-supporting direction and the gut microbiome displayed changes at taxonomical and functional level with polyunsaturated fatty acid (PUFA). In mice, eucaloric feeding of human PUFA and saturated fatty acid diets lowered hepatic triacylglycerol content compared with low-fat-fed control mice, and induced adaptations in the liver supportive of decreased gluconeogenesis and lipogenesis. Intake of fat-rich diets thus induces extensive metabolic adaptations enabling disposition of dietary fat without metabolic complications.
Collapse
Affiliation(s)
- Anne-Marie Lundsgaard
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Universitetsparken 13, Copenhagen 2100, Denmark
| | - Jacob B Holm
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Clinical Microbiomics, Copenhagen, Denmark
| | - Kim A Sjøberg
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Universitetsparken 13, Copenhagen 2100, Denmark
| | | | | | - Even Fjære
- Institute of Marine Research, Bergen, Norway
| | - Benjamin A H Jensen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Department of Medicine, Laval University, Quebec, QC, Canada
| | - Trine S Nicolaisen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Universitetsparken 13, Copenhagen 2100, Denmark
| | - Janne R Hingst
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Universitetsparken 13, Copenhagen 2100, Denmark
| | - Sine L Hansen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Universitetsparken 13, Copenhagen 2100, Denmark
| | - Sophia Doll
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Munich, Germany
| | - Philip E Geyer
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Munich, Germany
| | - Atul S Deshmukh
- The Novo Nordisk Foundation Center for Protein Research, Clinical Proteomics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lise Madsen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Institute of Marine Research, Bergen, Norway
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Institute of Metagenomics, BGI-Shenzhen, Shenzhen, China
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Universitetsparken 13, Copenhagen 2100, Denmark
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Universitetsparken 13, Copenhagen 2100, Denmark
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Universitetsparken 13, Copenhagen 2100, Denmark.
| |
Collapse
|
39
|
Soares GM, Zangerolamo L, Costa-Júnior JM, Vettorazzi JF, Carneiro EM, Saad ST, Boschero AC, Barbosa-Sampaio HC. Whole-Body ARHGAP21-Deficiency Improves Energetic Homeostasis in Lean and Obese Mice. Front Endocrinol (Lausanne) 2019; 10:338. [PMID: 31191459 PMCID: PMC6548804 DOI: 10.3389/fendo.2019.00338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/10/2019] [Indexed: 01/09/2023] Open
Abstract
Inhibition of Rab-GAP TBC1 domain family member 1 (TBC1D1) reduces body weight and increases energy expenditure in mice. Here, we assessed the possible involvement of GTPase activating protein 21 (ARHGAP21), a Rho-GAP protein, in energy homeostasis. Wild-type and whole-body ARHGAP21-haplodeficient mice were fed either chow or high-fat diet for 10 weeks. These mice were analyzed for body weight, food intake, voluntary physical activity, and energy expenditure by indirect calorimetry. Real-time PCR was performed to determine changes in the expression of hypothalamic-anorexic genes. Whole-body ARHGAP21-haplodeficient mice showed lower body weight and food intake associated with increased energy expenditure. These mice also showed higher expression of hypothalamic-anorexic genes such as POMC and CART. Our data suggest that the reduction in body weight of ARHGAP21-haplodeficient mice was related to alterations in the central nervous system. This suggests a new role for ARHGAP21 in energetic metabolism and prompts us to consider GAP protein members as possible targets for the prevention and treatment of obesity and related diseases.
Collapse
Affiliation(s)
- Gabriela Moreira Soares
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas/UNICAMP, Campinas, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, Brazil
| | - Lucas Zangerolamo
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas/UNICAMP, Campinas, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, Brazil
| | - Jose Maria Costa-Júnior
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas/UNICAMP, Campinas, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, Brazil
| | - Jean Franciesco Vettorazzi
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas/UNICAMP, Campinas, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, Brazil
| | - Everardo Magalhães Carneiro
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas/UNICAMP, Campinas, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, Brazil
| | - Sara Teresinha Saad
- Hematology and Hemotherapy Center, University of Campinas, HEMOCENTRO-UNICAMP, Campinas, Brazil
| | - Antonio Carlos Boschero
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas/UNICAMP, Campinas, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, Brazil
| | - Helena Cristina Barbosa-Sampaio
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas/UNICAMP, Campinas, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, Brazil
- *Correspondence: Helena Cristina Barbosa-Sampaio
| |
Collapse
|
40
|
Two Novel Candidate Genes for Insulin Secretion Identified by Comparative Genomics of Multiple Backcross Mouse Populations. Genetics 2018; 210:1527-1542. [PMID: 30341086 DOI: 10.1534/genetics.118.301578] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/16/2018] [Indexed: 12/28/2022] Open
Abstract
To identify novel disease genes for type 2 diabetes (T2D) we generated two backcross populations of obese and diabetes-susceptible New Zealand Obese (NZO/HI) mice with the two lean mouse strains 129P2/OlaHsd and C3HeB/FeJ. Subsequent whole-genome linkage scans revealed 30 novel quantitative trait loci (QTL) for T2D-associated traits. The strongest association with blood glucose [12 cM, logarithm of the odds (LOD) 13.3] and plasma insulin (17 cM, LOD 4.8) was detected on proximal chromosome 7 (designated Nbg7p, NZO blood glucose on proximal chromosome 7) exclusively in the NZOxC3H crossbreeding, suggesting that the causal gene is contributed by the C3H genome. Introgression of the critical C3H fragment into the genetic NZO background by generating recombinant congenic strains and metabolic phenotyping validated the phenotype. For the detection of candidate genes in the critical region (30-46 Mb), we used a combined approach of haplotype and gene expression analysis to search for C3H-specific gene variants in the pancreatic islets, which appeared to be the most likely target tissue for the QTL. Two genes, Atp4a and Pop4, fulfilled the criteria from our candidate gene approaches. The knockdown of both genes in MIN6 cells led to decreased glucose-stimulated insulin secretion, indicating a regulatory role of both genes in insulin secretion, thereby possibly contributing to the phenotype linked to Nbg7p In conclusion, our combined- and comparative-cross analysis approach has successfully led to the identification of two novel diabetes susceptibility candidate genes, and thus has been proven to be a valuable tool for the discovery of novel disease genes.
Collapse
|
41
|
Mafakheri S, Flörke RR, Kanngießer S, Hartwig S, Espelage L, De Wendt C, Schönberger T, Hamker N, Lehr S, Chadt A, Al-Hasani H. AKT and AMP-activated protein kinase regulate TBC1D1 through phosphorylation and its interaction with the cytosolic tail of insulin-regulated aminopeptidase IRAP. J Biol Chem 2018; 293:17853-17862. [PMID: 30275018 DOI: 10.1074/jbc.ra118.005040] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/18/2018] [Indexed: 12/21/2022] Open
Abstract
In skeletal muscle, the Rab GTPase-activating (GAP) protein TBC1D1 is phosphorylated by AKT and AMP-activated protein kinase (AMPK) in response to insulin and muscle contraction. Genetic ablation of Tbc1d1 or mutation of distinct phosphorylation sites impairs intracellular GLUT4 retention and GLUT4 traffic, presumably through alterations of the activation state of downstream Rab GTPases. Previous studies have focused on characterizing the C-terminal GAP domain of TBC1D1 that lacks the known phosphorylation sites, as well as putative regulatory domains. As a result, it has been unclear how phosphorylation of TBC1D1 would regulate its activity. In the present study, we have expressed, purified, and characterized recombinant full-length TBC1D1 in Sf9 insect cells via the baculovirus system. Full-length TBC1D1 showed RabGAP activity toward GLUT4-associated Rab8a, Rab10, and Rab14, indicating similar substrate specificity as the truncated GAP domain. However, the catalytic activity of the full-length TBC1D1 was markedly higher than that of the GAP domain. Although in vitro phosphorylation of TBC1D1 by AKT or AMPK increased 14-3-3 binding, it did not alter the intrinsic RabGAP activity. However, we found that TBC1D1 interacts through its N-terminal PTB domains with the cytoplasmic domain of the insulin-regulated aminopeptidase, a resident protein of GLUT4 storage vesicles, and this binding is disrupted by phosphorylation of TBC1D1 by AKT or AMPK. In summary, our findings suggest that other regions outside the GAP domain may contribute to the catalytic activity of TBC1D1. Moreover, our data indicate that recruitment of TBC1D1 to GLUT4-containing vesicles and not its GAP activity is regulated by insulin and contraction-mediated phosphorylation.
Collapse
Affiliation(s)
- Samaneh Mafakheri
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Ralf R Flörke
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Sibylle Kanngießer
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf
| | - Sonja Hartwig
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Lena Espelage
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Christian De Wendt
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Tina Schönberger
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf
| | - Nele Hamker
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf
| | - Stefan Lehr
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Alexandra Chadt
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Hadi Al-Hasani
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany.
| |
Collapse
|
42
|
Isoform-specific AMPK association with TBC1D1 is reduced by a mutation associated with severe obesity. Biochem J 2018; 475:2969-2983. [PMID: 30135087 PMCID: PMC6156765 DOI: 10.1042/bcj20180475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/10/2018] [Accepted: 08/22/2018] [Indexed: 01/08/2023]
Abstract
AMP-activated protein kinase (AMPK) is a key regulator of cellular and systemic energy homeostasis which achieves this through the phosphorylation of a myriad of downstream targets. One target is TBC1D1 a Rab-GTPase-activating protein that regulates glucose uptake in muscle cells by integrating insulin signalling with that promoted by muscle contraction. Ser237 in TBC1D1 is a target for phosphorylation by AMPK, an event which may be important in regulating glucose uptake. Here, we show AMPK heterotrimers containing the α1, but not the α2, isoform of the catalytic subunit form an unusual and stable association with TBC1D1, but not its paralogue AS160. The interaction between the two proteins is direct, involves a dual interaction mechanism employing both phosphotyrosine-binding (PTB) domains of TBC1D1 and is increased by two different pharmacological activators of AMPK (AICAR and A769962). The interaction enhances the efficiency by which AMPK phosphorylates TBC1D1 on its key regulatory site, Ser237. Furthermore, the interaction is reduced by a naturally occurring R125W mutation in the PTB1 domain of TBC1D1, previously found to be associated with severe familial obesity in females, with a concomitant reduction in Ser237 phosphorylation. Our observations provide evidence for a functional difference between AMPK α-subunits and extend the repertoire of protein kinases that interact with substrates via stabilisation mechanisms that modify the efficacy of substrate phosphorylation.
Collapse
|
43
|
Regulation of RabGAPs involved in insulin action. Biochem Soc Trans 2018; 46:683-690. [PMID: 29784647 DOI: 10.1042/bst20170479] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/31/2022]
Abstract
Rab (Ras-related proteins in brain) GTPases are key proteins responsible for a multiplicity of cellular trafficking processes. Belonging to the family of monomeric GTPases, they are regulated by cycling between their active GTP-bound and inactive GDP-bound conformations. Despite possessing a slow intrinsic GTP hydrolysis activity, Rab proteins rely on RabGAPs (Rab GTPase-activating proteins) that catalyze GTP hydrolysis and consequently inactivate the respective Rab GTPases. Two related RabGAPs, TBC1D1 and TBC1D4 (=AS160) have been described to be associated with obesity-related traits and type 2 diabetes in both mice and humans. Inactivating mutations of TBC1D1 and TBC1D4 lead to substantial changes in trafficking and subcellular distribution of the insulin-responsive glucose transporter GLUT4, and to subsequent alterations in energy substrate metabolism. The activity of the RabGAPs is controlled through complex phosphorylation events mediated by protein kinases including AKT and AMPK, and by putative regulatory interaction partners. However, the dynamics and downstream events following phosphorylation are not well understood. This review focuses on the specific role and regulation of TBC1D1 and TBC1D4 in insulin action.
Collapse
|
44
|
Abstract
Lipid droplets (LDs) are ubiquitous fat storage organelles and play key roles in lipid metabolism and energy homeostasis; in addition, they contribute to protein storage, folding, and degradation. However, a role for LDs in the nervous system remains largely unexplored. We discuss evidence supporting an intimate functional connection between LDs and motor neuron disease (MND) pathophysiology, examining how LD functions in systemic energy homeostasis, in neuron-glia metabolic coupling, and in protein folding and clearance may affect or contribute to disease pathology. An integrated understanding of LD biology and neurodegeneration may open the way for new therapeutic interventions.
Collapse
Affiliation(s)
- Giuseppa Pennetta
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK; Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK.
| | - Michael A Welte
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
45
|
Cardoso DF, de Albuquerque LG, Reimer C, Qanbari S, Erbe M, do Nascimento AV, Venturini GC, Scalez DCB, Baldi F, de Camargo GMF, Mercadante MEZ, do Santos Gonçalves Cyrillo JN, Simianer H, Tonhati H. Genome-wide scan reveals population stratification and footprints of recent selection in Nelore cattle. Genet Sel Evol 2018; 50:22. [PMID: 29720080 PMCID: PMC5930444 DOI: 10.1186/s12711-018-0381-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 02/20/2018] [Indexed: 12/11/2022] Open
Abstract
Background This study aimed at (1) assessing the genomic stratification of experimental lines of Nelore cattle that have experienced different selection regimes for growth traits, and (2) identifying genomic regions that have undergone recent selection. We used a sample of 763 animals genotyped with the Illumina BovineHD BeadChip, among which 674 animals originated from two lines that are maintained under directional selection for increased yearling body weight and 89 animals from a control line that is maintained under stabilizing selection. Results Multidimensional analysis of the genomic dissimilarity matrix and admixture analysis revealed a substantial level of population stratification between the directional selection lines and the stabilizing selection control line. Two of the three tests used to detect selection signatures (FST, XP-EHH and iHS) revealed six candidate regions with indications of selection, which strongly indicates truly positive signals. The set of identified candidate genes included several genes with roles that are functionally related to growth metabolism, such as COL14A1, CPT1C, CRH, TBC1D1, and XKR4. Conclusions The current study identified genetic stratification that resulted from almost four decades of divergent selection in an experimental Nelore population, and highlighted autosomal genomic regions that present patterns of recent selection. Our findings provide a basis for a better understanding of the metabolic mechanism that underlies the growth traits, which are modified by selection for yearling body weight. Electronic supplementary material The online version of this article (10.1186/s12711-018-0381-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diercles F Cardoso
- Department of Animal Science, Faculty of Agrarian and Veterinary Sciences, Sao Paulo State University, Jaboticabal, SP, Brazil.
| | - Lucia Galvão de Albuquerque
- Department of Animal Science, Faculty of Agrarian and Veterinary Sciences, Sao Paulo State University, Jaboticabal, SP, Brazil.,National Counsel of Technological and Scientific Development (CNPq), Brasília, DF, Brazil
| | - Christian Reimer
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Goettingen, Germany
| | - Saber Qanbari
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Goettingen, Germany
| | - Malena Erbe
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Goettingen, Germany.,Institute for Animal Breeding, Bavarian State Research Center for Agriculture, Grub, Germany
| | - André V do Nascimento
- Department of Animal Science, Faculty of Agrarian and Veterinary Sciences, Sao Paulo State University, Jaboticabal, SP, Brazil
| | - Guilherme C Venturini
- Department of Animal Science, Faculty of Agrarian and Veterinary Sciences, Sao Paulo State University, Jaboticabal, SP, Brazil
| | - Daiane C Becker Scalez
- Department of Animal Science, Faculty of Agrarian and Veterinary Sciences, Sao Paulo State University, Jaboticabal, SP, Brazil
| | - Fernando Baldi
- Department of Animal Science, Faculty of Agrarian and Veterinary Sciences, Sao Paulo State University, Jaboticabal, SP, Brazil.,National Counsel of Technological and Scientific Development (CNPq), Brasília, DF, Brazil
| | - Gregório M Ferreira de Camargo
- Department of Animal Science, Faculty of Agrarian and Veterinary Sciences, Sao Paulo State University, Jaboticabal, SP, Brazil
| | - Maria E Zerlotti Mercadante
- National Counsel of Technological and Scientific Development (CNPq), Brasília, DF, Brazil.,APTA Beef Cattle Center, Institute of Animal Science, Sertãozinho, SP, Brazil
| | | | - Henner Simianer
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Goettingen, Germany
| | - Humberto Tonhati
- Department of Animal Science, Faculty of Agrarian and Veterinary Sciences, Sao Paulo State University, Jaboticabal, SP, Brazil.,National Counsel of Technological and Scientific Development (CNPq), Brasília, DF, Brazil
| |
Collapse
|
46
|
Stermann T, Menzel F, Weidlich C, Jeruschke K, Weiss J, Altenhofen D, Benninghoff T, Pujol A, Bosch F, Rustenbeck I, Ouwens DM, Thoresen GH, de Wendt C, Lebek S, Schallschmidt T, Kragl M, Lammert E, Chadt A, Al-Hasani H. Deletion of the RabGAP TBC1D1 Leads to Enhanced Insulin Secretion and Fatty Acid Oxidation in Islets From Male Mice. Endocrinology 2018; 159:1748-1761. [PMID: 29481597 DOI: 10.1210/en.2018-00087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 01/24/2023]
Abstract
The Rab guanosine triphosphatase-activating protein (RabGAP) TBC1D1 has been shown to be a key regulator of glucose and lipid metabolism in skeletal muscle. Its function in pancreatic islets, however, is not yet fully understood. Here, we aimed to clarify the specific impact of TBC1D1 on insulin secretion and substrate use in pancreatic islets. We analyzed the dynamics of glucose-stimulated insulin secretion (GSIS) and lipid metabolism in isolated islets from Tbc1d1-deficient (D1KO) mice. To further investigate the underlying cellular mechanisms, we conducted pharmacological studies in these islets. In addition, we determined morphology and number of both pancreatic islets and insulin vesicles in β-cells using light and transmission electron microscopy. Isolated pancreatic islets from D1KO mice exhibited substantially increased GSIS compared with wild-type (WT) controls. This was attributed to both enhanced first and second phase of insulin secretion, and this enhanced secretion persisted during repetitive glucose stimuli. Studies with sulfonylureas or KCl in isolated islets demonstrated that TBC1D1 exerts its function via a signaling pathway at the level of membrane depolarization. In line, ultrastructural analysis of isolated pancreatic islets revealed both higher insulin-granule density and number of docked granules in β-cells from D1KO mice compared with WT controls. Like in skeletal muscle, lipid use in isolated islets was enhanced upon D1KO, presumably as a result of a higher mitochondrial fission rate and/or higher mitochondrial activity. Our results clearly demonstrate a dual role of TBC1D1 in controlling substrate metabolism of the pancreatic islet.
Collapse
Affiliation(s)
- Torben Stermann
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, Duesseldorf, Germany
| | - Franziska Menzel
- German Institute for Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Carmen Weidlich
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
| | - Kay Jeruschke
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
| | - Jürgen Weiss
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
| | - Delsi Altenhofen
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, Duesseldorf, Germany
| | - Tim Benninghoff
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, Duesseldorf, Germany
| | - Anna Pujol
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ingo Rustenbeck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technical University Braunschweig, Braunschweig, Germany
| | - D Margriet Ouwens
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
| | - G Hege Thoresen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Christian de Wendt
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, Duesseldorf, Germany
| | - Sandra Lebek
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, Duesseldorf, Germany
| | - Tanja Schallschmidt
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, Duesseldorf, Germany
| | - Martin Kragl
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, Duesseldorf, Germany
| | - Eckhard Lammert
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, Duesseldorf, Germany
| | - Alexandra Chadt
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, Duesseldorf, Germany
| | - Hadi Al-Hasani
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, Duesseldorf, Germany
| |
Collapse
|
47
|
Lundsgaard AM, Fritzen AM, Kiens B. Molecular Regulation of Fatty Acid Oxidation in Skeletal Muscle during Aerobic Exercise. Trends Endocrinol Metab 2018; 29:18-30. [PMID: 29221849 DOI: 10.1016/j.tem.2017.10.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 01/21/2023]
Abstract
This review summarizes how fatty acid (FA) oxidation is regulated in skeletal muscle during exercise. From the available evidence it seems that acetyl-CoA availability in the mitochondrial matrix adjusts FA oxidation to exercise intensity and duration. This is executed at the step of mitochondrial fatty acyl import, as the extent of acetyl group sequestration by carnitine determines the availability of carnitine for the carnitine palmitoyltransferase 1 (CPT1) reaction. The rate of glycolysis seems therefore to be central to the amount of β-oxidation-derived acetyl-CoA that is oxidized in the tricarboxylic acid (TCA) cycle. FA oxidation during exercise is also determined by FA availability to mitochondria, dependent on trans-sarcolemmal FA uptake via cluster of differentiation 36/SR-B2 (CD36) and FAs mobilized from myocellular lipid droplets.
Collapse
Affiliation(s)
- Anne-Marie Lundsgaard
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Mæchel Fritzen
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
48
|
Karunakaran S, Clee SM. Genetics of metabolic syndrome: potential clues from wild-derived inbred mouse strains. Physiol Genomics 2018; 50:35-51. [DOI: 10.1152/physiolgenomics.00059.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The metabolic syndrome (MetS) is a complex constellation of metabolic abnormalities including obesity, abnormal glucose metabolism, dyslipidemia, and elevated blood pressure that together substantially increase risk for cardiovascular disease and Type 2 diabetes. Both genetic and environmental factors contribute to the development of MetS, but this process is still far from understood. Human studies have revealed only part of the underlying basis. Studies in mice offer many strengths that can complement human studies to help elucidate the etiology and pathophysiology of MetS. Here we review the ways mice can contribute to MetS research. In particular, we focus on the information that can be obtained from studies of the inbred strains, with specific focus on the phenotypes of the wild-derived inbred strains. These are newly derived inbred strains that were created from wild-caught mice. They contain substantial genetic variation that is not present in the classical inbred strains, have phenotypes of relevance for MetS, and various mouse strain resources have been created to facilitate the mining of this new genetic variation. Thus studies using wild-derived inbred strains hold great promise for increasing our understanding of MetS.
Collapse
Affiliation(s)
- Subashini Karunakaran
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Susanne M. Clee
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
49
|
Görgens SW, Benninghoff T, Eckardt K, Springer C, Chadt A, Melior A, Wefers J, Cramer A, Jensen J, Birkeland KI, Drevon CA, Al-Hasani H, Eckel J. Hypoxia in Combination With Muscle Contraction Improves Insulin Action and Glucose Metabolism in Human Skeletal Muscle via the HIF-1α Pathway. Diabetes 2017; 66:2800-2807. [PMID: 28811274 DOI: 10.2337/db16-1488] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 08/08/2017] [Indexed: 11/13/2022]
Abstract
Skeletal muscle insulin resistance is the hallmark of type 2 diabetes and develops long before the onset of the disease. It is well accepted that physical activity improves glycemic control, but the knowledge on underlying mechanisms mediating the beneficial effects remains incomplete. Exercise is accompanied by a decrease in intramuscular oxygen levels, resulting in induction of HIF-1α. HIF-1α is a master regulator of gene expression and might play an important role in skeletal muscle function and metabolism. Here we show that HIF-1α is important for glucose metabolism and insulin action in skeletal muscle. By using a genome-wide gene expression profiling approach, we identified RAB20 and TXNIP as two novel exercise/HIF-1α-regulated genes in skeletal muscle. Loss of Rab20 impairs insulin-stimulated glucose uptake in human and mouse skeletal muscle by blocking the translocation of GLUT4 to the cell surface. In addition, exercise/HIF-1α downregulates the expression of TXNIP, a well-known negative regulator of insulin action. In conclusion, we are the first to demonstrate that HIF-1α is a key regulator of glucose metabolism in skeletal muscle by directly controlling the transcription of RAB20 and TXNIP These results hint toward a novel function of HIF-1α as a potential pharmacological target to improve skeletal muscle insulin sensitivity.
Collapse
Affiliation(s)
- Sven W Görgens
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center (DDZ), Düsseldorf, Germany
| | - Tim Benninghoff
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Düsseldorf, Germany
| | - Kristin Eckardt
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center (DDZ), Düsseldorf, Germany
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christian Springer
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Düsseldorf, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Düsseldorf, Germany
| | - Anita Melior
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center (DDZ), Düsseldorf, Germany
| | - Jakob Wefers
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center (DDZ), Düsseldorf, Germany
| | - Andrea Cramer
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center (DDZ), Düsseldorf, Germany
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Kåre I Birkeland
- Department of Endocrinology, Morbid Obesity, and Preventive Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
| | - Jürgen Eckel
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center (DDZ), Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
| |
Collapse
|
50
|
Guo Y, Qiu H, Xiao S, Wu Z, Yang M, Yang J, Ren J, Huang L. A genome-wide association study identifies genomic loci associated with backfat thickness, carcass weight, and body weight in two commercial pig populations. J Appl Genet 2017; 58:499-508. [DOI: 10.1007/s13353-017-0405-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/30/2022]
|