1
|
Weniger MA, Seifert M, Küppers R. B Cell Differentiation and the Origin and Pathogenesis of Human B Cell Lymphomas. Methods Mol Biol 2025; 2865:1-30. [PMID: 39424718 DOI: 10.1007/978-1-0716-4188-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Immunoglobulin (IG) gene remodeling by V(D)J recombination plays a central role in the generation of normal B cells, and somatic hypermutation and class switching of IG genes are key processes during antigen-driven B cell differentiation in the germinal center reaction. However, errors of these processes are involved in the development of B cell lymphomas. IG locus-associated translocations of proto-oncogenes are a hallmark of many B cell malignancies. Additional transforming events include inactivating mutations in various tumor suppressor genes and also latent infection of B cells with viruses, such as Epstein-Barr virus. Most B cell lymphomas require B cell antigen receptor expression, and in several instances chronic antigenic stimulation plays a role in lymphoma development and/or sustaining tumor growth. Often, survival and proliferation signals provided by other cells in the microenvironment are a further critical factor in lymphoma development and pathophysiology. Most B cell malignancies derive from germinal center B cells, most likely due to the high proliferative activity of these B cells and aberrant mutations caused by their naturally active mutagenic processes.
Collapse
Affiliation(s)
- Marc A Weniger
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany
| | - Marc Seifert
- Department of Haematology, Oncology and Clinical Immunology, Heinrich Heine University, Medical School, Düsseldorf, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany.
| |
Collapse
|
2
|
de Castro Sampaio SS, Ramalho MCC, de Souza CS, de Almeida Rodrigues B, de Mendonça GRS, Lazarini M. RHO subfamily of small GTPases in the development and function of hematopoietic cells. J Cell Physiol 2024:e31469. [PMID: 39434451 DOI: 10.1002/jcp.31469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
RHOA, RHOB, and RHOC comprise a subfamily of RHO GTPase proteins famed for controlling cytoskeletal dynamics. RHO proteins operate downstream of multiple signals emerging from the microenvironment, leading to diverse cell responses, such as proliferation, adhesion, and migration. Therefore, RHO signaling has been centrally placed in the regulation of blood cells. Despite their high homology, unique roles of RHOA, RHOB, and RHOC have been described in hematopoietic cells. In this article, we overview the contribution of RHO proteins in the development and function of each blood cell lineage. Additionally, we highlight the aberrations of the RHO signaling pathways found in hematological malignancies, providing clues for the identification of new therapeutic targets.
Collapse
Affiliation(s)
| | | | - Caroline Santos de Souza
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Mariana Lazarini
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Corinaldesi C, Holmes AB, Martire G, Tosato A, Rizzato D, Lovisa F, Gallingani I, Shen Q, Ferrone L, Harris M, Davies K, Molinaro L, Mortara U, Dei Tos AP, Ofori K, D'Amore ESG, Chiarle R, Ngan B, Carraro E, Pillon M, Hussein S, Bhagat G, Pizzi M, Mussolin L, Basso K. Single-cell transcriptomics of pediatric Burkitt lymphoma reveals intra-tumor heterogeneity and markers of therapy resistance. Leukemia 2024:10.1038/s41375-024-02431-3. [PMID: 39424708 DOI: 10.1038/s41375-024-02431-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/08/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
Burkitt lymphoma (BL) is the most frequent B-cell lymphoma in pediatric patients. While most patients are cured, a fraction of them are resistant to therapy. To investigate BL heterogeneity and the features distinguishing therapy responders (R) from non-responders (NR), we analyzed by single-cell (sc)-transcriptomics diagnostic EBV-negative BL specimens. Analysis of the non-tumor component revealed a predominance of immune cells and a small representation of fibroblasts, enriched in NR. Tumors displayed patient-specific features, as well as shared subpopulations that expressed transcripts related to cell cycle, signaling pathways and cell-of-origin signatures. Several transcripts were differentially expressed in R versus NR. The top candidate, Tropomyosin 2 (TPM2), a member of the tropomyosin actin filament binding protein family, was confirmed to be significantly higher in NR both at the transcript and protein level. Stratification of patients based on TPM2 expression at diagnosis significantly correlated with prognosis, independently of TP53 mutations. These results indicate that BL displays transcriptional heterogeneity and identify candidate biomarkers of therapy resistance.
Collapse
Affiliation(s)
| | - Antony B Holmes
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Gaia Martire
- Maternal and Child Health Department, University-Hospital of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica Citta' della Speranza, Padova, Italy
| | - Anna Tosato
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
- Maternal and Child Health Department, University-Hospital of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica Citta' della Speranza, Padova, Italy
| | - Domenico Rizzato
- Maternal and Child Health Department, University-Hospital of Padova, Padova, Italy
| | - Federica Lovisa
- Istituto di Ricerca Pediatrica Citta' della Speranza, Padova, Italy
| | - Ilaria Gallingani
- Maternal and Child Health Department, University-Hospital of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica Citta' della Speranza, Padova, Italy
| | - Qiong Shen
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Lavinia Ferrone
- Maternal and Child Health Department, University-Hospital of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica Citta' della Speranza, Padova, Italy
| | - Marian Harris
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Luca Molinaro
- Department of Medical Science, University of Torino, Torino, Italy
| | - Umberto Mortara
- Department of Medical Science, University of Torino, Torino, Italy
| | - Angelo Paolo Dei Tos
- General Pathology and Cytopathology Unit, Department of Medicine-DMED, University-Hospital of Padova, Padova, Italy
| | - Kenneth Ofori
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | | | - Roberto Chiarle
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- European Institute of Oncology IRCCS, Division of Hematopathology, Milan, Italy
| | - Bo Ngan
- Hospital for Sick Children (SickKids), Toronto, ON, Canada
| | - Elisa Carraro
- Maternal and Child Health Department, University-Hospital of Padova, Padova, Italy
| | - Marta Pillon
- Maternal and Child Health Department, University-Hospital of Padova, Padova, Italy
| | - Shafinaz Hussein
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Govind Bhagat
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Marco Pizzi
- General Pathology and Cytopathology Unit, Department of Medicine-DMED, University-Hospital of Padova, Padova, Italy
| | - Lara Mussolin
- Maternal and Child Health Department, University-Hospital of Padova, Padova, Italy.
- Istituto di Ricerca Pediatrica Citta' della Speranza, Padova, Italy.
| | - Katia Basso
- Institute for Cancer Genetics, Columbia University, New York, NY, USA.
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
4
|
Castro JP, Shindyapina AV, Barbieri A, Ying K, Strelkova OS, Paulo JA, Tyshkovskiy A, Meinl R, Kerepesi C, Petrashen AP, Mariotti M, Meer MV, Hu Y, Karamyshev A, Losyev G, Galhardo M, Logarinho E, Indzhykulian AA, Gygi SP, Sedivy JM, Manis JP, Gladyshev VN. Age-associated clonal B cells drive B cell lymphoma in mice. NATURE AGING 2024; 4:1403-1417. [PMID: 39117982 DOI: 10.1038/s43587-024-00671-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 06/19/2024] [Indexed: 08/10/2024]
Abstract
Although cancer is an age-related disease, how the processes of aging contribute to cancer progression is not well understood. In this study, we uncovered how mouse B cell lymphoma develops as a consequence of a naturally aged system. We show here that this malignancy is associated with an age-associated clonal B cell (ACBC) population that likely originates from age-associated B cells. Driven by c-Myc activation, promoter hypermethylation and somatic mutations, IgM+ ACBCs clonally expand independently of germinal centers and show increased biological age. ACBCs become self-sufficient and support malignancy when transferred into young recipients. Inhibition of mTOR or c-Myc in old mice attenuates pre-malignant changes in B cells during aging. Although the etiology of mouse and human B cell lymphomas is considered distinct, epigenetic changes in transformed mouse B cells are enriched for changes observed in human B cell lymphomas. Together, our findings characterize the spontaneous progression of cancer during aging through both cell-intrinsic and microenvironmental changes and suggest interventions for its prevention.
Collapse
Affiliation(s)
- José P Castro
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Aging and Aneuploidy Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | | | | | - Kejun Ying
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Olga S Strelkova
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - João A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Rico Meinl
- Retro Biosciences, Redwood City, CA, USA
| | - Csaba Kerepesi
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Computer Science and Control (SZTAKI), Loránd Eötvös Research Network, Budapest, Hungary
| | - Anna P Petrashen
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Marco Mariotti
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Margarita V Meer
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- San Diego Institute of Sciences, Altos Labs, San Diego, CA, USA
| | - Yan Hu
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Grigoriy Losyev
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mafalda Galhardo
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Elsa Logarinho
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Artur A Indzhykulian
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - John M Sedivy
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - John P Manis
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vadim N Gladyshev
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Yu A, Yesilkanal A, Thakur A, Wang F, Yang Y, Phillips W, Wu X, Muir A, He X, Spitz F, Yang L. HYENA detects oncogenes activated by distal enhancers in cancer. Nucleic Acids Res 2024; 52:e77. [PMID: 39051548 PMCID: PMC11381332 DOI: 10.1093/nar/gkae646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/07/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
Somatic structural variations (SVs) in cancer can shuffle DNA content in the genome, relocate regulatory elements, and alter genome organization. Enhancer hijacking occurs when SVs relocate distal enhancers to activate proto-oncogenes. However, most enhancer hijacking studies have only focused on protein-coding genes. Here, we develop a computational algorithm 'HYENA' to identify candidate oncogenes (both protein-coding and non-coding) activated by enhancer hijacking based on tumor whole-genome and transcriptome sequencing data. HYENA detects genes whose elevated expression is associated with somatic SVs by using a rank-based regression model. We systematically analyze 1146 tumors across 25 types of adult tumors and identify a total of 108 candidate oncogenes including many non-coding genes. A long non-coding RNA TOB1-AS1 is activated by various types of SVs in 10% of pancreatic cancers through altered 3-dimensional genome structure. We find that high expression of TOB1-AS1 can promote cell invasion and metastasis. Our study highlights the contribution of genetic alterations in non-coding regions to tumorigenesis and tumor progression.
Collapse
Affiliation(s)
- Anqi Yu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Ali E Yesilkanal
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Ashish Thakur
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Fan Wang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Yang Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - William Phillips
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Xin He
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Francois Spitz
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Lixing Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| |
Collapse
|
6
|
Brand MVD, Tzankov A, Scheijde-Vermeulen M, Barbé E, Dirnhofer S, Stenner F, Hebeda K, Chamuleau M, Jong DD. The diagnosis of Burkitt lymphoma: how do pathologists apply criteria in daily practice? Leuk Lymphoma 2024:1-4. [PMID: 39205632 DOI: 10.1080/10428194.2024.2396542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/23/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Michiel van den Brand
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
- Pathology-DNA, location Rijnstate Hospital, Arnhem, the Netherlands
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Ellis Barbé
- Department of Pathology, AmsterdamUMC, location VU University Medical Center, Amsterdam, the Netherlands
| | - Stefan Dirnhofer
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Frank Stenner
- Department of Oncology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Konnie Hebeda
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Martine Chamuleau
- Department of Haematology, AmsterdamUMC, location VU University Medical Center, Amsterdam, the Netherlands
| | - Daphne de Jong
- Department of Pathology, AmsterdamUMC, location VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Reddy Onteddu V, Bhattacharya A, Baker NE. The Id protein Extramacrochaetae restrains the E protein Daughterless to regulate Notch, Rap1, and Sevenless within the R7 equivalence group of the Drosophila eye. Biol Open 2024; 13:bio060124. [PMID: 39041866 PMCID: PMC11360143 DOI: 10.1242/bio.060124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
The Drosophila Id gene extramacrochaetae (emc) is required during Drosophila eye development for proper cell fate specification within the R7 equivalence group. Without emc, R7 cells develop like R1/6 cells, and there are delays and deficits in differentiation of non-neuronal cone cells. Although emc encodes an Inhibitor of DNA-binding (Id) protein that is known to antagonize proneural bHLH protein function, no proneural gene is known for R7 or cone cell fates. These fates are also independent of daughterless (da), which encodes the ubiquitous E protein heterodimer partner of proneural bHLH proteins. We report here that the effects of emc mutations disappear in the absence of da, and are partially mimicked by forced expression of Da dimers, indicating that emc normally restrains da from interfering with R7 and cone cell specification, as occurs in emc mutants. emc, and da, regulate three known contributors to R7 fate, which are Notch signaling, Rap1, and Sevenless. R7 specification is partially restored to emc mutant cells by mutation of RapGap1, confirming that Rap1 activity, in addition to Notch activity, is a critical target of emc. These findings exemplify how mutations of an Id protein gene can affect processes that do not require any bHLH protein, by restraining Da activity within physiological bounds.
Collapse
Affiliation(s)
- Venkateswara Reddy Onteddu
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461,USA
| | - Abhishek Bhattacharya
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461,USA
| | - Nicholas E. Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461,USA
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461,USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461,USA
| |
Collapse
|
8
|
Wang J, Yang M, Ali O, Dragland JS, Bjørås M, Farkas L. Predicting regulatory mutations and their target genes by new computational integrative analysis: A study of follicular lymphoma. Comput Biol Med 2024; 178:108787. [PMID: 38901187 DOI: 10.1016/j.compbiomed.2024.108787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Mutations in DNA regulatory regions are increasingly being recognized as important drivers of cancer and other complex diseases. These mutations can regulate gene expression by affecting DNA-protein binding and epigenetic profiles, such as DNA methylation in genome regulatory elements. However, identifying mutation hotspots associated with expression regulation and disease progression in non-coding DNA remains a challenge. Unlike most existing approaches that assign a mutation score to individual single nucleotide polymorphisms (SNP), a mutation block (MB)-based approach was introduced in this study to assess the collective impact of a cluster of SNPs on transcription factor-DNA binding affinity, differential gene expression (DEG), and nearby DNA methylation. Moreover, the long-distance target genes of functional MBs were identified using a new permutation-based algorithm that assessed the significance of correlations between DNA methylation at regulatory regions and target gene expression. Two new Python packages were developed. The Differential Methylation Region (DMR-analysis) analysis tool was used to detect DMR and map them to regulatory elements. The second tool, an integrated DMR, DEG, and SNP analysis tool (DDS-analysis), was used to combine the omics data to identify functional MBs and long-distance target genes. Both tools were validated in follicular lymphoma (FL) cohorts, where not only known functional MBs and their target genes (BCL2 and BCL6) were recovered, but also novel genes were found, including CDCA4 and JAG2, which may be associated with FL development. These genes are linked to target gene expression and are significantly correlated with the methylation of nearby DNA sequences in FL. The proposed computational integrative analysis of multiomics data holds promise for identifying regulatory mutations in cancer and other complex diseases.
Collapse
Affiliation(s)
- Junbai Wang
- Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital and University of Oslo, Lørenskog, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Campus AHUS/Oslo, Norway.
| | - Mingyi Yang
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Centre for Embryology and Healthy Development (CRESCO), University of Oslo, Oslo, 0373, Norway
| | - Omer Ali
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Campus AHUS/Oslo, Norway; Department of Pathology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| | - Jenny Sofie Dragland
- Department of Pathology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Centre for Embryology and Healthy Development (CRESCO), University of Oslo, Oslo, 0373, Norway
| | - Lorant Farkas
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Campus AHUS/Oslo, Norway; Department of Pathology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| |
Collapse
|
9
|
Owens MC, Yanas A, Liu KF. Sex chromosome-encoded protein homologs: current progress and open questions. Nat Struct Mol Biol 2024; 31:1156-1166. [PMID: 39123067 DOI: 10.1038/s41594-024-01362-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/28/2024] [Indexed: 08/12/2024]
Abstract
The complexity of biological sex differences is markedly evident in human physiology and pathology. Although many of these differences can be ascribed to the expression of sex hormones, another contributor to sex differences lies in the sex chromosomes beyond their role in sex determination. Although largely nonhomologous, the human sex chromosomes express seventeen pairs of homologous genes, referred to as the 'X-Y pairs.' The X chromosome-encoded homologs of these Y-encoded proteins are crucial players in several cellular processes, and their dysregulation frequently results in disease development. Many diseases related to these X-encoded homologs present with sex-biased incidence or severity. By contrast, comparatively little is known about the differential functions of the Y-linked homologs. Here, we summarize and discuss the current understanding of five of these X-Y paired proteins, with recent evidence of differential functions and of having a potential link to sex biases in disease, highlighting how amino acid-level sequence differences may differentiate their functions and contribute to sex biases in human disease.
Collapse
Affiliation(s)
- Michael C Owens
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Amber Yanas
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Qiu Z, Khalife J, Ethiraj P, Jaafar C, Lin AP, Holder KN, Ritter JP, Chiou L, Huelgas-Morales G, Aslam S, Zhang Z, Liu Z, Arya S, Gupta YK, Dahia PLM, Aguiar RC. IRF8-mutant B cell lymphoma evades immunity through a CD74-dependent deregulation of antigen processing and presentation in MHCII complexes. SCIENCE ADVANCES 2024; 10:eadk2091. [PMID: 38996030 PMCID: PMC11244530 DOI: 10.1126/sciadv.adk2091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 06/06/2024] [Indexed: 07/14/2024]
Abstract
The mechanism by which interferon regulatory factor 8 (IRF8) mutation contributes to lymphomagenesis is unknown. We modeled IRF8 variants in B cell lymphomas and found that they affected the expression of regulators of antigen presentation. Expression of IRF8 mutants in murine B cell lymphomas suppressed CD4, but not CD8, activation elicited by antigen presentation and downmodulated CD74 and human leukocyte antigen (HLA) DM, intracellular regulators of antigen peptide processing/loading in the major histocompatibility complex (MHC) II. Concordantly, mutant IRF8 bound less efficiently to the promoters of these genes. Mice harboring IRF8 mutant lymphomas displayed higher tumor burden and remodeling of the tumor microenvironment, typified by depletion of CD4, CD8, and natural killer cells, increase in regulatory T cells and T follicular helper cells. Deconvolution of bulk RNA sequencing data from IRF8-mutant human diffuse large B cell lymphoma (DLBCL) recapitulated part of the immune remodeling detected in mice. We concluded that IRF8 mutations contribute to DLBCL biology by facilitating immune escape.
Collapse
MESH Headings
- Interferon Regulatory Factors/genetics
- Interferon Regulatory Factors/metabolism
- Animals
- Antigen Presentation/immunology
- Antigen Presentation/genetics
- Humans
- Mice
- Mutation
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/immunology
- Tumor Microenvironment/immunology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/pathology
- Cell Line, Tumor
- Tumor Escape/genetics
- Gene Expression Regulation, Neoplastic
Collapse
Affiliation(s)
- Zhijun Qiu
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Jihane Khalife
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Purushoth Ethiraj
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Carine Jaafar
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - An-Ping Lin
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Kenneth N. Holder
- Department of Pathology, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Jacob P. Ritter
- Department of Pathology, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Lilly Chiou
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Gabriela Huelgas-Morales
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Sadia Aslam
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Zhao Zhang
- Department of Molecular Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Zhijie Liu
- Department of Molecular Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Shailee Arya
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Yogesh K. Gupta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Patricia L. M. Dahia
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Ricardo C.T. Aguiar
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
- South Texas Veterans Health Care System, Audie Murphy VA Hospital, San Antonio, TX 78229, USA
| |
Collapse
|
11
|
Atallah-Yunes SA, Habermann TM, Khurana A. Targeted therapy in Burkitt lymphoma: Small molecule inhibitors under investigation. Br J Haematol 2024; 204:2165-2172. [PMID: 38577716 DOI: 10.1111/bjh.19425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
Multiagent chemoimmunotherapy remains the standard of care treatment for Burkitt lymphoma leading to a cure in the majority of cases. However, frontline treatment regimens are associated with a significant risk of treatment related toxicity especially in elderly and immunocompromised patients. Additionally, prognosis remains dismal in refractory/relapsed Burkitt lymphoma. Thus, novel therapies are required to not only improve outcomes in relapsed/refractory Burkitt lymphoma but also minimize frontline treatment related toxicities. Recurrent genomic changes and signalling pathway alterations that have been implicated in the Burkitt lymphomagenesis include cell cycle dysregulation, cell proliferation, inhibition of apoptosis, epigenetic dysregulation and tonic B-cell receptor-phosphatidylinositol 3-kinase (BCR-PI3K) signalling. Here, we will discuss novel targeted therapy approaches using small molecule inhibitors that could pave the way to the future treatment landscape based on the understanding of recurrent genomic changes and signalling pathway alterations in the lymphomagenesis of adult Burkitt lymphoma.
Collapse
Affiliation(s)
| | - Thomas M Habermann
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Arushi Khurana
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
12
|
Verdura S, Encinar JA, Gratchev A, Llop-Hernández À, López J, Serrano-Hervás E, Teixidor E, López-Bonet E, Martin-Castillo B, Micol V, Bosch-Barrera J, Cuyàs E, Menendez JA. Silibinin is a suppressor of the metastasis-promoting transcription factor ID3. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155493. [PMID: 38484626 DOI: 10.1016/j.phymed.2024.155493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND ID3 (inhibitor of DNA binding/differentiation-3) is a transcription factor that enables metastasis by promoting stem cell-like properties in endothelial and tumor cells. The milk thistle flavonolignan silibinin is a phytochemical with anti-metastatic potential through largely unknown mechanisms. HYPOTHESIS/PURPOSE We have mechanistically investigated the ability of silibinin to inhibit the aberrant activation of ID3 in brain endothelium and non-small cell lung cancer (NSCLC) models. METHODS Bioinformatic analyses were performed to investigate the co-expression correlation between ID3 and bone morphogenic protein (BMP) ligands/BMP receptors (BMPRs) genes in NSCLC patient datasets. ID3 expression was assessed by immunoblotting and qRT-PCR. Luciferase reporter assays were used to evaluate the gene sequences targeted by silibinin to regulate ID3 transcription. In silico computational modeling and LanthaScreen TR-FRET kinase assays were used to characterize and validate the BMPR inhibitory activity of silibinin. Tumor tissues from NSCLC xenograft models treated with oral silibinin were used to evaluate the in vivo anti-ID3 effects of silibinin. RESULTS Analysis of lung cancer patient datasets revealed a top-ranked positive association of ID3 with the BMP9 endothelial receptor ACVRL1/ALK1 and the BMP ligand BMP6. Silibinin treatment blocked the BMP9-induced activation of the ALK1-phospho-SMAD1/5-ID3 axis in brain endothelial cells. Constitutive, acquired, and adaptive expression of ID3 in NSCLC cells were all significantly downregulated in response to silibinin. Silibinin blocked ID3 transcription via BMP-responsive elements in ID3 gene enhancers. Silibinin inhibited the kinase activities of BMPRs in the micromolar range, with the lower IC50 values occurring against ACVRL1/ALK1 and BMPR2. In an in vivo NSCLC xenograft model, tumoral overexpression of ID3 was completely suppressed by systematically achievable oral doses of silibinin. CONCLUSIONS ID3 is a largely undruggable metastasis-promoting transcription factor. Silibinin is a novel suppressor of ID3 that may be explored as a novel therapeutic approach to interfere with the metastatic dissemination capacity of NSCLC.
Collapse
Affiliation(s)
- Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - José Antonio Encinar
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), Elche 03202, Spain
| | - Alexei Gratchev
- Laboratory for Tumor Stromal Cell Biology, Institute of Carcinogenesis, Nikolaj Nikolajevich (N.N.) Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia
| | - Àngela Llop-Hernández
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Júlia López
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Eila Serrano-Hervás
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Eduard Teixidor
- Precision Oncology Group (OncoGir-Pro), Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain; Medical Oncology, Catalan Institute of Oncology, Girona, 17007, Spain
| | - Eugeni López-Bonet
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain; Department of Anatomical Pathology, Dr. Josep Trueta Hospital of Girona, Girona 17007, Spain
| | - Begoña Martin-Castillo
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain; Unit of Clinical Research, Catalan Institute of Oncology, Girona, 17007, Spain
| | - Vicente Micol
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), Elche 03202, Spain; CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
| | - Joaquim Bosch-Barrera
- Precision Oncology Group (OncoGir-Pro), Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain; Medical Oncology, Catalan Institute of Oncology, Girona, 17007, Spain; Department of Medical Sciences, Medical School, University of Girona, Girona, Spain
| | - Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain.
| |
Collapse
|
13
|
Magazzino F, Aristei C, Passarelli A, Pierini A, De Giorgi U, Martinello R, Domenici L, Pignata S, Mangili G, Cormio G. Lymphomas of the Vulva: A Review of the MITO Rare Cancer Group. Cancers (Basel) 2024; 16:2102. [PMID: 38893221 PMCID: PMC11171216 DOI: 10.3390/cancers16112102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Since they are very rare tumors, lymphomas of the vulva are often not properly recognized. Patients with vulvar lymphoma are generally elderly and the classical manifestation of the disease is a vulvar mass. No significant age differences have been found between primary and secondary lymphoma. To make a correct diagnosis, it is therefore necessary to use not only histological examination but also the genetic and molecular profile in order to establish optimal therapeutic management. Literature analysis confirm the good prognosis of this disease.
Collapse
Affiliation(s)
- Francescapaola Magazzino
- Complex Operating Unit Obstetrics and Gynaecology, Ospedale Civile di San Donà di Piave-Venezia, AULSS4 Veneto Orientale, 30027 San Donà di Piave, Italy
| | - Cynthia Aristei
- Radiation Oncology Section, Department of Medicine and Surgery, Perugia General Hospital Sant’Andrea delle Fratte, University of Perugia, 06156 Perugia, Italy;
| | - Anna Passarelli
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80144 Napoli, Italy; (A.P.); (S.P.)
| | - Antonio Pierini
- Division of Hematolgy and Clinical Immunolgy, Department of Medicine and Surgery, University of Perugia, 06156 Perugia, Italy;
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Ruby Martinello
- Department of Medical Sciences, Institute of Obstetrics and Gynecology, University of Ferrara, 44121 Ferrara, Italy;
| | - Lavinia Domenici
- 2nd Division of Obstetrics and Gynaecology, Azienda Ospedaliera Universitaria Pisana, University of Pisa, 56126 Pisa, Italy;
| | - Sandro Pignata
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80144 Napoli, Italy; (A.P.); (S.P.)
| | - Giorgia Mangili
- Department of Obstetrics and Gynaecology, San Raffaele Scientific Institute, 20132 Milano, Italy;
| | - Gennaro Cormio
- Gynecologic Oncoly Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
- Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy
| |
Collapse
|
14
|
Nagasaka M, Miyajima C, Inoue Y, Hashiguchi S, Suzuki Y, Morishita D, Aoki H, Toriuchi K, Katayama R, Aoyama M, Hayashi H. ID3 is a novel target gene of p53 and modulates lung cancer cell metastasis. Biochem Biophys Res Commun 2024; 708:149789. [PMID: 38513475 DOI: 10.1016/j.bbrc.2024.149789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
The tumor suppressor p53 prevents cancer development by regulating dozens of target genes with diverse biological functions. Although numerous p53 target genes have been identified to date, the dynamics and function of the regulatory network centered on p53 have not yet been fully elucidated. We herein identified inhibitor of DNA-binding/differentiation-3 (ID3) as a direct p53 target gene. p53 bound the distal promoter of ID3 and positively regulated its transcription. ID3 expression was significantly decreased in clinical lung cancer tissues, and was closely associated with overall survival outcomes in these patients. Functionally, ID3 deficiency promoted the metastatic ability of lung cancer cells through its effects on the transcriptional regulation of CDH1. Furthermore, the ectopic expression of ID3 in p53-knockdown cells restored E-cadherin expression. Collectively, the present results demonstrate that ID3 plays a tumor-suppressive role as a downstream effector of p53 and impedes lung cancer cell metastasis by regulating E-cadherin expression.
Collapse
Affiliation(s)
- Mai Nagasaka
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Chiharu Miyajima
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Yasumichi Inoue
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| | - Sakura Hashiguchi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Yuya Suzuki
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Daisuke Morishita
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Hiromasa Aoki
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Kohki Toriuchi
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Mineyoshi Aoyama
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| |
Collapse
|
15
|
Silkenstedt E, Salles G, Campo E, Dreyling M. B-cell non-Hodgkin lymphomas. Lancet 2024; 403:1791-1807. [PMID: 38614113 DOI: 10.1016/s0140-6736(23)02705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 07/31/2023] [Accepted: 11/30/2023] [Indexed: 04/15/2024]
Abstract
B-cell lymphomas occur with an incidence of 20 new cases per 100 000 people per year in high-income countries. They can affect any organ and are characterised by heterogeneous clinical presentations and courses, varying from asymptomatic, to indolent, to very aggressive cases. Since the topic of B-cell non-Hodgkin lymphomas was last reviewed in The Lancet in 2017, a deeper understanding of the biological background of this heterogeneous group of malignancies, the availability of new diagnostic methods, and the development and implementation of new targeted and immunotherapeutic approaches have improved our ability to treat patients. This Seminar provides an overview of the pathobiology, classification, and prognostication of B-cell non-Hodgkin lymphomas and summarises the current knowledge and standard of care regarding biology and clinical management of the most common subtypes of mature B-cell non-Hodgkin lymphomas. It also highlights new findings in deciphering the molecular background of disease development and the implementation of new therapeutic approaches, particularly those targeting the immune system.
Collapse
Affiliation(s)
| | - Gilles Salles
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Elias Campo
- Department of Pathology, Hospital Clinic, Institute for Biomedical Research August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | | |
Collapse
|
16
|
Witte H, Künstner A, Gebauer N. Update: The molecular spectrum of virus-associated high-grade B-cell non-Hodgkin lymphomas. Blood Rev 2024; 65:101172. [PMID: 38267313 DOI: 10.1016/j.blre.2024.101172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
The vast spectrum of aggressive B-cell non-Hodgkin neoplasms (B-NHL) encompasses several infrequent entities occurring in association with viral infections, posing diagnostic challenges for practitioners. In the emerging era of precision oncology, the molecular characterization of malignancies has acquired paramount significance. The pathophysiological comprehension of specific entities and the identification of targeted therapeutic options have seen rapid development. However, owing to their rarity, not all entities have undergone exhaustive molecular characterization. Considerable heterogeneity exists in the extant body of work, both in terms of employed methodologies and the scale of cases studied. Presently, therapeutic strategies are predominantly derived from observations in diffuse large B-cell lymphoma (DLBCL), the most prevalent subset of aggressive B-NHL. Ongoing investigations into the molecular profiles of these uncommon virus-associated entities are progressively facilitating a clearer distinction from DLBCL, ultimately paving the way towards individualized therapeutic approaches. This review consolidates the current molecular insights into aggressive and virus-associated B-NHL, taking into consideration the recently updated 5th edition of the WHO classification of hematolymphoid tumors (WHO-5HAEM) and the International Consensus Classification (ICC). Additionally, potential therapeutically targetable susceptibilities are highlighted, offering a comprehensive overview of the present scientific landscape in the field.
Collapse
Affiliation(s)
- H Witte
- Department of Hematology and Oncology, Bundeswehrkrankenhaus Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany; Department of Hematology and Oncology, University Hospital Schleswig-Holstein (UKSH) Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | - A Künstner
- University Cancer Center Schleswig-Holstein (UCCSH), Ratzeburger Allee 160, 23538 Lübeck, Germany; Medical Systems Biology Group, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - N Gebauer
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein (UKSH) Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; University Cancer Center Schleswig-Holstein (UCCSH), Ratzeburger Allee 160, 23538 Lübeck, Germany
| |
Collapse
|
17
|
Yu A, Yesilkanal AE, Thakur A, Wang F, Yang Y, Phillips W, Wu X, Muir A, He X, Spitz F, Yang L. HYENA detects oncogenes activated by distal enhancers in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.09.523321. [PMID: 38076958 PMCID: PMC10705271 DOI: 10.1101/2023.01.09.523321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Somatic structural variations (SVs) in cancer can shuffle DNA content in the genome, relocate regulatory elements, and alter genome organization. Enhancer hijacking occurs when SVs relocate distal enhancers to activate proto-oncogenes. However, most enhancer hijacking studies have only focused on protein-coding genes. Here, we develop a computational algorithm "HYENA" to identify candidate oncogenes (both protein-coding and non-coding) activated by enhancer hijacking based on tumor whole-genome and transcriptome sequencing data. HYENA detects genes whose elevated expression is associated with somatic SVs by using a rank-based regression model. We systematically analyze 1,146 tumors across 25 types of adult tumors and identify a total of 108 candidate oncogenes including many non-coding genes. A long non-coding RNA TOB1-AS1 is activated by various types of SVs in 10% of pancreatic cancers through altered 3-dimensional genome structure. We find that high expression of TOB1-AS1 can promote cell invasion and metastasis. Our study highlights the contribution of genetic alterations in non-coding regions to tumorigenesis and tumor progression.
Collapse
Affiliation(s)
- Anqi Yu
- Ben May Department for Cancer Research, University of Chicago, Chicago IL, USA
| | - Ali E. Yesilkanal
- Ben May Department for Cancer Research, University of Chicago, Chicago IL, USA
| | - Ashish Thakur
- Department of Human Genetics, University of Chicago, Chicago IL, USA
| | - Fan Wang
- Ben May Department for Cancer Research, University of Chicago, Chicago IL, USA
| | - Yang Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago IL, USA
| | - William Phillips
- Ben May Department for Cancer Research, University of Chicago, Chicago IL, USA
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, University of Chicago, Chicago IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Xin He
- Department of Human Genetics, University of Chicago, Chicago IL, USA
| | - Francois Spitz
- Department of Human Genetics, University of Chicago, Chicago IL, USA
| | - Lixing Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago IL, USA
- Department of Human Genetics, University of Chicago, Chicago IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| |
Collapse
|
18
|
Bottardi S, Layne T, Ramòn AC, Quansah N, Wurtele H, Affar EB, Milot E. MNDA, a PYHIN factor involved in transcriptional regulation and apoptosis control in leukocytes. Front Immunol 2024; 15:1395035. [PMID: 38680493 PMCID: PMC11045911 DOI: 10.3389/fimmu.2024.1395035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
Inflammation control is critical during the innate immune response. Such response is triggered by the detection of molecules originating from pathogens or damaged host cells by pattern-recognition receptors (PRRs). PRRs subsequently initiate intra-cellular signalling through different pathways, resulting in i) the production of inflammatory cytokines, including type I interferon (IFN), and ii) the initiation of a cascade of events that promote both immediate host responses as well as adaptive immune responses. All human PYRIN and HIN-200 domains (PYHIN) protein family members were initially proposed to be PRRs, although this view has been challenged by reports that revealed their impact on other cellular mechanisms. Of relevance here, the human PYHIN factor myeloid nuclear differentiation antigen (MNDA) has recently been shown to directly control the transcription of genes encoding factors that regulate programmed cell death and inflammation. While MNDA is mainly found in the nucleus of leukocytes of both myeloid (neutrophils and monocytes) and lymphoid (B-cell) origin, its subcellular localization has been shown to be modulated in response to genotoxic agents that induce apoptosis and by bacterial constituents, mediators of inflammation. Prior studies have noted the importance of MNDA as a marker for certain forms of lymphoma, and as a clinical prognostic factor for hematopoietic diseases characterized by defective regulation of apoptosis. Abnormal expression of MNDA has also been associated with altered levels of cytokines and other inflammatory mediators. Refining our comprehension of the regulatory mechanisms governing the expression of MNDA and other PYHIN proteins, as well as enhancing our definition of their molecular functions, could significantly influence the management and treatment strategies of numerous human diseases. Here, we review the current state of knowledge regarding PYHIN proteins and their role in innate and adaptive immune responses. Emphasis will be placed on the regulation, function, and relevance of MNDA expression in the control of gene transcription and RNA stability during cell death and inflammation.
Collapse
Affiliation(s)
- Stefania Bottardi
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
| | - Taylorjade Layne
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
| | - Ailyn C. Ramòn
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Norreen Quansah
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Hugo Wurtele
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - El Bachir Affar
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Eric Milot
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
19
|
Iorgulescu JB, Medeiros LJ, Patel KP. Predictive and prognostic molecular biomarkers in lymphomas. Pathology 2024; 56:239-258. [PMID: 38216400 DOI: 10.1016/j.pathol.2023.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024]
Abstract
Recent advances in molecular diagnostics have markedly expanded our understanding of the genetic underpinnings of lymphomas and catalysed a transformation in not just how we classify lymphomas, but also how we treat, target, and monitor affected patients. Reflecting these advances, the World Health Organization Classification, International Consensus Classification, and National Comprehensive Cancer Network guidelines were recently updated to better integrate these molecular insights into clinical practice. We summarise here the molecular biomarkers of lymphomas with an emphasis on biomarkers that have well-supported prognostic and predictive utility, as well as emerging biomarkers that show promise for clinical practice. These biomarkers include: (1) diagnostic entity-defining genetic abnormalities [e.g., B-cell acute lymphoblastic leukaemia (B-ALL) with KMT2A rearrangement]; (2) molecular alterations that guide patients' prognoses (e.g., TP53 loss frequently conferring worse prognosis); (3) mutations that serve as the targets of, and often a source of acquired resistance to, small molecular inhibitors (e.g., ABL1 tyrosine kinase inhibitors for B-ALL BCR::ABL1, hindered by ABL1 kinase domain resistance mutations); (4) the growing incorporation of molecular measurable residual disease (MRD) in the management of lymphoma patients (e.g., molecular complete response and sequencing MRD-negative criteria in multiple myeloma). Altogether, our review spans the spectrum of lymphoma types, from the genetically defined subclasses of precursor B-cell lymphomas to the highly heterogeneous categories of small and large cell mature B-cell lymphomas, Hodgkin lymphomas, plasma cell neoplasms, and T/NK-cell lymphomas, and provides an expansive summary of our current understanding of their molecular pathology.
Collapse
Affiliation(s)
- J Bryan Iorgulescu
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keyur P Patel
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
20
|
Zhou W, Fischer A, Ogwang MD, Luo W, Kerchan P, Reynolds SJ, Tenge CN, Were PA, Kuremu RT, Wekesa WN, Masalu N, Kawira E, Kinyera T, Otim I, Legason ID, Nabalende H, Ayers LW, Bhatia K, Goedert JJ, Gouveia MH, Cole N, Hicks B, Jones K, Hummel M, Schlesner M, Chagaluka G, Mutalima N, Borgstein E, Liomba GN, Kamiza S, Mkandawire N, Mitambo C, Molyneux EM, Newton R, Glaser S, Kretzmer H, Manning M, Hutchinson A, Hsing AW, Tettey Y, Adjei AA, Chanock SJ, Siebert R, Yeager M, Prokunina-Olsson L, Machiela MJ, Mbulaiteye SM. Mosaic chromosomal alterations in peripheral blood leukocytes of children in sub-Saharan Africa. Nat Commun 2023; 14:8081. [PMID: 38057307 PMCID: PMC10700489 DOI: 10.1038/s41467-023-43881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023] Open
Abstract
In high-income countries, mosaic chromosomal alterations in peripheral blood leukocytes are associated with an elevated risk of adverse health outcomes, including hematologic malignancies. We investigate mosaic chromosomal alterations in sub-Saharan Africa among 931 children with Burkitt lymphoma, an aggressive lymphoma commonly characterized by immunoglobulin-MYC chromosomal rearrangements, 3822 Burkitt lymphoma-free children, and 674 cancer-free men from Ghana. We find autosomal and X chromosome mosaic chromosomal alterations in 3.4% and 1.7% of Burkitt lymphoma-free children, and 8.4% and 3.7% of children with Burkitt lymphoma (P-values = 5.7×10-11 and 3.74×10-2, respectively). Autosomal mosaic chromosomal alterations are detected in 14.0% of Ghanaian men and increase with age. Mosaic chromosomal alterations in Burkitt lymphoma cases include gains on chromosomes 1q and 8, the latter spanning MYC, while mosaic chromosomal alterations in Burkitt lymphoma-free children include copy-neutral loss of heterozygosity on chromosomes 10, 14, and 16. Our results highlight mosaic chromosomal alterations in sub-Saharan African populations as a promising area of research.
Collapse
Affiliation(s)
- Weiyin Zhou
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Anja Fischer
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | | | - Wen Luo
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Steven J Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Constance N Tenge
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya
| | - Pamela A Were
- EMBLEM Study, Academic Model Providing Access To Healthcare (AMPATH), Eldoret, Kenya
| | - Robert T Kuremu
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya
| | - Walter N Wekesa
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya
| | | | - Esther Kawira
- EMBLEM Study, Shirati Health, Education, and Development Foundation, Shirati, Tanzania
| | - Tobias Kinyera
- EMBLEM Study, St. Mary's Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Isaac Otim
- EMBLEM Study, St. Mary's Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Ismail D Legason
- EMBLEM Study, Kuluva Hospital, Arua, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Hadijah Nabalende
- EMBLEM Study, St. Mary's Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Leona W Ayers
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Kishor Bhatia
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - James J Goedert
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Mateus H Gouveia
- Center for Research on Genomics & Global Health, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Nathan Cole
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kristine Jones
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michael Hummel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Berlin, Germany
- Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, D-10117, Berlin, Germany
| | - Mathias Schlesner
- Biomedical Informatics, Data Mining and Data Analytics, University of Augsburg, Augsburg, Germany
| | - George Chagaluka
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Nora Mutalima
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
- Cancer Epidemiology Unit, University of Oxford, Oxford, UK
| | - Eric Borgstein
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - George N Liomba
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Steve Kamiza
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Nyengo Mkandawire
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Collins Mitambo
- Research Department, Ministry of Health, P.O. Box 30377, Lilongwe 3, Malawi
| | - Elizabeth M Molyneux
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Robert Newton
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
| | - Selina Glaser
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Michelle Manning
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ann W Hsing
- Stanford Cancer Institute, Stanford University, Stanford, Palo Alto, CA, USA
| | - Yao Tettey
- Department of Pathology, University of Ghana Medical School, College of Health Sciences, P.O. Box KB 52, Korle-Bu, Accra, Ghana
| | - Andrew A Adjei
- Department of Pathology, University of Ghana Medical School, College of Health Sciences, P.O. Box KB 52, Korle-Bu, Accra, Ghana
| | - Stephen J Chanock
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Meredith Yeager
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ludmila Prokunina-Olsson
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Mitchell J Machiela
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Sam M Mbulaiteye
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA.
| |
Collapse
|
21
|
Grau M, López C, Martín-Subero JI, Beà S. Cytogenomics of B-cell non-Hodgkin lymphomas: The "old" meets the "new". Best Pract Res Clin Haematol 2023; 36:101513. [PMID: 38092483 DOI: 10.1016/j.beha.2023.101513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 12/18/2023]
Abstract
For the routine diagnosis of haematological neoplasms an integrative approach is used considering the morphology, and the immunophenotypic, and molecular features of the tumor sample, along with clinical information. The identification and characterization of recurrent chromosomal aberrations mainly detected by conventional and molecular cytogenetics in the tumor cells has a major impact on the classification of lymphoid neoplasms. Some of the B-cell non-Hodgkin lymphomas are characterized by particular chromosomal aberrations, highlighting the relevance of conventional and molecular cytogenetic studies in their diagnosis and prognosis. In the current genomics era, next generation sequencing provides relevant information as the mutational profiles of haematological malignancies, improving their classification and also the clinical management of the patients. In addition, other new technologies have emerged recently, such as the optical genome mapping, which can overcome some of the limitations of conventional and molecular cytogenetics and may become more widely used in the cytogenetic laboratories in the upcoming years. Moreover, epigenetic alterations may complement genetic changes for a deeper understanding of the pathogenesis underlying B-cell neoplasms and a more precise risk-based patient stratification. Overall, here we describe the current state of the genomic data integrating chromosomal rearrangements, copy number alterations, and somatic variants, as well as a succinct overview of epigenomic changes, which altogether constitute a comprehensive diagnostic approach in B-cell non-Hodgkin lymphomas.
Collapse
Affiliation(s)
- Marta Grau
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina López
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Spain
| | - José Ignacio Martín-Subero
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Sílvia Beà
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Spain; Hematopathology Section, Pathology Department, Hospital Clínic Barcelona, Barcelona, Spain.
| |
Collapse
|
22
|
Qiu Z, Khalife J, Lin AP, Ethiraj P, Jaafar C, Chiou L, Huelgas-Morales G, Aslam S, Arya S, Gupta YK, Dahia PLM, Aguiar RCT. IRF8-mutant B cell lymphoma evades immunity through a CD74-dependent deregulation of antigen processing and presentation in MHC CII complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.14.560755. [PMID: 37873241 PMCID: PMC10592808 DOI: 10.1101/2023.10.14.560755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In diffuse large B-cell lymphoma (DLBCL), the transcription factor IRF8 is the target of a series of potentially oncogenic events, including, chromosomal translocation, focal amplification, and super-enhancer perturbations. IRF8 is also frequently mutant in DLBCL, but how these variants contribute to lymphomagenesis is unknown. We modeled IRF8 mutations in DLBCL and found that they did not meaningfully impact cell fitness. Instead, IRF8 mutants, mapping either to the DNA-binding domain (DBD) or c-terminal tail, displayed diminished transcription activity towards CIITA, a direct IRF8 target. In primary DLBCL, IRF8 mutations were mutually exclusive with mutations in genes involved in antigen presentation. Concordantly, expression of IRF8 mutants in murine B cell lymphomas uniformly suppressed CD4, but not CD8, activation elicited by antigen presentation. Unexpectedly, IRF8 mutation did not modify MHC CII expression on the cell surface, rather it downmodulated CD74 and HLA- DM, intracellular regulators of antigen peptide processing/loading in the MHC CII complex. These changes were functionally relevant as, in comparison to IRF8 WT, mice harboring IRF8 mutant lymphomas displayed a significantly higher tumor burden, in association with a substantial remodeling of the tumor microenvironment (TME), typified by depletion of CD4, CD8, Th1 and NK cells, and increase in T-regs and Tfh cells. Importantly, the clinical and immune phenotypes of IRF8-mutant lymphomas were rescued in vivo by ectopic expression of CD74. Deconvolution of bulk RNAseq data from primary human DLBCL recapitulated part of the immune remodeling detected in mice and pointed to depletion of dendritic cells as another feature of IRF8 mutant TME. We concluded that IRF8 mutations contribute to DLBCL biology by facilitating immune escape.
Collapse
|
23
|
Siddiqui SH, Thakral B, Aakash F, Ok CY, Tang Z, Medeiros LJ. From the archives of MD Anderson Cancer Center: Sporadic Burkitt lymphoma with a complex karyotype and SOX11 expression. Ann Diagn Pathol 2023; 66:152182. [PMID: 37543028 DOI: 10.1016/j.anndiagpath.2023.152182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 08/07/2023]
Abstract
Burkitt lymphoma (BL) is a mature B-cell neoplasm arising from germinal center B-cells. There are three epidemiological variants of which the sporadic variant is most prevalent in developed countries representing 1-2 % of all lymphomas in adults. Patients usually present with bulky abdominal masses and ~ 30 % have bone marrow involvement. BL is characterized by a germinal center B-cell immunophenotype and usually has a simple karyotype. Here we report an unusual case of sporadic BL in a 44-year-old man and we use this case to review sporadic BL in adults. The patient presented with a cecal mass and bone marrow involvement. Biopsy of the cecal mass and bone marrow evaluation showed infiltration by intermediate-size lymphoma cells positive for monotypic kappa, CD10, CD19, CD20, CD22, CD38 bright, CD43, CD45, Bcl6 and ROR1, and negative for CD11c, CD23, CD30, CD44, CD200 and Bcl2. As expected, the lymphoma cells were strongly positive for MYC and Ki-67 showed a proliferation rate of nearly 100 %, but the cells were also positive for SOX11 and cytoplasmic LEF1. Conventional chromosomal analysis revealed t(8;14) as part of a complex karyotype. Based on our literature review, and is shown in this case, sporadic BL in adults shows some differences with the classic description of BL in children. We also discuss the differential diagnosis of BL.
Collapse
Affiliation(s)
- Saima Haleem Siddiqui
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Beenu Thakral
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Fnu Aakash
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Chi Young Ok
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Zhenya Tang
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
24
|
Dave SS. Burkitt lymphoma genomic discovery studies, drivers, and validation. Blood 2023; 142:936-938. [PMID: 36302163 DOI: 10.1182/blood.2022018865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Sandeep S Dave
- Center for Genomic and Computational Biology and Department of Medicine, Duke University, Durham, NC
| |
Collapse
|
25
|
Yang M, Ali O, Bjørås M, Wang J. Identifying functional regulatory mutation blocks by integrating genome sequencing and transcriptome data. iScience 2023; 26:107266. [PMID: 37520692 PMCID: PMC10371843 DOI: 10.1016/j.isci.2023.107266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/05/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Millions of single nucleotide variants (SNVs) exist in the human genome; however, it remains challenging to identify functional SNVs associated with diseases. We propose a non-encoding SNVs analysis tool bpb3, BayesPI-BAR version 3, aiming to identify the functional mutation blocks (FMBs) by integrating genome sequencing and transcriptome data. The identified FMBs display high frequency SNVs, significant changes in transcription factors (TFs) binding affinity and are nearby the regulatory regions of differentially expressed genes. A two-level Bayesian approach with a biophysical model for protein-DNA interactions is implemented, to compute TF-DNA binding affinity changes based on clustered position weight matrices (PWMs) from over 1700 TF-motifs. The epigenetic data, such as the DNA methylome can also be integrated to scan FMBs. By testing the datasets from follicular lymphoma and melanoma, bpb3 automatically and robustly identifies FMBs, demonstrating that bpb3 can provide insight into patho-mechanisms, and therapeutic targets from transcriptomic and genomic data.
Collapse
Affiliation(s)
- Mingyi Yang
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Omer Ali
- Department of Pathology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Junbai Wang
- Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital and University of Oslo, Lørenskog, Norway
| |
Collapse
|
26
|
Mu Y, Chen Y, Meng Y, Chen T, Fan X, Yuan J, Lin J, Pan J, Li G, Feng J, Diao K, Li Y, Yu S, Liu L. Machine learning models-based on integration of next-generation sequencing testing and tumor cell sizes improve subtype classification of mature B-cell neoplasms. Front Oncol 2023; 13:1160383. [PMID: 37601650 PMCID: PMC10436202 DOI: 10.3389/fonc.2023.1160383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
Background Next-generation sequencing (NGS) panels for mature B-cell neoplasms (MBNs) are widely applied clinically but have yet to be routinely used in a manner that is suitable for subtype differential diagnosis. This study retrospectively investigated newly diagnosed cases of MBNs from our laboratory to investigate mutation landscapes in Chinese patients with MBNs and to combine mutational information and machine learning (ML) into clinical applications for MBNs, especially for subtype classification. Methods Samples from the Catalogue Of Somatic Mutations In Cancer (COSMIC) database were collected for ML model construction and cases from our laboratory were used for ML model validation. Five repeats of 10-fold cross-validation Random Forest algorithm was used for ML model construction. Mutation detection was performed by NGS and tumor cell size was confirmed by cell morphology and/or flow cytometry in our laboratory. Results Totally 849 newly diagnosed MBN cases from our laboratory were retrospectively identified and included in mutational landscape analyses. Patterns of gene mutations in a variety of MBN subtypes were found, important to investigate tumorigenesis in MBNs. A long list of novel mutations was revealed, valuable to both functional studies and clinical applications. By combining gene mutation information revealed by NGS and ML, we established ML models that provide valuable information for MBN subtype classification. In total, 8895 cases of 8 subtypes of MBNs in the COSMIC database were collected and utilized for ML model construction, and the models were validated on the 849 MBN cases from our laboratory. A series of ML models was constructed in this study, and the most efficient model, with an accuracy of 0.87, was based on integration of NGS testing and tumor cell sizes. Conclusions The ML models were of great significance in the differential diagnosis of all cases and different MBN subtypes. Additionally, using NGS results to assist in subtype classification of MBNs by method of ML has positive clinical potential.
Collapse
Affiliation(s)
- Yafei Mu
- Department of Hematology, The Third Affiliated Hospital of Sun Yat‐sen University and Sun Yat‐sen Institute of Hematology, Guangzhou, China
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou, China
| | - Yuxin Chen
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, China
- Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou, China
| | - Yuhuan Meng
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou, China
- Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou, China
| | - Tao Chen
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou, China
| | - Xijie Fan
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou, China
| | - Jiecheng Yuan
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou, China
| | - Junwei Lin
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou, China
| | - Jianhua Pan
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, China
- Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou, China
| | - Guibin Li
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou, China
| | - Jinghua Feng
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, China
| | - Kaiyuan Diao
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, China
| | - Yinghua Li
- Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou, China
| | - Shihui Yu
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou, China
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, China
- Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou, China
| | - Lingling Liu
- Department of Hematology, The Third Affiliated Hospital of Sun Yat‐sen University and Sun Yat‐sen Institute of Hematology, Guangzhou, China
| |
Collapse
|
27
|
Salmerón-Villalobos J, Castrejón-de-Anta N, Guerra-García P, Ramis-Zaldivar JE, López-Guerra M, Mato S, Colomer D, Diaz-Crespo F, Menarguez J, Garrido-Pontnou M, Andrés M, García-Fernández E, Llavador M, Frigola G, García N, González-Farré B, Martín-Guerrero I, Garrido-Colino C, Astigarraga I, Fernández A, Verdú-Amorós J, González-Muñíz S, González B, Celis V, Campo E, Balagué O, Salaverria I. Decoding the molecular heterogeneity of pediatric monomorphic post-solid organ transplant lymphoproliferative disorders. Blood 2023; 142:434-445. [PMID: 37053555 DOI: 10.1182/blood.2022019543] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023] Open
Abstract
Posttransplant lymphoproliferative disorders (PTLDs) represent a broad spectrum of lymphoid proliferations, frequently associated with Epstein-Barr virus (EBV) infection. The molecular profile of pediatric monomorphic PTLDs (mPTLDs) has not been elucidated, and it is unknown whether they display similar genetic features as their counterpart in adult and immunocompetent (IMC) pediatric patients. In this study, we investigated 31 cases of pediatric mPTLD after solid organ transplantation, including 24 diffuse large B-cell lymphomas (DLBCLs), mostly classified as activated B cell, and 7 cases of Burkitt lymphoma (BL), 93% of which were EBV positive. We performed an integrated molecular approach, including fluorescence in situ hybridization, targeted gene sequencing, and copy number (CN) arrays. Overall, PTLD-BL carried mutations in MYC, ID3, DDX3X, ARID1A, or CCND3 resembling IMC-BL, higher mutational burden than PTLD-DLBCL, and lesser CN alterations than IMC-BL. PTLD-DLBCL showed a very heterogeneous genomic profile with fewer mutations and CN alterations than IMC-DLBCL. Epigenetic modifiers and genes of the Notch pathway were the most recurrently mutated in PTLD-DLBCL (both 28%). Mutations in cell cycle and Notch pathways correlated with a worse outcome. All 7 patients with PTLD-BL were alive after treatment with pediatric B-cell non-Hodgkin lymphoma protocols, whereas 54% of patients with DLBCL were cured with immunosuppression reduction, rituximab, and/or low-dose chemotherapy. These findings highlight the low complexity of pediatric PTLD-DLBCL, their good response to low-intensity treatment, and the shared pathogenesis between PTLD-BL and EBV-positive IMC-BL. We also suggest new potential parameters that could help in the diagnosis and the design of better therapeutic strategies for these patients.
Collapse
Affiliation(s)
- Julia Salmerón-Villalobos
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| | - Natalia Castrejón-de-Anta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematopathology Unit, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Pilar Guerra-García
- Pediatric Hematology and Oncology Department, Hospital Universitario La Paz, Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, Instituto de Investigación Sanitaria del Hospital Universitario La Paz - IdiPAZ, Madrid, Spain
| | - Joan Enric Ramis-Zaldivar
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| | - Mónica López-Guerra
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
- Hematopathology Unit, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Sara Mato
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
- Hematopathology Unit, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Francisco Diaz-Crespo
- Pathology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Javier Menarguez
- Pathology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Mara Andrés
- Pediatric Hematology and Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, Valencia, Spain
| | | | - Margarita Llavador
- Pathology Department, Hospital Universitario y Politécnico La Fe de Valencia, Valencia, Spain
| | - Gerard Frigola
- Hematopathology Unit, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Noelia García
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Blanca González-Farré
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
- Hematopathology Unit, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Idoia Martín-Guerrero
- Department of Genetics, Physics Anthropology and Animal Physiology, Faculty of Science and Technology, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea, Leioa, Spain
- Department of Pediatrics, Osakidetza, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Barakaldo, Spain
- Departament of Pediatrics, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea, Leioa, Spain
| | - Carmen Garrido-Colino
- Pediatric Oncology and Hematology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Itziar Astigarraga
- Department of Pediatrics, Osakidetza, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Barakaldo, Spain
- Departament of Pediatrics, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea, Leioa, Spain
| | - Alba Fernández
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Jaime Verdú-Amorós
- Pediatric Oncology and Hematology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Soledad González-Muñíz
- Pediatric Oncology and Hematology Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Berta González
- Pediatric Hematology and Oncology Department, Hospital Universitario La Paz, Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, Instituto de Investigación Sanitaria del Hospital Universitario La Paz - IdiPAZ, Madrid, Spain
| | - Verónica Celis
- Pediatric Oncology and Hematology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Elías Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
- Hematopathology Unit, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Olga Balagué
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
- Hematopathology Unit, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Itziar Salaverria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| |
Collapse
|
28
|
Hurwitz SN, Lockhart B, Önder Ö, Wu R, Sethi S, Aypar U, Siebert R, Dogan A, Pillai V, Elenitoba-Johnson KSJ, Lim MS. Proteogenomic Profiling of High-Grade B-Cell Lymphoma With 11q Aberrations and Burkitt Lymphoma Reveals Lymphoid Enhancer Binding Factor 1 as a Novel Biomarker. Mod Pathol 2023; 36:100170. [PMID: 36997001 DOI: 10.1016/j.modpat.2023.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
High-grade B-cell lymphomas with 11q aberrations (HGBL-11q) represent a World Health Organization-defined group of lymphomas that harbor recurrent chromosome 11q aberrations involving proximal gains and telomeric losses. Although a limited number of HGBL-11q cases evaluated thus far appear to show a similar course and prognosis as Burkitt lymphoma (BL), many molecular differences have been appreciated, most notably the absence of MYC rearrangement. Despite biological differences between BL and HGBL-11q, histomorphologic and immunophenotypic distinction remains challenging. Here, we provide a comparative whole proteomic profile of BL- and HGBL-11q-derived cell lines, identifying numerous shared and differentially expressed proteins. Transcriptome profiling performed on paraffin-embedded tissue samples from primary BL and HGBL-11q lymphomas was additionally performed to provide further molecular characterization. Overlap of proteomic and transcriptomic data sets identified several potential novel biomarkers of HGBL-11q, including diminished lymphoid enhancer-binding factor 1 expression, which was validated by immunohistochemistry staining in a cohort of 23 cases. Altogether, these findings provide a comprehensive multimodal and comparative molecular profiling of BL and HGBL-11q and suggest the use of enhancer-binding factor 1 as an immunohistochemistry target to distinguish between these aggressive lymphomas.
Collapse
Affiliation(s)
- Stephanie N Hurwitz
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brian Lockhart
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Özlem Önder
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rui Wu
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shenon Sethi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Umut Aypar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Ahmet Dogan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vinodh Pillai
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kojo S J Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Megan S Lim
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
29
|
Lim MS, Foley M, Mussolin L, Siebert R, Turner S. Biopathology of childhood, adolescent and young adult non-Hodgkin lymphoma. Best Pract Res Clin Haematol 2023; 36:101447. [PMID: 36907637 DOI: 10.1016/j.beha.2023.101447] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Mature non-Hodgkin lymphomas (NHL) in the childhood, adolescent and young adult (CAYA) population are rare and exhibit unique clinical, immunophenotypic and genetic characteristics. Application of large-scale unbiased genomic and proteomic technologies such as gene expression profiling and next generation sequencing (NGS) have led to enhanced understanding of the genetic basis for many lymphomas in adults. However, studies to investigate the pathogenetic events in CAYA population are relatively sparse. Enhanced understanding of the pathobiologic mechanisms involved in non-Hodgkin lymphomas in this unique population will allow for improved recognition of these rare lymphomas. Elucidation of the pathobiologic differences between CAYA and adult lymphomas will also lead to the design of more rational and much needed, less toxic therapies for this population. In this review, we summarize recent insights gained from the proceedings of the recent 7th International CAYA NHL Symposium held in New York City, New York October 20-23, 2022.
Collapse
Affiliation(s)
- Megan S Lim
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center,417 East 68th New York City, NY, USA.
| | - Michelle Foley
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Howard 14, New York City, NY, USA New York City, NY, USA.
| | - Lara Mussolin
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, University Hospital of Padova, via Giustiniani 3, 35128 Padova, Italy.
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Albert-Einstein-Allee 11, D-89081 Ulm, Germany.
| | - Suzanne Turner
- Department of Pathology, University of Cambridge, Lab Block Level 3, Box 231, Addenbrookes Hospital, Hills Road, Cambridge CB20QQ, UK; CEITEC, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
30
|
Bomken S, Enshaei A, Schwalbe EC, Mikulasova A, Dai Y, Zaka M, Fung KTM, Bashton M, Lim H, Jones L, Karataraki N, Winterman E, Ashby C, Attarbaschi A, Bertrand Y, Bradtke J, Buldini B, Burke GAA, Cazzaniga G, Gohring G, De Groot-Kruseman HA, Haferlach C, Nigro LL, Parihar M, Plesa A, Seaford E, Sonneveld E, Strehl S, Van der Velden VHJ, Rand V, Hunger SP, Harrison CJ, Bacon CM, Van Delft FW, Loh ML, Moppett J, Vormoor J, Walker BA, Moorman AV, Russell LJ. Molecular characterization and clinical outcome of B-cell precursor acute lymphoblastic leukemia with IG-MYC rearrangement. Haematologica 2023; 108:717-731. [PMID: 35484682 PMCID: PMC9973471 DOI: 10.3324/haematol.2021.280557] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
Rarely, immunophenotypically immature B-cell precursor acute lymphoblastic leukemia (BCP-ALL) carries an immunoglobulin- MYC rearrangement (IG-MYC-r). This can result in diagnostic confusion with Burkitt lymphoma/leukemia and use of individualized treatment schedules of unproven efficacy. Here we compare the molecular characteristics of these conditions and investigate historic clinical outcome data. We identified 90 cases registered in a national BCP-ALL clinical trial/registry. When present, diagnostic material underwent cytogenetic, exome, methylome and transcriptome analyses. The outcomes analyzed were 3-year event-free survival and overall survival. IG-MYC-r was identified in diverse cytogenetic backgrounds, co-existing with either established BCP-ALL-specific abnormalities (high hyperdiploidy, n=3; KMT2A-rearrangement, n=6; iAMP21, n=1; BCR-ABL1, n=1); BCL2/BCL6-rearrangements (n=15); or, most commonly, as the only defining feature (n=64). Within this final group, precursor-like V(D)J breakpoints predominated (8/9) and KRAS mutations were common (5/11). DNA methylation identified a cluster of V(D)J-rearranged cases, clearly distinct from Burkitt leukemia/lymphoma. Children with IG-MYC-r within that subgroup had a 3-year event-free survival of 47% and overall survival of 60%, representing a high-risk BCP-ALL. To develop effective management strategies this group of patients must be allowed access to contemporary, minimal residual disease-adapted, prospective clinical trial protocols.
Collapse
Affiliation(s)
- Simon Bomken
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne.
| | - Amir Enshaei
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Edward C Schwalbe
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne
| | - Aneta Mikulasova
- Biosciences Institute, Newcastle University, Newcastle upon Tyne
| | - Yunfeng Dai
- Department of Biostatistics, Colleges of Medicine, Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Masood Zaka
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK; National Horizons Centre, Teesside University, Darlington
| | - Kent T M Fung
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Matthew Bashton
- The Hub for Biotechnology in the Built Environment, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne
| | - Huezin Lim
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Lisa Jones
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Nefeli Karataraki
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Emily Winterman
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Cody Ashby
- Department of Biomedical Informatics / Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Yves Bertrand
- Department of Institute of Hematology Oncology Pediatric (IHOP), Hospices Civils de Lyon, Lyon
| | - Jutta Bradtke
- Institute of Pathology, Department Cytogenetics, University Hospital Giessen and Marburg
| | | | - G A Amos Burke
- Department of Paediatric Haematology, Oncology, and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge
| | - Giovanni Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Centro Ricerca Tettamanti, University of Milano-Bicocca, Monza
| | - Gudrun Gohring
- Department of Human Genetics, Hannover Medical School, Hannover
| | - Hesta A De Groot-Kruseman
- Dutch Childhood Oncology Group (DCOG), Utrecht, The Netherlands; Princess Maxima Center for Pediatric Oncology, Utrecht
| | | | - Luca Lo Nigro
- Head of Cytogenetic-Cytofluorimetric-Molecular Biology Laboratory, Center of Pediatric Hematology Oncology, Azienda Policlinico "G. Rodolico - San Marco", Catania
| | - Mayur Parihar
- Department of Cytogenetics and Laboratory Haematology, Tata Medical Centre, Kolkata, India
| | - Adriana Plesa
- Hematology and Flow cytometry Laboratory, Lyon Sud University Hospital, Hospices Civils de Lyon, Lyon
| | - Emma Seaford
- Department of Paediatric Oncology, Bristol Royal Hospital for Children, Bristol
| | | | - Sabine Strehl
- St. Anna Children's Cancer Research Institute, Vienna
| | | | - Vikki Rand
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK; National Horizons Centre, Teesside University, Darlington
| | - Stephen P Hunger
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Christine J Harrison
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Chris M Bacon
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne
| | - Frederik W Van Delft
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | - John Moppett
- Department of Paediatric Oncology, Bristol Royal Hospital for Children, Bristol
| | - Josef Vormoor
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Princess Maxima Center for Pediatric Oncology, Utrecht
| | - Brian A Walker
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology Oncology, Indiana University, Indianapolis, IN
| | - Anthony V Moorman
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Lisa J Russell
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne.
| |
Collapse
|
31
|
Beishuizen A, Mellgren K, Andrés M, Auperin A, Bacon CM, Bomken S, Burke GAA, Burkhardt B, Brugieres L, Chiang AKS, Damm-Welk C, d'Amore E, Horibe K, Kabickova E, Khanam T, Kontny U, Klapper W, Lamant L, Le Deley MC, Loeffen J, Macintyre E, Mann G, Meyer-Wentrup F, Michgehl U, Minard-Colin V, Mussolin L, Oschlies I, Patte C, Pillon M, Reiter A, Rigaud C, Roncery L, Salaverria I, Simonitsch-Klupp I, Uyttebroeck A, Verdu-Amoros J, Williams D, Woessmann W, Wotherspoon A, Wrobel G, Zimmermann M, Attarbaschi A, Turner SD. Improving outcomes of childhood and young adult non-Hodgkin lymphoma: 25 years of research and collaboration within the framework of the European Intergroup for Childhood Non-Hodgkin Lymphoma. Lancet Haematol 2023; 10:e213-e224. [PMID: 36858678 DOI: 10.1016/s2352-3026(22)00374-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/01/2022] [Accepted: 11/18/2022] [Indexed: 03/03/2023]
Abstract
The European Intergroup for Childhood Non-Hodgkin Lymphoma (EICNHL) was established 25 years ago with the goal to facilitate clinical trials and research collaborations in the field both within Europe and worldwide. Since its inception, much progress has been made whereby major improvements in outcomes have been achieved. In this Review, we describe the different diagnostic entities of non-Hodgkin lymphoma in children and young adults describing key features of each entity and outlining clinical achievements made in the context of the EICNHL framework. Furthermore, we provide an overview of advances in biopathology with an emphasis on the role of biological studies and how they have shaped available treatments. Finally, for each entity, we describe future goals, upcoming clinical trials, and highlight areas of research that require our focus going forward.
Collapse
Affiliation(s)
- Auke Beishuizen
- Division of Hemato-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; The Netherlands and Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Karin Mellgren
- Department of Paediatric Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mara Andrés
- Department of Pediatric Oncology, University Hospital Le Fe, Valencia, Spain
| | - Anne Auperin
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Chris M Bacon
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Simon Bomken
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - G A Amos Burke
- Department of Paediatric Haematology, Oncology and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Cambridge
| | - Birgit Burkhardt
- Department of Pediatric Hematology, Oncology, and BMT, University Hospital Muenster, Münster, Germany
| | - Laurence Brugieres
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Alan K S Chiang
- Department of Pediatrics & AdolescentMedicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Christine Damm-Welk
- Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Emanuele d'Amore
- Department of Pathological Anatomy, San Bortolo Hospital, Vicenza, Italy
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Aichi, Japan
| | - Edita Kabickova
- Department of Pediatric Hematology and Oncology, Charles University & University Hospital Motol, Prague, Czech Republic
| | - Tasneem Khanam
- Department of Paediatric Haematology, Oncology and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Cambridge
| | - Udo Kontny
- Section of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatric and Adolescent Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Wolfram Klapper
- Institute of Pathology, Hematopathology Section, University of Schleswig-Holstein, Kiel, Germany
| | - Laurence Lamant
- Université Toulouse III-Paul Sabatier, Laboratoire d'Excellence Toulouse Cancer-TOUCAN, Équipe Labellisée La Ligue Contre Le Cancer, Inserm, Toulouse, France
| | | | - Jan Loeffen
- Division of Hemato-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Elizabeth Macintyre
- Onco-hematology, Université Paris Cité and Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Georg Mann
- Pediatric Hematology and Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Friederike Meyer-Wentrup
- Division of Hemato-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Ulf Michgehl
- Department of Paediatric Haematology, Oncology and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Cambridge
| | - Veronique Minard-Colin
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Lara Mussolin
- Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy; Pediatric Hematology, Oncology and Stem Cell Transplant Division, Maternal and Child Health Department, Padova University Hospital, Padova, Italy
| | - Ilske Oschlies
- Institute of Pathology, Hematopathology Section, University of Schleswig-Holstein, Kiel, Germany
| | - Catherine Patte
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Marta Pillon
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Maternal and Child Health Department, Padova University Hospital, Padova, Italy
| | - Alfred Reiter
- Department of Pediatric Hematology and Oncology, Justus Liebig-University Giessen, Giessen, Germany
| | - Charlotte Rigaud
- Department of Pediatric Hematology, Oncology, and BMT, University Hospital Muenster, Münster, Germany
| | - Leila Roncery
- St Anna Children's Hospital, Department of Paediatric Haematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Itziar Salaverria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Anne Uyttebroeck
- Department of Pediatric Hematology and Oncology, University Hospital Leuven,KU Leuven, Leuven, Belgium
| | - Jaime Verdu-Amoros
- Department of Pediatric Hematology and Oncology, University Hospital Valencia, Valencia, Spain
| | - Denise Williams
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Wilhelm Woessmann
- Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | - Grazyna Wrobel
- Bone Marrow Transplantation and Pediatric Hematology and Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Martin Zimmermann
- Hannover Medical School, Department of Pediatric Hematology and Oncology, Hannover, Germany
| | - Andishe Attarbaschi
- St Anna Children's Hospital, Department of Paediatric Haematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK; Central European Institute for Technology, Masaryk University, Brno, Czech Republic.
| | | |
Collapse
|
32
|
Murugesan P, Begum H, Tangutur AD. Inhibitor of DNA binding/differentiation proteins as IDs for pancreatic cancer: Role in pancreatic cancer initiation, development and prognosis. Gene 2023; 853:147092. [PMID: 36464175 DOI: 10.1016/j.gene.2022.147092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
A family of inhibitors of cell differentiation or DNA-binding proteins, known as ID proteins (ID1-4), function as mighty transcription factors in various cellular processes, such as inhibiting differentiation, promoting cell-cycle progression, senescence, angiogenesis, tumorigenesis, and metastasis in cancer. Pancreatic cancer represents the deadliest cancer with the lowest survival rate of 10% due to the diagnosis at an advanced fatal stage and therapeutic resistance. Modestly, the only curative option for this lethal cancer is surgery but is done in less than 15-20% of patients because of the locally aggressive and early metastatic nature. Finding the earliest biomarkers and targeting the various hallmarks of pancreatic cancer can improve the treatment and survival of pancreatic cancer patients. Therefore, herein in this review, we explore in depth the potential roles of ID proteins function in hallmarks of pancreatic cancer, signaling pathways, and its oncogenic and tumor-suppressive effects. Hence, understanding the roles of dysregulated ID proteins would provide new insights into its function in pancreatic cancer tumorigenesis.
Collapse
Affiliation(s)
- Periyasamy Murugesan
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Habeebunnisa Begum
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Anjana Devi Tangutur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
33
|
Lymphoid clonal hematopoiesis: implications for malignancy, immunity, and treatment. Blood Cancer J 2023; 13:5. [PMID: 36599826 DOI: 10.1038/s41408-022-00773-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Clonal hematopoiesis (CH) is the age-related expansion of hematopoietic stem cell clones caused by the acquisition of somatic point mutations or mosaic chromosomal alterations (mCAs). Clonal hematopoiesis caused by somatic mutations has primarily been associated with increased risk of myeloid malignancies, while mCAs have been associated with increased risk of lymphoid malignancies. A recent study by Niroula et al. challenged this paradigm by finding a distinct subset of somatic mutations and mCAs that are associated with increased risk of lymphoid malignancy. CH driven by these mutations is termed lymphoid clonal hematopoiesis (L-CH). Unlike myeloid clonal hematopoiesis (M-CH), L-CH has the potential to originate at both stem cells and partially or fully differentiated progeny stages of maturation. In this review, we explore the definition of L-CH in the context of lymphocyte maturation and lymphoid malignancy precursor disorders, the evidence for L-CH in late-onset autoimmunity and immunodeficiency, and the development of therapy-related L-CH following chemotherapy or hematopoietic stem cell transplantation.
Collapse
|
34
|
Lacroix M, Beauchemin H, Khandanpour C, Möröy T. The RNA helicase DDX3 and its role in c-MYC driven germinal center-derived B-cell lymphoma. Front Oncol 2023; 13:1148936. [PMID: 37035206 PMCID: PMC10081492 DOI: 10.3389/fonc.2023.1148936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
DDX3X is an RNA helicase with many functions in RNA metabolism such as mRNA translation, alternative pre-mRNA splicing and mRNA stability, but also plays a role as a regulator of transcription as well as in the Wnt/beta-catenin- and Nf-κB signaling pathways. The gene encoding DDX3X is located on the X-chromosome, but escapes X-inactivation. Hence females have two active copies and males only one. However, the Y chromosome contains the gene for the male DDX3 homologue, called DDX3Y, which has a very high sequence similarity and functional redundancy with DDX3X, but shows a more restricted protein expression pattern than DDX3X. High throughput sequencing of germinal center (GC)-derived B-cell malignancies such as Burkitt Lymphoma (BL) and Diffuse large B-cell lymphoma (DLBCL) samples showed a high frequency of loss-of-function (LOF) mutations in the DDX3X gene revealing several features that distinguish this gene from others. First, DDX3X mutations occur with high frequency particularly in those GC-derived B-cell lymphomas that also show translocations of the c-MYC proto-oncogene, which occurs in almost all BL and a subset of DLBCL. Second, DDX3X LOF mutations occur almost exclusively in males and is very rarely found in females. Third, mutations in the male homologue DDX3Y have never been found in any type of malignancy. Studies with human primary GC B cells from male donors showed that a loss of DDX3X function helps the initial process of B-cell lymphomagenesis by buffering the proteotoxic stress induced by c-MYC activation. However, full lymphomagenesis requires DDX3 activity since an upregulation of DDX3Y expression is invariably found in GC derived B-cell lymphoma with DDX3X LOF mutation. Other studies with male transgenic mice that lack Ddx3x, but constitutively express activated c-Myc transgenes in B cells and are therefore prone to develop B-cell malignancies, also showed upregulation of the DDX3Y protein expression during the process of lymphomagenesis. Since DDX3Y is not expressed in normal human cells, these data suggest that DDX3Y may represent a new cancer cell specific target to develop adjuvant therapies for male patients with BL and DLBCL and LOF mutations in the DDX3X gene.
Collapse
Affiliation(s)
- Marion Lacroix
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Hugues Beauchemin
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, QC, Canada
| | - Cyrus Khandanpour
- Klinik für Hämatologie und Onkologie, University Hospital Schleswig Holstein, University Lübeck, Lübeck, Germany
- *Correspondence: Tarik Möröy, ; Cyrus Khandanpour,
| | - Tarik Möröy
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Tarik Möröy, ; Cyrus Khandanpour,
| |
Collapse
|
35
|
López C, Burkhardt B, Chan JKC, Leoncini L, Mbulaiteye SM, Ogwang MD, Orem J, Rochford R, Roschewski M, Siebert R. Burkitt lymphoma. Nat Rev Dis Primers 2022; 8:78. [PMID: 36522349 DOI: 10.1038/s41572-022-00404-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 12/16/2022]
Abstract
Burkitt lymphoma (BL) is an aggressive form of B cell lymphoma that can affect children and adults. The study of BL led to the identification of the first recurrent chromosomal aberration in lymphoma, t(8;14)(q24;q32), and subsequent discovery of the central role of MYC and Epstein-Barr virus (EBV) in tumorigenesis. Most patients with BL are cured with chemotherapy but those with relapsed or refractory disease usually die of lymphoma. Historically, endemic BL, non-endemic sporadic BL and the immunodeficiency-associated BL have been recognized, but differentiation of these epidemiological variants is confounded by the frequency of EBV positivity. Subtyping into EBV+ and EBV- BL might better describe the biological heterogeneity of the disease. Phenotypically resembling germinal centre B cells, all types of BL are characterized by dysregulation of MYC due to enhancer activation via juxtaposition with one of the three immunoglobulin loci. Additional molecular changes commonly affect B cell receptor and sphingosine-1-phosphate signalling, proliferation, survival and SWI-SNF chromatin remodelling. BL is diagnosed on the basis of morphology and high expression of MYC. BL can be effectively treated in children and adolescents with short durations of high dose-intensity multiagent chemotherapy regimens. Adults are more susceptible to toxic effects but are effectively treated with chemotherapy, including modified versions of paediatric regimens. The outcomes in patients with BL are good in high-income countries with low mortality and few late effects, but in low-income and middle-income countries, BL is diagnosed late and is usually treated with less-effective regimens affecting the overall good outcomes in patients with this lymphoma.
Collapse
Affiliation(s)
- Cristina López
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Birgit Burkhardt
- Non-Hodgkin's Lymphoma Berlin-Frankfurt-Münster (NHL-BFM) Study Center and Paediatric Hematology, Oncology and BMT, University Hospital Muenster, Muenster, Germany
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Lorenzo Leoncini
- Section of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Sam M Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | | | | | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mark Roschewski
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
36
|
Miyaoka M, Kikuti YY, Carreras J, Ito A, Ikoma H, Tomita S, Kawada H, Roncador G, Bea S, Campo E, Nakamura N. Copy Number Alteration and Mutational Profile of High-Grade B-Cell Lymphoma with MYC and BCL2 and/or BCL6 Rearrangements, Diffuse Large B-Cell Lymphoma with MYC-Rearrangement, and Diffuse Large B-Cell Lymphoma with MYC-Cluster Amplification. Cancers (Basel) 2022; 14:cancers14235849. [PMID: 36497332 PMCID: PMC9736204 DOI: 10.3390/cancers14235849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) with MYC alteration is classified as high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements (double/triple-hit lymphoma; DHL/THL), DLBCL with MYC rearrangement (single-hit lymphoma; SHL) and DLBCL with MYC-cluster amplification (MCAD). To elucidate the genetic features of DHL/THL, SHL, and MCAD, 23 lymphoma cases from Tokai University Hospital were analyzed. The series included 10 cases of DHL/THL, 10 cases of SHL and 3 cases of MCAD. The analysis used whole-genome copy number microarray analysis (OncoScan) and a custom-made next-generation sequencing (NGS) panel of 115 genes associated with aggressive B-cell lymphomas. The copy number alteration (CNA) profiles were similar between DHL/THL and SHL. MCAD had fewer CNAs than those of DHL/THL and SHL, except for +8q24. The NGS profile characterized DHL/THL with a higher "mutation burden" than SHL (17 vs. 10, p = 0.010), and the most relevant genes for DHL/THL were BCL2 and SOCS1, and for SHL was DTX1. MCAD was characterized by mutations of DDX3X, TCF3, HLA-A, and TP53, whereas MYC was unmutated. In conclusion, DHL/THL, SHL, and MCAD have different profiles.
Collapse
Affiliation(s)
- Masashi Miyaoka
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| | - Yara Yukie Kikuti
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| | - Joaquim Carreras
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
- Correspondence: ; Tel.: +81-046-393-1121
| | - Atsushi Ito
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| | - Haruka Ikoma
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| | - Sakura Tomita
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| | - Hiroshi Kawada
- Department of Hematology/Oncology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| | - Giovanna Roncador
- Monoclonal Antibodies Unit, Spanish National Cancer Research Center (Centro Nacional de Investigaciones Oncologicas, CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Silvia Bea
- Hematopathology Section, Molecular Pathology Laboratory, Department of Pathology, Hospital Clinic Barcelona, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), University of Barcelona, C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Elias Campo
- Hematopathology Section, Molecular Pathology Laboratory, Department of Pathology, Hospital Clinic Barcelona, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), University of Barcelona, C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Naoya Nakamura
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| |
Collapse
|
37
|
Islam SA, Díaz-Gay M, Wu Y, Barnes M, Vangara R, Bergstrom EN, He Y, Vella M, Wang J, Teague JW, Clapham P, Moody S, Senkin S, Li YR, Riva L, Zhang T, Gruber AJ, Steele CD, Otlu B, Khandekar A, Abbasi A, Humphreys L, Syulyukina N, Brady SW, Alexandrov BS, Pillay N, Zhang J, Adams DJ, Martincorena I, Wedge DC, Landi MT, Brennan P, Stratton MR, Rozen SG, Alexandrov LB. Uncovering novel mutational signatures by de novo extraction with SigProfilerExtractor. CELL GENOMICS 2022; 2:None. [PMID: 36388765 PMCID: PMC9646490 DOI: 10.1016/j.xgen.2022.100179] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 04/10/2022] [Accepted: 08/31/2022] [Indexed: 12/09/2022]
Abstract
Mutational signature analysis is commonly performed in cancer genomic studies. Here, we present SigProfilerExtractor, an automated tool for de novo extraction of mutational signatures, and benchmark it against another 13 bioinformatics tools by using 34 scenarios encompassing 2,500 simulated signatures found in 60,000 synthetic genomes and 20,000 synthetic exomes. For simulations with 5% noise, reflecting high-quality datasets, SigProfilerExtractor outperforms other approaches by elucidating between 20% and 50% more true-positive signatures while yielding 5-fold less false-positive signatures. Applying SigProfilerExtractor to 4,643 whole-genome- and 19,184 whole-exome-sequenced cancers reveals four novel signatures. Two of the signatures are confirmed in independent cohorts, and one of these signatures is associated with tobacco smoking. In summary, this report provides a reference tool for analysis of mutational signatures, a comprehensive benchmarking of bioinformatics tools for extracting signatures, and several novel mutational signatures, including one putatively attributed to direct tobacco smoking mutagenesis in bladder tissues.
Collapse
Affiliation(s)
- S.M. Ashiqul Islam
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Yang Wu
- Centre for Computational Biology and Programme in Cancer & Stem Cell Biology, Duke NUS Medical School, Singapore 169857, Singapore
| | - Mark Barnes
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Raviteja Vangara
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Erik N. Bergstrom
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Yudou He
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Mike Vella
- NVIDIA Corporation, 2788 San Tomas Expressway, Santa Clara, CA 95051, USA
| | - Jingwei Wang
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Jon W. Teague
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Peter Clapham
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Sarah Moody
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Sergey Senkin
- Genetic Epidemiology Group, International Agency for Research on Cancer, Cedex 08, 69372 Lyon, France
| | - Yun Rose Li
- Departments of Radiation Oncology and Cancer Genetics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Laura Riva
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Andreas J. Gruber
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
- Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
- Department of Biology, University of Konstanz, Universitaetsstrasse 10, D-78464 Konstanz, Germany
| | - Christopher D. Steele
- Research Department of Pathology, Cancer Institute, University College London, London WC1E 6BT, UK
| | - Burçak Otlu
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Azhar Khandekar
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Ammal Abbasi
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Laura Humphreys
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | | | - Samuel W. Brady
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Boian S. Alexandrov
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Nischalan Pillay
- Research Department of Pathology, Cancer Institute, University College London, London WC1E 6BT, UK
- Department of Cellular and Molecular Pathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex HA7 4LP, UK
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - David J. Adams
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Iñigo Martincorena
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - David C. Wedge
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
- Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer, Cedex 08, 69372 Lyon, France
| | - Michael R. Stratton
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Steven G. Rozen
- Centre for Computational Biology and Programme in Cancer & Stem Cell Biology, Duke NUS Medical School, Singapore 169857, Singapore
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
38
|
Suresh S, Dix D, Wang L, Blydt-Hansen TD. High urinary CXCL10/Cr with onset of Burkitt lymphoma in a pediatric kidney transplant recipient. Pediatr Transplant 2022; 26:e14354. [PMID: 35869900 DOI: 10.1111/petr.14354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/08/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Urinary CXCL10/Cr is a promising diagnostic tool for early detection of TCMR in pediatric transplant recipients, and most studies focus on its utility in the context of localized allograft inflammation thus far. Other sources of inflammation that may be detected by CXCL10 are less clear. METHODS We present a case review of a patient with BL, who was enrolled in a prospective trial of urinary CXCL10 monitoring. To evaluate the potential confounding, we tested for association of CXCL10/Cr and EBV viral load in a prospective cohort of pediatric transplant recipients with serial testing for urinary CXCL10/Cr. RESULTS This report describes a 15-year-old boy, 3.5 years post-transplant with chronic EBV viremia, stable kidney function and no history of rejection. Urinary CXCL10/Cr level increased acutely to 79.43 ng/mmol, 0.8 months prior to onset of BL, identified by a surge in EBV viral load. In a national cohort of 97 pediatric kidney transplant recipients, there was no association between urinary CXCL10/Cr with EBV viral loads when comparing periods of pre-viremia (5.8 ± 9.2 ng/mmol) to active viremia (4.0 ± 5.3 ng/mmol) and periods of active viremia (7.1 ± 8.9 ng/mmol) to post-viremia (4.4 ± 9.8 ng/mmol). CONCLUSIONS Acute rise in urinary CXCL10/Cr was associated with onset of graft-associated BL. We were not able to confirm a general association of EBV viral load and urinary CXCL10. As non-invasive monitoring is implemented using biomarkers like CXCL10 in the clinic, attention will be needed to identify other uncommon, potential sources of CXCL10 elevation.
Collapse
Affiliation(s)
- Shwetha Suresh
- The University of British Columbia Faculty of Medicine, Vancouver, British Columbia, Canada
| | - David Dix
- Oncology, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Li Wang
- Pathology & Laboratory Medicine, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Tom D Blydt-Hansen
- Department of Nephrology, BC Children's Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
39
|
Carreras J, Roncador G, Hamoudi R. Artificial Intelligence Predicted Overall Survival and Classified Mature B-Cell Neoplasms Based on Immuno-Oncology and Immune Checkpoint Panels. Cancers (Basel) 2022; 14:5318. [PMID: 36358737 PMCID: PMC9657332 DOI: 10.3390/cancers14215318] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 08/01/2023] Open
Abstract
Artificial intelligence (AI) can identify actionable oncology biomarkers. This research integrates our previous analyses of non-Hodgkin lymphoma. We used gene expression and immunohistochemical data, focusing on the immune checkpoint, and added a new analysis of macrophages, including 3D rendering. The AI comprised machine learning (C5, Bayesian network, C&R, CHAID, discriminant analysis, KNN, logistic regression, LSVM, Quest, random forest, random trees, SVM, tree-AS, and XGBoost linear and tree) and artificial neural networks (multilayer perceptron and radial basis function). The series included chronic lymphocytic leukemia, mantle cell lymphoma, follicular lymphoma, Burkitt, diffuse large B-cell lymphoma, marginal zone lymphoma, and multiple myeloma, as well as acute myeloid leukemia and pan-cancer series. AI classified lymphoma subtypes and predicted overall survival accurately. Oncogenes and tumor suppressor genes were highlighted (MYC, BCL2, and TP53), along with immune microenvironment markers of tumor-associated macrophages (M2-like TAMs), T-cells and regulatory T lymphocytes (Tregs) (CD68, CD163, MARCO, CSF1R, CSF1, PD-L1/CD274, SIRPA, CD85A/LILRB3, CD47, IL10, TNFRSF14/HVEM, TNFAIP8, IKAROS, STAT3, NFKB, MAPK, PD-1/PDCD1, BTLA, and FOXP3), apoptosis (BCL2, CASP3, CASP8, PARP, and pathway-related MDM2, E2F1, CDK6, MYB, and LMO2), and metabolism (ENO3, GGA3). In conclusion, AI with immuno-oncology markers is a powerful predictive tool. Additionally, a review of recent literature was made.
Collapse
Affiliation(s)
- Joaquim Carreras
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| | - Giovanna Roncador
- Monoclonal Antibodies Unit, Spanish National Cancer Research Center (Centro Nacional de Investigaciones Oncologicas, CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Rifat Hamoudi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
40
|
Affiliation(s)
- Mark Roschewski
- From the Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Louis M Staudt
- From the Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Wyndham H Wilson
- From the Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
41
|
Han G, Deng Q, Marques-Piubelli ML, Dai E, Dang M, Ma MCJ, Li X, Yang H, Henderson J, Kudryashova O, Meerson M, Isaev S, Kotlov N, Nomie KJ, Bagaev A, Parra ER, Solis Soto LM, Parmar S, Hagemeister FB, Ahmed S, Iyer SP, Samaniego F, Steiner R, Fayad L, Lee H, Fowler NH, Flowers CR, Strati P, Westin JR, Neelapu SS, Nastoupil LJ, Vega F, Wang L, Green MR. Follicular Lymphoma Microenvironment Characteristics Associated with Tumor Cell Mutations and MHC Class II Expression. Blood Cancer Discov 2022; 3:428-443. [PMID: 35687817 PMCID: PMC9894575 DOI: 10.1158/2643-3230.bcd-21-0075] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/02/2021] [Accepted: 06/03/2022] [Indexed: 01/01/2023] Open
Abstract
Follicular lymphoma (FL) is a B-cell malignancy with a complex tumor microenvironment that is rich in nonmalignant immune cells. We applied single-cell RNA sequencing to characterize the diverse tumor and immune cell populations of FL and identified major phenotypic subsets of FL T cells, including a cytotoxic CD4 T-cell population. We characterized four major FL subtypes with differential representation or relative depletion of distinct T-cell subsets. By integrating exome sequencing, we observed that somatic mutations are associated with, but not definitive for, reduced MHC expression on FL cells. In turn, expression of MHCII genes by FL cells was associated with significant differences in the proportions and targetable immunophenotypic characteristics of T cells. This provides a classification framework of the FL microenvironment in association with FL genotypes and MHC expression, and informs different potential immunotherapeutic strategies based upon tumor cell MHCII expression. SIGNIFICANCE We have characterized the FL-infiltrating T cells, identified cytotoxic CD4 T cells as an important component that is associated with tumor cell-intrinsic characteristics, and identified sets of targetable immune checkpoints on T cells that differed from FLs with normal versus low MHC expression. See related commentary by Melnick, p. 374. This article is highlighted in the In This Issue feature, p. 369.
Collapse
Affiliation(s)
- Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qing Deng
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Enyu Dai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Minghao Dang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Man Chun John Ma
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xubin Li
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Haopeng Yang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jared Henderson
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | | | - Edwin R. Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luisa M. Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Simrit Parmar
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fredrick B. Hagemeister
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sairah Ahmed
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Swaminathan P. Iyer
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Felipe Samaniego
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Raphael Steiner
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luis Fayad
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hun Lee
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nathan H. Fowler
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
- BostonGene Corporation, Waltham, Massachusetts
| | - Christopher R. Flowers
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paolo Strati
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason R. Westin
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sattva S. Neelapu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Loretta J. Nastoupil
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael R. Green
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
42
|
Jakša R, Karolová J, Svatoň M, Kazantsev D, Grajciarová M, Pokorná E, Tonar Z, Klánová M, Winkowska L, Maláriková D, Vočková P, Forsterová K, Renešová N, Dolníková A, Nožičková K, Dundr P, Froňková E, Trněný M, Klener P. Complex genetic and histopathological study of 15 patient-derived xenografts of aggressive lymphomas. J Transl Med 2022; 102:957-965. [PMID: 36775424 PMCID: PMC9420679 DOI: 10.1038/s41374-022-00784-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/14/2022] Open
Abstract
Non-Hodgkin lymphomas (NHL) represent the most common hematologic malignancies. Patient-derived xenografts (PDXs) are used for various aspects of translational research including preclinical in vivo validation of experimental treatment approaches. While it was repeatedly demonstrated that PDXs keep majority of somatic mutations with the primary lymphoma samples, from which they were derived, the composition of PDX tumor microenvironment (TME) has not been extensively studied. We carried out a comparative genetic and histopathological study of 15 PDX models derived from patients with various types of NHL including diffuse large B-cell lymphoma (DLBCL; n = 7), Burkitt lymphoma (BL; n = 1), mantle cell lymphoma (MCL; n = 2), and peripheral T-cell lymphomas (PTCL; n = 5). Whole exome sequencing (WES) of the PDXs and primary lymphoma cells was implemented in 13 out of 15 cases with available DNA samples. Standard immunohistochemistry (IHC) was used to analyze the composition of PDX TME. WES data confirmed that PDXs maintained the genetic heterogeneity with the original primary lymphoma cells. In contrast, IHC analysis revealed the following recurrently observed alterations in the composition of PDX tumors: more blastoid lymphoma cell morphology, increased proliferation rate, lack of non-malignant cellular components including T cells and (human or murine) macrophages, and significantly lower intratumoral microvessel density and microvessel area composed of murine vessels. In addition, PDX tumors derived from T-NHL displayed additional differences compared to the primary lymphoma samples including markedly lower desmoplasia (i.e., the extent of both reticular and collagen fibrosis), loss of expression of cytotoxic granules (i.e., perforin, TIA, granzyme B), or loss of expression of T-cell specific antigens (i.e., CD3, CD4, CD8). Our data suggest that despite keeping the same genetic profiles, PDX models of aggressive NHL do not recapitulate the microenvironmental heterogeneity of the original lymphomas. These findings have implications on the relevance of PDX models in the context of preclinical research.
Collapse
Affiliation(s)
- Radek Jakša
- Institute of Pathology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Karolová
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine- Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michael Svatoň
- CLIP- Childhood Leukaemia Investigation Prague, Department of Pediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Dmitry Kazantsev
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martina Grajciarová
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Eva Pokorná
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zbyněk Tonar
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Magdalena Klánová
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine- Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lucie Winkowska
- CLIP- Childhood Leukaemia Investigation Prague, Department of Pediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Diana Maláriková
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine- Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petra Vočková
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine- Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kristina Forsterová
- First Department of Medicine- Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Nicol Renešová
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alexandra Dolníková
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kristýna Nožičková
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavel Dundr
- Institute of Pathology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eva Froňková
- CLIP- Childhood Leukaemia Investigation Prague, Department of Pediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Marek Trněný
- First Department of Medicine- Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
- First Department of Medicine- Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
43
|
Bühler MM, Martin‐Subero JI, Pan‐Hammarström Q, Campo E, Rosenquist R. Towards precision medicine in lymphoid malignancies. J Intern Med 2022; 292:221-242. [PMID: 34875132 PMCID: PMC11497354 DOI: 10.1111/joim.13423] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Careful histopathologic examination remains the cornerstone in the diagnosis of the clinically and biologically heterogeneous group of lymphoid malignancies. However, recent advances in genomic and epigenomic characterization using high-throughput technologies have significantly improved our understanding of these tumors. Although no single genomic alteration is completely specific for a lymphoma entity, some alterations are highly recurrent in certain entities and thus can provide complementary diagnostic information when integrated in the hematopathological diagnostic workup. Moreover, other alterations may provide important information regarding the clinical course, that is, prognostic or risk-stratifying markers, or response to treatment, that is, predictive markers, which may allow tailoring of the patient's treatment based on (epi)genetic characteristics. In this review, we will focus on clinically relevant diagnostic, prognostic, and predictive biomarkers identified in more common types of B-cell malignancies, and discuss how diagnostic assays designed for comprehensive molecular profiling may pave the way for the implementation of precision diagnostics/medicine approaches. We will also discuss future directions in this rapidly evolving field, including the application of single-cell sequencing and other omics technologies, to decipher clonal dynamics and evolution in lymphoid malignancies.
Collapse
Affiliation(s)
- Marco M. Bühler
- Department of Pathology and Molecular PathologyUniversity Hospital of ZurichZurichSwitzerland
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Hematopathology SectionLaboratory of PathologyHospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
| | - José I. Martin‐Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Hematopathology SectionLaboratory of PathologyHospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomedica en Red de Cancer (CIBERONC)MadridSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | | | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Hematopathology SectionLaboratory of PathologyHospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomedica en Red de Cancer (CIBERONC)MadridSpain
| | - Richard Rosenquist
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
- Clinical GeneticsKarolinska University LaboratoryKarolinska University HospitalSolnaSweden
| |
Collapse
|
44
|
Li MJ, Yu CH, Chou SW, Su YH, Liao KW, Chang HH, Yang YL. TCF3-HLF-Positive Acute Lymphoblastic Leukemia Resembling Burkitt Leukemia: Cell Morphologic and Immunophenotypic Findings. JCO Precis Oncol 2022; 6:e2200236. [PMID: 36001860 PMCID: PMC9489183 DOI: 10.1200/po.22.00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Meng-Ju Li
- Department of Pediatrics, National Taiwan University Hsin-Chu Hospital, Hsinchu, Taiwan.,Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chih-Hsiang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Wei Chou
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ying-Hui Su
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Childhood Cancer Foundation of the Republic of China, Taipei, Taiwan
| | - Kuang-Wen Liao
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hsiu-Hao Chang
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yung-Li Yang
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
45
|
Loeffler-Wirth H, Kreuz M, Schmidt M, Ott G, Siebert R, Binder H. Classifying Germinal Center Derived Lymphomas-Navigate a Complex Transcriptional Landscape. Cancers (Basel) 2022; 14:3434. [PMID: 35884496 PMCID: PMC9321060 DOI: 10.3390/cancers14143434] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Classification of lymphoid neoplasms is based mainly on histologic, immunologic, and (rarer) genetic features. It has been supplemented by gene expression profiling (GEP) in the last decade. Despite the considerable success, particularly in associating lymphoma subtypes with specific transcriptional programs and classifier signatures of up- or downregulated genes, competing molecular classifiers were often proposed in the literature by different groups for the same classification tasks to distinguish, e.g., BL versus DLBCL or different DLBCL subtypes. Moreover, rarer sub-entities such as MYC and BCL2 "double hit lymphomas" (DHL), IRF4-rearranged large cell lymphoma (IRF4-LCL), and Burkitt-like lymphomas with 11q aberration pattern (mnBLL-11q) attracted interest while their relatedness regarding the major classes is still unclear in many respects. We explored the transcriptional landscape of 873 lymphomas referring to a wide spectrum of subtypes by applying self-organizing maps (SOM) machine learning. The landscape reveals a continuum of transcriptional states activated in the different subtypes without clear-cut borderlines between them and preventing their unambiguous classification. These states show striking parallels with single cell gene expression of the active germinal center (GC), which is characterized by the cyclic progression of B-cells. The expression patterns along the GC trajectory are discriminative for distinguishing different lymphoma subtypes. We show that the rare subtypes take intermediate positions between BL, DLBCL, and FL as considered by the 5th edition of the WHO classification of haemato-lymphoid tumors in 2022. Classifier gene signatures extracted from these states as modules of coregulated genes are competitive with literature classifiers. They provide functional-defined classifiers with the option of consenting redundant classifiers from the literature. We discuss alternative classification schemes of different granularity and functional impact as possible avenues toward personalization and improved diagnostics of GC-derived lymphomas.
Collapse
Affiliation(s)
- Henry Loeffler-Wirth
- Interdisciplinary Centre for Bioinformatics, University Leipzig (IZBI), 04107 Leipzig, Germany; (H.L.-W.); (M.S.)
| | - Markus Kreuz
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), 04103 Leipzig, Germany;
| | - Maria Schmidt
- Interdisciplinary Centre for Bioinformatics, University Leipzig (IZBI), 04107 Leipzig, Germany; (H.L.-W.); (M.S.)
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany;
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89073 Ulm, Germany;
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics, University Leipzig (IZBI), 04107 Leipzig, Germany; (H.L.-W.); (M.S.)
| |
Collapse
|
46
|
Burkhardt B, Michgehl U, Rohde J, Erdmann T, Berning P, Reutter K, Rohde M, Borkhardt A, Burmeister T, Dave S, Tzankov A, Dugas M, Sandmann S, Fend F, Finger J, Mueller S, Gökbuget N, Haferlach T, Kern W, Hartmann W, Klapper W, Oschlies I, Richter J, Kontny U, Lutz M, Maecker-Kolhoff B, Ott G, Rosenwald A, Siebert R, von Stackelberg A, Strahm B, Woessmann W, Zimmermann M, Zapukhlyak M, Grau M, Lenz G. Clinical relevance of molecular characteristics in Burkitt lymphoma differs according to age. Nat Commun 2022; 13:3881. [PMID: 35794096 PMCID: PMC9259584 DOI: 10.1038/s41467-022-31355-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 06/13/2022] [Indexed: 11/09/2022] Open
Abstract
While survival has improved for Burkitt lymphoma patients, potential differences in outcome between pediatric and adult patients remain unclear. In both age groups, survival remains poor at relapse. Therefore, we conducted a comparative study in a large pediatric cohort, including 191 cases and 97 samples from adults. While TP53 and CCND3 mutation frequencies are not age related, samples from pediatric patients showed a higher frequency of mutations in ID3, DDX3X, ARID1A and SMARCA4, while several genes such as BCL2 and YY1AP1 are almost exclusively mutated in adult patients. An unbiased analysis reveals a transition of the mutational profile between 25 and 40 years of age. Survival analysis in the pediatric cohort confirms that TP53 mutations are significantly associated with higher incidence of relapse (25 ± 4% versus 6 ± 2%, p-value 0.0002). This identifies a promising molecular marker for relapse incidence in pediatric BL which will be used in future clinical trials.
Collapse
Affiliation(s)
- Birgit Burkhardt
- Pediatric Hematology, Oncology and BMT, University Hospital Münster, Münster, Germany.
| | - Ulf Michgehl
- Pediatric Hematology, Oncology and BMT, University Hospital Münster, Münster, Germany
| | - Jonas Rohde
- Pediatric Hematology, Oncology and BMT, University Hospital Münster, Münster, Germany
| | - Tabea Erdmann
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Philipp Berning
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Katrin Reutter
- Pediatric Hematology, Oncology and BMT, University Hospital Münster, Münster, Germany
| | - Marius Rohde
- Pediatric Hematology and Oncology, University Hospital Giessen, Giessen, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Thomas Burmeister
- Department of Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sandeep Dave
- Center for Genomic and Computational Biology and Department of Medicine, Duke University, Durham, NC, USA
| | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Martin Dugas
- Institute of Medical Informatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Sarah Sandmann
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology and Comprehensive Cancer Centre Tübingen, University Hospital Tübingen, Eberhard-Karls-University, Tübingen, Germany
| | - Jasmin Finger
- Pediatric Hematology, Oncology and BMT, University Hospital Münster, Münster, Germany
| | - Stephanie Mueller
- Pediatric Hematology, Oncology and BMT, University Hospital Münster, Münster, Germany
| | - Nicola Gökbuget
- Department of Medicine II, Goethe University, Frankfurt, Germany
| | | | | | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, University Hospital of Münster, Münster, Germany
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ilske Oschlies
- Department of Pathology, Hematopathology Section, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Julia Richter
- Department of Pathology, Hematopathology Section, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Udo Kontny
- Section of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatric and Adolescent Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Mathias Lutz
- Hematology and Oncology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Britta Maecker-Kolhoff
- Hannover Medical School, Department of Pediatric Hematology and Oncology, Hannover, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Universität Würzburg and Comprehensive Cancer Centre Mainfranken (CCCMF), Würzburg, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Arend von Stackelberg
- Department of Pediatric Oncology Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Brigitte Strahm
- Department of Pediatrics and Adolescent Medicine Division of Pediatric Hematology and Oncology, Medical Center Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Wilhelm Woessmann
- Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Zimmermann
- Hannover Medical School, Department of Pediatric Hematology and Oncology, Hannover, Germany
| | - Myroslav Zapukhlyak
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Michael Grau
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| |
Collapse
|
47
|
Immunoglobulin/T Cell Receptor Capture Strategy for Comprehensive Immunogenetics. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2453:133-152. [PMID: 35622325 DOI: 10.1007/978-1-0716-2115-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the era of genomic medicine, targeted next generation sequencing strategies (NGS) are becoming increasingly adopted by clinical molecular diagnostic laboratories to identify genetic diagnostic and prognostic biomarkers in hemato-oncology. We describe the EuroClonality-NGS DNA Capture (EuroClonality-NDC) assay, which is designed to simultaneously detect B and T cell clonal rearrangements, translocations, copy number alterations, and sequence variants. The accompanying validated bioinformatics pipeline enables production of an integrated report. The combination of the laboratory protocol and bioinformatics pipeline in the EuroClonality-NDC minimizes the potential for human error, reduces economic costs compared to current molecular testing strategies, and should improve diagnostic outcomes.
Collapse
|
48
|
Latent Membrane Proteins from EBV Differentially Target Cellular Pathways to Accelerate MYC-induced Lymphomagenesis. Blood Adv 2022; 6:4283-4296. [PMID: 35605249 PMCID: PMC9327557 DOI: 10.1182/bloodadvances.2022007695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022] Open
Abstract
EBV LMP1 enhances MYC-mediated degradation of the p27kip1 tumor suppressor and accelerates MYC-induced lymphomagenesis. EBV LMP1 and LMP2A differentially use G1-specific cell cycle and BCR-mediated signaling to accelerate MYC-induced lymphomagenesis.
MYC translocations in association with Epstein-Barr virus (EBV) infection are often observed in B-cell lymphomas. A subset of Burkitt lymphoma (BL) expresses EBV latent membrane proteins 1 and 2A (LMP1 and LMP2A) in addition to the typical restricted EBV latent gene expression. EBV-associated diffuse large B-cell lymphoma (DLBCL) typically exhibits latency type II or III and expresses LMP1. Here, we investigate the role of LMP1 in MYC-driven lymphomagenesis in our murine model. λ-MYC mice develop tumors having a “starry sky” appearance and have abnormal p53 expression that is also observed in human BL. LMP2A/λ-MYC double-transgenic mice develop tumors significantly faster than mice only expressing MYC. Similar to LMP2A/λ-MYC mice, LMP1/λ-MYC mice also have accelerated MYC-driven lymphomagenesis. As observed in LMP2A/λ-MYC mice, p27kip1 was degraded in LMP1/λ-MYC pretumor and tumor B cells. Coexpression of LMP1 and LMP2A resulted in the enhancement of B cell proliferation. In contrast to LMP2A, the inhibition of Syk or cyclin-dependant kinase (CDK)4/6 activity did not effectively inhibit LMP1-mediated MYC lymphomagenesis. Also, in contrast to LMP2A, LMP1 did not lessen abnormal p53 expression in λ-MYC tumors. To investigate the significance of LMP1 expression in human BL development, we reanalyzed RNA sequencing (RNA-Seq) data of primary human BL from previous studies. Interestingly, p53 mutations were less observed in LMP1-expressing BL, although they were not significantly changed by EBV infection, indicating LMP1 may lessen p53 mutations in human primary BL. This suggests that LMP1 effects in EBV-associated human BL vary from what we observe in our murine model. Finally, our studies suggest a novel pathogenic role of LMP1 in lymphomagenesis.
Collapse
|
49
|
Schaefer A, Der CJ. RHOA takes the RHOad less traveled to cancer. Trends Cancer 2022; 8:655-669. [PMID: 35568648 DOI: 10.1016/j.trecan.2022.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
RAS and RHO GTPases function as signaling nodes that regulate diverse cellular processes. Whereas RAS mutations were identified in human cancers nearly four decades ago, only recently have mutations in two RHO GTPases, RAC1 and RHOA, been identified in cancer. RAS mutations are found in a diverse spectrum of human cancer types. By contrast, RAC1 and RHOA mutations are associated with distinct and restricted cancer types. Despite a conservation of RAS and RAC1 residues that comprise mutational hotspots, RHOA mutations comprise highly divergent hotspots. Whereas RAS and RAC1 act as oncogenes, RHOA may act as both an oncogene and a tumor suppressor. Thus, while RAS and RHO each take different mutational paths, they arrive at the same biological destination as cancer drivers.
Collapse
Affiliation(s)
- Antje Schaefer
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Department of Pharmacology, Chapel Hill, NC 27599, USA
| | - Channing J Der
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Department of Pharmacology, Chapel Hill, NC 27599, USA.
| |
Collapse
|
50
|
Summerauer AM, Jäggi V, Ogwang R, Traxel S, Colombo L, Amundsen E, Eyer T, Subramanian B, Fehr J, Mantel P, Idro R, Bürgler S. Epstein-Barr virus and malaria upregulate AID and APOBEC3 enzymes, but only AID seems to play a major mutagenic role in Burkitt lymphoma. Eur J Immunol 2022; 52:1273-1284. [PMID: 35503749 PMCID: PMC7613445 DOI: 10.1002/eji.202249820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/01/2022] [Accepted: 04/27/2022] [Indexed: 11/26/2022]
Abstract
Endemic Burkitt lymphoma (eBL) is characterized by an oncogenic IGH/c‐MYC translocation and Epstein–Barr virus (EBV) positivity, and is epidemiologically linked to Plasmodium falciparum malaria. Both EBV and malaria are thought to contribute to eBL by inducing the expression of activation‐induced cytidine deaminase (AID), an enzyme involved in the IGH/c‐MYC translocation. AID/apolipoprotein B mRNA editing catalytic polypeptide‐like (AID/APOBEC) family enzymes have recently emerged as potent mutagenic sources in a variety of cancers, but apart from AID, their involvement in eBL and their regulation by EBV and P. falciparum is unknown. Here, we show that upon inoculation with EBV, human B cells strongly upregulate the expression of enzymatically active APOBEC3B and APOBEC3G. In addition, we found significantly increased levels of APOBEC3A in B cells of malaria patients, which correlated with parasite load. Interestingly, despite the fact that APOBEC3A, APOBEC3B, and APOBEC3G caused c‐MYC mutations when overexpressed in HEK293T cells, a mutational enrichment in eBL tumors was only detected in AID motifs. This suggests that even though the EBV‐ and P. falciparum‐directed immune response triggers the expression and activity of several AID/APOBEC members, only the upregulation of AID has oncogenic consequences, while the induction of the APOBEC3 subfamily may primarily have immunoprotective functions.
Collapse
Affiliation(s)
- Andrea M. Summerauer
- Experimental Infectious Diseases and Cancer Research, Children's Research CenterUniversity Children's Hospital ZurichZurichSwitzerland
- Department of Infectious Diseases and Hospital EpidemiologyUniversity Hospital ZurichZurichSwitzerland
| | - Vera Jäggi
- Experimental Infectious Diseases and Cancer Research, Children's Research CenterUniversity Children's Hospital ZurichZurichSwitzerland
| | - Rodney Ogwang
- College of Health SciencesMakerere UniversityKampalaUganda
- Centre of Tropical NeuroscienceKitgum SiteKampalaUganda
- KEMRI‐Wellcome Trust Research ProgrammeCentre for Geographic Medicine CoastKilifiKenya
| | - Sabrina Traxel
- Experimental Infectious Diseases and Cancer Research, Children's Research CenterUniversity Children's Hospital ZurichZurichSwitzerland
| | - Lorenzo Colombo
- Experimental Infectious Diseases and Cancer Research, Children's Research CenterUniversity Children's Hospital ZurichZurichSwitzerland
| | - Eivind Amundsen
- KG Jebsen Centre for B Cell Malignancies, Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Tatjana Eyer
- Experimental Infectious Diseases and Cancer Research, Children's Research CenterUniversity Children's Hospital ZurichZurichSwitzerland
| | - Bibin Subramanian
- Department of Oncology, Microbiology, and Immunology, Faculty of Science and MedicineUniversity of FribourgFribourgSwitzerland
| | - Jan Fehr
- Department of Infectious Diseases and Hospital EpidemiologyUniversity Hospital ZurichZurichSwitzerland
| | - Pierre‐Yves Mantel
- Department of Oncology, Microbiology, and Immunology, Faculty of Science and MedicineUniversity of FribourgFribourgSwitzerland
| | - Richard Idro
- College of Health SciencesMakerere UniversityKampalaUganda
- Centre of Tropical NeuroscienceKitgum SiteKampalaUganda
| | - Simone Bürgler
- Experimental Infectious Diseases and Cancer Research, Children's Research CenterUniversity Children's Hospital ZurichZurichSwitzerland
| |
Collapse
|