1
|
Nayak SS, Rajawat D, Jain K, Sharma A, Gondro C, Tarafdar A, Dutt T, Panigrahi M. A comprehensive review of livestock development: insights into domestication, phylogenetics, diversity, and genomic advances. Mamm Genome 2024; 35:577-599. [PMID: 39397083 DOI: 10.1007/s00335-024-10075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
Livestock plays an essential role in sustaining human livelihoods, offering a diverse range of species integral to food security, economic stability, and cultural traditions. The domestication of livestock, which began over 10,000 years ago, has driven significant genetic changes in species such as cattle, buffaloes, sheep, goats, and pigs. Recent advancements in genomic technologies, including next-generation sequencing (NGS), genome-wide association studies (GWAS), and genomic selection, have dramatically enhanced our understanding of these genetic developments. This review brings together key research on the domestication process, phylogenetics, genetic diversity, and selection signatures within major livestock species. It emphasizes the importance of admixture studies and evolutionary forces like natural selection, genetic drift, and gene flow in shaping livestock populations. Additionally, the integration of machine learning with genomic data offers new perspectives on the functional roles of genes in adaptation and evolution. By exploring these genomic advancements, this review provides insights into genetic variation and evolutionary processes that could inform future approaches to improving livestock management and adaptation to environmental challenges, including climate change.
Collapse
Affiliation(s)
- Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Karan Jain
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Cedric Gondro
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Ayon Tarafdar
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India.
| |
Collapse
|
2
|
Qi F, Chen X, Wang J, Niu X, Li S, Huang S, Ran X. Genome-wide characterization of structure variations in the Xiang pig for genetic resistance to African swine fever. Virulence 2024; 15:2382762. [PMID: 39092797 PMCID: PMC11299630 DOI: 10.1080/21505594.2024.2382762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/07/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
African swine fever (ASF) is a rapidly fatal viral haemorrhagic fever in Chinese domestic pigs. Although very high mortality is observed in pig farms after an ASF outbreak, clinically healthy and antibody-positive pigs are found in those farms, and viral detection is rare from these pigs. The ability of pigs to resist ASF viral infection may be modulated by host genetic variations. However, the genetic basis of the resistance of domestic pigs against ASF remains unclear. We generated a comprehensive set of structural variations (SVs) in a Chinese indigenous Xiang pig with ASF-resistant (Xiang-R) and ASF-susceptible (Xiang-S) phenotypes using whole-genome resequencing method. A total of 53,589 nonredundant SVs were identified, with an average of 25,656 SVs per individual in the Xiang pig genome, including insertion, deletion, inversion and duplication variations. The Xiang-R group harboured more SVs than the Xiang-S group. The F-statistics (FST) was carried out to reveal genetic differences between two populations using the resequencing data at each SV locus. We identified 2,414 population-stratified SVs and annotated 1,152 Ensembl genes (including 986 protein-coding genes), in which 1,326 SVs might disturb the structure and expression of the Ensembl genes. Those protein-coding genes were mainly enriched in the Wnt, Hippo, and calcium signalling pathways. Other important pathways associated with the ASF viral infection were also identified, such as the endocytosis, apoptosis, focal adhesion, Fc gamma R-mediated phagocytosis, junction, NOD-like receptor, PI3K-Akt, and c-type lectin receptor signalling pathways. Finally, we identified 135 candidate adaptive genes overlapping 166 SVs that were involved in the virus entry and virus-host cell interactions. The fact that some of population-stratified SVs regions detected as selective sweep signals gave another support for the genetic variations affecting pig resistance against ASF. The research indicates that SVs play an important role in the evolutionary processes of Xiang pig adaptation to ASF infection.
Collapse
Affiliation(s)
- Fenfang Qi
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China
| | - Xia Chen
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China
| | - Jiafu Wang
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China
| | - Xi Niu
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China
| | - Sheng Li
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China
| | - Shihui Huang
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China
| | - Xueqin Ran
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China
| |
Collapse
|
3
|
Tiwari M, Gujar G, Shashank CG, Ponsuksili S. Selection signatures for high altitude adaptation in livestock: A review. Gene 2024; 927:148757. [PMID: 38986751 DOI: 10.1016/j.gene.2024.148757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
High altitude adapted livestock species (cattle, yak, goat, sheep, and horse) has critical role in the human socioeconomic sphere and acts as good source of animal source products including milk, meat, and leather, among other things. These species sustain production and reproduction even in harsh environments on account of adaptation resulting from continued evolution of beneficial traits. Selection pressure leads to various adaptive strategies in livestock whose footprints are evident at the different genomic sites as the "Selection Signature". Scrutiny of these signatures provides us crucial insight into the evolutionary process and domestication of livestock adapted to diverse climatic conditions. These signatures have the potential to change the sphere of animal breeding and further usher the selection programmes in right direction. Technological revolution and recent strides made in genomic studies has opened the routes for the identification of selection signatures. Numerous statistical approaches and bioinformatics tools have been developed to detect the selection signature. Consequently, studies across years have identified candidate genes under selection region found associated with numerous traits which have a say in adaptation to high-altitude environment. This makes it pertinent to have a better understanding about the selection signature, the ways to identify and how to utilize them for betterment of livestock populations as well as farmers. This review takes a closer look into the general concept, various methodologies, and bioinformatics tools commonly employed in selection signature studies and summarize the results of recent selection signature studies related to high-altitude adaptation in various livestock species. This review will serve as an informative and useful insight for researchers and students in the field of animal breeding and evolutionary biology.
Collapse
Affiliation(s)
- Manish Tiwari
- ICAR-National Dairy Research Institute, Karnal, India; U.P. Pt. Deen Dayal Upadhyaya Veterinary Science University and Cattle Research Institute, Mathura, India.
| | | | - C G Shashank
- ICAR-National Dairy Research Institute, Karnal, India
| | | |
Collapse
|
4
|
Gangwar M, Ahmad SF, Ali AB, Kumar A, Kumar A, Gaur GK, Dutt T. Identifying low-density, ancestry-informative SNP markers through whole genome resequencing in Indian, Chinese, and wild yak. BMC Genomics 2024; 25:1043. [PMID: 39501152 PMCID: PMC11539683 DOI: 10.1186/s12864-024-10924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
The current investigation was undertaken to elucidate the population-stratifying and ancestry-informative markers in Indian, Chinese, and wild yak populations using whole genome resequencing (WGS) analysis while employing various selection strategies (Delta, Pairwise Wright's Fixation Index-FST, and Informativeness of Assignment) and marker densities (5-25 thousand). The study used WGS data on 105 individuals from three separate yak cohorts i.e., Indian yak (n = 29), Chinese yak (n = 61), and wild yak (n = 15). Variant calling in the GATK program with strict quality control resulted in 1,002,970 high-quality and independent (LD-pruned) SNP markers across the yak autosomes. Analysis was undertaken in toolbox for ranking and evaluation of SNPs (TRES) program wherein three different criteria i.e., Delta, Pairwise Wright's Fixation Index-FST, and Informativeness of Assignment were employed to identify population-stratifying and ancestry-informative markers across various datasets. The top-ranked 5,000 (5K), 10,000 (10K), 15,000 (15K), 20,000 (20K), and 25,000 (25K) SNPs were identified from each dataset while their composition and performance was assessed using different criteria. The average genomic breed clustering of Indian, Chinese, and wild yak cohorts with full density dataset (105 individuals with 1,002,970 markers) was 81.74%, 80.02%, and 83.62%, respectively. Informativeness of Assignment criterion with 10K density emerged as the best combination for three yak cohorts with 86.94%, 96.46%, and 98.20% clustering for Indian, Chinese, and wild yak, respectively. There was an average increase of 7.56%, 22.72%, and 30.35% in genomic breed clustering scores of Indian, Chinese, and wild yak cohorts over the estimates of the original dataset. The selected markers showed overlap multiple protein-coding genes within a 10 kb window including ADGRB3, ANK1, CACNG7, CALN1, CHCHD2, CREBBP, GLI3, KHDRBS2, and OSBPL10. This is the first report ever on elucidating low-density SNP marker sets with population-stratifying and ancestry-informative properties in three yak groups using WGS data. The results gain significance for application of genomic selection using cost-effective low-density SNP panels in global yak species.
Collapse
Affiliation(s)
- Munish Gangwar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| | | | - Abdul Basit Ali
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| | - Amit Kumar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| | - Amod Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Gyanendra Kumar Gaur
- Animal Science Division, Indian Council of Agricultural Research, Krishi Bhawan, New Delhi, 110001, India
| | - Triveni Dutt
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| |
Collapse
|
5
|
Zhang H, Ruan P, Cong H, Xu L, Yang B, Ren T, Zhang D, Chen H, Hu P, Wang Z, Pan H, Yang X, Han Y, Zeng Y, Zhao Y, Liu D, Ceccobelli S, E G. Genomic Insights into Pig Domestication and Adaptation: An Integrated Approach Using Genome-Wide Selection Analysis and Multiple Public Datasets. Animals (Basel) 2024; 14:3159. [PMID: 39518882 PMCID: PMC11545170 DOI: 10.3390/ani14213159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
As a global focus of animal husbandry, pigs provide essential meat resources for humans. Therefore, analyzing the genetic basis of adaptability, domestication, and artificial selection in pigs will contribute to further breeding. This study performed a genome-wide selection sweep analysis to identify candidate genes related to domestication and adaptive selection via data from 2413 public genotypes. Two complementary statistical analyses, FST (fixation index) and XP-EHH (cross-population extended haplotype homozygosity) were applied. The results revealed that numerous candidate genes were associated with high-altitude adaptability (e.g., SIRPA, FRS2, and GRIN2B) and habitat temperature adaptability (e.g., MITF, PI3KC2A, and FRS2). In addition, candidate genes related to the domestic genetic imprint of indigenous pigs (e.g., TNR, NOCT, and SPATA5) and strong artificial selection pressure in commercial breeds (e.g., ITPR2, HSD17B12, and UGP2) were identified in this study. Specifically, some MHC-related genes (e.g., ZRTB12, TRIM26, and C7H6orf15) were also under selection during domestication and artificial selection. Additionally, a phylogenetic comparative analysis revealed that the genetic divergence between populations does not fully follow the geographical distribution and management history in the major histocompatibility complex region/major histocompatibility complex II haplotypes, unlike that of the genome-wide genotypes. Furthermore, the higher heterozygosity and haplotype alleles of MHC reduce the differences between populations. Briefly, this study not only helps promote the relative theoretical understanding of environmental adaptive selection and domestication but also provides a theoretical reference for disease-resistant breeding in pigs.
Collapse
Affiliation(s)
- Haoyuan Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Pengcheng Ruan
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - He Cong
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Lu Xu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Baigao Yang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Tao Ren
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China (D.L.)
| | - Hongyue Chen
- Chongqing Animal Husbandry Technology Extension Station, Chongqing 401121, China
| | - Pengfei Hu
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130000, China
| | - Zhen Wang
- Chongqing Animal Husbandry Technology Extension Station, Chongqing 401121, China
| | - Hongmei Pan
- Chongqing Academy of Animal Sciences, Chongqing 408599, China
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yanguo Han
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yan Zeng
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China (D.L.)
| | - Simone Ceccobelli
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Guangxin E
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Yang Y, Yuan H, Yao B, Zhao S, Wang X, Xu L, Zhang L. Genetic Adaptations of the Tibetan Pig to High-Altitude Hypoxia on the Qinghai-Tibet Plateau. Int J Mol Sci 2024; 25:11303. [PMID: 39457085 PMCID: PMC11508817 DOI: 10.3390/ijms252011303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The Tibetan Plateau's distinctive high-altitude environment, marked by extreme cold and reduced oxygen levels, presents considerable survival challenges for both humans and mammals. Natural selection has led to the accumulation of adaptive mutations in Tibetan pigs, enabling them to develop distinctive adaptive phenotypes. Here, we aim to uncover the genetic mechanisms underlying the adaptation of Tibetan pigs to high-altitude hypoxia. Therefore, we conducted a systematic analysis of 140 whole-genome sequencing (WGS) data points from different representing pig populations. Our analysis identified a total of 27,614,561 mutations, including 22,386,319 single-nucleotide variants (SNVs) and 5,228,242 insertions/deletions (INDELs, size < 50 bp). A total of 11% (2,678,569) of the SNVs were newly identified in our project, significantly expanding the dataset of genetic variants in Tibetan pigs. Compared to other pig breeds, Tibetan pigs are uniquely adapted to high-altitude environments, exhibiting the highest genetic diversity and the lowest inbreeding coefficient. Employing the composite of multiple signals (CMS) method, we scanned the genome-wide Darwinian positive selection signals and identified 32,499 Tibetan pig positively selected SNVs (TBPSSs) and 129 selected genes (TBPSGs), including 213 newly discovered genes. Notably, we identified eight genes (PHACTR1, SFI1, EPM2A, SLC30A7, NKAIN2, TNNI3K, and PLIN2) with strong nature selection signals. They are likely to improve cardiorespiratory function and fat metabolism to help Tibetan pigs become adapted to the high-altitude environment. These findings provide new insights into the genetic mechanisms of high-altitude adaptation and the adaptive phenotypes of Tibetan pigs.
Collapse
Affiliation(s)
- Yanan Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (H.Y.); (B.Y.); (S.Z.); (X.W.); (L.X.); (L.Z.)
| | | | | | | | | | | | | |
Collapse
|
7
|
Zhao P, Li S, He Z, Ma X. Physiological and Genetic Basis of High-Altitude Indigenous Animals' Adaptation to Hypoxic Environments. Animals (Basel) 2024; 14:3031. [PMID: 39457960 PMCID: PMC11505238 DOI: 10.3390/ani14203031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Adaptation is one of the fundamental characteristics of life activities; humans and animals inhabiting high altitudes are well adapted to hypobaric hypoxic environments, and studies on the mechanisms of this adaptation emerged a hundred years ago. Based on these studies, this paper reviews the adaptive changes in hypoxia-sensitive tissues and organs, as well as at the molecular genetic level, such as pulmonary, cardiovascular, O2-consuming tissues, and the hemoglobin and HIF pathway, that occur in animals in response to the challenge of hypobaric hypoxia. High-altitude hypoxia adaptation may be due to the coordinated action of genetic variants in multiple genes and, as a result, adaptive changes in multiple tissues and organs at the physiological and biochemical levels. Unraveling their mechanisms of action can provide a reference for the prevention and treatment of multiple diseases caused by chronic hypoxia.
Collapse
Affiliation(s)
- Pengfei Zhao
- Faculty of Chemistry and Life Sciences, Gansu Minzu Normal University, Hezuo 747000, China;
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Zhaohua He
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Xiong Ma
- Faculty of Chemistry and Life Sciences, Gansu Minzu Normal University, Hezuo 747000, China;
| |
Collapse
|
8
|
Fang S, Zhang H, Long H, Zhang D, Chen H, Yang X, Pan H, Pan X, Liu D, E G. Phylogenetic Relations and High-Altitude Adaptation in Wild Boar ( Sus scrofa), Identified Using Genome-Wide Data. Animals (Basel) 2024; 14:2984. [PMID: 39457914 PMCID: PMC11503864 DOI: 10.3390/ani14202984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
The Qinghai-Tibet Plateau (QTP) wild boar is an excellent model for investigating high-altitude adaptation. In this study, we analyzed genome-wide data from 93 wild boars compiled from various studies worldwide, including the QTP, southern and northern regions of China, Europe, Northeast Asia, and Southeast Asia, to explore their phylogenetic patterns and high-altitude adaptation based on genome-wide selection signal analysis and run of homozygosity (ROH) estimation. The findings demonstrate the alignment between the phylogenetic associations among wild boars and their geographical location. An ADMIXTURE analysis indicated a relatively close genetic relationship between QTP and southern Chinese wild boars. Analyses of the fixation index and cross-population extended haplotype homozygosity between populations revealed 295 candidate genes (CDGs) associated with high-altitude adaptation, such as TSC2, TELO2, SLC5A1, and SLC5A4. These CDGs were significantly overrepresented in pathways such as the mammalian target of rapamycin signaling and Fanconi anemia pathways. In addition, 39 ROH islands and numerous selective CDGs (e.g., SLC5A1, SLC5A4, and VCP), which are implicated in glucose metabolism and mitochondrial function, were discovered in QTP wild boars. This study not only assessed the phylogenetic history of QTP wild boars but also advanced our comprehension of the genetic mechanisms underlying the adaptation of wild boars to high altitudes.
Collapse
Affiliation(s)
- Shiyong Fang
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China; (S.F.); (H.Z.); (H.L.)
| | - Haoyuan Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China; (S.F.); (H.Z.); (H.L.)
| | - Haoyuan Long
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China; (S.F.); (H.Z.); (H.L.)
| | - Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Hongyue Chen
- Chongqing Animal Husbandry Technology Extension Station, Chongqing 401121, China;
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China;
| | - Hongmei Pan
- Chongqing Academy of Animal Sciences, Chongqing 408599, China;
| | - Xiao Pan
- Chongqing Hechuan Animal Husbandry Station, Chongqing 401520, China;
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Guangxin E
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China; (S.F.); (H.Z.); (H.L.)
| |
Collapse
|
9
|
Yang Y, Gan M, Liu C, Xie Z, Wang M, Zhou C, Cheng W, Chen L, Zhang S, Zhao Y, Niu L, Wang Y, Wang J, Shen L, Zhu L. Analysis of genetic evolutionary differences among four Tibetan pig populations in China. Genomics 2024; 116:110950. [PMID: 39393592 DOI: 10.1016/j.ygeno.2024.110950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
Tibetan pigs are a locally bred domestic pig breed originating from the Tibetan Plateau in China. They can be categorized into four distinct groups based on their geographical locations: Sichuan Tibetan pigs, Tibetan pigs from Tibet, Yunnan Tibetan pigs, and Gansu Tibetan pigs. This study aimed to explore population diversity, genetic structure and selection signals among Tibetan pigs in four Chinese national nature reserves. The results show that there is different observed heterozygosity among Tibetan pig populations (0.1957-0.1978). Ratio of runs of homozygosity (Froh) calculation of four Tibetan pig populations by runs of homozygosity (ROH) revealed the presence of inbreeding within the population (0.0336-0.0378). Analysis of the genetic structure demonstrated distinct population stratification among the four Tibetan pig populations, with each showing relatively independent evolutionary directions. Furthermore, Five methods (FST, Piratio, ROD, Tajima's D, XP-CLR) were used to artificially select evolutionary trajectories. The results mainly involved processes such as DNA repair, immune regulation, muscle fat deposition and adaptation to hypoxia. In conclusion, this study enhances our understanding of the genetic characteristics of Tibetan pig populations and provides a theoretical reference for the conservation of resources across different populations of Tibetan pigs.
Collapse
Affiliation(s)
- Yiting Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengming Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongwei Xie
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Meng Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengpeng Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenqiang Cheng
- National Animal Husbandry Service, Beijing 100125, China
| | - Lei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingyong Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
10
|
Qin YC, Jin CL, Hu TC, Zhou JY, Wang XF, Wang XQ, Kong XF, Yan HC. Early Weaning Inhibits Intestinal Stem Cell Expansion to Disrupt the Intestinal Integrity of Duroc Piglets via Regulating the Keap1/Nrf2 Signaling. Antioxidants (Basel) 2024; 13:1188. [PMID: 39456442 PMCID: PMC11505184 DOI: 10.3390/antiox13101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
There are different stress resistance among different breeds of pigs. Changes in intestinal stem cells (ISCs) are still unclear among various breeds of piglets after early weaning. In the current study, Taoyuan Black and Duroc piglets were slaughtered at 21 days of age (early weaning day) and 24 days of age (3 days after early weaning) for 10 piglets in each group. The results showed that the rate of ISC-driven epithelial renewal in local Taoyuan Black pigs hardly changed after weaning for 3 days. However, weaning stress significantly reduced the weight of the duodenum and jejunum in Duroc piglets. Meanwhile, the jejunal villus height, tight junction-related proteins (ZO-1, Occludin, and Claudin1), as well as the trans-epithelial electrical resistance (TEER) values, were down-regulated after weaning for 3 days in Duroc piglets. Moreover, compared with Unweaned Duroc piglets, the numbers of Olfm4+ ISC cells, PCNA+ mitotic cells, SOX9+ secretory progenitor cells, and Villin+ absorptive cells in the jejunum were reduced significantly 3 days after weaning. And ex vivo jejunal crypt-derived organoids exhibited growth disadvantages in weaned Duroc piglets. Notably, the Keap1/Nrf2 signaling activities and the expression of HO-1 were significantly depressed in weaned Duroc piglets compared to Unweaned Duroc piglets. Thus, we can conclude that ISCs of Duroc piglets were more sensitive to weaning stress injury than Taoyuan Black piglets, and Keap1/Nrf2 signaling is involved in this process.
Collapse
Affiliation(s)
- Ying-Chao Qin
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-C.Q.); (T.-C.H.); (J.-Y.Z.); (X.-F.W.); (X.-Q.W.)
| | - Cheng-Long Jin
- Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China;
| | - Ting-Cai Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-C.Q.); (T.-C.H.); (J.-Y.Z.); (X.-F.W.); (X.-Q.W.)
| | - Jia-Yi Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-C.Q.); (T.-C.H.); (J.-Y.Z.); (X.-F.W.); (X.-Q.W.)
| | - Xiao-Fan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-C.Q.); (T.-C.H.); (J.-Y.Z.); (X.-F.W.); (X.-Q.W.)
| | - Xiu-Qi Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-C.Q.); (T.-C.H.); (J.-Y.Z.); (X.-F.W.); (X.-Q.W.)
| | - Xiang-Feng Kong
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hui-Chao Yan
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-C.Q.); (T.-C.H.); (J.-Y.Z.); (X.-F.W.); (X.-Q.W.)
| |
Collapse
|
11
|
Liu C, Liu P, Liu S, Guo H, Zhu T, Li W, Wang K, Kang X, Sun G. Genetic structure, selective characterization and specific molecular identity cards of high-yielding Houdan chickens based on genome-wide SNP. Poult Sci 2024; 103:104325. [PMID: 39316988 PMCID: PMC11462333 DOI: 10.1016/j.psj.2024.104325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024] Open
Abstract
The high-yielding Houdan chicken (GGF) is characterized by high egg production and disease resistance. This study conducted whole genome resequencing of the GGF population and compared it to data from other breeds. Genetic diversity analysis revealed higher observed heterozygosity (Ho), Polymorphism information content (PIC), number of runs of homozygosity (ROH), and inbreeding coefficient (FROH) in GGF. Linkage disequilibrium (LD) decay was slowest in GGF, indicating intensive inbreeding and strong selection. These findings suggest a need for appropriate strategies to enhance genetic diversity conservation in this breed. Population structure analysis demonstrated that GGF was genetically distinct from both the red jungle fowl (RJF) and Chinese indigenous chicken (CIC) populations, highlighting GGF as a unique genetic resource warranting intensive protection and utilization. Selective sweep analysis identified genes under selection in GGF, primarily enriched in signaling pathways related to oocyte meiosis and progesterone-mediated oocyte maturation. Key candidate genes included: CCNE1, SKP1, CDC20, CDK2, ADCY8, RPS6KA6, PPP3CB, PDE3B, HSP90AB1, and AKT3. These findings provide a theoretical foundation for their potential application in poultry breeding. Additionally, this study combined bioinformatics analysis with PCR amplification and Sanger sequencing to identify 4 SNPs that can serve as a molecular identity card (ID) for GGF: SNP1 (Chr2: 136130976), SNP3 (Chr4:11705164), SNP4 (Chr4: 63255588), and SNP5 (Chr24: 3271008). This study provides a scientific basis for effective management and conservation of GGF genetic resources, and establishes a simple, economical, and accurate set of molecular IDs to combat the proliferation of inferior breeds and protect genetic resources.
Collapse
Affiliation(s)
- Cong Liu
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou 450046, China
| | - Pingquan Liu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
| | - Shuangxing Liu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
| | - Haishan Guo
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
| | - Tingqi Zhu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
| | - Wenting Li
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
| | - Kejun Wang
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiangtao Kang
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou 450046, China
| | - Guirong Sun
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
12
|
Kang Y, Wang Z, An K, Hou Q, Zhang Z, Su J. Introgression drives adaptation to the plateau environment in a subterranean rodent. BMC Biol 2024; 22:187. [PMID: 39218870 PMCID: PMC11368017 DOI: 10.1186/s12915-024-01986-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Introgression has repeatedly been shown to play an important role in the adaptation of species to extreme environments, yet how introgression enables rodents with specialized subterranean lifestyle to acclimatize to high altitudes is still unclear. Myospalacinae is a group of subterranean rodents, among which the high-altitude plateau zokors (Eospalax baileyi) and the low-altitude Gansu zokors (E. cansus) are sympatrically distributed in the grassland ecosystems of the Qinghai-Tibet Plateau (QTP). Together, they provide a model for the study of the role of introgression in the adaptation of low-altitude subterranean rodents to high altitudes. RESULTS Applying low-coverage whole-genome resequencing and population genetics analyses, we identified evidence of adaptive introgression from plateau zokors into Gansu zokors, which likely facilitated the adaptation of the latter to the high-altitude environment of the QTP. We identified positively selected genes with functions related to energy metabolism, cardiovascular system development, calcium ion transport, and response to hypoxia which likely made critical contributions to adaptation to the plateau environment in both plateau zokors and high-altitude populations of Gansu zokors. CONCLUSIONS Introgression of genes associated with hypoxia adaptation from plateau zokors may have played a role in the adaptation of Gansu zokors to the plateau environment. Our study provides new insights into the understanding of adaptive evolution of species on the QTP and the importance of introgression in the adaptation of species to high-altitude environments.
Collapse
Affiliation(s)
- Yukun Kang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhicheng Wang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, 730070, China
| | - Kang An
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, 730070, China
| | - Qiqi Hou
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhiming Zhang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, 730070, China
| | - Junhu Su
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, 730070, China.
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, 730070, China.
- Gansu Qilianshan Grassland Ecosystem Observation and Research Station, Wuwei, 733200, China.
| |
Collapse
|
13
|
Li C, Wang X, Li H, Ahmed Z, Luo Y, Qin M, Yang Q, Long Z, Lei C, Yi K. Whole-genome resequencing reveals diversity and selective signals in the Wuxue goat. Anim Genet 2024; 55:575-587. [PMID: 38806279 DOI: 10.1111/age.13437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/30/2024]
Abstract
Animal genetic resources are crucial for ensuring global food security. However, in recent years, a noticeable decline in the genetic diversity of livestock has occurred worldwide. This decline is pronounced in developing countries, where the management of these resources is insufficient. In the current study, we performed whole genome sequencing for 20 Wuxue (WX) and five Guizhou White (GW) goats. Additionally, we utilized the published genomes of 131 samples representing five different goat breeds from various regions in China. We investigated and compared the genetic diversity and selection signatures of WX goats. Whole genome sequencing analysis of the WX and GW populations yielded 120 425 063 SNPs, which resided primarily in intergenic and intron regions. Population genetic structure revealed that WX exhibited genetic resemblance to GW, Chengdu Brown, and Jintang Black and significant differentiation from the other goat breeds. In addition, three methods (nucleotide diversity, linkage disequilibrium decay, and runs of homozygosity) showed moderate genetic diversity in WX goats. We used nucleotide diversity and composite likelihood ratio methods to identify within-breed signatures of positive selection in WX goats. A total of 369 genes were identified using both detection methods, including genes related to reproduction (GRID2, ZNF276, TCF25, and SPIRE2), growth (HMGA2 and GJA3), and immunity (IRF3 and SRSF3). Overall, this study explored the adaptability of WX goats, shedding light on their genetic richness and potential to thrive in challenges posed by climatic changes and diseases. Further investigations are warranted to harness these insights to enhance more efficient and sustainable goat breeding initiatives.
Collapse
Affiliation(s)
- Chuanqing Li
- Hunan Institute of Animal and Veterinary Science, Changsha, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianglin Wang
- Animal Husbandry and Aquatic Products Affairs Center of Xiangxi Autonomous Prefecture, Jishou, China
| | - Haobang Li
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Yang Luo
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Mao Qin
- Animal Husbandry and Aquatic Products Affairs Center of Xiangxi Autonomous Prefecture, Jishou, China
| | - Qiong Yang
- Animal Husbandry and Aquatic Products Affairs Center of Xiangxi Autonomous Prefecture, Jishou, China
| | - Zhangcheng Long
- Animal Husbandry and Aquatic Products Affairs Center of Xiangxi Autonomous Prefecture, Jishou, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| |
Collapse
|
14
|
Zhang L, Zhu Y, Ren Y, Xu L, Liu X, Qi X, Jiao T, Sun G, Han H, Zhang J, Sun F, Yang Y, Zhao S. Genetic characterization of Tibetan pigs adapted to high altitude under natural selection based on a large whole-genome dataset. Sci Rep 2024; 14:17062. [PMID: 39048584 PMCID: PMC11269713 DOI: 10.1038/s41598-024-65559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
The Qinghai-Tibet Plateau is a valuable genetic resource pool, and the high-altitude adaptation of Tibetan pigs is a classic example of the adaptive evolution of domestic animals. Here, we report the presence of Darwinian positive selection signatures in Tibetan pigs (TBPs) using 348 genome-wide datasets (127 whole-genome sequence datasets (WGSs) and 221 whole-genome single-nucleotide polymorphism (SNP) chip datasets). We characterized a high-confidence list of genetic signatures related response to high-altitude adaptation in Tibetan pigs, including 4,598 candidate SNPs and 131 candidate genes. Functional annotation and enrichment analysis revealed that 131 candidate genes are related to multiple systems and organs in Tibetan pigs. Notably, eight of the top ten novel genes, RALB, NBEA, LIFR, CLEC17A, PRIM2, CDH7, GK5 and FAM83B, were highlighted and associated with improved adaptive heart functions in Tibetan pigs high-altitude adaptation. Moreover, genome-wide association analysis revealed that 29 SNPs were involved in 13 candidate genes associated with at least one adaptive trait. In particular, among the top ten candidate genes, CLEC17A is related to a reduction in hemoglobin (HGB) in Tibetan pigs. Overall, our study provides a robust SNP/gene list involving genetic adaptation for Tibetan pig high-altitude adaptation, and it will be a valuable resource for future Tibetan pig studies.
Collapse
Affiliation(s)
- Lingyun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yanbin Zhu
- Academy of Agriculture and Animal Husbandry Sciences, Institute of Animal Husbandry and Veterinary Medicine, Lhasa, China
| | - Yue Ren
- Academy of Agriculture and Animal Husbandry Sciences, Institute of Animal Husbandry and Veterinary Medicine, Lhasa, China
| | - Linna Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xuanbo Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, China
| | - Ting Jiao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Guangming Sun
- Academy of Agriculture and Animal Husbandry Sciences, Institute of Animal Husbandry and Veterinary Medicine, Lhasa, China
| | - Haiyu Han
- The Animal Husbandry Station in Changdu, Changdu, China
| | - Jian Zhang
- The Beast Prevention Station in Gongbujiangda County, Linzhi, China
| | - Fengbo Sun
- The Animal Husbandry Station in Tibet Autonomous Region, Lhasa, China
| | - Yanan Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
15
|
Yan E, Tan M, Jiao N, He L, Wan B, Zhang X, Yin J. Lysine 2-hydroxyisobutyrylation levels determined adipogenesis and fat accumulation in adipose tissue in pigs. J Anim Sci Biotechnol 2024; 15:99. [PMID: 38992763 PMCID: PMC11242017 DOI: 10.1186/s40104-024-01058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Excessive backfat deposition lowering carcass grade is a major concern in the pig industry, especially in most breeds of obese type pigs. The mechanisms involved in adipogenesis and fat accumulation in pigs remain unclear. Lysine 2-hydroxyisobutyrylation (Khib), is a novel protein post-translational modification (PTM), which play an important role in transcription, energy metabolism and metastasis of cancer cells, but its role in adipogenesis and fat accumulation has not been shown. RESULTS In this study, we first analyzed the modification levels of acetylation (Kac), Khib, crotonylation (Kcr) and succinylation (Ksu) of fibro-adipogenic progenitors (FAPs), myogenic precursors (Myo) and mesenchymal stem cells (MSCs) with varied differentiation potential, and found that only Khib modification in FAPs was significantly higher than that in MSCs. Consistently, in parallel with its regulatory enzymes lysine acetyltransferase 5 (KAT5) and histone deacetylase 2 (HDAC2) protein levels, the Khib levels increased quadratically (P < 0.01) during adipogenic differentiation of FAPs. KAT5 knockdown in FAPs inhibited adipogenic differentiation, while HDAC2 knockdown enhanced adipogenic differentiation. We also demonstrated that Khib modification favored to adipogenic differentiation and fat accumulation by comparing Khib levels in FAPs and backfat tissues both derived from obese-type pigs (Laiwu pigs) and lean-type pigs (Duroc pigs), respectively. Accordingly, the expression patterns of KAT5 and HDAC2 matched well to the degree of backfat accumulation in obese- and lean-type pigs. CONCLUSIONS From the perspective of protein translational modification, we are the first to reveal the role of Khib in adipogenesis and fat deposition in pigs, and provided new clues for the improvement of fat accumulation and distribution as expected via genetic selection and nutritional strategy in obese-type pigs.
Collapse
Affiliation(s)
- Enfa Yan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mingyang Tan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ning Jiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, Shandong Province, China
| | - Linjuan He
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Boyang Wan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
- Molecular Design Breeding Frontier Science Center of the Ministry of Education (MOE), Beijing, 100193, China.
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
- Molecular Design Breeding Frontier Science Center of the Ministry of Education (MOE), Beijing, 100193, China.
| |
Collapse
|
16
|
Li C, Chen B, Langda S, Pu P, Zhu X, Zhou S, Kalds P, Zhang K, Bhati M, Leonard A, Huang S, Li R, Cuoji A, Wang X, Zhu H, Wu Y, Cuomu R, Gui B, Li M, Wang Y, Li Y, Fang W, Jia T, Pu T, Pan X, Cai Y, He C, Wang L, Jiang Y, Han JL, Chen Y, Zhou P, Pausch H, Wang X. Multi-omic Analyses Shed Light on The Genetic Control of High-altitude Adaptation in Sheep. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae030. [PMID: 39142817 DOI: 10.1093/gpbjnl/qzae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/09/2024] [Accepted: 02/29/2024] [Indexed: 08/16/2024]
Abstract
Sheep were domesticated in the Fertile Crescent and then spread globally, where they have been encountering various environmental conditions. The Tibetan sheep has adapted to high altitudes on the Qinghai-Tibet Plateau over the past 3000 years. To explore genomic variants associated with high-altitude adaptation in Tibetan sheep, we analyzed Illumina short-reads of 994 whole genomes representing ∼ 60 sheep breeds/populations at varied altitudes, PacBio High fidelity (HiFi) reads of 13 breeds, and 96 transcriptomes from 12 sheep organs. Association testing between the inhabited altitudes and 34,298,967 variants was conducted to investigate the genetic architecture of altitude adaptation. Highly accurate HiFi reads were used to complement the current ovine reference assembly at the most significantly associated β-globin locus and to validate the presence of two haplotypes A and B among 13 sheep breeds. The haplotype A carried two homologous gene clusters: (1) HBE1, HBE2, HBB-like, and HBBC, and (2) HBE1-like, HBE2-like, HBB-like, and HBB; while the haplotype B lacked the first cluster. The high-altitude sheep showed highly frequent or nearly fixed haplotype A, while the low-altitude sheep dominated by haplotype B. We further demonstrated that sheep with haplotype A had an increased hemoglobin-O2 affinity compared with those carrying haplotype B. Another highly associated genomic region contained the EGLN1 gene which showed varied expression between high-altitude and low-altitude sheep. Our results provide evidence that the rapid adaptive evolution of advantageous alleles play an important role in facilitating the environmental adaptation of Tibetan sheep.
Collapse
Affiliation(s)
- Chao Li
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Animal Genomics, ETH Zürich, Zürich 8092, Switzerland
| | - Bingchun Chen
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Suo Langda
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850009, China
| | - Peng Pu
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xiaojia Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Shiwei Zhou
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Peter Kalds
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ke Zhang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Meenu Bhati
- Animal Genomics, ETH Zürich, Zürich 8092, Switzerland
| | | | - Shuhong Huang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ran Li
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Awang Cuoji
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850009, China
| | - Xiran Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Haolin Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yujiang Wu
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850009, China
| | - Renqin Cuomu
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850009, China
| | - Ba Gui
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850009, China
| | - Ming Li
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Yutao Wang
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China
| | - Yan Li
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Wenwen Fang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ting Jia
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing 100044, China
| | - Tianchun Pu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing 100044, China
| | - Xiangyu Pan
- Department of Medical Research, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yudong Cai
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chong He
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs/Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, College of Information Engineering, Northwest A&F University, Yangling 712100, China
| | - Liming Wang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Yu Jiang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Livestock Genetics Program, International Livestock Research Institute, Nairobi 00100, Kenya
| | - Yulin Chen
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ping Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Hubert Pausch
- Animal Genomics, ETH Zürich, Zürich 8092, Switzerland
| | - Xiaolong Wang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
17
|
Lu Z, Yuan C, An X, Chen Z, Guo T, Liu J. Chromosome-level genome assembly of Guide Black-Fur sheep (Ovis aries). Sci Data 2024; 11:711. [PMID: 38951548 PMCID: PMC11217409 DOI: 10.1038/s41597-024-03564-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
Guide Black-Fur sheep (GD) is a breed of Tibetan sheep (Ovis aries) that lives in the Qinghai-Tibetan plateau region at an altitude of over 4,000 m. However, a lack of genomic information has made it difficult to understand the high-altitude adaptation of these sheep. We sequenced and assembled the GD reference genome using PacBio, Hi-C, and Illumina sequencing technologies. The final assembled genome size was 2.73 Gb, with a contig N50 of 20.30 Mb and a scaffold N50 of 107.63 Mb. The genome is predicted to contain 20,759 protein-coding genes, of which 98.42 have functional annotations. Repeat elements account for approximately 52.2% of the genomic landscape. The completeness of the GD genome assembly is highlighted by a BUSCO score of 93.1%. This high-quality genome assembly provides a critical resource for future molecular breeding and genetic improvement of Tibetan sheep.
Collapse
Affiliation(s)
- Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Chao Yuan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Xuejiao An
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | | | - Tingting Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Jianbin Liu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| |
Collapse
|
18
|
Niu Y, Fan X, Yang Y, Li J, Lian J, Wang L, Zhang Y, Tang Y, Tang Z. Haplotype-resolved assembly of a pig genome using single-sperm sequencing. Commun Biol 2024; 7:738. [PMID: 38890535 PMCID: PMC11189477 DOI: 10.1038/s42003-024-06397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Single gamete cell sequencing together with long-read sequencing can reliably produce chromosome-level phased genomes. In this study, we employed PacBio HiFi and Hi-C sequencing on a male Landrace pig, coupled with single-sperm sequencing of its 102 sperm cells. A haplotype assembly method was developed based on long-read sequencing and sperm-phased markers. The chromosome-level phased assembly showed higher phasing accuracy than methods that rely only on HiFi reads. The use of single-sperm sequencing data enabled the construction of a genetic map, successfully mapping the sperm motility trait to a specific region on chromosome 1 (105.40-110.70 Mb). Furthermore, with the assistance of Y chromosome-bearing sperm data, 26.16 Mb Y chromosome sequences were assembled. We report a reliable approach for assembling chromosome-level phased genomes and reveal the potential of sperm population in basic biology research and sperm phenotype research.
Collapse
Affiliation(s)
- Yongchao Niu
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agriculture Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xinhao Fan
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agriculture Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- GuangXi Engineering Centre for Resource Development of Bama Xiang Pig, Bama, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yalan Yang
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agriculture Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jiang Li
- Biozeron Shenzhen, Inc., Shenzhen, China
| | | | - Liu Wang
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan, China
| | - Yongjin Zhang
- GuangXi Engineering Centre for Resource Development of Bama Xiang Pig, Bama, China
| | - Yijie Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agriculture Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhonglin Tang
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agriculture Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- GuangXi Engineering Centre for Resource Development of Bama Xiang Pig, Bama, China.
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
19
|
Wang Y, Gou Y, Yuan R, Zou Q, Zhang X, Zheng T, Fei K, Shi R, Zhang M, Li Y, Gong Z, Luo C, Xiong Y, Shan D, Wei C, Shen L, Tang G, Li M, Zhu L, Li X, Jiang Y. A chromosome-level genome of Chenghua pig provides new insights into the domestication and local adaptation of pigs. Int J Biol Macromol 2024; 270:131796. [PMID: 38677688 DOI: 10.1016/j.ijbiomac.2024.131796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/24/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024]
Abstract
As a country with abundant genetic resources of pigs, the domestication history of pigs in China and the adaptive evolution of Chinese pig breeds at different latitudes have rarely been elucidated at the genome-wide level. To fill this gap, we first assembled a high-quality chromosome-level genome of the Chenghua pig and used it as a benchmark to analyse the genomes of 272 samples from three genera of three continents. The divergence of the three species belonging to three genera, Phacochoerus africanus, Potamochoerus porcus, and Sus scrofa, was assessed. The introgression of pig breeds redefined that the migration routes were basically from southern China to central and southwestern China, then spread to eastern China, arrived in northern China, and finally reached Europe. The domestication of pigs in China occurred ∼12,000 years ago, earlier than the available Chinese archaeological domestication evidence. In addition, FBN1 and NR6A1 were identified in our study as candidate genes related to extreme skin thickness differences in Eurasian pig breeds and adaptive evolution at different latitudes in Chinese pig breeds, respectively. Our study provides a new resource for the pig genomic pool and refines our understanding of pig genetic diversity, domestication, migration, and adaptive evolution at different latitudes.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Yuwei Gou
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Rong Yuan
- Chengdu Livestock and Poultry Genetic Resources Protection Center, Chengdu, Sichuan 610081, China
| | - Qin Zou
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Xukun Zhang
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Ting Zheng
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Kaixin Fei
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Rui Shi
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Mei Zhang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Yujing Li
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Zhengyin Gong
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Chenggang Luo
- Chengdu Livestock and Poultry Genetic Resources Protection Center, Chengdu, Sichuan 610081, China
| | - Ying Xiong
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Dai Shan
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Chenyang Wei
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guoqing Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yanzhi Jiang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China.
| |
Collapse
|
20
|
Li G, Liu Y, Feng X, Diao S, Zhong Z, Li B, Teng J, Zhang W, Zeng H, Cai X, Gao Y, Liu X, Yuan X, Li J, Zhang Z. Integrating Multiple Database Resources to Elucidate the Gene Flow in Southeast Asian Pig Populations. Int J Mol Sci 2024; 25:5689. [PMID: 38891877 PMCID: PMC11171535 DOI: 10.3390/ijms25115689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
The domestic pig (Sus scrofa) and its subfamilies have experienced long-term and extensive gene flow, particularly in Southeast Asia. Here, we analyzed 236 pigs, focusing on Yunnan indigenous, European commercial, East Asian, and Southeast Asian breeds, using the Pig Genomics Reference Panel (PGRP v1) of Pig Genotype-Tissue Expression (PigGTEx) to investigate gene flow and associated complex traits by integrating multiple database resources. In this study, we discovered evidence of admixtures from European pigs into the genome of Yunnan indigenous pigs. Additionally, we hypothesized that a potential conceptual gene flow route that may have contributed to the genetic composition of the Diannan small-ear pig is a gene exchange from the Vietnamese pig. Based on the most stringent gene introgression scan using the fd statistic, we identified three specific loci on chromosome 8, ranging from 51.65 to 52.45 Mb, which exhibited strong signatures of selection and harbored the NAF1, NPY1R, and NPY5R genes. These genes are associated with complex traits, such as fat mass, immunity, and litter weight, in pigs, as supported by multiple bio-functionalization databases. We utilized multiple databases to explore the potential dynamics of genetic exchange in Southeast Asian pig populations and elucidated specific gene functionalities.
Collapse
Affiliation(s)
- Guangzhen Li
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Yuqiang Liu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Xueyan Feng
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Shuqi Diao
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Zhanming Zhong
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Bolang Li
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Jinyan Teng
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Wenjing Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Haonan Zeng
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Xiaodian Cai
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Yahui Gao
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| | - Xiaolong Yuan
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Jiaqi Li
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Zhe Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| |
Collapse
|
21
|
Zhou L, Zhou H, Fan Y, Wang J, Zhang R, Guo Z, Li Y, Kang R, Zhang Z, Yang D, Liu J. Metagenomics to Identify Viral Communities Associated with Porcine Respiratory Disease Complex in Tibetan Pigs in the Tibetan Plateau, China. Pathogens 2024; 13:404. [PMID: 38787256 PMCID: PMC11124006 DOI: 10.3390/pathogens13050404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Tibetan pig is a unique pig breed native to the Qinghai-Tibet Plateau. To investigate viral communities associated with porcine respiratory disease complex (PRDC), 167 respiratory samples were collected from Tibetan pigs in the Ganzi Tibetan autonomous prefecture of Sichuan province. Following library construction and Illunima Novaseq sequencing, 18 distinct viruses belonging to 15 viral taxonomic families were identified in Tibetan pigs with PRDC. Among the 18 detected viruses, 3 viruses were associated with PRDC, including porcine circovirus type 2 (PCV-2), Torque teno sus virus (TTSuV), and porcine cytomegalovirus (PCMV). The genomic sequences of two PCV-2 strains, three TTSuV strains, and one novel Porprismacovirus strain were assembled by SOAPdenovo software (v2). Sequence alignment and phylogenetic analysis showed that both PCV-2 strains belonged to PCV-2d, three TTSuVs were classified to TTSuV2a and TTSuV2b genotypes, and the Porprismacovirus strain PPMV-SCgz-2022 showed a close genetic relationship with a virus of human origin. Recombination analysis indicated that PPMV-SCgz-2022 may have originated from recombination events between Human 16,806 × 66-213 strain and Porcine 17,668 × 82-593 strain. Furthermore, the high proportion of single infection or co-infection of PCV2/TTSuV2 provides insight into PRDC infection in Tibetan pigs. This is the first report of the viral communities in PRDC-affected Tibetan pigs in this region, and the results provides reference for the prevention and control of respiratory diseases in these animals.
Collapse
Affiliation(s)
- Long Zhou
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (H.Z.); (Y.F.); (J.W.); (R.Z.); (Z.G.); (Y.L.); (J.L.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Han Zhou
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (H.Z.); (Y.F.); (J.W.); (R.Z.); (Z.G.); (Y.L.); (J.L.)
| | - Yandi Fan
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (H.Z.); (Y.F.); (J.W.); (R.Z.); (Z.G.); (Y.L.); (J.L.)
| | - Jinghao Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (H.Z.); (Y.F.); (J.W.); (R.Z.); (Z.G.); (Y.L.); (J.L.)
| | - Rui Zhang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (H.Z.); (Y.F.); (J.W.); (R.Z.); (Z.G.); (Y.L.); (J.L.)
| | - Zijing Guo
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (H.Z.); (Y.F.); (J.W.); (R.Z.); (Z.G.); (Y.L.); (J.L.)
| | - Yanmin Li
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (H.Z.); (Y.F.); (J.W.); (R.Z.); (Z.G.); (Y.L.); (J.L.)
| | - Runmin Kang
- Sichuan Animal Science Academy, Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Chengdu 610066, China;
| | - Zhidong Zhang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (H.Z.); (Y.F.); (J.W.); (R.Z.); (Z.G.); (Y.L.); (J.L.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Danjiao Yang
- Institute of Animal Science of Ganzi Tibetan Autonomous Prefecture of Sichuan Province, Kangding 626000, China
| | - Jie Liu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (H.Z.); (Y.F.); (J.W.); (R.Z.); (Z.G.); (Y.L.); (J.L.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| |
Collapse
|
22
|
Zhang W, Jiang Y, Ni Z, Zhou M, Liu L, Li X, Su S, Wang C. Identification of Copy Number Variations and Selection Signatures in Wannan Spotted Pigs by Whole Genome Sequencing Data: A Preliminary Study. Animals (Basel) 2024; 14:1419. [PMID: 38791637 PMCID: PMC11117326 DOI: 10.3390/ani14101419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Copy number variation (CNV) is an important structural variation used to elucidate complex economic traits. In this study, we sequenced 25 Wannan spotted pigs (WSPs) to detect their CNVs and identify their selection signatures compared with those of 10 Asian wild boars. A total of 14,161 CNVs were detected in the WSPs, accounting for 0.72% of the porcine genome. The fixation index (Fst) was used to identify the selection signatures, and 195 CNVs with the top 1% of the Fst value were selected. Eighty genes were identified in the selected CNV regions. Functional GO and KEGG analyses revealed that the genes within these selected CNVs are associated with key traits such as reproduction (GAL3ST1 and SETD2), fatty acid composition (PRKG1, ACACA, ACSL3, UGT8), immune system (LYZ), ear size (WIF1), and feed efficiency (VIPR2). The findings of this study contribute novel insights into the genetic CNVs underlying WSP characteristics and provide essential information for the protection and utilization of WSP populations.
Collapse
Affiliation(s)
- Wei Zhang
- Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (W.Z.); (M.Z.); (L.L.); (X.L.)
| | - Yao Jiang
- National Animal Husbandry Service, Beijing 100125, China;
| | - Zelan Ni
- Anhui Provincial Livestock and Poultry Genetic Resources Conservation Center, Hefei 231283, China;
| | - Mei Zhou
- Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (W.Z.); (M.Z.); (L.L.); (X.L.)
| | - Linqing Liu
- Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (W.Z.); (M.Z.); (L.L.); (X.L.)
| | - Xiaoyu Li
- Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (W.Z.); (M.Z.); (L.L.); (X.L.)
| | - Shiguang Su
- Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (W.Z.); (M.Z.); (L.L.); (X.L.)
| | - Chonglong Wang
- Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (W.Z.); (M.Z.); (L.L.); (X.L.)
| |
Collapse
|
23
|
Yang L, Yin H, Bai L, Yao W, Tao T, Zhao Q, Gao Y, Teng J, Xu Z, Lin Q, Diao S, Pan Z, Guan D, Li B, Zhou H, Zhou Z, Zhao F, Wang Q, Pan Y, Zhang Z, Li K, Fang L, Liu GE. Mapping and functional characterization of structural variation in 1060 pig genomes. Genome Biol 2024; 25:116. [PMID: 38715020 PMCID: PMC11075355 DOI: 10.1186/s13059-024-03253-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Structural variations (SVs) have significant impacts on complex phenotypes by rearranging large amounts of DNA sequence. RESULTS We present a comprehensive SV catalog based on the whole-genome sequence of 1060 pigs (Sus scrofa) representing 101 breeds, covering 9.6% of the pig genome. This catalog includes 42,487 deletions, 37,913 mobile element insertions, 3308 duplications, 1664 inversions, and 45,184 break ends. Estimates of breed ancestry and hybridization using genotyped SVs align well with those from single nucleotide polymorphisms. Geographically stratified deletions are observed, along with known duplications of the KIT gene, responsible for white coat color in European pigs. Additionally, we identify a recent SINE element insertion in MYO5A transcripts of European pigs, potentially influencing alternative splicing patterns and coat color alterations. Furthermore, a Yorkshire-specific copy number gain within ABCG2 is found, impacting chromatin interactions and gene expression across multiple tissues over a stretch of genomic region of ~200 kb. Preliminary investigations into SV's impact on gene expression and traits using the Pig Genotype-Tissue Expression (PigGTEx) data reveal SV associations with regulatory variants and gene-trait pairs. For instance, a 51-bp deletion is linked to the lead eQTL of the lipid metabolism regulating gene FADS3, whose expression in embryo may affect loin muscle area, as revealed by our transcriptome-wide association studies. CONCLUSIONS This SV catalog serves as a valuable resource for studying diversity, evolutionary history, and functional shaping of the pig genome by processes like domestication, trait-based breeding, and adaptive evolution.
Collapse
Affiliation(s)
- Liu Yang
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Hongwei Yin
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Lijing Bai
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Wenye Yao
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Tan Tao
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Qianyi Zhao
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Yahui Gao
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Jinyan Teng
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhiting Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qing Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shuqi Diao
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhangyuan Pan
- Department of Animal Science, University of California-Davis, Davis, CA, USA
| | - Dailu Guan
- Department of Animal Science, University of California-Davis, Davis, CA, USA
| | - Bingjie Li
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Roslin Institute Building, Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Huaijun Zhou
- Department of Animal Science, University of California-Davis, Davis, CA, USA
| | - Zhongyin Zhou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Fuping Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qishan Wang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuchun Pan
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhe Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Kui Li
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark.
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA.
| |
Collapse
|
24
|
Yan F, Wang Y, Wei M, Zhang J, Ye Y, Duan M, Chamba Y, Shang P. Exploring the role of the CapG gene in hypoxia adaptation in Tibetan pigs. Front Genet 2024; 15:1339683. [PMID: 38680426 PMCID: PMC11045884 DOI: 10.3389/fgene.2024.1339683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction: The CapG gene, which is an actin-binding protein, is prevalent in eukaryotic cells and is abundantly present in various pathways associated with plateau hypoxia adaptation. Tibetan pigs, which have inhabited high altitudes for extended periods, provide an excellent research population for investigating plateau hypoxia adaptation. Results: This study focused on Tibetan pigs and Yorkshire pigs residing in Nyingchi, Tibet. The blood physiological data of Tibetan pigs were found to be significantly higher than those of Yorkshire pigs, including RBC, HGB, HCT, MCH, and MCHC. The SNP analysis of the CapG gene identified six sites with mutations only present in Tibetan pigs. Notably, the transcription factors at sites C-489T, C-274T, and A-212G were found to be altered, and these sites are known to be associated with hypoxia adaptation and blood oxygen transportation. The mRNA expression of the CapG gene exhibited highly significant differences in several tissues, with the target proteins predominantly higher in the Yorkshire pig compared to the Tibetan pig. Specifically, a notable difference was observed in the lung tissues. Immunohistochemistry analysis revealed high expression levels of CapG proteins in the lung tissues of both Tibetan and Yorkshire pigs, primarily localized in the cytoplasm and cell membrane. Conclusion: The CapG gene plays a significant role in regulating hypoxia adaptation in Tibetan pigs. This study provides a theoretical basis for the conservation and utilization of Tibetan pig resources, the breeding of highland breeds, epidemic prevention and control, and holds great importance for the development of the highland livestock economy.
Collapse
Affiliation(s)
- Feifei Yan
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, China
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, Tibet, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi, Tibet, China
| | - Yu Wang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, China
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, Tibet, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi, Tibet, China
| | - Mingbang Wei
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, China
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, Tibet, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi, Tibet, China
| | - Jian Zhang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, China
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, Tibet, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi, Tibet, China
| | - Yourong Ye
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, China
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, Tibet, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi, Tibet, China
| | - Mengqi Duan
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, China
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, Tibet, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi, Tibet, China
| | - Yangzom Chamba
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, China
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, Tibet, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi, Tibet, China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, China
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, Tibet, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi, Tibet, China
| |
Collapse
|
25
|
Li X, Liu Q, Fu C, Li M, Li C, Li X, Zhao S, Zheng Z. Characterizing structural variants based on graph-genotyping provides insights into pig domestication and local adaption. J Genet Genomics 2024; 51:394-406. [PMID: 38056526 DOI: 10.1016/j.jgg.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
Structural variants (SVs), such as deletions (DELs) and insertions (INSs), contribute substantially to pig genetic diversity and phenotypic variation. Using a library of SVs discovered from long-read primary assemblies and short-read sequenced genomes, we map pig genomic SVs with a graph-based method for re-genotyping SVs in 402 genomes. Our results demonstrate that those SVs harboring specific trait-associated genes may greatly shape pig domestication and local adaptation. Further characterization of SVs reveals that some population-stratified SVs may alter the transcription of genes by affecting regulatory elements. We identify that the genotypes of two DELs (296-bp DEL, chr7: 52,172,101-52,172,397; 278-bp DEL, chr18: 23,840,143-23,840,421) located in muscle-specific enhancers are associated with the expression of target genes related to meat quality (FSD2) and muscle fiber hypertrophy (LMOD2 and WASL) in pigs. Our results highlight the role of SVs in domestic porcine evolution, and the identified candidate functional genes and SVs are valuable resources for future genomic research and breeding programs in pigs.
Collapse
Affiliation(s)
- Xin Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Quan Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chong Fu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mengxun Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Changchun Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Xinyun Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Shuhong Zhao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| | - Zhuqing Zheng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Institute of Agricultural Biotechnology, Jingchu University of Technology, Jingmen, Hubei 448000, China.
| |
Collapse
|
26
|
Lin Y, Li J, Gu Y, Jin L, Bai J, Zhang J, Wang Y, Liu P, Long K, He M, Li D, Liu C, Han Z, Zhang Y, Li X, Zeng B, Lu L, Kong F, Sun Y, Fan Y, Wang X, Wang T, Jiang A, Ma J, Shen L, Zhu L, Jiang Y, Tang G, Fan X, Liu Q, Li H, Wang J, Chen L, Ge L, Li X, Tang Q, Li M. Haplotype-resolved 3D chromatin architecture of the hybrid pig. Genome Res 2024; 34:310-325. [PMID: 38479837 PMCID: PMC10984390 DOI: 10.1101/gr.278101.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
In diploid mammals, allele-specific three-dimensional (3D) genome architecture may lead to imbalanced gene expression. Through ultradeep in situ Hi-C sequencing of three representative somatic tissues (liver, skeletal muscle, and brain) from hybrid pigs generated by reciprocal crosses of phenotypically and physiologically divergent Berkshire and Tibetan pigs, we uncover extensive chromatin reorganization between homologous chromosomes across multiple scales. Haplotype-based interrogation of multi-omic data revealed the tissue dependence of 3D chromatin conformation, suggesting that parent-of-origin-specific conformation may drive gene imprinting. We quantify the effects of genetic variations and histone modifications on allelic differences of long-range promoter-enhancer contacts, which likely contribute to the phenotypic differences between the parental pig breeds. We also observe the fine structure of somatically paired homologous chromosomes in the pig genome, which has a functional implication genome-wide. This work illustrates how allele-specific chromatin architecture facilitates concomitant shifts in allele-biased gene expression, as well as the possible consequential phenotypic changes in mammals.
Collapse
Affiliation(s)
- Yu Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
| | - Yiren Gu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Long Jin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingyi Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaman Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yujie Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Pengliang Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Keren Long
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengnan He
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Can Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ziyin Han
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaokai Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Zeng
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Fanli Kong
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ying Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Geriatric Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yongliang Fan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xun Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Wang
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - An'an Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jideng Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanzhi Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Guoqing Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaolan Fan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qingyou Liu
- Animal Molecular Design and Precise Breeding Key Laboratory of Guangdong Province, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Hua Li
- Animal Molecular Design and Precise Breeding Key Laboratory of Guangdong Province, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jinyong Wang
- Pig Industry Sciences Key Laboratory of Ministry of Agriculture and Rural Affairs, Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Li Chen
- Pig Industry Sciences Key Laboratory of Ministry of Agriculture and Rural Affairs, Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Liangpeng Ge
- Pig Industry Sciences Key Laboratory of Ministry of Agriculture and Rural Affairs, Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Xuewei Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qianzi Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
| |
Collapse
|
27
|
Dong JH, Xu X, Ren ZX, Zhao YH, Zhang Y, Chen L, Wu Y, Chen G, Cao R, Wu Q, Wang H. The adaptation of bumblebees to extremely high elevation associated with their gut microbiota. mSystems 2024; 9:e0121923. [PMID: 38329353 PMCID: PMC10949452 DOI: 10.1128/msystems.01219-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024] Open
Abstract
Bumblebees are among the most abundant and important pollinators for sub-alpine and alpine flowering plant species in the Northern Hemisphere, but little is known about their adaptations to high elevations. In this article, we focused on two bumblebee species, Bombus friseanus and Bombus prshewalskyi, and their respective gut microbiota. The two species, distributed through the Hengduan Mountains of southwestern China, show species replacement at different elevations. We performed genome sequencing based on 20 worker bee samples of each species. Applying evolutionary population genetics and metagenomic approaches, we detected genes under selection and analyzed functional pathways between bumblebees and their gut microbes. We found clear genetic differentiation between the two host species and significant differences in their microbiota. Species replacement occurred in both hosts and their bacteria (Snodgrassella) with an increase in elevation. These extremely high-elevation bumblebees show evidence of positive selection related to diverse biological processes. Positively selected genes involved in host immune systems probably contributed to gut microbiota changes, while the butyrate generated by gut microbiota may influence both host energy metabolism and immune systems. This suggests a close association between the genomes of the host species and their microbiomes based on some degree of natural selection.IMPORTANCETwo closely related and dominant bumblebee species, distributed at different elevations through the Hengduan Mountains of southwestern China, showed a clear genomic signature of adaptation to elevation at the molecular level and significant differences in their respective microbiota. Species replacement occurred in both hosts and their bacteria (Snodgrassella) with an increase in elevation. Bumblebees' adaptations to higher elevations are closely associated with their gut microbiota through two biological processes: energy metabolism and immune response. Information allowing us to understand the adaptive mechanisms of species to extreme conditions is implicit if we are to conserve them as their environments change.
Collapse
Affiliation(s)
- Jiu-Hong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xin Xu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Zong-Xin Ren
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yan-Hui Zhao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yaran Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - You Wu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guotao Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruiqing Cao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hong Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
28
|
Zhang W, Xu C, Zhou M, Liu L, Ni Z, Su S, Wang C. Copy number variants selected during pig domestication inferred from whole genome resequencing. Front Vet Sci 2024; 11:1364267. [PMID: 38505001 PMCID: PMC10950068 DOI: 10.3389/fvets.2024.1364267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Over extended periods of natural and artificial selection, China has developed numerous exceptional pig breeds. Deciphering the germplasm characteristics of these breeds is crucial for their preservation and utilization. While many studies have employed single nucleotide polymorphism (SNP) analysis to investigate the local pig germplasm characteristics, copy number variation (CNV), another significant type of genetic variation, has been less explored in understanding pig resources. In this study, we examined the CNVs of 18 Wanbei pigs (WBP) using whole genome resequencing data with an average depth of 12.61. We identified a total of 8,783 CNVs (~30.07 Mb, 1.20% of the pig genome) in WBP, including 8,427 deletions and 356 duplications. Utilizing fixation index (Fst), we determined that 164 CNVs were within the top 1% of the Fst value and defined as under selection. Functional enrichment analyses of the genes associated with these selected CNVs revealed genes linked to reproduction (SPATA6, CFAP43, CFTR, BPTF), growth and development (NR6A1, SMYD3, VIPR2), and immunity (PARD3, FYB2). This study enhances our understanding of the genomic characteristics of the Wanbei pig and offers a theoretical foundation for the future breeding of this breed.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Chengliang Xu
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Mei Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Linqing Liu
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Zelan Ni
- Anhui Provincial Livestock and Poultry Genetic Resources Conservation Center, Hefei, China
| | - Shiguang Su
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Chonglong Wang
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| |
Collapse
|
29
|
Li Y, Xu W, Wang J, Liu H, Liu J, Zhang L, Hou R, Shen F, Liu Y, Cai K. Giant pandas in captivity undergo short-term adaptation in nerve-related pathways. BMC ZOOL 2024; 9:4. [PMID: 38383502 PMCID: PMC10880213 DOI: 10.1186/s40850-024-00195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Behaviors in captive animals, including changes in appetite, activity level, and social interaction, are often seen as adaptive responses. However, these behaviors may become progressively maladaptive, leading to stress, anxiety, depression, and other negative reactions in animals. RESULTS In this study, we investigated the whole-genome sequencing data of 39 giant panda individuals, including 11 in captivity and 28 in the wild. To eliminate the mountain range effect and focus on the factor of captivity only, we first performed a principal component analysis. We then enumerated the 21,474,180 combinations of wild giant pandas (11 chosen from 28) and calculated their distances from the 11 captive individuals. The 11 wild individuals with the closest distances were used for the subsequent analysis. The linkage disequilibrium (LD) patterns demonstrated that the population was almost eliminated. We identified 505 robust selected genomic regions harboring at least one SNP, and the absolute frequency difference was greater than 0.6 between the two populations. GO analysis revealed that genes in these regions were mainly involved in nerve-related pathways. Furthermore, we identified 22 GO terms for which the selection strength significantly differed between the two populations, and there were 10 nerve-related pathways among them. Genes in the differentially abundant regions were involved in nerve-related pathways, indicating that giant pandas in captivity underwent minor genomic selection. Additionally, we investigated the relationship between genetic variation and chromatin conformation structures. We found that nucleotide diversity (θπ) in the captive population was correlated with chromatin conformation structures, which included A/B compartments, topologically associated domains (TADs) and TAD-cliques. For each GO term, we then compared the expression level of genes regulated by the above four factors (AB index, TAD intactness, TAD clique and PEI) with the corresponding genomic background. The retained 10 GO terms were all coordinately regulated by the four factors, and three of them were associated with nerve-related pathways. CONCLUSIONS This study revealed that giant pandas in captivity undergo short-term adaptation in nerve-related pathways. Furthermore, it provides new insights into the molecular mechanism of gene expression regulation under short-term adaptation to environmental change.
Collapse
Affiliation(s)
- Yan Li
- Chengdu Research Base of Giant Panda Breeding, Panda Avenue, Northern Suburb, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, Panda Avenue, Northern Suburb, Chengdu, China
| | - Wei Xu
- Chengdu Research Base of Giant Panda Breeding, Panda Avenue, Northern Suburb, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, Panda Avenue, Northern Suburb, Chengdu, China
| | - Juan Wang
- Chengdu Research Base of Giant Panda Breeding, Panda Avenue, Northern Suburb, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, Panda Avenue, Northern Suburb, Chengdu, China
| | - Hong Liu
- Chengdu Research Base of Giant Panda Breeding, Panda Avenue, Northern Suburb, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, Panda Avenue, Northern Suburb, Chengdu, China
| | - Jiawen Liu
- Chengdu Research Base of Giant Panda Breeding, Panda Avenue, Northern Suburb, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, Panda Avenue, Northern Suburb, Chengdu, China
| | - Liang Zhang
- Chengdu Research Base of Giant Panda Breeding, Panda Avenue, Northern Suburb, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, Panda Avenue, Northern Suburb, Chengdu, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Panda Avenue, Northern Suburb, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, Panda Avenue, Northern Suburb, Chengdu, China
| | - Fujun Shen
- Chengdu Research Base of Giant Panda Breeding, Panda Avenue, Northern Suburb, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, Panda Avenue, Northern Suburb, Chengdu, China
| | - Yuliang Liu
- Chengdu Research Base of Giant Panda Breeding, Panda Avenue, Northern Suburb, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, Panda Avenue, Northern Suburb, Chengdu, China
| | - Kailai Cai
- Chengdu Research Base of Giant Panda Breeding, Panda Avenue, Northern Suburb, Chengdu, China.
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, Panda Avenue, Northern Suburb, Chengdu, China.
| |
Collapse
|
30
|
Liu P, Liang Y, Li L, Lv X, He Z, Gu Y. Identification of Selection Signatures and Candidate Genes Related to Environmental Adaptation and Economic Traits in Tibetan Pigs. Animals (Basel) 2024; 14:654. [PMID: 38396622 PMCID: PMC10886212 DOI: 10.3390/ani14040654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Tibetan pigs are indigenous to the Qinghai-Tibet Plateau and have been the subject of extensive genomic research primarily focused on their adaptation to high altitudes. However, genetic modifications associated with their response to low-altitude acclimation have not been thoroughly explored. To investigate the genetic basis underlying the low-altitude acclimation of Tibetan pigs, we generated and analyzed genotyping data of Tibetan pigs that inhabit high-altitude regions (average altitude 4000 m) and Tibetan pigs that have inhabited nearby low-altitude regions (average altitude 500 m) for approximately 20 generations. We found that the highland and lowland Tibetan pigs have distinguishable genotype and phenotype variations. We identified 46 and 126 potentially selected SNPs associated with 29 and 56 candidate genes in highland and lowland Tibetan pigs, respectively. Candidate genes in the highland Tibetan pigs were involved in immune response (NFYC and STAT1) and radiation (NABP1), whereas candidate genes in the lowland Tibetan pigs were related to reproduction (ESR2, DMRTA1, and ZNF366), growth and development (NTRK3, FGF18, and MAP1B), and blood pressure regulation (CARTPT). These findings will help to understand the mechanisms of environmental adaptation in Tibetan pigs and offer valuable information into the genetic improvement of Tibetan pigs pertaining to low-altitude acclimation and economic traits.
Collapse
Affiliation(s)
- Pengliang Liu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China;
| | - Yan Liang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; (Y.L.)
| | - Li Li
- Renshou County Bureau of Agriculture and Rural Affairs, Meishan 620500, China
| | - Xuebin Lv
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; (Y.L.)
| | - Zhiping He
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; (Y.L.)
| | - Yiren Gu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China;
| |
Collapse
|
31
|
Xue M, Yu R, Yang L, Xie F, Fang M, Tang Q. Metabolomics and transcriptomics of embryonic livers reveal hypoxia adaptation of Tibetan chickens. BMC Genomics 2024; 25:131. [PMID: 38302894 PMCID: PMC10832288 DOI: 10.1186/s12864-024-10030-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Exploring the hypoxia adaptation mechanism of Tibetan chicken is of great significance for revealing the survival law of Tibetan chicken and plateau animal husbandry production. To investigate the hypoxia adaptation of Tibetan chickens (TBCs), an integrative metabolomic-transcriptomic analysis of the liver on day 18 of embryonic development was performed. Dwarf laying chickens (DLCs), a lowland breed, were used as a control. RESULTS A total of 1,908 metabolites were identified in both TBCs and DLCs. Energy metabolism and amino acid metabolism related differentially regulated metabolites (DRMs) were significantly enriched under hypoxia. Important metabolic pathways including the TCA cycle and arginine and proline metabolism were screened; PCK1, SUCLA2, and CPS1 were found to be altered under hypoxic conditions. In addition, integrated analysis suggested potential differences in mitochondrial function, which may play a crucial role in the study of chicken oxygen adaptation. CONCLUSIONS These results suggest that hypoxia changed the gene expression and metabolic patterns of embryonic liver of TBCs compared to DLCs. Our study provides a basis for uncovering the molecular regulation mechanisms of hypoxia adaptation in TBCs with the potential application of hypoxia adaptation research for other animals living on the Qinghai-Tibet plateau, and may even contribute to the study of diseases caused by hypoxia.
Collapse
Affiliation(s)
- Mingming Xue
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, 100193, Beijing, China
| | - Runjie Yu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, 100193, Beijing, China
| | - Lixian Yang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, 100193, Beijing, China
| | - Fuyin Xie
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, 100193, Beijing, China
| | - Meiying Fang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, 100193, Beijing, China
| | - Qiguo Tang
- Development Center of Science and Technology, MARA, 100176, Beijing, China.
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
32
|
He S, Wang Y, Luo Y, Xue M, Wu M, Tan H, Peng Y, Wang K, Fang M. Integrated analysis strategy of genome-wide functional gene mining reveals DKK2 gene underlying meat quality in Shaziling synthesized pigs. BMC Genomics 2024; 25:30. [PMID: 38178019 PMCID: PMC10765619 DOI: 10.1186/s12864-023-09925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Shaziling pig is a well-known indigenous breed in China who has superior meat quality traits. However, the genetic mechanism and genomic evidence underlying meat quality characteristics of Shaziling pigs are still unclear. To explore and investigate the germplasm characteristics of Shaziling pigs, we totally analyzed 67 individual's whole genome sequencing data for the first time (20 Shaziling pigs [S], 20 Dabasha pigs [DBS], 11 Yorkshire pigs [Y], 10 Berkshire pigs [BKX], 5 Basha pigs [BS] and 1 Warthog). RESULTS A total of 2,538,577 SNPs with high quality were detected and 9 candidate genes which was specifically selected in S and shared in S to DBS were precisely mined and screened using an integrated analysis strategy of identity-by-descent (IBD) and selective sweep. Of them, dickkopf WNT signaling pathway inhibitor 2 (DKK2), the antagonist of Wnt signaling pathway, was the most promising candidate gene which was not only identified an association of palmitic acid and palmitoleic acid quantitative trait locus in PigQTLdb, but also specifically selected in S compared to other 48 Chinese local pigs of 12 populations and 39 foreign pigs of 4 populations. Subsequently, a mutation at 12,726-bp of DKK2 intron 1 (g.114874954 A > C) was identified associated with intramuscular fat content using method of PCR-RFLP in 21 different pig populations. We observed DKK2 specifically expressed in adipose tissues. Overexpression of DKK2 decreased the content of triglyceride, fatty acid synthase and expression of relevant genes of adipogenic and Wnt signaling pathway, while interference of DKK2 got contrary effect during adipogenesis differentiation of porcine preadipocytes and 3T3-L1 cells. CONCLUSIONS Our findings provide an analysis strategy for mining functional genes of important economic traits and provide fundamental data and molecular evidence for improving pig meat quality traits and molecular breeding.
Collapse
Affiliation(s)
- Shuaihan He
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yubei Wang
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Yabiao Luo
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mingming Xue
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Maisheng Wu
- Xiangtan Bureau of Animal Husbandry and Veterinary Medicine and Aquatic Product, Xiangtan, 411102, China
| | - Hong Tan
- Xiangtan Bureau of Animal Husbandry and Veterinary Medicine and Aquatic Product, Xiangtan, 411102, China
| | - Yinglin Peng
- Hunan Institute of Animal & Veterinary Science, Changsha, 410131, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Meiying Fang
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
| |
Collapse
|
33
|
He H, Gou Y, Zeng B, Wang R, Yang J, Wang K, Jing Y, Yang Y, Liang Y, Yang Y, Lv X, He Z, Tang Q, Gu Y. Comparative evaluation of the fecal microbiota of adult hybrid pigs and Tibetan pigs, and dynamic changes in the fecal microbiota of hybrid pigs. Front Immunol 2023; 14:1329590. [PMID: 38155960 PMCID: PMC10752980 DOI: 10.3389/fimmu.2023.1329590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/01/2023] [Indexed: 12/30/2023] Open
Abstract
The breed of pig can affect the diversity and composition of fecal microbiota, but there is a lack of research on the fecal microbiota of hybrid pigs. In this study, feces samples from Chuanxiang black pigs (a hybrid of Tibetan and Duroc pigs) aged 3 days (n = 24), 70 days (n = 31), 10 months (n = 13) and 2 years (n = 30) and Tibetan pigs aged 10 months (n = 14) and 2 years (n = 15) were collected and sequenced by 16S rRNA gene sequencing technology. We also measured the weight of all the tested pigs and found that the 10-month-old and two-year-old Chuanxiang black pigs weighed about three times the weight of Tibetan pigs of the same age. After comparing the genus-level microbiota composition of Tibetan pigs and Chuanxiang black pigs at 10 months and two years of age, we found that Treponema and Streptococcus were the two most abundant bacteria in Chuanxiang black pigs, while Treponema and Chirstensenellaceae_R.7_group were the two most abundant bacteria in Tibetan pigs. Prediction of microbial community function in adult Chuanxiang black pigs and Tibetan pigs showed changes in nutrient absorption, disease resistance, and coarse feeding tolerance. In addition, we also studied the changes in fecal microbiota in Chuanxiang black pigs at 3 days, 70 days, 10 months, and 2 years of age. We found that the ecologically dominant bacteria in fecal microbiota of Chuanxiang black pigs changed across developmental stages. For example, the highest relative abundance of 70-day-old Chuanxiang black pigs at the genus level was Prevotella. We identified specific microbiota with high abundance at different ages for Chuanxiang black pigs, and revealed that the potential functions of these specific microbiota were related to the dominant phenotype such as fast growth rate and strong disease resistance. Our findings help to expand the understanding of the fecal microbiota of hybrid pigs and provide a reference for future breeding and management of hybrid pigs.
Collapse
Affiliation(s)
- Hengdong He
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuwei Gou
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Zeng
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Rui Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jing Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kai Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yunhan Jing
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuan Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Liang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Yuekui Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Xuebin Lv
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Zhiping He
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Qianzi Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yiren Gu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
34
|
Sun HY, Zhang JY, Zhang HX, Xu Q, Lu DB. Genetic difference between two Schistosoma japonicum isolates with contrasting cercarial shedding patterns revealed by whole genome sequencing. Parasite 2023; 30:59. [PMID: 38084940 PMCID: PMC10714679 DOI: 10.1051/parasite/2023061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Schistosoma japonicum is one of the major infectious agents of human schistosomiasis, mainly endemic in China and the Philippines. We have previously reported the finding of two schistosome isolates, each with a different cercarial emergence pattern adapted to their different hosts. However, there are currently no whole-genome sequencing studies to investigate the underlining genetics of the adaptive traits. We sampled schistosomes in 2013 and 2020 from a hilly area Shitai (ST) and a marshland area Hexian (HX) of Anhui, China. Ten to 15 male or female adult worms from each site/year were sent for whole genome sequencing. Genetics were analyzed, and selection signals along genomes were detected. Gene enrichment analysis was performed for the genome regions under selection. The results revealed considerable genetic differentiation between the two isolates. The genome "windows" affected by natural selection were fewer in ST (64 windows containing 78 genes) than in HX (318 windows containing 276 genes). Twelve significantly enriched genes were identified in ST, but none in HX. These genes were mainly related to specific DNA binding and intercellular signaling transduction. Some functional region changes identified along the genome of the hilly schistosome may be related to its unique late afternoon cercarial emergence.
Collapse
Affiliation(s)
- Hui-Ying Sun
-
Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University 199 RenAi Road, Industrial Park Avenue Suzhou Jiangsu 215123 PR China
| | - Jie-Ying Zhang
-
Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University 199 RenAi Road, Industrial Park Avenue Suzhou Jiangsu 215123 PR China
| | - Han-Xiang Zhang
-
Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University 199 RenAi Road, Industrial Park Avenue Suzhou Jiangsu 215123 PR China
| | - Qing Xu
-
Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University 199 RenAi Road, Industrial Park Avenue Suzhou Jiangsu 215123 PR China
| | - Da-Bing Lu
-
Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University 199 RenAi Road, Industrial Park Avenue Suzhou Jiangsu 215123 PR China
| |
Collapse
|
35
|
An L, Li Y, Yaq L, Wang Y, Dai Q, Du S, Ru Y, Zhoucuo Q, Wang J. Transcriptome analysis reveals molecular regulation mechanism of Tibet sheep tolerance to high altitude oxygen environment. Anim Biotechnol 2023; 34:5097-5112. [PMID: 37729444 DOI: 10.1080/10495398.2023.2258953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
As one of the most important livestock breeds on the Qinghai-Tibet Plateau, Tibetan sheep are of great importance to the local economy, agriculture and culture. Its adaptive mechanism in low temperature and low oxygen at highland altitudes has not been reported. In this study, transcriptome sequencing was used to analyze the heart, liver, spleen, lung, kidney, and muscle tissue of sheep at low and highland altitudes. LOC101112291, SELENOW, COL3A1, GPX1, TMSB4X and HSF4 were selected as candidate genes for adapting to plateau characteristics in Tibet Sheep. Besides, glutathione metabolism, arachidonic acid metabolism, nucleotide excision repair, regulation of actin cytoskeleton, protein digestion and absorption, thyroid hormone synthesis, relaxation signaling pathways may play important roles in the adaptation to plateau hypoxia, and cold tolerance. Structural analysis also showed that sequencing genes related to the adaptation mechanism of Tibet sheep to highland altitude. This study will lay a certain foundation for Tibet sheep research.
Collapse
Affiliation(s)
- Li An
- College of Life Science and Biotechnology, Mianyang Teacher's College, Mianyang, China
- Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest University for Nationalities, Chengdu, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu, China
| | - Yanyan Li
- Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest University for Nationalities, Chengdu, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu, China
| | - Lin Yaq
- Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest University for Nationalities, Chengdu, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest University for Nationalities, Chengdu, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu, China
| | - Qilin Dai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mian Yang, China
| | - Shizhang Du
- College of Life Science and Biotechnology, Mianyang Teacher's College, Mianyang, China
| | - Yi Ru
- Ruo'ergai Bureau of Agriculture and Animal Husbandry, Ruo'ergai, China
| | - Qi Zhoucuo
- Huzhu Tu Autonomous County of Comprehensive Law Enforcement Brigade of Agricultural Administration, Huzhu Tu Autonomous County, China
| | - Jinling Wang
- College of Life Science and Biotechnology, Mianyang Teacher's College, Mianyang, China
| |
Collapse
|
36
|
Wang N, Li Y, Meng Q, Chen M, Wu M, Zhang R, Xu Z, Sun J, Zhang X, Nie X, Yuan D, Lin Z. Genome and haplotype provide insights into the population differentiation and breeding improvement of Gossypium barbadense. J Adv Res 2023; 54:15-27. [PMID: 36775017 DOI: 10.1016/j.jare.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/10/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
INTRODUCTION Sea-island cotton (Gossypium barbadense, Gb) is one of the major sources of high-grade natural fiber. Besides the common annual Gb cotton, perennial Gb cotton is also cultivated, but studies on perennial Gb cotton are rare. OBJECTIVES We aimed to make a systematic analysis of perennial sea-island cotton and lay a foundation for its utilization in breeding, and try to identify the representative structural variations (SVs) in sea-island cotton, and to reveal the population differentiation and adaptive improvement of sea-island cotton. METHODS Through genome assembly of one perennial Gb cotton accession (named Gb_M210936) and comparative genome analysis, variations during Gb cotton domestication were identified by comparing Gb_M210936 with annual Gb accession 3-79 and with wild allotetraploid cotton G. darwinii. Six perennial Gb accessions combining with the resequenced 1,129 cotton accessions were used to conduct population and genetic analysis. Large haplotype blocks (haploblocks), generated from interspecific introgressions and intraspecific inversions, were identified and were used to analyze their effects on population differentiation and agronomic traits of sea-island cotton. RESULTS One reference genome of perennial sea-island cotton was assembled. Representative SVs in sea-island cotton were identified, and 31 SVs were found to be associated with agronomic traits. Perennial Gb cotton had a closer kinship with the wild-to-landrace continuum Gb cotton from south America where Gb cotton is originally domesticated. Haploblocks were associated with agronomic traits improvement of sea-island cotton, promoted sea-island cotton differentiation into three subgroups, were suffered from breeding selection, and may drive Gb cotton to be adapted to central Asian. CONCLUSION Our study made up the lack of perennial Gb cotton genome, and clarified that exotic introgressions improved the traits of sea-island cotton, promoted the population differentiation, and drove sea-island cotton adaptive to central Asia, which will provide new insights for the genetic breeding improvement of sea-island cottons.
Collapse
Affiliation(s)
- Nian Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Yuanxue Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Qingying Meng
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Meilin Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Mi Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Ruiting Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Zhiyong Xu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Jie Sun
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Bingtuan, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Bingtuan, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Oasis Ecology Agricultural of Xinjiang Bingtuan, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China.
| |
Collapse
|
37
|
Xu D, Wan B, Qiu K, Wang Y, Zhang X, Jiao N, Yan E, Wu J, Yu R, Gao S, Du M, Liu C, Li M, Fan G, Yin J. Single-Cell RNA-Sequencing Provides Insight into Skeletal Muscle Evolution during the Selection of Muscle Characteristics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305080. [PMID: 37870215 PMCID: PMC10724408 DOI: 10.1002/advs.202305080] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/27/2023] [Indexed: 10/24/2023]
Abstract
Skeletal muscle comprises a large, heterogeneous assortment of cell populations that interact to maintain muscle homeostasis, but little is known about the mechanism that controls myogenic development in response to artificial selection. Different pig (Sus scrofa) breeds exhibit distinct muscle phenotypes resulting from domestication and selective breeding. Using unbiased single-cell transcriptomic sequencing analysis (scRNA-seq), the impact of artificial selection on cell profiles is investigated in neonatal skeletal muscle of pigs. This work provides panoramic muscle-resident cell profiles and identifies novel and breed-specific cells, mapping them on pseudotime trajectories. Artificial selection has elicited significant changes in muscle-resident cell profiles, while conserving signs of generational environmental challenges. These results suggest that fibro-adipogenic progenitors serve as a cellular interaction hub and that specific transcription factors identified here may serve as candidate target regulons for the pursuit of a specific muscle phenotype. Furthermore, a cross-species comparison of humans, mice, and pigs illustrates the conservation and divergence of mammalian muscle ontology. The findings of this study reveal shifts in cellular heterogeneity, novel cell subpopulations, and their interactions that may greatly facilitate the understanding of the mechanism underlying divergent muscle phenotypes arising from artificial selection.
Collapse
Affiliation(s)
- Doudou Xu
- State Key Laboratory of Animal Nutrition and feedingCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Boyang Wan
- State Key Laboratory of Animal Nutrition and feedingCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Kai Qiu
- State Key Laboratory of Animal Nutrition and feedingCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Yubo Wang
- State Key Laboratory of Animal Nutrition and feedingCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Xin Zhang
- State Key Laboratory of Animal Nutrition and feedingCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
- Molecular Design Breeding Frontier Science Center of the Ministry of EducationBeijingChina
| | - Ning Jiao
- State Key Laboratory of Animal Nutrition and feedingCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Enfa Yan
- State Key Laboratory of Animal Nutrition and feedingCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Jiangwei Wu
- Key Laboratory of Animal GeneticsBreeding and Reproduction of Shaanxi ProvinceCollege of Animal Science and TechnologyNorthwest A&F UniversityYangling712100China
| | - Run Yu
- Beijing National Day SchoolBeijing100039China
| | - Shuai Gao
- Key Laboratory of Animal GeneticsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Min Du
- Nutrigenomics and Growth Biology LaboratoryDepartment of Animal Sciences and School of Molecular BioscienceWashington State UniversityPullmanWA99164USA
| | | | - Mingzhou Li
- Institute of Animal Genetics and BreedingCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu625014China
| | - Guoping Fan
- Department of Human GeneticsDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition and feedingCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
- Molecular Design Breeding Frontier Science Center of the Ministry of EducationBeijingChina
| |
Collapse
|
38
|
Shen Q, Gong W, Pan X, Cai J, Jiang Y, He M, Zhao S, Li Y, Yuan X, Li J. Comprehensive Analysis of CircRNA Expression Profiles in Multiple Tissues of Pigs. Int J Mol Sci 2023; 24:16205. [PMID: 38003395 PMCID: PMC10671760 DOI: 10.3390/ijms242216205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNAs with diverse functions, and previous studies have reported that circRNAs are involved in the growth and development of pigs. However, studies about porcine circRNAs over the past few years have focused on a limited number of tissues. Based on 215 publicly available RNA sequencing (RNA-seq) samples, we conducted a comprehensive analysis of circRNAs in nine pig tissues, namely, the gallbladder, heart, liver, longissimus dorsi, lung, ovary, pituitary, skeletal muscle, and spleen. Here, we identified a total of 82,528 circRNAs and discovered 3818 novel circRNAs that were not reported in the CircAtlas database. Moreover, we obtained 492 housekeeping circRNAs and 3489 tissue-specific circRNAs. The housekeeping circRNAs were enriched in signaling pathways regulating basic biological tissue activities, such as chromatin remodeling, nuclear-transcribed mRNA catabolic process, and protein methylation. The tissue-specific circRNAs were enriched in signaling pathways related to tissue-specific functions, such as muscle system process in skeletal muscle, cilium organization in pituitary, and cortical cytoskeleton in ovary. Through weighted gene co-expression network analysis, we identified 14 modules comprising 1377 hub circRNAs. Additionally, we explored circRNA-miRNA-mRNA networks to elucidate the interaction relationships between tissue-specific circRNAs and tissue-specific genes. Furthermore, our conservation analysis revealed that 19.29% of circRNAs in pigs shared homologous positions with their counterparts in humans. In summary, this extensive profiling of housekeeping, tissue-specific, and co-expressed circRNAs provides valuable insights into understanding the molecular mechanisms of pig transcriptional expression, ultimately deepening our understanding of genetic and biological processes.
Collapse
Affiliation(s)
- Qingpeng Shen
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| | - Wentao Gong
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| | - Xiangchun Pan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| | - Jiali Cai
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| | - Yao Jiang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| | - Mingran He
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| | - Shanghui Zhao
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| | - Yipeng Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| | - Xiaolong Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| | - Jiaqi Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| |
Collapse
|
39
|
Li W, Chen Y, Zhang Y, Zhao N, Zhang W, Shi M, Zhao Y, Cai C, Lu C, Gao P, Guo X, Li B, Kim SW, Yang Y, Cao G. Transcriptome Analysis Revealed Potential Genes of Skeletal Muscle Thermogenesis in Mashen Pigs and Large White Pigs under Cold Stress. Int J Mol Sci 2023; 24:15534. [PMID: 37958518 PMCID: PMC10650474 DOI: 10.3390/ijms242115534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Pigs are susceptible to cold stress due to the absence of brown fat caused by the partial deletion of uncoupling protein 1 during their evolution. Some local pig breeds in China exhibit potential cold adaptability, but research has primarily focused on fat and intestinal tissues. Skeletal muscle plays a key role in adaptive thermogenesis in mammals, yet the molecular mechanism of cold adaptation in porcine skeletal muscle remains poorly understood. This study investigated the cold adaptability of two pig breeds, Mashen pigs (MS) and Large White pigs (LW), in a four-day cold (4 °C) or normal temperature (25 °C) environment. We recorded phenotypic changes and collected blood and longissimus dorsi muscle for transcriptome sequencing. Finally, the PRSS8 gene was randomly selected for functional exploration in porcine skeletal muscle satellite cells. A decrease in body temperature and body weight in both LW and MS pigs under cold stress, accompanied by increased shivering frequency and respiratory frequency, were observed. However, the MS pigs demonstrated stable physiological homeostasis, indicating a certain level of cold adaptability. The LW pigs primarily responded to cold stress by regulating their heat production and glycolipid energy metabolism. The MS pigs exhibited a distinct response to cold stress, involving the regulation of heat production, energy metabolism pathways, and robust mitochondrial activity, as well as a stronger immune response. Furthermore, the functional exploration of PRSS8 in porcine skeletal muscle satellite cells revealed that it affected cellular energy metabolism and thermogenesis by regulating ERK phosphorylation. These findings shed light on the diverse transcriptional responses of skeletal muscle in LW and MS pigs under cold stress, offering valuable insights into the molecular mechanisms underlying cold adaptation in pigs.
Collapse
Affiliation(s)
- Wenxia Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Yufen Chen
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Yunting Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Ning Zhao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Wanfeng Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Mingyue Shi
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Yan Zhao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Chunbo Cai
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Chang Lu
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Pengfei Gao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Xiaohong Guo
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Sung-Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Yang Yang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Guoqing Cao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| |
Collapse
|
40
|
Wang Z, Liu Y, Wang H, Roy A, Liu H, Han F, Zhang X, Lu Q. Genome and transcriptome of Ips nitidus provide insights into high-altitude hypoxia adaptation and symbiosis. iScience 2023; 26:107793. [PMID: 37731610 PMCID: PMC10507238 DOI: 10.1016/j.isci.2023.107793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/15/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023] Open
Abstract
Ips nitidus is a well-known conifer pest that has contributed significantly to spruce forest disturbance in the Qinghai-Tibet Plateau and seriously threatens the ecological balance of these areas. We report a chromosome-level genome of I. nitidus determined by PacBio and Hi-C technology. Phylogenetic inference showed that it diverged from the common ancestor of I. typographus ∼2.27 mya. Gene family expansion in I. nitidus was characterized by DNA damage repair and energy metabolism, which may facilitate adaptation to high-altitude hypoxia. Interestingly, differential gene expression analysis revealed upregulated genes associated with high-altitude hypoxia adaptation and downregulated genes associated with detoxification after feeding and tunneling in fungal symbiont Ophiostoma bicolor-colonized substrates. Our findings provide evidence of the potential adaptability of I. nitidus to conifer host, high-altitude hypoxia and insight into how fungal symbiont assist in this process. This study enhances our understanding of insect adaptation, symbiosis, and pest management.
Collapse
Affiliation(s)
- Zheng Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Ya Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Huimin Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, EXTEMIT-K and EVA.4.0 Unit, Czech University of Life Sciences, Kamýcká 1176, Prague 6, 165 00 Suchdol, Czech Republic
| | - Huixiang Liu
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | | | - Xingyao Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Quan Lu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
41
|
Li Z, Liu X, Wang C, Li Z, Jiang B, Zhang R, Tong L, Qu Y, He S, Chen H, Mao Y, Li Q, Pook T, Wu Y, Zan Y, Zhang H, Li L, Wen K, Chen Y. The pig pangenome provides insights into the roles of coding structural variations in genetic diversity and adaptation. Genome Res 2023; 33:1833-1847. [PMID: 37914227 PMCID: PMC10691484 DOI: 10.1101/gr.277638.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 09/12/2023] [Indexed: 11/03/2023]
Abstract
Structural variations have emerged as an important driving force for genome evolution and phenotypic variation in various organisms, yet their contributions to genetic diversity and adaptation in domesticated animals remain largely unknown. Here we constructed a pangenome based on 250 sequenced individuals from 32 pig breeds in Eurasia and systematically characterized coding sequence presence/absence variations (PAVs) within pigs. We identified 308.3-Mb nonreference sequences and 3438 novel genes absent from the current reference genome. Gene PAV analysis showed that 16.8% of the genes in the pangene catalog undergo PAV. A number of newly identified dispensable genes showed close associations with adaptation. For instance, several novel swine leukocyte antigen (SLA) genes discovered in nonreference sequences potentially participate in immune responses to productive and respiratory syndrome virus (PRRSV) infection. We delineated previously unidentified features of the pig mobilome that contained 490,480 transposable element insertion polymorphisms (TIPs) resulting from recent mobilization of 970 TE families, and investigated their population dynamics along with influences on population differentiation and gene expression. In addition, several candidate adaptive TE insertions were detected to be co-opted into genes responsible for responses to hypoxia, skeletal development, regulation of heart contraction, and neuronal cell development, likely contributing to local adaptation of Tibetan wild boars. These findings enhance our understanding on hidden layers of the genetic diversity in pigs and provide novel insights into the role of SVs in the evolutionary adaptation of mammals.
Collapse
Affiliation(s)
- Zhengcao Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China;
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Chen Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Zhenyang Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Bo Jiang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Ruifeng Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Lu Tong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Youping Qu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Sheng He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Haifan Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Yafei Mao
- Bio-X Institutes, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Qingnan Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Torsten Pook
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen 6700 AH, The Netherlands
| | - Yu Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Yanjun Zan
- Key Laboratory of Tobacco Improvement and Biotechnology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266000, China
| | - Hui Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Lu Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Keying Wen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China;
| |
Collapse
|
42
|
Zhang D, Wang L, Wang W, Liu D. The Role of lncRNAs in Pig Muscle in Response to Cold Exposure. Genes (Basel) 2023; 14:1901. [PMID: 37895249 PMCID: PMC10606478 DOI: 10.3390/genes14101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Cold exposure is an essential factor affecting breeding efforts in cold regions. Muscle, as an important tissue for homeothermic animals, can produce heat through shivering thermogenesis (ST) and non-shivering thermogenesis (NST) under cold exposure. Long non-coding RNAs (lncRNAs) play important roles in regulating gene expression. However, the regulatory mechanisms of lncRNAs and their role in the thermogenesis of pigs are unclear. We examined lncRNAs in the skeletal muscle of an indigenous pig breed, the Enshi black pig, when the pigs were exposed to acute or chronic cold. Three pigs were maintained inside a pig house (control group), three pigs were maintained outside the pig house for 55 d (chronic cold group), and three pigs were suddenly exposed to the conditions outside the pig house for 3 days (acute cold group). After the experiment, the longissimus dorsi of each pig were collected, and their lncRNA profiles were sequenced and analyzed. Each sample obtained nearly 12.56 Gb of clean data. A total of 11,605 non-coding RNAs were obtained, including 10,802 novel lncRNAs. The number of differentially expressed lncRNAs (DElncRNAs) was identified under acute cold (427) and cold acclimation (376), with 215 and 192 upregulated lncRNAs, respectively. However, only 113 lncRNAs were commonly upregulated by acute cold and cold acclimation. In addition, 65% of the target genes were trans-regulated by DElncRNAs. The target genes were enriched in signal transduction, immune system, cell growth and death pathways, and amino acid and carbohydrate metabolism. Compared to cold acclimation, acute cold stress-induced more DElncRNAs and response pathways. In conclusion, low temperatures altered the expression levels of lncRNAs and their target genes in muscle tissue. Some potential mechanisms were revealed, including ion migration and the metabolism of amino acids and carbohydrates.
Collapse
Affiliation(s)
| | | | | | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (D.Z.); (L.W.); (W.W.)
| |
Collapse
|
43
|
Qiao R, Li X, Madsen O, Groenen MAM, Xu P, Wang K, Han X, Li G, Li X, Li K. Potential selection for lipid kinase activity and spermatogenesis in Henan native pig breeds and growth shaping by introgression of European genes. Genet Sel Evol 2023; 55:64. [PMID: 37723431 PMCID: PMC10506266 DOI: 10.1186/s12711-023-00841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/12/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND China has one third of the worldwide indigenous pig breeds. The Henan province is one of the earliest pig domestication centers of China (about 8000 years ago). However, the precise genetic characteristics of the Henan local pig breeds are still obscure. To understand the origin and the effects of selection on these breeds, we performed various analyses on lineage composition, genetic structure, and detection of selection sweeps and introgression in three of these breeds (Queshan, Nanyang and Huainan) using genotyping data on 125 Queshan, 75 Nanyang, 16 Huainan pigs and 878 individuals from 43 Eurasian pig breeds. RESULTS We found no clear evidence of ancestral domestic pig DNA lineage in the Henan local breeds, which have an extremely complicated genetic background. Not only do they share genes with some northern Chinese pig breeds, such as Erhualian, Hetaodaer, and Laiwu, but they also have a high admixture of genes from foreign pig breeds (33-40%). Two striking selection sweeps in small regions of chromosomes 2 and 14 common to the Queshan and Nanyang breeds were identified. The most significant enrichment was for lipid kinase activity (GO:0043550) with the genes FII, AMBRA1, and PIK3IP1. Another interesting 636.35-kb region on chromosome 14 contained a cluster of spermatogenesis genes (OSBP2, GAL3ST1, PLA2G3, LIMK2, and PATZ1), a bisexual sterility gene MORC2, and a fat deposition gene SELENOM. Reproduction and growth genes LRP4, FII, and ARHGAP1 were present in a 238.05-kb region on SSC2 under selection. We also identified five loci associated with body length (P = 0.004) on chromosomes 1 and 12 that were introgressed from foreign pig breeds into the Henan breeds. In addition, the Chinese indigenous pig breeds fell into four main types instead of the previously reported six, among which the Eastern type could be divided into two subgroups. CONCLUSIONS Admixture of North China, East China and foreign pigs contributed to high genetic diversity of Henan local pigs. Ontology terms associated with lipid kinase activity and spermatogenesis and growth shaping by introgression of European genes in Henan pigs were identified through selective sweep analyses.
Collapse
Affiliation(s)
- Ruimin Qiao
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Xinjian Li
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ole Madsen
- Animal Breeding and Genomics Centre, Department of Animal Sciences, Wageningen University & Research, 6700 HB, Wageningen, The Netherlands
| | - Martien A M Groenen
- Animal Breeding and Genomics Centre, Department of Animal Sciences, Wageningen University & Research, 6700 HB, Wageningen, The Netherlands
| | - Pan Xu
- Jiangsu Agri-Animal Husbandry and Veterinary College, Taizhou, 225300, China
| | - Kejun Wang
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xuelei Han
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Gaiying Li
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiuling Li
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Kui Li
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
44
|
Zhao P, Gu L, Gao Y, Pan Z, Liu L, Li X, Zhou H, Yu D, Han X, Qian L, Liu GE, Fang L, Wang Z. Young SINEs in pig genomes impact gene regulation, genetic diversity, and complex traits. Commun Biol 2023; 6:894. [PMID: 37652983 PMCID: PMC10471783 DOI: 10.1038/s42003-023-05234-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/09/2023] [Indexed: 09/02/2023] Open
Abstract
Transposable elements (TEs) are a major source of genetic polymorphisms and play a role in chromatin architecture, gene regulatory networks, and genomic evolution. However, their functional role in pigs and contributions to complex traits are largely unknown. We created a catalog of TEs (n = 3,087,929) in pigs and found that young SINEs were predominantly silenced by histone modifications, DNA methylation, and decreased accessibility. However, some transcripts from active young SINEs showed high tissue-specificity, as confirmed by analyzing 3570 RNA-seq samples. We also detected 211,067 dimorphic SINEs in 374 individuals, including 340 population-specific ones associated with local adaptation. Mapping these dimorphic SINEs to genome-wide associations of 97 complex traits in pigs, we found 54 candidate genes (e.g., ANK2 and VRTN) that might be mediated by TEs. Our findings highlight the important roles of young SINEs and provide a supplement for genotype-to-phenotype associations and modern breeding in pigs.
Collapse
Affiliation(s)
- Pengju Zhao
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lihong Gu
- Institute of Animal Science & Veterinary Medicine, Hainan Academy of Agricultural Sciences, No. 14 Xingdan Road, Haikou, 571100, China
| | - Yahui Gao
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Zhangyuan Pan
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Lei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Xingzheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Dongyou Yu
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xinyan Han
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lichun Qian
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA.
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, 8000, Denmark.
| | - Zhengguang Wang
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, China.
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
45
|
Liu L, Wu P, Guo A, Yang Y, Chen F, Zhang Q. Research progress on the regulation of production traits by gastrointestinal microbiota in dairy cows. Front Vet Sci 2023; 10:1206346. [PMID: 37592942 PMCID: PMC10427726 DOI: 10.3389/fvets.2023.1206346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
The composition and abundance of microorganisms in the gastrointestinal tract of cows are complex and extensive, and they play a crucial role in regulating nutrient digestion, absorption, maintaining digestive tract stability, and promoting the production and health of the host. The fermentation carried out by these microorganisms in the gastrointestinal tract is fundamental to the health and productivity of cows. Rumen microorganisms produce the majority of enzymes required to break down feed substrates, such as cellulose, protein, lipids, and other plant materials, through fermentation. This process provides energy metabolism substrates that satisfy approximately 70% of the host's energy requirements for physiological activities. Gut microorganisms primarily decompose cellulose that is difficult to digest in the rumen, thereby providing heat and energy to the hosts. Additionally, they have an impact on host health and productivity through their role in immune function. Understanding the composition and function of the cow gut microbiota can help regulate dairy cattle breeding traits and improve their health status. As a result, it has become a popular research topic in dairy cattle breeding. This article provides a review of the composition, structure, physiological characteristics, and physiological effects of the cow gut microbiota, serving as a theoretical foundation for future studies that aim to utilize the gut microbiota for dairy cattle breeding or improving production traits. It may also serve as a reference for research on gut microbiota of other ruminants.
Collapse
Affiliation(s)
- Lily Liu
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Peifu Wu
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Aiwei Guo
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Yajin Yang
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Fenfen Chen
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Qin Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
46
|
Guan X, Zhu J, Yi L, Sun H, Yang M, Huang Y, Pan H, Wei H, Zhao H, Zhao Y, Zhao S. Comparison of the gut microbiota and metabolites between Diannan small ear pigs and Diqing Tibetan pigs. Front Microbiol 2023; 14:1197981. [PMID: 37485506 PMCID: PMC10359432 DOI: 10.3389/fmicb.2023.1197981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Objective Host genetics and environment participate in the shaping of gut microbiota. Diannan small ear pigs and Diqing Tibetan pigs are excellent native pig breeds in China and live in different environments. However, the gut microbiota of Diannan small ear pigs and Diqing Tibetan pigs were still rarely understood. Therefore, this study aimed to analyze the composition characteristics of gut microbiota and metabolites in Diannan small ear pigs and Diqing Tibetan pigs. Methods Fresh feces of 6 pigs were randomly collected from 20 4-month-old Diannan small ear pigs (DA group) and 20 4-month-old Diqing Tibetan pigs (TA group) for high-throughput 16S rRNA sequencing and liquid chromatography-mass spectrometry (LC-MS) non-targeted metabolome analysis. Results The results revealed that Firmicutes and Bacteroidetes were the dominant phyla in the two groups. Chao1 and ACE indices differed substantially between DA and TA groups. Compared with the DA group, the relative abundance of Prevotellaceae, and Ruminococcus was significantly enriched in the TA group, while the relative abundance of Lachnospiraceae, Actinomyces, and Butyricicoccus was significantly reduced. Cholecalciferol, 5-dehydroepisterol, stigmasterol, adrenic acid, and docosahexaenoic acid were significantly enriched in DA group, which was involved in the steroid biosynthesis and biosynthesis of unsaturated fatty acids. 3-phenylpropanoic acid, L-tyrosine, phedrine, rhizoctin B, and rhizoctin D were significantly enriched in TA group, which was involved in the phenylalanine metabolism and phosphonate and phosphinate metabolism. Conclusion We found that significant differences in gut microbiota composition and metabolite between Diannan small ear pigs and Diqing Tibetan pigs, which provide a theoretical basis for exploring the relationship between gut microbiota and pig breeds.
Collapse
Affiliation(s)
- Xuancheng Guan
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Junhong Zhu
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Lanlan Yi
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Haichao Sun
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Minghua Yang
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Ying Huang
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Hongbin Pan
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Hongjiang Wei
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Kunming, China
| | - Hongye Zhao
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Kunming, China
| | - Yanguang Zhao
- Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Sumei Zhao
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
47
|
Wei L, Zeng B, Zhang S, Guo W, Li F, Zhao J, Li Y. Hybridization altered the gut microbiota of pigs. Front Microbiol 2023; 14:1177947. [PMID: 37465027 PMCID: PMC10350513 DOI: 10.3389/fmicb.2023.1177947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Mammalian gut microbiota plays an important role in the host's nutrient metabolism, growth, and immune regulation. Hybridization can enable a progeny to acquire superior traits of the parents, resulting in the hybridization advantage. However, studies on the effects of hybridization on the pigs' gut microbiota are lacking. Therefore, this study used multi-omics technologies to compare and analyze the gut microbiota of the primary wild boar and its offspring. The 16S rRNA gene sequencing results revealed that the gut microbiota of F4 exhibited a host-like dominance phenomenon with a significant increase in the abundance of Lactobacillus and Bifidobacterium. The beta diversity of Duroc was significantly different from those of F0, F2, and F4; after the host hybridization, the similarity of the beta diversity in the progeny decreased with the decrease in the similarity of the F0 lineage. The metagenomic sequencing results showed that the significantly enriched metabolic pathways in F4, such as environmental, circulatory system, fatty acid degradation adaptation, and fatty acid biosynthesis, were similar to those in F0. Moreover, it also exhibited similar significantly enriched metabolic pathways as those in Duroc, such as carbohydrate metabolism, starch and sucrose metabolism, starch-degrading CAZymes, lactose-degrading CAZymes, and various amino acid metabolism pathways. However, the alpha-amylase-related KOs, lipid metabolism, and galactose metabolism in F4 were significantly higher than those in Duroc and F0. Non-targeted metabolome technology analysis found that several metabolites, such as docosahexaenoic acid, arachidonic acid, and citric acid were significantly enriched in the F4 pigs as compared to those in F0. Based on Spearman correlation analysis, Lactobacillus and Bifidobacterium were significantly positively correlated with these metabolites. Finally, the combined metagenomic and metabolomic analysis suggested that the metabolic pathways, such as valine, leucine, and isoleucine biosynthesis and alanine aspartate and glutamate metabolism were significantly enriched in F4 pigs. In conclusion, the gut microbiota of F4 showed a similar host "dominance" phenomenon, which provided reference data for the genetics and evolution of microbiota and the theory of microbial-assisted breeding.
Collapse
Affiliation(s)
- Limin Wei
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Bo Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Siyuan Zhang
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-Origin Food, Chengdu Medical College, Chengdu, China
| | - Wei Guo
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-Origin Food, Chengdu Medical College, Chengdu, China
| | - Feng Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Jiangchao Zhao
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, United States
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
48
|
Wu X, Zhang H, Long H, Zhang D, Yang X, Liu D, E G. Genome-Wide Selection Signal Analysis to Investigate Wide Genomic Heredity Divergence between Eurasian Wild Boar and Domestic Pig. Animals (Basel) 2023; 13:2158. [PMID: 37443955 DOI: 10.3390/ani13132158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
As important livestock species, pigs provide essential meat resources for humans, so understanding the genetic evolution behind their domestic history could help with the genetic improvement of domestic pigs. This study aimed to investigate the evolution of convergence and divergence under selection in European and Asian domestic pigs by using public genome-wide data. A total of 164 and 108 candidate genes (CDGs) were obtained from the Asian group (wild boar vs. domestic pig) and the European group (wild boar vs. domestic pig), respectively, by taking the top 5% of intersected windows of a pairwise fixation index (FST) and a cross population extended haplotype homozygosity test (XPEHH). GO and KEGG annotated results indicated that most CDGs were related to reproduction and immunity in the Asian group. Conversely, rich CDGs were enriched in muscle development and digestion in the European group. Eight CDGs were subjected to parallel selection of Eurasian domestic pigs from local wild boars during domestication. These CDGs were mainly involved in olfactory transduction, metabolic pathways, and progesterone-mediated oocyte maturation. Moreover, 36 and 18 haplotypes of INPP5B and TRAK2 were identified in this study, respectively. In brief, this study did not only improve the understanding of the genetic evolution of domestication in pigs, but also provides valuable CDGs for future breeding and genetic improvement of pigs.
Collapse
Affiliation(s)
- Xinming Wu
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China
| | - Haoyuan Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China
| | - Haoyuan Long
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China
| | - Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Guangxin E
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China
| |
Collapse
|
49
|
Tang Q, Yu R, Wang Y, Xie F, Zhang H, Wu C, Fang M. Varied hypoxia adaptation patterns of embryonic brain at different development stages between Tibetan and Dwarf laying chickens. BMC Genomics 2023; 24:342. [PMID: 37344809 PMCID: PMC10286358 DOI: 10.1186/s12864-023-09457-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Tibetan chickens (Gallus gallus; TBCs), an indigenous breed distributed in the Qinghai-Tibet Plateau, are well adapted to the hypoxic environment. Currently, the molecular genetic basis of hypoxia adaptation in TBCs remains unclear. This study investigated hypoxia adaptation patterns of embryonic brain at different development stages by integrating analysis of the transcriptome with our previously published metabolome data in TBCs and Dwarf Laying Chickens (DLCs), a lowland chicken breed. RESULTS During hypoxia, the results revealed that 1334, 578, and 417 differentially expressed genes (DEGs) (|log2 fold change|>1, p-value < 0.05) on days 8, 12, and 18 of development, respectively between TBCs and DLCs. Gene Ontology (GO) and pathway analyses revealed that DEGs are mainly related to metabolic pathways, vessel development, and immune response under hypoxia. This is consistent with our metabolome data that TBCs have higher energy metabolism than DLCs during hypoxia. Some vital DEGs between TBCs and DLCs, such as EPAS1, VEGFD, FBP1, FBLN5, LDHA, and IL-6 which are involved in the HIF pathway and hypoxia regulation. CONCLUSION These results suggest varied adaptation patterns between TBCs and DLCs under hypoxia. Our study provides a basis for uncovering the molecular regulation mechanism of hypoxia adaptation in TBCs and a potential application of hypoxia adaptation research for other animals living on the Qinghai-Tibet Plateau, and may even contribute to the study of brain diseases caused by hypoxia.
Collapse
Affiliation(s)
- Qiguo Tang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China.
| | - Runjie Yu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yubei Wang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Fuyin Xie
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Hao Zhang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Changxin Wu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Meiying Fang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
50
|
Zhong ZQ, Li R, Wang Z, Tian SS, Xie XF, Wang ZY, Na W, Wang QS, Pan YC, Xiao Q. Genome-wide scans for selection signatures in indigenous pigs revealed candidate genes relating to heat tolerance. Animal 2023; 17:100882. [PMID: 37406393 DOI: 10.1016/j.animal.2023.100882] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023] Open
Abstract
Heat stress is a major problem that constrains pig productivity. Understanding and identifying adaptation to heat stress has been the focus of recent studies, and the identification of genome-wide selection signatures can provide insights into the mechanisms of environmental adaptation. Here, we generated whole-genome re-sequencing data from six Chinese indigenous pig populations to identify genomic regions with selection signatures related to heat tolerance using multiple methods: three methods for intra-population analyses (Integrated Haplotype Score, Runs of Homozygosity and Nucleotide diversity Analysis) and three methods for inter-population analyses (Fixation index (FST), Cross-population Composite Likelihood Ratio and Cross-population Extended Haplotype Homozygosity). In total, 1 966 796 single nucleotide polymorphisms were identified in this study. Genetic structure analyses and FST indicated differentiation among these breeds. Based on information on the location environment, the six breeds were divided into heat and cold groups. By combining two or more approaches for selection signatures, outlier signals in overlapping regions were identified as candidate selection regions. A total of 163 candidate genes were identified, of which, 29 were associated with heat stress injury and anti-inflammatory effects. These candidate genes were further associated with 78 Gene Ontology functional terms and 30 Kyoto Encyclopedia of Genes and Genomes pathways in enrichment analysis (P < 0.05). Some of these have clear relevance to heat resistance, such as the AMPK signalling pathway and the mTOR signalling pathway. The results improve our understanding of the selection mechanisms responsible for heat resistance in pigs and provide new insights of introgression in heat adaptation.
Collapse
Affiliation(s)
- Z Q Zhong
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - R Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Z Wang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - S S Tian
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - X F Xie
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Z Y Wang
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - W Na
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Q S Wang
- Hainan Yazhou Bay Seed Laboratory, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya 572025, China; Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Y C Pan
- Hainan Yazhou Bay Seed Laboratory, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya 572025, China; Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Q Xiao
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China.
| |
Collapse
|