1
|
Bian L, Hu B, Li F, Gu Y, Hu C, Chen Y, Deng B, Fang H, Zhu X, Chen Y, Fu X, Wang T, She Q, Zhu M, Jiang Y, Dai J, Xu H, Ma H, Xu Z, Hu Z, Shen H, Ding Y, Yan C, Jin G. Single-cell eQTL mapping reveals cell-type-specific genes associated with the risk of gastric cancer. CELL GENOMICS 2025; 5:100812. [PMID: 40112817 DOI: 10.1016/j.xgen.2025.100812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/05/2025] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Most expression quantitative trait locus (eQTL) analyses have been conducted in heterogeneous gastric tissues, limiting understanding of cell-type-specific regulatory mechanisms. Here, we employed a pooled multiplexing strategy to profile 399,683 gastric cells from 203 Chinese individuals using single-cell RNA sequencing (scRNA-seq). We identified 19 distinct gastric cell types and performed eQTL analyses, uncovering 8,498 independent eQTLs, with a considerable fraction (81%, 6,909/8,498) exhibiting cell-type-specific effects. Integration of these eQTLs with genome-wide association studies for gastric cancer (GC) revealed four co-localization signals in specific cell types. Genetically predicted cell-type-specific gene expression identified 15 genes associated with GC risk, including the upregulation of MUC1 exclusively in parietal cells, linked to decreased GC risk. Our findings highlight substantial heterogeneity in the genetic regulation of gene expression across gastric cell types and provide critical cell-type-specific annotations of genetic variants associated with GC risk, offering new molecular insights underlying GC.
Collapse
Affiliation(s)
- Lijun Bian
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Wuxi 214023, China
| | - Beiping Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Fengyuan Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuanliang Gu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Caihong Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuheng Chen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Bin Deng
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225012, China
| | - Haisheng Fang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xia Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Yan Chen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiangjin Fu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Tianpei Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Qiang She
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225012, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Yue Jiang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China; Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yanbing Ding
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225012, China.
| | - Caiwang Yan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Wuxi 214023, China; Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China; Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China.
| |
Collapse
|
2
|
Ajayi AF, Hamed MA, Onaolapo MC, Fiyinfoluwa OH, Oyeniran OI, Oluwole DT. Defining the genetic profile of prostate cancer. Urol Oncol 2025; 43:164-177. [PMID: 39690078 DOI: 10.1016/j.urolonc.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 12/19/2024]
Abstract
Several studies indicated that prostate cancer has a hereditary component. In particular, a significant risk of prostate cancer has been linked to a tight familial lineage. However, to provide insight into how prostate cancer is inherited, characterising its genetic profile is essential. The current body of research on the analysis of genetic mutations in prostate cancer was reviewed to achieve this. This paper reports on the effects and underlying processes of prostate cancer that have been linked to decreased male fertility. Many research approaches used have resulted in the discovery of unique inheritance patterns and manifest traits, the onset and spread of prostate cancer have also been linked to many genes. Studies have specifically examined Androgen Receptor gene variants about prostate cancer risk and disease progression. Research has shown that genetic and environmental variables are important contributors to prostate cancer, even if the true origins of the disease are not fully recognised or established. Researchers studying the genetics of prostate cancer are using genome-wide association studies more and more because of their outstanding effectiveness in revealing susceptibility loci for prostate cancer. Genome-Wide Association Studies provides a detailed method for identifying the distinct sequence of a gene that is associated with cancer risk. Surgical procedures and radiation treatments are 2 of the treatment options for prostate cancer. Notwithstanding the compelling evidence shown in this work, suggests that more research must be done to detect the gene alterations and the use of genetic variants in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Ayodeji Folorunsho Ajayi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Biomedical operations, Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria; Department of Physiology, Adeleke University, Ede, Osun State, Nigeria
| | - Moses Agbomhere Hamed
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti, Nigeria; The Brainwill Laboratory, Osogbo, Osun State, Nigeria
| | - Moyinoluwa Comfort Onaolapo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Biomedical operations, Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria
| | - Ogundipe Helen Fiyinfoluwa
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Biomedical operations, Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria
| | | | - David Tolulope Oluwole
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Department of Physiology, College of Health Sciences, Crescent University, Abeokuta, Ogun State, Nigeria.
| |
Collapse
|
3
|
Magnarelli A, Liu Q, Wang F, Peng XP, Wright J, Oak N, Natale V, Rothblum-Oviatt C, Lefton-Greif MA, McGrath-Morrow S, Crawford TO, Ehrhardt MJ, Lederman HM, Sharma R. Prevalence and outcomes of cancer and treatment-associated toxicities for patients with ataxia telangiectasia. J Allergy Clin Immunol 2025; 155:640-649. [PMID: 39521281 PMCID: PMC11915532 DOI: 10.1016/j.jaci.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Ataxia telangiectasia (A-T) is a DNA repair disorder with cancer predisposition. OBJECTIVE We sought to characterize the prevalence and outcomes of hematologic and solid cancers and treatment-associated toxicities in individuals with A-T. METHODS Data were retrospectively analyzed from the Johns Hopkins Ataxia Telangiectasia Clinical Center cohort. Cumulative incidence and standardized incidence ratios of cancer, survival probability after cancer diagnosis, and standardized mortality ratios were calculated. Cox regression estimated risk of death on the basis of chemotherapy (standard vs reduced) dosing, and multivariable logistic regression evaluated cancer risk associations with ataxia telangiectasia mutated (ATM) exons and variants. RESULTS Eighty-four (16.5%) of 508 individuals were diagnosed with a primary cancer, of whom 62 (74%) were hematologic in origin and 22 (26%) were solid-organ cancers. The cumulative incidence of cancer was 29% by age 35 years. Non-Hodgkin lymphoma occurred most frequently (n = 39), whereas solid cancers disproportionately affected those 18 years and older (n = 22). The standardized mortality ratio was 24.6 (95% CI, 21.1-28.4) overall and 232.9 (95% CI,178.1-299.2) among individuals with cancer. Risk of death was higher when treated with standard/unknown versus modified chemotherapy (hazard ratio, 2.2; 95% CI, 1.1-4.4; P = .024). Chemotherapy-associated toxicities developed in 58% of individuals, predominantly neurologic (n = 14) and gastrointestinal (n = 10) systems. Three exons were enriched for cancer-associated variants. CONCLUSIONS Individuals with A-T experience a wide array of blood and solid-organ malignancies, high mortality rates, and treatment-related toxicities, highlighting need for targeted therapies to mitigate toxicity and optimize survival.
Collapse
Affiliation(s)
- Aimee Magnarelli
- Eudowood Division of Pediatric Allergy, Immunology and Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Qi Liu
- Department of Public Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Fan Wang
- Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, Memphis, Tenn
| | - Xiao P Peng
- A-T Clinical Center, Johns Hopkins Hospital, Baltimore, Md; Division of Genetics, Department of Pediatrics, Children's Hosptial at Montefiore, Albert Einstein College of Medicine, Bronx, NY
| | - Jennifer Wright
- Eudowood Division of Pediatric Allergy, Immunology and Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Md; A-T Clinical Center, Johns Hopkins Hospital, Baltimore, Md
| | - Ninad Oak
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tenn
| | - Valerie Natale
- A-T Clinical Center, Johns Hopkins Hospital, Baltimore, Md; Forgotten Diseases Research Foundation, Santa Clara, Calif
| | | | - Maureen A Lefton-Greif
- A-T Clinical Center, Johns Hopkins Hospital, Baltimore, Md; Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Md; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Md; Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, Md
| | - Sharon McGrath-Morrow
- A-T Clinical Center, Johns Hopkins Hospital, Baltimore, Md; Division of Pulmonary Medicine and Sleep, Children's Hospital of Philadelphia, Pa; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Thomas O Crawford
- A-T Clinical Center, Johns Hopkins Hospital, Baltimore, Md; Department of Neurology, Johns Hopkins Medicine, Baltimore, Md; Department of Pediatrics, Johns Hopkins Medicine, Baltimore, Md
| | - Matthew J Ehrhardt
- Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, Memphis, Tenn; Department of Oncology, St Jude Children's Research Hospital, Memphis, Tenn
| | - Howard M Lederman
- Eudowood Division of Pediatric Allergy, Immunology and Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Md; A-T Clinical Center, Johns Hopkins Hospital, Baltimore, Md
| | - Richa Sharma
- A-T Clinical Center, Johns Hopkins Hospital, Baltimore, Md; Department of Hematology, St Jude Children's Research Hospital, Memphis, Tenn.
| |
Collapse
|
4
|
Zhang Y, Lindström S, Kraft P, Liu Y. Genetic risk, health-associated lifestyle, and risk of early-onset total cancer and breast cancer. J Natl Cancer Inst 2025; 117:40-48. [PMID: 39189966 PMCID: PMC11717420 DOI: 10.1093/jnci/djae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Early-onset cancer (diagnosed under age 50) generally manifests as an aggressive disease phenotype. The association between healthy lifestyle and early-onset cancer and whether it varies by common genetic variants remains unclear. METHODS We analyzed a prospective cohort of 66 308 participants who were under age 50 and free of cancer at baseline in the UK Biobank. Using Cox regression, we estimated hazard ratios (HRs) and 95% confidence intervals (CIs) for early-onset total and breast cancer based on sex-specific composite total cancer polygenic risk scores (PRSs), a breast cancer-specific PRS, and sex-specific health-associated lifestyle scores (HLSs). RESULTS In multivariable-adjusted analyses with 2-year latency, higher genetic risk (highest vs lowest tertile of PRS) was associated with significantly increased risks of early-onset total cancer in females (HR, 95% CI = 1.83, 1.49 to 2.26) and males (2.03, 1.51 to 2.73) as well as early-onset breast cancer in females (3.06, 2.20 to 4.26). An unfavorable lifestyle (highest vs lowest category of HLS) was associated with higher risk of total cancer and breast cancer in females across genetic risk categories; the association with total cancer and breast cancer was stronger in the highest genetic risk category than the lowest: HRs (95% CIs) were 1.55 (1.12 to 2.14) and 1.69 (1.11 to 2.57) in the highest genetic risk category and 1.03 (0.64 to 1.67) and 0.81 (0.36 to 1.85) in the lowest. CONCLUSIONS Genetic and lifestyle factors were independently associated with early-onset total and breast cancer risk. Individuals with a high genetic risk may benefit more from adopting a healthy lifestyle in preventing early-onset cancer.
Collapse
Affiliation(s)
- Yin Zhang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sara Lindström
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Peter Kraft
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yuxi Liu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Patil MR, Bihari A. Role of artificial intelligence in cancer detection using protein p53: A Review. Mol Biol Rep 2024; 52:46. [PMID: 39658610 DOI: 10.1007/s11033-024-10051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/22/2024] [Indexed: 12/12/2024]
Abstract
Normal cell development and prevention of tumor formation rely on the tumor-suppressor protein p53. This crucial protein is produced from the Tp53 gene, which encodes the p53 protein. The p53 protein plays a vital role in regulating cell growth, DNA repair, and apoptosis (programmed cell death), thereby maintaining the integrity of the genome and preventing the formation of tumors. Since p53 was discovered 43 years ago, many researchers have clarified its functions in the development of tumors. With the support of the protein p53 and targeted artificial intelligence modeling, it will be possible to detect cancer and tumor activity at an early stage. This will open up new research opportunities. In this review article, a comprehensive analysis was conducted on different machine learning techniques utilized in conjunction with the protein p53 to predict and speculate cancer. The study examined the types of data incorporated and evaluated the performance of these techniques. The aim was to provide a thorough understanding of the effectiveness of machine learning in predicting and speculating cancer using the protein p53.
Collapse
Affiliation(s)
- Manisha R Patil
- School of Computer Science Engineering and Information System, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Anand Bihari
- Department of Computational Intelligence, School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
6
|
Bhutani MS, Faraoni EY, Mork ME, McAllister F. Gastric cancer prevention and screening during pancreatic cancer screening in high-risk individuals: an opportunity not to be missed. Gastrointest Endosc 2024:S0016-5107(24)03774-X. [PMID: 39653170 DOI: 10.1016/j.gie.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 01/18/2025]
Affiliation(s)
- Manoop S Bhutani
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Erika Y Faraoni
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maureen E Mork
- Clinical Cancer Genetics Program, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Florencia McAllister
- Department of Genetics, Clinical Cancer Genetics Program, Department of Gastrointestinal Medical Oncology, Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
7
|
Ivarsdottir EV, Gudmundsson J, Tragante V, Sveinbjornsson G, Kristmundsdottir S, Stacey SN, Halldorsson GH, Magnusson MI, Oddsson A, Walters GB, Sigurdsson A, Saevarsdottir S, Beyter D, Thorleifsson G, Halldorsson BV, Melsted P, Stefansson H, Jonsdottir I, Sørensen E, Pedersen OB, Erikstrup C, Bøgsted M, Pøhl M, Røder A, Stroomberg HV, Gögenur I, Hillingsø J, Bojesen SE, Lassen U, Høgdall E, Ullum H, Brunak S, Ostrowski SR, Sonderby IE, Frei O, Djurovic S, Havdahl A, Moller P, Dominguez-Valentin M, Haavik J, Andreassen OA, Hovig E, Agnarsson BA, Hilmarsson R, Johannsson OT, Valdimarsson T, Jonsson S, Moller PH, Olafsson JH, Sigurgeirsson B, Jonasson JG, Tryggvason G, Holm H, Sulem P, Rafnar T, Gudbjartsson DF, Stefansson K. Gene-based burden tests of rare germline variants identify six cancer susceptibility genes. Nat Genet 2024; 56:2422-2433. [PMID: 39472694 DOI: 10.1038/s41588-024-01966-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/30/2024] [Indexed: 11/10/2024]
Abstract
Discovery of cancer risk variants in the sequence of the germline genome can shed light on carcinogenesis. Here we describe gene burden association analyses, aggregating rare missense and loss of function variants, at 22 cancer sites, including 130,991 cancer cases and 733,486 controls from Iceland, Norway and the United Kingdom. We identified four genes associated with increased cancer risk; the pro-apoptotic BIK for prostate cancer, the autophagy involved ATG12 for colorectal cancer, TG for thyroid cancer and CMTR2 for both lung cancer and cutaneous melanoma. Further, we found genes with rare variants that associate with decreased risk of cancer; AURKB for any cancer, irrespective of site, and PPP1R15A for breast cancer, suggesting that inhibition of PPP1R15A may be a preventive strategy for breast cancer. Our findings pinpoint several new cancer risk genes and emphasize autophagy, apoptosis and cell stress response as a focus point for developing new therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Saedis Saevarsdottir
- deCODE genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | | | | | - Bjarni V Halldorsson
- deCODE genetics/Amgen, Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | - Pall Melsted
- deCODE genetics/Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Ingileif Jonsdottir
- deCODE genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Immunology, Landspitali University Hospital, Reykjavik, Iceland
| | - Erik Sørensen
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ole B Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Koege, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martin Bøgsted
- Center for Clinical Data Science, Aalborg University and Aalborg University Hospital, Aalborg, Denmark
| | - Mette Pøhl
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Røder
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Urology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Hein Vincent Stroomberg
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Urology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ismail Gögenur
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Jens Hillingsø
- Department of Transplantation, Digestive Diseases and General Surgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Stig E Bojesen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Lassen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Estrid Høgdall
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ida Elken Sonderby
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Oleksandr Frei
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Informatics, Centre for Bioinformatics, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Alexandra Havdahl
- Center for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Psychology, PROMENTA Research Center, University of Oslo, Oslo, Norway
| | - Pal Moller
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Mev Dominguez-Valentin
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Bergen Center of Brain Plasticity, Haukeland University Hospital, Bergen, Norway
| | - Ole A Andreassen
- Division of Mental Health and Addiction, Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Eivind Hovig
- Department of Informatics, Centre for Bioinformatics, University of Oslo, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Bjarni A Agnarsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland
| | - Rafn Hilmarsson
- Department of General Surgery, Landspitali University Hospital, Reykjavik, Iceland
| | | | - Trausti Valdimarsson
- The Medical Center, Glaesibae, Reykjavik, Iceland
- Department of Medicine, West Iceland Healthcare Centre, Akranes, Iceland
| | - Steinn Jonsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | - Pall H Moller
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of General Surgery, Landspitali University Hospital, Reykjavik, Iceland
| | - Jon H Olafsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Dermatology Oncology, Landspitali University Hospital, Reykjavik, Iceland
| | - Bardur Sigurgeirsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Dermatology Oncology, Landspitali University Hospital, Reykjavik, Iceland
| | - Jon G Jonasson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland
| | - Geir Tryggvason
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Otorhinolaryngology, Landspitali University Hospital, Reykjavik, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen, Reykjavik, Iceland
| | | | | | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
8
|
Mukhtar TK, Wilcox N, Dennis J, Yang X, Naven M, Mavaddat N, Perry JRB, Gardner E, Easton DF. Protein-truncating and rare missense variants in ATM and CHEK2 and associations with cancer in UK Biobank whole-exome sequence data. J Med Genet 2024; 61:1016-1022. [PMID: 39209703 PMCID: PMC11503094 DOI: 10.1136/jmg-2024-110127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Deleterious germline variants in ATM and CHEK2 have been associated with a moderately increased risk of breast cancer. Risks for other cancers remain unclear. METHODS Cancer associations for coding variants in ATM and CHEK2 were evaluated using whole-exome sequence data from UK Biobank linked to cancer registration data (348 488 participants), and analysed both as a retrospective case-control and a prospective cohort study. Odds ratios, hazard ratios, and combined relative risks (RRs) were estimated by cancer type and gene. Separate analyses were performed for protein-truncating variants (PTVs) and rare missense variants (rMSVs; allele frequency <0.1%). RESULTS PTVs in ATM were associated with increased risks of nine cancers at p<0.001 (pancreas, oesophagus, lung, melanoma, breast, ovary, prostate, bladder, lymphoid leukaemia (LL)), and three at p<0.05 (colon, diffuse non-Hodgkin's lymphoma (DNHL), rectosigmoid junction). Carriers of rMSVs had increased risks of four cancers (p<0.05: stomach, pancreas, prostate, Hodgkin's disease (HD)). RRs were highest for breast, prostate, and any cancer where rMSVs lay in the FAT or PIK domains, and had a Combined Annotation Dependent Depletion score in the highest quintile.PTVs in CHEK2 were associated with three cancers at p<0.001 (breast, prostate, HD) and six at p<0.05 (oesophagus, melanoma, ovary, kidney, DNHL, myeloid leukaemia). Carriers of rMSVs had increased risks of five cancers (p<0.001: breast, prostate, LL; p<0.05: melanoma, multiple myeloma). CONCLUSION PTVs in ATM and CHEK2 are associated with a wide range of cancers, with the highest RR for pancreatic cancer in ATM PTV carriers. These findings can inform genetic counselling of carriers.
Collapse
Affiliation(s)
- Toqir K Mukhtar
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Primary Care and Public Health, Imperial College London, London, UK
| | - Naomi Wilcox
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Xin Yang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Marc Naven
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Nasim Mavaddat
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - John R B Perry
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Eugene Gardner
- Metabolic Research Laboratory, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Hall R, Bancroft E, Pashayan N, Kote-Jarai Z, Eeles RA. Genetics of prostate cancer: a review of latest evidence. J Med Genet 2024; 61:915-926. [PMID: 39137963 DOI: 10.1136/jmg-2024-109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/04/2024] [Indexed: 08/15/2024]
Abstract
Prostate cancer (PrCa) is a largely heritable and polygenic disease. It is the most common cancer in people with prostates (PwPs) in Europe and the USA, including in PwPs of African descent. In the UK in 2020, 52% of all cancers were diagnosed at stage I or II. The National Health Service (NHS) long-term plan is to increase this to 75% by 2028, to reduce absolute incidence of late-stage disease. In the absence of a UK PrCa screening programme, we should explore how to identify those at increased risk of clinically significant PrCa.Incorporating genomics into the PrCa screening, diagnostic and treatment pathway has huge potential for transforming patient care. Genomics can increase efficiency of PrCa screening by focusing on those with genetic predisposition to cancer-which when combined with risk factors such as age and ethnicity, can be used for risk stratification in risk-based screening (RBS) programmes. The goal of RBS is to facilitate early diagnosis of clinically significant PrCa and reduce overdiagnosis/overtreatment in those unlikely to experience PrCa-related symptoms in their lifetime. Genetic testing can guide PrCa management, by identifying those at risk of lethal PrCa and enabling access to novel targeted therapies.PrCa is curable if diagnosed below stage III when most people do not experience symptoms. RBS using genetic profiling could be key here if we could show better survival outcomes (or reduction in cancer-specific mortality accounting for lead-time bias), in addition to more cost efficiency than age-based screening alone. Furthermore, PrCa outcomes in underserved communities could be optimised if genetic testing was accessible, minimising health disparities.
Collapse
Affiliation(s)
- Rose Hall
- The Royal Marsden NHS Foundation Trust, London, UK
- Institute for Cancer Research, London, UK
| | | | | | | | - Rosalind A Eeles
- The Royal Marsden NHS Foundation Trust, London, UK
- Institute for Cancer Research, London, UK
| |
Collapse
|
10
|
Zhong J, Li P, Zheng F, Li Y, Lu W, Chen H, Cai J, Xia D, Wu Y. Association between dietary vitamin C intake/blood level and risk of digestive system cancer: a systematic review and meta-analysis of prospective studies. Food Funct 2024; 15:8217-8237. [PMID: 39039956 DOI: 10.1039/d4fo00350k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Experimental studies have shown that vitamin C has anti-cancer effects, but previous meta-analyses have indicated that the role of vitamin C in digestive system cancers (DSCs) is controversial. In this study, a systematic review and meta-analysis of the relationship between dietary intake/plasma concentration of vitamin C and the risk of DSC was conducted, evaluating 32 prospective studies with 1 664 498 participants. Dose-response and subgroup analyses were also performed. Systematic literature searches were performed in PubMed, EMBASE and Web of Science databases until 9th September 2023. Vitamin C intake significantly reduced DSCs risk (RR = 0.88, 95% confidence interval (CI) 0.83 to 0.93). The subgroup analyses showed the risks of oral, pharyngeal, and esophageal (OPE) cancers (0.81, 0.72 to 0.93), gastric cancer (0.81, 0.68 to 0.95), and colorectal cancer (0.89, 0.82 to 0.98) were negatively correlated with vitamin C intake, and the effect of vitamin C was different between colon cancer (0.87, 0.77 to 0.97) and rectal cancer (1.00, 0.84 to 1.19). However, plasma vitamin C concentration was only inversely associated with gastric cancer risk (0.74, 0.59 to 0.92). Dose-response analysis revealed that 250 and 65 mg day-1 vitamin C intakes had the strongest protective effect against OPE and gastric cancers respectively. These estimates suggest that vitamin C intake could significantly reduce gastrointestinal cancer incidence, including OPE, gastric, and colon cancers. Plasma vitamin C has a significant reduction effect on the incidence of gastric cancer only, but additional large-scale clinical studies are needed to determine its impact on the incidence of DSCs.
Collapse
Affiliation(s)
- Jiamin Zhong
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Gastroenterology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, 310009, China
| | - Peiwei Li
- Department of Gastroenterology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, 310009, China
| | - Fang Zheng
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yating Li
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Wei Lu
- Department of Colorectal Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Hanwen Chen
- Department of Gastroenterology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, 310009, China
| | - Jianting Cai
- Department of Gastroenterology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, 310009, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Research Unit of Intelligence Classification of Tumour Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou 310058, Zhejiang, China
| | - Yihua Wu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
11
|
Sierra-Díaz DC, Morel A, Fonseca-Mendoza DJ, Bravo NC, Molano-Gonzalez N, Borras M, Munevar I, Lema M, Idrobo H, Trujillo D, Serrano N, Orduz AI, Lopera D, González J, Rojas G, Londono-De Los Ríos P, Manneh R, Cabrera R, Rubiano W, de la Peña J, Quintero MC, Mantilla W, Restrepo CM. Germline mutations of breast cancer susceptibility genes through expanded genetic analysis in unselected Colombian patients. Hum Genomics 2024; 18:68. [PMID: 38890714 PMCID: PMC11184794 DOI: 10.1186/s40246-024-00623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND In Colombia and worldwide, breast cancer (BC) is the most frequently diagnosed neoplasia and the leading cause of death from cancer among women. Studies predominantly involve hereditary and familial cases, demonstrating a gap in the literature regarding the identification of germline mutations in unselected patients from Latin-America. Identification of pathogenic/likely pathogenic (P/LP) variants is important for shaping national genetic analysis policies, genetic counseling, and early detection strategies. The present study included 400 women with unselected breast cancer (BC), in whom we analyzed ten genes, using Whole Exome Sequencing (WES), know to confer risk for BC, with the aim of determining the genomic profile of previously unreported P/LP variants in the affected population. Additionally, Multiplex Ligation-dependent Probe Amplification (MLPA) was performed to identify Large Genomic Rearrangements (LGRs) in the BRCA1/2 genes. To ascertain the functional impact of a recurrent intronic variant (ATM c.5496 + 2_5496 + 5delTAAG), a minigene assay was conducted. RESULTS We ascertained the frequency of P/LP germline variants in BRCA2 (2.5%), ATM (1.25%), BRCA1 (0.75%), PALB2 (0.50%), CHEK2 (0.50%), BARD1 (0.25%), and RAD51D (0.25%) genes in the population of study. P/LP variants account for 6% of the total population analyzed. No LGRs were detected in our study. We identified 1.75% of recurrent variants in BRCA2 and ATM genes. One of them corresponds to the ATM c.5496 + 2_5496 + 5delTAAG. Functional validation of this variant demonstrated a splicing alteration probably modifying the Pincer domain and subsequent protein structure. CONCLUSION This study described for the first time the genomic profile of ten risk genes in Colombian women with unselected BC. Our findings underscore the significance of population-based research, advocating the consideration of molecular testing in all women with cancer.
Collapse
Affiliation(s)
- Diana Carolina Sierra-Díaz
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, Colombia
| | - Adrien Morel
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, Colombia
| | - Dora Janeth Fonseca-Mendoza
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, Colombia
| | - Nora Contreras Bravo
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, Colombia
| | - Nicolas Molano-Gonzalez
- Clinical Research Group, School of Medicine and Health Science, Universidad del Rosario, Bogotá, Colombia
| | - Mariana Borras
- Fundación Cardioinfantil, Instituto de Cardiología, Bogotá, Colombia
| | - Isabel Munevar
- Fundación Cardioinfantil, Instituto de Cardiología, Bogotá, Colombia
| | | | | | | | - Norma Serrano
- Hospital Internacional de Colombia HIC, Piedecuesta, Colombia
| | | | - Diego Lopera
- Oncólogos del Occidente S.A.S, Manizales, Colombia
| | | | - Gustavo Rojas
- Oncólogos del Occidente S.A.S, Manizales, Colombia
- Oncologos del Occidente SAS, Pereira, Colombia
| | | | - Ray Manneh
- SOHEC, Sociedad de Oncología y Hematología del Cesar, Valledupar, Colombia
| | - Rodrigo Cabrera
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, Colombia
- Laboratorio de Biología Molecular y Pruebas Diagnósticas de Alta Complejidad, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá, Colombia
| | | | | | | | - William Mantilla
- Fundación Cardioinfantil, Instituto de Cardiología, Bogotá, Colombia
- Fundación CTIC-Fundación Cardioinfantil, Instituto de Cardiología, Bogotá, Colombia
| | - Carlos M Restrepo
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, Colombia.
| |
Collapse
|
12
|
Harrold EC, Stadler ZK. Upper Gastrointestinal Cancers and the Role of Genetic Testing. Hematol Oncol Clin North Am 2024; 38:677-691. [PMID: 38458854 DOI: 10.1016/j.hoc.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Beyond the few established hereditary cancer syndromes with an upper gastrointestinal cancer component, there is increasing recognition of the contribution of novel pathogenic germline variants (gPVs) to upper gastrointestinal carcinogenesis. The detection of gPVs has potential implications for novel treatment approaches of the index cancer patient as well as long-term implications for surveillance and risk-reducing measures for cancer survivors and far-reaching implications for the patients' family. With widespread availability of multigene panel testing, new associations may be identified with germline-somatic integration being critical to determining true causality of novel gPVs. Comprehensive cancer care should incorporate both somatic and germline testing.
Collapse
Affiliation(s)
- Emily C Harrold
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medical Oncology, Mater Misericordiae University Hospital, Dublin, Ireland. https://twitter.com/EmilyHarrold6
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
13
|
Nayerpour Dizaj T, Doustmihan A, Sadeghzadeh Oskouei B, Akbari M, Jaymand M, Mazloomi M, Jahanban-Esfahlan R. Significance of PSCA as a novel prognostic marker and therapeutic target for cancer. Cancer Cell Int 2024; 24:135. [PMID: 38627732 PMCID: PMC11020972 DOI: 10.1186/s12935-024-03320-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/30/2024] [Indexed: 04/20/2024] Open
Abstract
One of the contributing factors in the diagnosis and treatment of most cancers is the identification of their surface antigens. Cancer tissues or cells have their specific antigens. Some antigens that are present in many cancers elicit different functions. One of these antigens is the prostate stem cell antigen (PSCA) antigen, which was first identified in the prostate. PSCA is a cell surface protein that has different functions in different tissues. It can play an inhibitory role in cell proliferation as well as a tumor-inducing role. PSCA has several genetic variants involved in cancer susceptibility in some tissues, so identifying the characteristics of this antigen and its relationship with clinical features can provide more information on diagnosis and treatment of patients with cancers. Most studies on the PSCA have focused on prostate cancer. While it is also expressed in other cancers, little attention has been paid to its role as a valuable diagnostic, prognostic, and therapeutic tool in other cancers. PSCA has several genetic variants that seem to play a significant role in cancer susceptibility in some tissues, so identifying the characteristics of this antigen and its relationship and variants with clinical features can be beneficial in concomitant cancer therapy and diagnosis, as theranostic tools. In this study, we will review the alteration of the PSCA expression and its polymorphisms and evaluate its clinical and theranostics significance in various cancers.
Collapse
Affiliation(s)
- Tina Nayerpour Dizaj
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Doustmihan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Sadeghzadeh Oskouei
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - MirAhmad Mazloomi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Zhang Y, Lindström S, Kraft P, Liu Y. Genetic Risk, Health-Associated Lifestyle, and Risk of Early-onset Total Cancer and Breast Cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.04.24305361. [PMID: 38633776 PMCID: PMC11023660 DOI: 10.1101/2024.04.04.24305361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Importance Early-onset cancer (diagnosed under 50 years of age) is associated with aggressive disease characteristics and its rising incidence is a global concern. The association between healthy lifestyle and early-onset cancer and whether it varies by common genetic variants is unknown. Objective To examine the associations between genetic risk, lifestyle, and risk of early-onset cancers. Design Setting and Participants We analyzed a prospective cohort of 66,308 white British participants who were under age 50 and free of cancer at baseline in the UK Biobank. Exposures Sex-specific composite total cancer polygenic risk scores (PRSs), a breast cancer-specific PRS, and sex-specific health-associated lifestyle scores (HLSs, which summarize smoking status, body mass index [males only], physical activity, alcohol consumption, and diet). Main Outcomes and Measures Hazard ratios (HRs) and 95% confidence intervals (CIs) for early-onset total and breast cancer. Results A total of 1,247 incident invasive early-onset cancer cases (female: 820, male: 427, breast: 386) were documented. In multivariable-adjusted analyses with 2-year latency, higher genetic risk (highest vs. lowest tertile of PRS) was associated with significantly increased risks of early-onset total cancer in females (HR, 95% CI: 1.85, 1.50-2.29) and males (1.94, 1.45-2.59) as well as early-onset breast cancer in females (3.06, 2.20-4.25). An unfavorable lifestyle (highest vs. lowest category of HLS) was associated with higher risk of total cancer and breast cancer in females across genetic risk categories; the association with total cancer was stronger in the highest genetic risk category than the lowest: HRs in females and men were 1.85 (1.02, 3.36), 3.27 (0.78, 13.72) in the highest genetic risk category and 1.15 (0.44, 2.98), 1.16 (0.39, 3.40) in the lowest. Conclusions and Relevance Both genetic and lifestyle factors were independently associated with early-onset total and breast cancer risk. Compared to those with low genetic risk, individuals with a high genetic risk may benefit more from adopting a healthy lifestyle in preventing early-onset cancer.
Collapse
Affiliation(s)
- Yin Zhang
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Sara Lindström
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Peter Kraft
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yuxi Liu
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Zhang Y, Gao Y, Li F, Qi Q, Li Q, Gu Y, Zheng Z, Hu B, Wang T, Zhang E, Xu H, Liu L, Tian T, Jin G, Yan C. Long non-coding RNA NRAV in the 12q24.31 risk locus drives gastric cancer development through glucose metabolism reprogramming. Carcinogenesis 2024; 45:23-34. [PMID: 37950445 DOI: 10.1093/carcin/bgad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) serve as vital candidates to mediate cancer risk. Here, we aimed to identify the risk single-nucleotide polymorphisms (SNPs)-induced lncRNAs and to investigate their roles in gastric cancer (GC) development. Through integrating the differential expression analysis of lncRNAs in GC tissues and expression quantitative trait loci analysis in normal stomach tissues and GC tissues, as well as genetic association analysis based on GC genome-wide association studies and an independent validation study, we identified four lncRNA-related SNPs consistently associated with GC risk, including SNHG7 [odds ratio (OR) = 1.16, 95% confidence interval (CI): 1.09-1.23], NRAV (OR = 1.11, 95% CI: 1.05-1.17), LINC01082 (OR = 1.16, 95% CI: 1.08-1.22) and FENDRR (OR = 1.16, 95% CI: 1.07-1.25). We further found that a functional SNP rs6489786 at 12q24.31 increases binding of MEOX1 or MEOX2 at a distal enhancer and results in up-regulation of NRAV. The functional assays revealed that NRAV accelerates GC cell proliferation while inhibits GC cell apoptosis. Mechanistically, NRAV decreases the expression of key subunit genes through the electron transport chain, thereby driving the glucose metabolism reprogramming from aerobic respiration to glycolysis. These findings suggest that regulating lncRNA expression is a crucial mechanism for risk-associated variants in promoting GC development.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Yun Gao
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fengyuan Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Qi
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qian Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuanliang Gu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhonghua Zheng
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Beiping Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tianpei Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Public Health Institute of Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Erbao Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Liu
- Institute of Digestive Endoscopy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tian Tian
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
- Public Health Institute of Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Caiwang Yan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, China
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Wuxi, China
| |
Collapse
|
16
|
Barili V, Ambrosini E, Bortesi B, Minari R, De Sensi E, Cannizzaro IR, Taiani A, Michiara M, Sikokis A, Boggiani D, Tommasi C, Serra O, Bonatti F, Adorni A, Luberto A, Caggiati P, Martorana D, Uliana V, Percesepe A, Musolino A, Pellegrino B. Genetic Basis of Breast and Ovarian Cancer: Approaches and Lessons Learnt from Three Decades of Inherited Predisposition Testing. Genes (Basel) 2024; 15:219. [PMID: 38397209 PMCID: PMC10888198 DOI: 10.3390/genes15020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Germline variants occurring in BRCA1 and BRCA2 give rise to hereditary breast and ovarian cancer (HBOC) syndrome, predisposing to breast, ovarian, fallopian tube, and peritoneal cancers marked by elevated incidences of genomic aberrations that correspond to poor prognoses. These genes are in fact involved in genetic integrity, particularly in the process of homologous recombination (HR) DNA repair, a high-fidelity repair system for mending DNA double-strand breaks. In addition to its implication in HBOC pathogenesis, the impairment of HR has become a prime target for therapeutic intervention utilizing poly (ADP-ribose) polymerase (PARP) inhibitors. In the present review, we introduce the molecular roles of HR orchestrated by BRCA1 and BRCA2 within the framework of sensitivity to PARP inhibitors. We examine the genetic architecture underneath breast and ovarian cancer ranging from high- and mid- to low-penetrant predisposing genes and taking into account both germline and somatic variations. Finally, we consider higher levels of complexity of the genomic landscape such as polygenic risk scores and other approaches aiming to optimize therapeutic and preventive strategies for breast and ovarian cancer.
Collapse
Affiliation(s)
- Valeria Barili
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Enrico Ambrosini
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Beatrice Bortesi
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Erika De Sensi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | | - Antonietta Taiani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Maria Michiara
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Angelica Sikokis
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Daniela Boggiani
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Chiara Tommasi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Olga Serra
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Francesco Bonatti
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Alessia Adorni
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Anita Luberto
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | | - Davide Martorana
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Vera Uliana
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Antonio Percesepe
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Antonino Musolino
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Benedetta Pellegrino
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
17
|
Hua H, Su T, Han L, Zhang L, Huang Y, Zhang N, Yang M. LINC01226 promotes gastric cancer progression through enhancing cytoplasm-to-nucleus translocation of STIP1 and stabilizing β-catenin protein. Cancer Lett 2023; 577:216436. [PMID: 37806517 DOI: 10.1016/j.canlet.2023.216436] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Gastric cancer (GC) remains one of the most common malignances and the leading cause of cancer-related mortality worldwide. Although the critical role of several long non-coding RNAs (lncRNAs) transcribed from several GC-risk loci has been established, we still know little about the biological significance of these lncRNAs at most gene loci and how they play in cell signaling. In the present study, we identified a novel oncogenic lncRNA LINC01226 transcribed from the 1p35.2 GC-risk locus. LINC01226 shows markedly higher expression levels in GC specimens compared with those in normal tissues. High expression of LINC01226 is evidently correlated with worse prognosis of GC cases. In line with these, oncogenic LINC01226 promotes proliferation, migration and metastasis of GC cells ex vivo and in vivo. Importantly, LINC01226 binds to STIP1 protein, leads to disassembly of the STIP1-HSP90 complex, elevates interactions between HSP90 and β-catenin, stabilizes β-catenin protein, activates the Wnt/β-catenin signaling and, thereby, promote GC progression. Together, our findings uncovered a novel layer regulating the Wnt signaling in cancers and uncovers a new epigenetic mode of GC tumorigenesis. These discoveries also shed new light on the importance of functional lncRNAs as innovative therapeutic targets through precisely controlling protein-protein interactions in cancers.
Collapse
Affiliation(s)
- Hui Hua
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Tao Su
- Shandong University Cancer Center, Jinan, Shandong Province, 250117, China
| | - Linyu Han
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Long Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Yizhou Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China; Shandong University Cancer Center, Jinan, Shandong Province, 250117, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China.
| |
Collapse
|
18
|
Oka S, Urakami S, Hagiwara K, Hayashida M, Sakaguchi K, Miura Y, Inoshita N, Arai M. The prevalence of lynch syndrome (DNA mismatch repair protein deficiency) in patients with primary localized prostate cancer using immunohistochemistry screening. Hered Cancer Clin Pract 2023; 21:20. [PMID: 37828628 PMCID: PMC10568829 DOI: 10.1186/s13053-023-00265-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Prostate cancer is one of the most heritable human cancers. Lynch syndrome is an autosomal dominant inheritance caused by germline mutations in DNA mismatch repair (MMR) genes, which are also associated with an increased incidence of prostate cancer. However, prostate cancer has not been defined as a Lynch syndrome-associated cancer. The proportion of Lynch syndrome patients in primary prostate cancers is unclear. In this study, we investigated MMR protein loss using universal immunohistochemical screening to determine the prevalence of Lynch syndrome in patients with localized prostate cancer who underwent radical prostatectomy. METHODS One hundred twenty-nine surgical specimens from radical prostatectomy performed at Toranomon Hospital between 2012 and 2015 were retrospectively tested using universal screening with immunohistochemistry staining for expression of the MMR proteins MLH1, PMS2, MSH2, and MSH6. For all suspected MMR-deficient patients, germline genetic tests focusing on MMR genes were performed. RESULTS MMR protein loss was found in only one patient (0.8%) who showed dual MSH2/MSH6 loss. This patient showed a single nucleotide pathogenic germline mutation from c.1129 C to T (p.Gln377*) at exon 7 in the MSH2 gene. He was diagnosed with a primary prostate cancer at 66 years of age. He had a documented history of Lynch syndrome (Muir-Torre syndrome) with previous colon cancer, sebaceous tumor, and keratoacanthoma as well as subsequent bladder cancer, all of which also showed dual MSH2/MSH6 loss. He also had a strong family history of colorectal and other Lynch syndrome-associated cancers. The pathological stage was pT3aN0M0, and the pathological grade was Gleason 7(4 + 3) with tertiary pattern 5. CONCLUSIONS In this study, immunohistochemical screening of MMR proteins for Lynch syndrome was performed in a series of prostate cancer cases. The prevalence of Lynch syndrome in localized prostate cancer was 0.8%, which is low compared with other Lynch syndrome-associated cancers.
Collapse
Affiliation(s)
- Suguru Oka
- Department of Urology, Toranomon Hospital, 2-2-2 Toranomon Minato-ku, 105-8470, Tokyo, Japan.
| | - Shinji Urakami
- Department of Urology, Toranomon Hospital, 2-2-2 Toranomon Minato-ku, 105-8470, Tokyo, Japan
| | - Kiichi Hagiwara
- Department of Urology, Toranomon Hospital, 2-2-2 Toranomon Minato-ku, 105-8470, Tokyo, Japan
| | - Michikata Hayashida
- Department of Urology, Toranomon Hospital, 2-2-2 Toranomon Minato-ku, 105-8470, Tokyo, Japan
| | - Kazushige Sakaguchi
- Department of Urology, Toranomon Hospital, 2-2-2 Toranomon Minato-ku, 105-8470, Tokyo, Japan
| | - Yuji Miura
- Department of Medical Oncology, Toranomon Hospital, 2-2-2 Toranomon Minato-ku, 105-8470, Tokyo, Japan
| | - Naoko Inoshita
- Department of Pathology, Toranomon Hospital, 2-2-2 Toranomon Minato-ku, 105-8470, Tokyo, Japan
| | - Masami Arai
- Center for Genetics and Medical Care, Toranomon Hospital, 2-2-2 Toranomon Minato-ku, 105-8470, Tokyo, Japan
- Department of Clinical genetics, Graduate School of Medicine, Juntendo University, 2-1-1, Bunkyo-ku, 113-8421, Tokyo, Japan
| |
Collapse
|
19
|
Nakanishi T, Willett J, Farjoun Y, Allen RJ, Guillen-Guio B, Adra D, Zhou S, Richards JB. Alternative splicing in lung influences COVID-19 severity and respiratory diseases. Nat Commun 2023; 14:6198. [PMID: 37794074 PMCID: PMC10550956 DOI: 10.1038/s41467-023-41912-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
Alternative splicing generates functional diversity in isoforms, impacting immune response to infection. Here, we evaluate the causal role of alternative splicing in COVID-19 severity and susceptibility by applying two-sample Mendelian randomization to cis-splicing quantitative trait loci and the results from COVID-19 Host Genetics Initiative. We identify that alternative splicing in lung, rather than total expression of OAS1, ATP11A, DPP9 and NPNT, is associated with COVID-19 severity. MUC1 and PMF1 splicing is associated with COVID-19 susceptibility. Colocalization analyses support a shared genetic mechanism between COVID-19 severity with idiopathic pulmonary fibrosis at the ATP11A and DPP9 loci, and with chronic obstructive lung diseases at the NPNT locus. Last, we show that ATP11A, DPP9, NPNT, and MUC1 are highly expressed in lung alveolar epithelial cells, both in COVID-19 uninfected and infected samples. These findings clarify the importance of alternative splicing in lung for COVID-19 and respiratory diseases, providing isoform-based targets for drug discovery.
Collapse
Affiliation(s)
- Tomoko Nakanishi
- Department of Human Genetics, McGill University, Montréal, QC, Canada.
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada.
- Kyoto-McGill International Collaborative Program in Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.
- Research Fellow, Japan Society for the Promotion of Science, Tokyo, Japan.
| | - Julian Willett
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada
- Quantitative Life Sciences Program, McGill University, Montréal, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Yossi Farjoun
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada
- Five Prime Sciences Inc, Montréal, QC, Canada
| | - Richard J Allen
- Department of Population Health Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Beatriz Guillen-Guio
- Department of Population Health Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Darin Adra
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada
| | - Sirui Zhou
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Quantitative Life Sciences Program, McGill University, Montréal, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - J Brent Richards
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada.
- Five Prime Sciences Inc, Montréal, QC, Canada.
- Departments of Medicine, Human Genetics, Epidemiology and Biostatistics, McGill University, Montréal, QC, Canada.
- Department of Twin Research, King's College London, London, UK.
| |
Collapse
|
20
|
Yu S, Tu R, Chen Z, Song J, Li P, Hu F, Yuan G, Zhang R, Li Y. Association of PTGER4 and PRKAA1 genetic polymorphisms with gastric cancer. BMC Med Genomics 2023; 16:209. [PMID: 37670284 PMCID: PMC10478487 DOI: 10.1186/s12920-023-01645-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/23/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common malignancies, affected by several genetic loci in the clinical phenotype. This study aimed to determine the association between PTGER4 and PRKAA1 gene polymorphisms and the risk of GC. METHODS A total of 509 GC patients and 507 age and sex-matched healthy controls were recruited to explore the association between PTGER4 and PRKAA1 genetic polymorphisms and GC susceptibility. Logistic regression analysis was used to study the correlation between these SNPs and GC, with odd ratio (OR) and 95% confidence interval (CI) as indicators. Multifactor dimensionality reduction was utilized to analyze the genetic relationships among SNPs. was conducted to predict gene expression, the impact of SNPs on gene expression, and the signaling pathways involved in PTGER4 and PRKAA1. RESULTS Overall, rs10036575 in PTGER4 (OR = 0.82, p = 0.029), rs10074991 (OR = 0.82, p = 0.024) and rs13361707 (OR = 0.82, p = 0.030) in PRKAA1 were associated with susceptibility to GC. Stratification analysis revealed that the effects of these SNPs in PTGER4 and PRKAA1 on GC susceptibility were dependent on smoking and were associated with a reduced risk of adenocarcinoma (p < 0.05). Bioinformatics analysis showed an association between SNPs and corresponding gene expression (p < 0.05), and PRKAA1 may affect GC by mediating RhoA. CONCLUSION This study suggests that PTGER4 and PRKAA1 SNPs might affect the susceptibility of GC, providing a new biological perspective for GC risk assessment, pathogenesis exploration, and personalized treatment.
Collapse
Affiliation(s)
- Shuyong Yu
- Department of Gastrointestinal Surgery, Hainan Cancer Hospital, Haikou, Hainan, 570312, China
| | - Ruisha Tu
- Department of Gastrointestinal Surgery, Hainan Cancer Hospital, Haikou, Hainan, 570312, China
| | - Zhaowei Chen
- Department of Gastroenterology, Southern University of Science and Technology Hospital, Shenzhen, 518055, China
| | - Jian Song
- Department of Gastroenterology, Southern University of Science and Technology Hospital, Shenzhen, 518055, China.
| | - Ping Li
- Department of Digestive Endoscopy, Hainan Cancer Hospital, Haikou, Hainan, 570312, China
| | - Feixiang Hu
- Department of Gastrointestinal Surgery, Hainan Cancer Hospital, Haikou, Hainan, 570312, China
| | - Guihong Yuan
- Department of Gastroenterology, Southern University of Science and Technology Hospital, Shenzhen, 518055, China
| | - Ronglin Zhang
- Department of Digestive Endoscopy, Hainan Cancer Hospital, Haikou, Hainan, 570312, China
| | - Yini Li
- Department of Digestive Endoscopy, Hainan Cancer Hospital, Haikou, Hainan, 570312, China
| |
Collapse
|
21
|
Guadagnolo D, Mastromoro G, Marchionni E, Germani A, Libi F, Sadeghi S, Savio C, Petrucci S, De Marchis L, Piane M, Pizzuti A. Heterozygous Pathogenic Nonsense Variant in the ATM Gene in a Family with Unusually High Gastric Cancer Susceptibility. Biomedicines 2023; 11:2062. [PMID: 37509701 PMCID: PMC10377208 DOI: 10.3390/biomedicines11072062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Germline pathogenic variants (PVs) in the Ataxia Telangiectasia mutated (ATM) gene (MIM* 607585) increase the risk for breast, pancreatic, gastric, and prostatic cancer and, to a reduced extent, ovarian and colon cancer and melanoma, with moderate penetrance and variable expressivity. We describe a family presenting early-onset gastric cancer and harboring a heterozygous pathogenic ATM variant. The proband had gastric cancer (age 45) and reported a sister deceased due to diffuse gastric cancer (age 30) and another sister who developed diffuse gastric cancer (age 52) and ovarian serous cancer. Next generation sequencing for cancer susceptibility genes (APC, ATM, BRD1, BRIP1, CDH1, CDK4, CDKN2A, CHEK2, EPCAM, MLH1, MRE11, MSH2, MSH6, MUTYH, NBN, PALB2, PMS2, PTEN, RAD50, RAD51C, RAD51D, RECQL1, SMAD4, STK11, and TP53) was performed. Molecular analysis identified the truncating c.5944C>T, p.(Gln1982*) variant in the ATM (NM_000051.3; NP_000042.3) in the proband. The variant had segregated in the living affected sister and in the unaffected daughter of the deceased affected sister. Familial early-onset gastric cancer is an unusual presentation for ATM-related malignancies. Individual variants may result in different specific risks. Genotype-phenotype correlations are challenging given the low penetrance and variable expressivity. Careful family history assessments are pivotal for prevention planning and are strengthened by the availability of molecular diagnoses.
Collapse
Affiliation(s)
- Daniele Guadagnolo
- Department of Experimental Medicine, School of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy
| | - Gioia Mastromoro
- Department of Experimental Medicine, School of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy
| | - Enrica Marchionni
- Department of Experimental Medicine, School of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy
| | - Aldo Germani
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Medical Genetics Unit, Department of Diagnostic Sciences, Sant'Andrea University Hospital, 00189 Rome, Italy
| | - Fabio Libi
- Medical Genetics Unit, Department of Diagnostic Sciences, Sant'Andrea University Hospital, 00189 Rome, Italy
| | - Soha Sadeghi
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Medical Genetics Unit, Department of Diagnostic Sciences, Sant'Andrea University Hospital, 00189 Rome, Italy
| | - Camilla Savio
- Medical Genetics Unit, Department of Diagnostic Sciences, Sant'Andrea University Hospital, 00189 Rome, Italy
| | - Simona Petrucci
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Medical Genetics Unit, Department of Diagnostic Sciences, Sant'Andrea University Hospital, 00189 Rome, Italy
| | - Laura De Marchis
- Department of Radiological, Oncological and Anatomopathological Science, Sapienza University of Rome, 00185 Rome, Italy
- Oncology B Unit, Department of Hematology, Dermatology and Oncology, Policlinico Umberto I Univeristy Hospital, 00161 Rome, Italy
| | - Maria Piane
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Medical Genetics Unit, Department of Diagnostic Sciences, Sant'Andrea University Hospital, 00189 Rome, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, School of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
22
|
Oddsson A, Sulem P, Sveinbjornsson G, Arnadottir GA, Steinthorsdottir V, Halldorsson GH, Atlason BA, Oskarsson GR, Helgason H, Nielsen HS, Westergaard D, Karjalainen JM, Katrinardottir H, Fridriksdottir R, Jensson BO, Tragante V, Ferkingstad E, Jonsson H, Gudjonsson SA, Beyter D, Moore KHS, Thordardottir HB, Kristmundsdottir S, Stefansson OA, Rantapää-Dahlqvist S, Sonderby IE, Didriksen M, Stridh P, Haavik J, Tryggvadottir L, Frei O, Walters GB, Kockum I, Hjalgrim H, Olafsdottir TA, Selbaek G, Nyegaard M, Erikstrup C, Brodersen T, Saevarsdottir S, Olsson T, Nielsen KR, Haraldsson A, Bruun MT, Hansen TF, Steingrimsdottir T, Jacobsen RL, Lie RT, Djurovic S, Alfredsson L, Lopez de Lapuente Portilla A, Brunak S, Melsted P, Halldorsson BV, Saemundsdottir J, Magnusson OT, Padyukov L, Banasik K, Rafnar T, Askling J, Klareskog L, Pedersen OB, Masson G, Havdahl A, Nilsson B, Andreassen OA, Daly M, Ostrowski SR, Jonsdottir I, Stefansson H, Holm H, Helgason A, Thorsteinsdottir U, Stefansson K, Gudbjartsson DF. Deficit of homozygosity among 1.52 million individuals and genetic causes of recessive lethality. Nat Commun 2023; 14:3453. [PMID: 37301908 PMCID: PMC10257723 DOI: 10.1038/s41467-023-38951-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Genotypes causing pregnancy loss and perinatal mortality are depleted among living individuals and are therefore difficult to find. To explore genetic causes of recessive lethality, we searched for sequence variants with deficit of homozygosity among 1.52 million individuals from six European populations. In this study, we identified 25 genes harboring protein-altering sequence variants with a strong deficit of homozygosity (10% or less of predicted homozygotes). Sequence variants in 12 of the genes cause Mendelian disease under a recessive mode of inheritance, two under a dominant mode, but variants in the remaining 11 have not been reported to cause disease. Sequence variants with a strong deficit of homozygosity are over-represented among genes essential for growth of human cell lines and genes orthologous to mouse genes known to affect viability. The function of these genes gives insight into the genetics of intrauterine lethality. We also identified 1077 genes with homozygous predicted loss-of-function genotypes not previously described, bringing the total set of genes completely knocked out in humans to 4785.
Collapse
Affiliation(s)
| | | | | | - Gudny A Arnadottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | - Henriette Svarre Nielsen
- Deptartment of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - David Westergaard
- Deptartment of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Methods and Analysis, Statistics Denmark, Copenhagen, Denmark
| | - Juha M Karjalainen
- Institute for Molecular Medicine, Finland, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | - Kristjan H S Moore
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Helga B Thordardottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | - Ida Elken Sonderby
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- NORMENT Centre, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
| | - Maria Didriksen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Pernilla Stridh
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center of Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Bergen Center of Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Laufey Tryggvadottir
- Icelandic Cancer Registry, Icelandic Cancer Society, Reykjavik, Iceland
- Faculty of Medicine, BMC, Laeknagardur, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Oleksandr Frei
- NORMENT Centre, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | | | - Ingrid Kockum
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center of Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Hjalgrim
- Department of Clinical Medicine, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | | | - Geir Selbaek
- Norwegian National Centre of Ageing and Health, Vestfold Hospital Trust, Tonsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Mette Nyegaard
- Deptartment of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thorsten Brodersen
- Department of Clinical Immunology, Zealand University Hospital, Koge, Denmark
| | - Saedis Saevarsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center of Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Kaspar Rene Nielsen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Asgeir Haraldsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Children's Hospital Iceland, Landspitali University Hospital, Reykjavik, Iceland
| | - Mie Topholm Bruun
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Thomas Folkmann Hansen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Thora Steingrimsdottir
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Rikke Louise Jacobsen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Rolv T Lie
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- NORMENT Centre, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Soren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pall Melsted
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Bjarni V Halldorsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | | | | | - Leonid Padyukov
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Johan Askling
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Lars Klareskog
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ole Birger Pedersen
- Department of Clinical Medicine, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Koge, Denmark
| | | | - Alexandra Havdahl
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Bjorn Nilsson
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund, Sweden
| | - Ole A Andreassen
- NORMENT Centre, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Mark Daly
- Institute for Molecular Medicine, Finland, University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Deptartment of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ingileif Jonsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Hilma Holm
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
| | - Agnar Helgason
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| |
Collapse
|
23
|
Hess T, Maj C, Gehlen J, Borisov O, Haas SL, Gockel I, Vieth M, Piessen G, Alakus H, Vashist Y, Pereira C, Knapp M, Schüller V, Quaas A, Grabsch HI, Trautmann J, Malecka-Wojciesko E, Mokrowiecka A, Speller J, Mayr A, Schröder J, Hillmer AM, Heider D, Lordick F, Pérez-Aísa Á, Campo R, Espinel J, Geijo F, Thomson C, Bujanda L, Sopeña F, Lanas Á, Pellisé M, Pauligk C, Goetze TO, Zelck C, Reingruber J, Hassanin E, Elbe P, Alsabeah S, Lindblad M, Nilsson M, Kreuser N, Thieme R, Tavano F, Pastorino R, Arzani D, Persiani R, Jung JO, Nienhüser H, Ott K, Schumann RR, Kumpf O, Burock S, Arndt V, Jakubowska A, Ławniczak M, Moreno V, Martín V, Kogevinas M, Pollán M, Dąbrowska J, Salas A, Cussenot O, Boland-Auge A, Daian D, Deleuze JF, Salvi E, Teder-Laving M, Tomasello G, Ratti M, Senti C, De Re V, Steffan A, Hölscher AH, Messerle K, Bruns CJ, Sīviņš A, Bogdanova I, Skieceviciene J, Arstikyte J, Moehler M, Lang H, Grimminger PP, Kruschewski M, Vassos N, Schildberg C, Lingohr P, Ridwelski K, Lippert H, Fricker N, Krawitz P, Hoffmann P, Nöthen MM, Veits L, Izbicki JR, Mostowska A, Martinón-Torres F, Cusi D, Adolfsson R, et alHess T, Maj C, Gehlen J, Borisov O, Haas SL, Gockel I, Vieth M, Piessen G, Alakus H, Vashist Y, Pereira C, Knapp M, Schüller V, Quaas A, Grabsch HI, Trautmann J, Malecka-Wojciesko E, Mokrowiecka A, Speller J, Mayr A, Schröder J, Hillmer AM, Heider D, Lordick F, Pérez-Aísa Á, Campo R, Espinel J, Geijo F, Thomson C, Bujanda L, Sopeña F, Lanas Á, Pellisé M, Pauligk C, Goetze TO, Zelck C, Reingruber J, Hassanin E, Elbe P, Alsabeah S, Lindblad M, Nilsson M, Kreuser N, Thieme R, Tavano F, Pastorino R, Arzani D, Persiani R, Jung JO, Nienhüser H, Ott K, Schumann RR, Kumpf O, Burock S, Arndt V, Jakubowska A, Ławniczak M, Moreno V, Martín V, Kogevinas M, Pollán M, Dąbrowska J, Salas A, Cussenot O, Boland-Auge A, Daian D, Deleuze JF, Salvi E, Teder-Laving M, Tomasello G, Ratti M, Senti C, De Re V, Steffan A, Hölscher AH, Messerle K, Bruns CJ, Sīviņš A, Bogdanova I, Skieceviciene J, Arstikyte J, Moehler M, Lang H, Grimminger PP, Kruschewski M, Vassos N, Schildberg C, Lingohr P, Ridwelski K, Lippert H, Fricker N, Krawitz P, Hoffmann P, Nöthen MM, Veits L, Izbicki JR, Mostowska A, Martinón-Torres F, Cusi D, Adolfsson R, Cancel-Tassin G, Höblinger A, Rodermann E, Ludwig M, Keller G, Metspalu A, Brenner H, Heller J, Neef M, Schepke M, Dumoulin FL, Hamann L, Cannizzaro R, Ghidini M, Plaßmann D, Geppert M, Malfertheiner P, Gehlen O, Skoczylas T, Majewski M, Lubiński J, Palmieri O, Boccia S, Latiano A, Aragones N, Schmidt T, Dinis-Ribeiro M, Medeiros R, Al-Batran SE, Leja M, Kupcinskas J, García-González MA, Venerito M, Schumacher J. Dissecting the genetic heterogeneity of gastric cancer. EBioMedicine 2023; 92:104616. [PMID: 37209533 DOI: 10.1016/j.ebiom.2023.104616] [Show More Authors] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is clinically heterogenous according to location (cardia/non-cardia) and histopathology (diffuse/intestinal). We aimed to characterize the genetic risk architecture of GC according to its subtypes. Another aim was to examine whether cardia GC and oesophageal adenocarcinoma (OAC) and its precursor lesion Barrett's oesophagus (BO), which are all located at the gastro-oesophageal junction (GOJ), share polygenic risk architecture. METHODS We did a meta-analysis of ten European genome-wide association studies (GWAS) of GC and its subtypes. All patients had a histopathologically confirmed diagnosis of gastric adenocarcinoma. For the identification of risk genes among GWAS loci we did a transcriptome-wide association study (TWAS) and expression quantitative trait locus (eQTL) study from gastric corpus and antrum mucosa. To test whether cardia GC and OAC/BO share genetic aetiology we also used a European GWAS sample with OAC/BO. FINDINGS Our GWAS consisting of 5816 patients and 10,999 controls highlights the genetic heterogeneity of GC according to its subtypes. We newly identified two and replicated five GC risk loci, all of them with subtype-specific association. The gastric transcriptome data consisting of 361 corpus and 342 antrum mucosa samples revealed that an upregulated expression of MUC1, ANKRD50, PTGER4, and PSCA are plausible GC-pathomechanisms at four GWAS loci. At another risk locus, we found that the blood-group 0 exerts protective effects for non-cardia and diffuse GC, while blood-group A increases risk for both GC subtypes. Furthermore, our GWAS on cardia GC and OAC/BO (10,279 patients, 16,527 controls) showed that both cancer entities share genetic aetiology at the polygenic level and identified two new risk loci on the single-marker level. INTERPRETATION Our findings show that the pathophysiology of GC is genetically heterogenous according to location and histopathology. Moreover, our findings point to common molecular mechanisms underlying cardia GC and OAC/BO. FUNDING German Research Foundation (DFG).
Collapse
Affiliation(s)
- Timo Hess
- Institute of Human Genetics, University of Marburg, Marburg, Germany; Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Carlo Maj
- Institute of Human Genetics, University of Marburg, Marburg, Germany; Medical Faculty, Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Jan Gehlen
- Institute of Human Genetics, University of Marburg, Marburg, Germany
| | - Oleg Borisov
- Medical Faculty, Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Stephan L Haas
- Department of Upper GI Diseases, Karolinska Institutet, Karolinska University Hospital and Unit of Gastroenterology and Rheumatology, Stockholm, Sweden
| | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Michael Vieth
- Institute for Pathology, Friedrich-Alexander-University Erlangen-Nuernberg, Klinikum Bayreuth, Bayreuth, Germany
| | - Guillaume Piessen
- Department of Digestive and Oncological Surgery, Claude Huriez Hospital, CHU Lille, Lille, France
| | - Hakan Alakus
- Department of General, Visceral, Cancer and Transplant Surgery, University of Cologne, Cologne, Germany
| | - Yogesh Vashist
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany; Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Carina Pereira
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (IPO Porto), Porto 4200-072, Portugal; Porto Comprehensive Cancer Center & RISE @ CI-IPO, University of Porto, Porto 4200-450, Portugal
| | - Michael Knapp
- Medical Faculty, Institute of Medical Biometrics, Informatics and Epidemiology (IMBIE), University of Bonn, Bonn, Germany
| | - Vitalia Schüller
- Institute of Human Genetics, University of Marburg, Marburg, Germany
| | - Alexander Quaas
- Medical Faculty, Institute of Pathology, University Hospital Cologne, University of Cologne, Germany
| | - Heike I Grabsch
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands; Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Jessica Trautmann
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | | | - Anna Mokrowiecka
- Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - Jan Speller
- Medical Faculty, Institute of Medical Biometrics, Informatics and Epidemiology (IMBIE), University of Bonn, Bonn, Germany
| | - Andreas Mayr
- Medical Faculty, Institute of Medical Biometrics, Informatics and Epidemiology (IMBIE), University of Bonn, Bonn, Germany
| | - Julia Schröder
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Axel M Hillmer
- Medical Faculty, Institute of Pathology, University Hospital Cologne, University of Cologne, Germany
| | - Dominik Heider
- Department of Mathematics and Computer Science, University of Marburg, Marburg, Germany
| | - Florian Lordick
- University Cancer Center Leipzig, Leipzig University Medical Center, Leipzig, Germany
| | | | - Rafael Campo
- Department of Gastroenterology, Hospital Parc Tauli, Sabadell, Spain
| | - Jesús Espinel
- Department of Gastroenterology, Complejo Hospitalario, León, Spain
| | - Fernando Geijo
- Department of Gastroenterology, Hospital Clínico Universitario, Salamanca, Spain
| | - Concha Thomson
- Department of Gastroenterology, Hospital Obispo Polanco, Teruel, Spain
| | - Luis Bujanda
- CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain; Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, Universidad del País Vasco (UPV/EHU), San Sebastián, Spain
| | - Federico Sopeña
- CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Department of Gastroenterology, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Ángel Lanas
- CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain; Department of Gastroenterology, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain; Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
| | - María Pellisé
- CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain; Department of Gastroenterology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Claudia Pauligk
- Krankenhaus Nordwest, University Cancer Center, Frankfurt, Germany; Institut für Klinische Krebsforschung IKF GmbH am Krankenhaus Nordwest, Frankfurt, Germany
| | - Thorsten Oliver Goetze
- Krankenhaus Nordwest, University Cancer Center, Frankfurt, Germany; Institut für Klinische Krebsforschung IKF GmbH am Krankenhaus Nordwest, Frankfurt, Germany
| | - Carolin Zelck
- Institute of Human Genetics, University of Marburg, Marburg, Germany
| | - Julian Reingruber
- Institute of Human Genetics, University of Marburg, Marburg, Germany
| | - Emadeldin Hassanin
- Medical Faculty, Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Peter Elbe
- Department of Upper GI Diseases, Karolinska Institutet, Karolinska University Hospital and Unit of Gastroenterology and Rheumatology, Stockholm, Sweden
| | - Sandra Alsabeah
- Department of Upper GI Diseases, Karolinska Institutet, Karolinska University Hospital and Unit of Gastroenterology and Rheumatology, Stockholm, Sweden
| | - Mats Lindblad
- Division of Surgery, Department of Upper GI Diseases, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Nilsson
- Division of Surgery, Department of Upper GI Diseases, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Kreuser
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - René Thieme
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Francesca Tavano
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Roberta Pastorino
- Department of Woman and Child Health and Public Health - Public Health Area, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Dario Arzani
- Section of Hygiene, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Roberto Persiani
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Jin-On Jung
- Department of General, Visceral, Cancer and Transplant Surgery, University of Cologne, Cologne, Germany; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Henrik Nienhüser
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Katja Ott
- Department of Surgery, RoMed Klinikum Rosenheim, Rosenheim, Germany
| | - Ralf R Schumann
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Oliver Kumpf
- Department of Anaesthesiology and Operative Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Susen Burock
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Poland; Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University in Szczecin, Poland
| | - Małgorzta Ławniczak
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, Poland
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), Hospital Duran I Reynals, Barcelona, Spain; Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Faculty of Medicine, Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Vicente Martín
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública e CIBERESP), Spain; The Research Group in Gene - Environment and Health Interactions (GIIGAS)/Institute of Biomedicine (IBIOMED), Universidad de Leon, Leon, Spain; Faculty of Health Sciences, Department of Biomedical Sciences, Area of Preventive Medicine and Public Health, Universidad de Leon, Leon, Spain
| | - Manolis Kogevinas
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública e CIBERESP), Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Campus Del Mar, Barcelona, Spain; IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Spain
| | - Marina Pollán
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública e CIBERESP), Spain; Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain
| | - Justyna Dąbrowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poland
| | - Antonio Salas
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Olivier Cussenot
- CeRePP, Paris, France; GRC n°5 Predictive Onco-Urology, Tenon Hospital, Sorbonne University, Paris, France
| | - Anne Boland-Auge
- Centre National de Recherche en Génomique Humaine, CEA, University Paris-Saclay, Evry, France
| | - Delphine Daian
- Centre National de Recherche en Génomique Humaine, CEA, University Paris-Saclay, Evry, France
| | - Jean-Francois Deleuze
- Centre National de Recherche en Génomique Humaine, CEA, University Paris-Saclay, Evry, France
| | - Erika Salvi
- Neuroalgology Unit Fondazione IRCCS, Instituto Neurologico 'Carlo Besta' Milan, Milan, Italy
| | - Maris Teder-Laving
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Gianluca Tomasello
- Medical Oncology Unit, ASST of Cremona, Cremona, Italy; Medical Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Chiara Senti
- Medical Oncology Unit, ASST of Cremona, Cremona, Italy; Department of Medical Oncology, Institut Jules Bordet - Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Valli De Re
- Unit of Immunopathologia e Biomarcatori Oncologici/Bio-proteomics Facility, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Agostino Steffan
- Unit of Immunopathologia e Biomarcatori Oncologici, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Arnulf H Hölscher
- Department of General, Visceral, Cancer and Transplant Surgery, University of Cologne, Cologne, Germany
| | - Katharina Messerle
- Department of General, Visceral, Cancer and Transplant Surgery, University of Cologne, Cologne, Germany
| | | | - Armands Sīviņš
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga East University Hospital, Riga, Latvia
| | - Inga Bogdanova
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga East University Hospital, Riga, Latvia
| | - Jurgita Skieceviciene
- Gastroenterology Department and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Justina Arstikyte
- Gastroenterology Department and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Markus Moehler
- Department of Medicine I, University Medical Center of Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hauke Lang
- Department of General, Visceral and Transplant Surgery, University Medical Center, University of Mainz, Mainz, Germany
| | - Peter P Grimminger
- Department of General, Visceral and Transplant Surgery, University Medical Center, University of Mainz, Mainz, Germany
| | - Martin Kruschewski
- Department of General and Visceral Surgery, Klinikum Frankfurt (Oder), Germany
| | - Nikolaos Vassos
- Division of Surgical Oncology and Thoracic Surgery, Department of Surgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Claus Schildberg
- Department of General Surgery, Brandenburg Medical School Theodor Fontane, University Hospital Brandenburg, Brandenburg, Germany
| | - Philipp Lingohr
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Karsten Ridwelski
- Department of General and Visceral Surgery, Klinikum Magdeburg GmbH, Magdeburg, Germany
| | - Hans Lippert
- Institute of Quality Assurance in Operative Medicine, Otto-von-Guericke University Hospital, Magdeburg, Germany
| | - Nadine Fricker
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany; Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Peter Krawitz
- Medical Faculty, Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany; Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany; Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Lothar Veits
- Institute for Pathology, Friedrich-Alexander-University Erlangen-Nuernberg, Klinikum Bayreuth, Bayreuth, Germany
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poland
| | - Federico Martinón-Torres
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain; Department of Pediatrics, Translational Pediatrics and Infectious Diseases Section, Hospital Clínico Universitario de Santiago (SERGAS), Santiago de Compostela, Spain; Genetics, Vaccines, Infectious Diseases and Pediatrics Research Group GENVIP, Instituto de Investigación Sanitaria de Santiago (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Daniele Cusi
- Institute of Biomedical Technologies, National Research Council of Italy, Milan, Italy; Bio4Dreams-Business, Nursery for Life Sciences, Milan, Italy
| | - Rolf Adolfsson
- Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Geraldine Cancel-Tassin
- CeRePP, Paris, France; GRC n°5 Predictive Onco-Urology, Tenon Hospital, Sorbonne University, Paris, France
| | - Aksana Höblinger
- Department of Internal Medicine I, Community Hospital Mittelrhein, Koblenz, Germany
| | - Ernst Rodermann
- Association of Medical Practices in Hematology and Internal Oncology, Troisdorf, Germany
| | - Monika Ludwig
- Association for Oncological Studies (Gefos), Dortmund, Germany
| | - Gisela Keller
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Andres Metspalu
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Joerg Heller
- Department of Gastroenterology, Marienhaus Hospital Ahrweiler, Ahrweiler, Germany
| | - Markus Neef
- Department of Gastroenterology, Helios Hospital Siegburg, Siegburg, Germany
| | - Michael Schepke
- Department of Gastroenterology, Helios Hospital Siegburg, Siegburg, Germany
| | | | - Lutz Hamann
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Renato Cannizzaro
- Unit of Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Michele Ghidini
- Medical Oncology Unit, ASST of Cremona, Cremona, Italy; Medical Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg, Germany; Department of Internal Medicine II, Hospital of the Ludwig Maximilians University of Munich, Munich, Germany
| | - Olivier Gehlen
- Department of Surgical Oncology, Centre Hospitalier Lyon-sud, Lyon, France
| | - Tomasz Skoczylas
- 2nd Department of General Surgery, Medical University of Lublin, Lublin, Poland
| | - Marek Majewski
- 2nd Department of General Surgery, Medical University of Lublin, Lublin, Poland
| | - Jan Lubiński
- Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Poland
| | - Orazio Palmieri
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Stefania Boccia
- Department of Woman and Child Health and Public Health - Public Health Area, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Section of Hygiene, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Anna Latiano
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Nuria Aragones
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública e CIBERESP), Spain; Epidemiology Section, Public Health Division, Department of Health of Madrid, Madrid, Spain
| | - Thomas Schmidt
- Department of General, Visceral, Cancer and Transplant Surgery, University of Cologne, Cologne, Germany; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Mário Dinis-Ribeiro
- Porto Comprehensive Cancer Center & RISE @ CI-IPO, University of Porto, Porto 4200-450, Portugal; Gastroenterology Department, Portuguese Institute of Oncology of Porto, Porto 4200-072, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (IPO Porto), Porto 4200-072, Portugal; Research Department of the Portuguese League Against Cancer-North (LPCC-NRNorte), Porto 4200-177, Portugal
| | - Salah-Eddin Al-Batran
- Krankenhaus Nordwest, University Cancer Center, Frankfurt, Germany; Institut für Klinische Krebsforschung IKF GmbH am Krankenhaus Nordwest, Frankfurt, Germany
| | - Mārcis Leja
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga East University Hospital, Riga, Latvia; Digestive Diseases Centre GASTRO, Riga, Latvia
| | - Juozas Kupcinskas
- Gastroenterology Department and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - María A García-González
- CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
| | - Marino Venerito
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg, Germany
| | | |
Collapse
|
24
|
Zhang N, Wang B, Ma C, Zeng J, Wang T, Han L, Yang M. LINC00240 in the 6p22.1 risk locus promotes gastric cancer progression through USP10-mediated DDX21 stabilization. J Exp Clin Cancer Res 2023; 42:89. [PMID: 37072811 PMCID: PMC10111703 DOI: 10.1186/s13046-023-02654-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/25/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Gastric cancer remains the leading cause of cancer death in the world. It is increasingly evident that long non-coding RNAs (lncRNAs) transcribed from the genome-wide association studies (GWAS)-identified gastric cancer risk loci act as a key mode of cancer development and disease progression. However, the biological significance of lncRNAs at most cancer risk loci remain poorly understood. METHODS The biological functions of LINC00240 in gastric cancer were investigated through a series of biochemical assays. Clinical implications of LINC00240 were examined in tissues from gastric cancer patients. RESULTS In the present study, we identified LINC00240, which is transcribed from the 6p22.1 gastric cancer risk locus, functioning as a novel oncogene. LINC00240 exhibits the noticeably higher expression in gastric cancer specimens compared with normal tissues and its high expression levels are associated with worse survival of patients. Consistently, LINC00240 promotes malignant proliferation, migration and metastasis of gastric cancer cells in vitro and in vivo. Importantly, LINC00240 could interact and stabilize oncoprotein DDX21 via eliminating its ubiquitination by its novel deubiquitinating enzyme USP10, which, thereby, promote gastric cancer progression. CONCLUSIONS Taken together, our data uncovered a new paradigm on how lncRNAs control protein deubiquitylation via intensifying interactions between the target protein and its deubiquitinase. These findings highlight the potentials of lncRNAs as innovative therapeutic targets and thus lay the ground work for clinical translation.
Collapse
Affiliation(s)
- Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Province, Jinan, 250117, China
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Province, Jinan, 250117, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Bowen Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Province, Jinan, 250117, China
| | - Chi Ma
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Province, Jinan, 250117, China
- Department of Thyroid Surgery, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, Yantai, 264000, China
| | - Jiajia Zeng
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Province, Jinan, 250117, China
| | - Teng Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Province, Jinan, 250117, China
| | - Linyu Han
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Province, Jinan, 250117, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Province, Jinan, 250117, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China.
| |
Collapse
|
25
|
Abdelrazek AS, Ghoniem K, Ahmed ME, Joshi V, Mahmoud AM, Saeed N, Khater N, Elsharkawy MS, Gamal A, Kwon E, Kendi AT. Prostate Cancer: Advances in Genetic Testing and Clinical Implications. URO 2023. [DOI: 10.3390/uro3020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The demand for genetic testing (GT) for prostate cancer (PCa) is expanding, but there is limited knowledge about the genetic counseling (GC) needs of men. A strong-to-moderate inherited genetic predisposition causes approximately 5–20% of prostate cancer (PCa). In men with prostate cancer, germline testing may benefit the patient by informing treatment options, and if a mutation is noticed, it may also guide screening for other cancers and have family implications for cascade genetic testing (testing of close relatives for the same germline mutation). Relatives with the same germline mutations may be eligible for early cancer detection strategies and preventive measures. Cascade family testing can be favorable for family members, but it is currently unutilized, and strategies to overcome obstacles like knowledge deficiency, family communication, lack of access to genetic services, and testing expenses are needed. In this review, we will look at the genetic factors that have been linked to prostate cancer, as well as the role of genetic counseling and testing in the early detection of advanced prostate cancer.
Collapse
|
26
|
Healthy Diet, Polygenic Risk Score, and Upper Gastrointestinal Cancer Risk: A Prospective Study from UK Biobank. Nutrients 2023; 15:nu15061344. [PMID: 36986074 PMCID: PMC10054787 DOI: 10.3390/nu15061344] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Dietary and genetic factors are considered to be associated with UGI cancer risk. However, examinations of the effect of healthy diet on UGI cancer risk and the extent to which healthy diet modifies the impact of genetic susceptibility on UGI cancer remains limited. Associations were analyzed through Cox regression of the UK Biobank data (n = 415,589). Healthy diet, based on “healthy diet score,” was determined according to fruit, vegetables, grains, fish, and meat consumption. We compared adherence to healthy diet and the risk of UGI cancer. We also constructed a UGI polygenic risk score (UGI-PRS) to assess the combined effect of genetic risk and healthy diet. For the results high adherence to healthy diet reduced 24% UGI cancer risk (HR high-quality diet: 0.76 (0.62–0.93), p = 0.009). A combined effect of high genetic risk and unhealthy diet on UGI cancer risk was observed, with HR reaching 1.60 (1.20–2.13, p = 0.001). Among participants with high genetic risk, the absolute five-year incidence risk of UGI cancer was significantly reduced, from 0.16% to 0.10%, by having a healthy diet. In summary, healthy diet decreased UGI cancer risk, and individuals with high genetic risk can attenuate UGI cancer risk by adopting a healthy diet.
Collapse
|
27
|
Hosseini S, Acar A, Sen M, Meeder K, Singh P, Yin K, Sutton JM, Hughes K. Penetrance of Gastric Adenocarcinoma Susceptibility Genes: A Systematic Review. Ann Surg Oncol 2023; 30:1795-1807. [PMID: 36528743 DOI: 10.1245/s10434-022-12829-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Gastric adenocarcinoma (GAC) is the fifth most common cancer in the world, and the presence of germline pathogenic variants has been linked with approximately 5% of gastric cancer diagnoses. Multiple GAC susceptibility genes have been identified, but information regarding the risk associated with pathogenic variants in these genes remains obscure. We conducted a systematic review of existing studies reporting the penetrance of GAC susceptibility genes. METHODS A structured search query was devised to identify GAC-related papers indexed in MEDLINE/PubMed. A semi-automated natural language processing algorithm was applied to identify penetrance papers for inclusion. Original studies reporting the penetrance of GAC were included and the full-text articles were independently reviewed. Summary statistics, effect estimates, and precision parameters from these studies were compiled into a table using a predetermined format to ensure consistency. RESULTS Forty-five studies were identified reporting the penetrance of GAC among patients harboring mutations in 13 different genes: APC, ATM, BRCA1, BRCA2, CDH1, CHEK2, MLH1, MSH2, MSH6, PMS2, MUTYH-Monoallelic, NBN, and STK11. CONCLUSION Our systematic review highlights the importance of testing for germline pathogenic variants in patients before the development of GAC. Management of patients who harbor a pathogenic mutation is multifactorial, and clinicians should consider cancer risk for each applicable gene-cancer association throughout the screening and management process. The scarcity of studies we found investigating the risk of GAC among patients with pathogenic variants in GAC susceptibility genes highlights the need for more investigations that focus on producing robust risk estimates for gene-cancer associations.
Collapse
Affiliation(s)
- Sahar Hosseini
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ahmet Acar
- Department of Emergency, Avrupa Hospital, Istanbul, Turkey
| | - Meghdeep Sen
- College of Medicine, American University of Antigua, Coolidge, Antigua, Antigua and Barbuda
| | - Kiersten Meeder
- Division of Oncologic and Endocrine Surgery, Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Preeti Singh
- Department of Surgery, Montefiore Medical Center, Bronx, NY, USA
| | - Kanhua Yin
- Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Jeffrey M Sutton
- Division of Oncologic and Endocrine Surgery, Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Kevin Hughes
- Division of Oncologic and Endocrine Surgery, Department of Surgery, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
28
|
Chen Y, Yan W, Yang K, Qian Y, Chen Y, Wang R, Zhu J, He Y, Wu H, Zhang G, Shi T, Chen W. Integrated multi-dimensional analysis highlights DHCR7 mutations involving in cholesterol biosynthesis and contributing therapy of gastric cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:36. [PMID: 36710342 PMCID: PMC9885627 DOI: 10.1186/s13046-023-02611-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/22/2023] [Indexed: 01/31/2023]
Abstract
BACKGROUND Genetic background plays an important role in the occurrence and development of gastric cancer (GC). With the application of genome-wide association study (GWAS), an increasing number of tumor susceptibility genes in gastric cancer have been discovered. While little of them can be further applicated in clinical diagnosis and treatment due to the lack of in-depth analysis. METHODS A GWAS of peripheral blood leukocytes from GC patients was performed to identify and obtain genetic background data. In combination with a clinical investigation, key SNP mutations and mutated genes were screened. Via in vitro and in vivo experiments, the function of the mutated gene was verified in GC. Via a combination of molecular function studies and amino acid network analysis, co-mutations were discovered and further identified as potential therapeutic targets. RESULTS At the genetic level, the G allele of rs104886038 in DHCR7 was a protective factor identified by the GWAS. Clinical investigation showed that patients with the rs104886038 A/G genotype, age ≥ 60, smoking ≥ 10 cigarettes/day, heavy drinking and H. pylori infection were independent risk factors for GC, with odds ratios of 12.33 (95% CI, 2.10 ~ 72.54), 20.42 (95% CI, 2.46 ~ 169.83), and 11.39 (95% CI, 1.82 ~ 71.21), respectively. Then molecular function studies indicated that DHCR7 regulated cell proliferation, migration, and invasion as well as apoptosis resistance via cellular cholesterol biosynthesis pathway. Further amino acid network analysis based on the predicted structure of DHCR7 and experimental verification indicated that rs104886035 and rs104886038 co-mutation reduced the stability of DHCR7 and induced its degradation. DHCR7 mutation suppressed the malignant behaviour of GC cells and induced apoptosis via inhibition on cell cholesterol biosynthesis. CONCLUSION In this work, we provided a comprehensive multi-dimensional analysis strategy which can be applied to in-depth exploration of GWAS data. DHCR7 and its mutation sites identified by this strategy are potential theratic targets of GC via inhibition of cholesterol biosynthesis.
Collapse
Affiliation(s)
- Yuqi Chen
- grid.429222.d0000 0004 1798 0228Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 China
| | - Wenying Yan
- grid.263761.70000 0001 0198 0694Department of Bioinformatics, Center for Systems Biology, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Kexi Yang
- grid.429222.d0000 0004 1798 0228Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 China
| | - Yiting Qian
- grid.429222.d0000 0004 1798 0228Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 China
| | - Yanjun Chen
- grid.429222.d0000 0004 1798 0228Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 China
| | - Ruoqin Wang
- grid.429222.d0000 0004 1798 0228Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 China
| | - Jinghan Zhu
- grid.429222.d0000 0004 1798 0228Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 China
| | - Yuxin He
- grid.429222.d0000 0004 1798 0228Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 China
| | - Hongya Wu
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215021 China ,grid.263761.70000 0001 0198 0694Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China ,grid.429222.d0000 0004 1798 0228Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guangbo Zhang
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215021 China ,grid.263761.70000 0001 0198 0694Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China ,grid.429222.d0000 0004 1798 0228Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tongguo Shi
- grid.429222.d0000 0004 1798 0228Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 China ,grid.429222.d0000 0004 1798 0228Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215021 China ,grid.263761.70000 0001 0198 0694Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China ,grid.429222.d0000 0004 1798 0228Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Weichang Chen
- grid.429222.d0000 0004 1798 0228Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 China ,grid.429222.d0000 0004 1798 0228Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215021 China ,grid.263761.70000 0001 0198 0694Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China ,grid.429222.d0000 0004 1798 0228Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
29
|
Liu Y, Yan C, Yin S, Wang T, Zhu M, Liu L, Jin G. Genetic risk, metabolic syndrome, and gastrointestinal cancer risk: A prospective cohort study. Cancer Med 2023; 12:597-605. [PMID: 35730595 PMCID: PMC9844643 DOI: 10.1002/cam4.4923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/07/2022] [Accepted: 05/28/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Gastrointestinal (GI) cancer risk has been associated with metabolic syndrome (MetS), a surrogate indicator for unhealthy lifestyles, and a number of genetic loci, but the combined effect of MetS and genetic variants on GI cancer risk is uncertain. METHODS We included 430,036 participants with available MetS and genotype data from UK Biobank. During the follow-up time, 5494 incident GI cancer cases, including esophageal cancer, gastric cancer, and colorectal cancer, were identified. We created a GI polygenic risk score (GI-PRS) for overall GI cancer derived from three site-specific cancer PRSs. Cox proportional hazards regression was used to estimate the associations of MetS and GI-PRS with the risk of GI cancer. RESULTS MetS was significantly associated with 28% increment in GI cancer risk (hazard ratio [HR]MetS vs. non-MetS : 1.28, 95% confidence interval [CI]: 1.21-1.35, p < 0.0001), whereas a high GI-PRS (top quintile) was associated with 2.28-fold increase in risk (HRhigh vs. low : 2.28, 95% CI: 2.09-2.49, p < 0.0001). Compared with participants without MetS and at low genetic risk (bottom quintile of GI-PRS), those with MetS and at high genetic risk had 2.75-fold increase in GI cancer risk (HR: 2.75, 95% CI: 2.43-3.12, p < 0.0001). Additionally, MetS in comparison with no MetS had 1.49‰, 2.75‰, and 3.37‰ absolute risk increases in 5 years among participants at low, intermediate (quintiles 2-4 of GI-PRS) and high genetic risk, respectively, representing the number of subjects diagnosed as MetS causing a new GI cancer case in 5 years were 669, 364, and 296, respectively. CONCLUSIONS Metabolic and genetic factors may jointly contribute to GI cancer risk and may serve as predictors by quantitative measurements to identify high-risk populations of GI cancer for precise prevention.
Collapse
Affiliation(s)
- Yaqian Liu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Caiwang Yan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Shuangshuang Yin
- Digestive Endoscopy Department and General Surgery Department, The First Affiliated Hospital with Nanjing Medical University and Jiangsu Province Hospital, Nanjing, China
| | - Tianpei Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Li Liu
- Digestive Endoscopy Department and General Surgery Department, The First Affiliated Hospital with Nanjing Medical University and Jiangsu Province Hospital, Nanjing, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
30
|
Sun G, Fu G, Tang Y, Yi J, Su R, Liu W, Lu X, Li X. A novel frameshift mutation of the ATM gene in a Chinese family with hereditary gastrointestinal tumors. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2087105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Gongping Sun
- The Third General Surgery of the Fourth Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Guanyu Fu
- China Medical University, Shenyang, People’s Republic of China
| | - Yuanxin Tang
- The Third General Surgery of the Fourth Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Junjie Yi
- China Medical University, Shenyang, People’s Republic of China
| | - Rongjun Su
- The Second General Surgery of Yan’an People’s Hospital, Yan’an City, People’s Republic of China
| | - Wei Liu
- The Second General Surgery of Yan’an People’s Hospital, Yan’an City, People’s Republic of China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, People’s Republic of China
| | - Xiaoxia Li
- The Sixth General Surgery of the Fourth Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
31
|
Graffeo R, Rana H, Conforti F, Bonanni B, Cardoso M, Paluch-Shimon S, Pagani O, Goldhirsch A, Partridge A, Lambertini M, Garber J. Moderate penetrance genes complicate genetic testing for breast cancer diagnosis: ATM, CHEK2, BARD1 and RAD51D. Breast 2022; 65:32-40. [PMID: 35772246 PMCID: PMC9253488 DOI: 10.1016/j.breast.2022.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Breast cancer risk associated with germline likely pathogenic/pathogenic variants (PV) varies by gene, often by penetrance (high >50% or moderate 20–50%), and specific locus. Germline PVs in BRCA1 and BRCA2 play important roles in the development of breast and ovarian cancer in particular, as well as in other cancers such as pancreatic and prostate cancers and melanoma. Recent studies suggest that other cancer susceptibility genes, including ATM, CHEK2, PALB2, RAD51C and RAD51D confer differential risks of breast and other specific cancers. In the era of multigene panel testing, advances in next-generation sequencing technologies have notably reduced costs in the United States (US) and enabled sequencing of BRCA1/2 concomitantly with additional genes. The use of multigene-panel testing is beginning to expand in Europe as well. Further research into the clinical implications of variants in moderate penetrance genes, particularly in unaffected carriers, is needed for appropriate counselling and risk management with data-driven plans for surveillance and/or risk reduction. For individuals at high risk without any pathogenic or likely pathogenic variant in cancer susceptibility genes or some carriers of pathogenic variants in moderate-risk genes such as ATM and CHEK2, polygenic risk scores offer promise to help stratify breast cancer risk and guide appropriate risk management options. Cancer patients whose tumours are driven by the loss of function of both copies of a predisposition gene may benefit from therapies targeting the biological alterations induced by the dysfunctional gene e.g. poly ADP ribose polymerase (PARP) inhibitors and other novel pathway agents in cancers with DNA repair deficiencies. A better understanding of mechanisms by which germline variants drive various malignancies may lead to improvements in both therapeutic and preventive management options. The interpretation of genetic testing results requires careful attention. ATM, CHEK2, RAD51D and BARD1 correlated with breast and other cancers risk. European and American guidelines discrepancies. Support European healthcare providers in interpreting and managing female carriers.
Collapse
|
32
|
Germline Testing for Individuals with Pancreatic Adenocarcinoma and Novel Genetic Risk Factors. Hematol Oncol Clin North Am 2022; 36:943-960. [DOI: 10.1016/j.hoc.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
33
|
Ju J, Wu Y, He W, Zhan L, Yin X, Zhang J, Zhang Y, Qiu L, Muhammad P, Reis RL, Li C. Nanocarriers for Active Ingredients of Chinese Medicine (AIFCM) Used in Gastrointestinal Cancer Therapy. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Active ingredients of Chinese medicine (AIFCM) are pharmacological substances taken from traditional Chinese medicine that show promise in treating gastrointestinal cancer. Compared with traditional chemotherapeutic drugs, AIFCM have advantages such as multi-target and multi-level treatment
of gastrointestinal cancer. Nanocarriers have the following advantages, better bioavailability, passive or active targeting of tumor sites and responsive release of drugs. The use of nanocarriers for delivery of AIFCM in treatment of gastrointestinal cancer, can overcome the disadvantages
of some AIFCM, such as insolubility and low bioavailability. In this review, we first outline the background on gastrointestinal cancer, main curative factors and conventional therapeutic approaches. Then, the mechanisms for AIFCM in gastrointestinal cancer therapy are presented in the following
four aspects: gene regulation, immune modulation, cellular pathway transduction, and alteration of intestinal flora. Thirdly, preparation of various nanocarriers and results when combining AIFCM in gastrointestinal cancer are presented. Fourth, application of novel targeted nanocarriers and
responsive nanocarriers in gastrointestinal tumors is further introduced. Finally, the application of AIFCM in the treatment of gastrointestinal cancer is summarized and prospected, hoping to shed some light on the nanocarrier-bound AIFCM in the treatment of gastrointestinal cancer.
Collapse
Affiliation(s)
- Jiale Ju
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yinghua Wu
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Wen He
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Lin Zhan
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xuelian Yin
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Junfeng Zhang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yuxi Zhang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Li Qiu
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Pir Muhammad
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue, Engineering and Regenerative Medicine, Guimarães,
4805-017, Portugal
| | - Chenchen Li
- School of Medicine, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
34
|
Dominkuš PP, Mesic A, Hudler P. PLK2 Single Nucleotide Variant in Gastric Cancer Patients Affects miR-23b-5p Binding. J Gastric Cancer 2022; 22:348-368. [PMID: 36316110 PMCID: PMC9633926 DOI: 10.5230/jgc.2022.22.e31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 08/29/2023] Open
Abstract
PURPOSE Chromosomal instability is a hallmark of gastric cancer (GC). It can be driven by single nucleotide variants (SNVs) in cell cycle genes. We investigated the associations between SNVs in candidate genes, PLK2, PLK3, and ATM, and GC risk and clinicopathological features. MATERIALS AND METHODS The genotyping study included 542 patients with GC and healthy controls. Generalized linear models were used for the risk and clinicopathological association analyses. Survival analysis was performed using the Kaplan-Meier method. The binding of candidate miRs was analyzed using a luciferase reporter assay. RESULTS The PLK2 Crs15009-Crs963615 haplotype was under-represented in the GC group compared to that in the control group (Pcorr=0.050). Male patients with the PLK2 rs963615 CT genotype had a lower risk of GC, whereas female patients had a higher risk (P=0.023; P=0.026). The PLK2 rs963615 CT genotype was associated with the absence of vascular invasion (P=0.012). The PLK3 rs12404160 AA genotype was associated with a higher risk of GC in the male population (P=0.015). The ATM Trs228589-Ars189037-Grs4585 haplotype was associated with a higher risk of GC (P<0.001). The ATM rs228589, rs189037, and rs4585 genotypes TA+AA, AG+GG, and TG+GG were associated with the absence of perineural invasion (P=0.034). In vitro analysis showed that the cancer-associated miR-23b-5p mimic specifically bound to the PLK2 rs15009 G allele (P=0.0097). Moreover, low miR-23b expression predicted longer 10-year survival (P=0.0066) in patients with GC. CONCLUSIONS PLK2, PLK3, and ATM SNVs could potentially be helpful for the prediction of GC risk and clinicopathological features. PLK2 rs15009 affects the binding of miR-23b-5p. MiR-23b-5p expression status could serve as a prognostic marker for survival in patients with GC.
Collapse
Affiliation(s)
- Pia Pužar Dominkuš
- University of Ljubljana, Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, Ljubljana, Slovenia
| | - Aner Mesic
- University of Sarajevo, Faculty of Science, Department of Biology, Sarajevo, Bosnia and Herzegovina
| | - Petra Hudler
- University of Ljubljana, Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, Ljubljana, Slovenia.
| |
Collapse
|
35
|
Laitman Y, Nielsen SM, Bernstein-Molho R, Heald B, Hatchell KE, Esplin ED, Friedman E. Cancer risks associated with heterozygous ATM loss of function and missense pathogenic variants based on multigene panel analysis. Breast Cancer Res Treat 2022; 196:355-361. [PMID: 36094610 DOI: 10.1007/s10549-022-06723-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Cancer risks conferred by germline, heterozygous, ATM pathogenic/likely pathogenic variants (PSVs) are yet to be consistently determined. The current study assessed these risks by analysis of a large dataset of ATM heterozygote loss of function (LOF) and missense PSV carriers tested with a multigene panel (MGP). METHODS De-identified data of all individuals who underwent ATM sequencing as part of MGP between October 2015 and February 2020 were reviewed. In cancer cases, rates for the six most prevalent variants and for all LOF and missense PSV combined were compared with rates of the same PSV in ethnically matched, healthy population controls. Statistical analysis included Chi-square tests and odds ratios calculations. RESULTS For female breast cancer cases, LOF )1794/219,269) and missense (301/219,269) ATM PSVs were seen at higher rates compared to gnomAD non-cancer controls (n = 157/56,001 and n = 27/61,208; p < 0.00001, respectively). Notably, the rate of the c.103C > T variant was higher in controls than in breast cancer cases [p = 0.001; OR 0.31 (95% CI 0.1-0.6)]. For all cancer cases combined, compared with non-cancer population controls, LOF (n = 143) and missense (n = 15) PSVs reported in both datasets were significantly more prevalent in cancer cases [ORLOF 1.7 (95% 1.5-1.9) ORmissense 3.0 (95% CI 2.3-4); p = 0.0001]. CONCLUSION Both LOF and missense heterozygous ATM PSVs are more frequently detected in cases of several cancer types (breast, ovarian, prostate, lung, pancreatic) compared with healthy population controls. However, not all ATM PSVs confer an increased cancer risk (e.g., breast).
Collapse
Affiliation(s)
- Yael Laitman
- The Oncogenetics Unit, Institute of Human Genetics, The Sheba Medical Center, Tel-Hashomer, Israel
| | | | - Rinat Bernstein-Molho
- The Oncogenetics Unit, Institute of Human Genetics, The Sheba Medical Center, Tel-Hashomer, Israel.,The Breast Cancer Unit, Oncology Institute, The Sheba Medical Center, Tel-Hashomer, Israel.,The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | - Eitan Friedman
- The Oncogenetics Unit, Institute of Human Genetics, The Sheba Medical Center, Tel-Hashomer, Israel. .,The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel. .,Meirav High-Risk Clinic, Sheba Medical Center, 52621, Tel-Hashomer, Israel.
| |
Collapse
|
36
|
Hadar A, Voinsky I, Parkhomenko O, Puzianowska‐Kuźnicka M, Kuźnicki J, Gozes I, Gurwitz D. Higher ATM expression in lymphoblastoid cell lines from centenarian compared with younger women. Drug Dev Res 2022; 83:1419-1424. [PMID: 35774024 PMCID: PMC9545764 DOI: 10.1002/ddr.21972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/11/2022]
Abstract
With increased life expectancies in developed countries, cancer rates are becoming more common among the elderly. Cancer is typically driven by a combination of germline and somatic mutations accumulating during an individual's lifetime. Yet, many centenarians reach exceptionally old age without experiencing cancer. It was suggested that centenarians have more robust DNA repair and mitochondrial function, allowing improved maintenance of DNA stability. In this study, we applied real-time quantitative PCR to examine the expression of ATM in lymphoblastoid cell lines (LCLs) from 15 healthy female centenarians and 24 younger female donors aged 21-88 years. We observed higher ATM mRNA expression of in LCLs from female centenarians compared with both women aged 21-48 years (FD = 2.0, p = .0016) and women aged 56-88 years (FD = 1.8, p = .0094. Positive correlation was found between ATM mRNA expression and donors age (p = .0028). Levels of hsa-miR-181a-5p, which targets ATM, were lower in LCLs from centenarians compared with younger women. Our findings suggest a role for ATM in protection from age-related diseases, possibly reflecting more effective DNA repair, thereby reducing somatic mutation accumulation during aging. Further studies are required for analyzing additional DNA repair pathways in biosamples from centenarians and younger age men and women.
Collapse
Affiliation(s)
- Adva Hadar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Irena Voinsky
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Olga Parkhomenko
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Monika Puzianowska‐Kuźnicka
- Department of Human EpigeneticsMossakowski Medical Research InstituteWarsawPoland
- Department of Geriatrics and GerontologyMedical Centre of Postgraduate EducationWarsawPoland
| | - Jacek Kuźnicki
- The International Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Illana Gozes
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| | - David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
37
|
Lee S, Yang HK, Lee HJ, Park DJ, Kong SH, Park SK. Systematic review of gastric cancer-associated genetic variants, gene-based meta-analysis, and gene-level functional analysis to identify candidate genes for drug development. Front Genet 2022; 13:928783. [PMID: 36081994 PMCID: PMC9446437 DOI: 10.3389/fgene.2022.928783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/25/2022] [Indexed: 12/05/2022] Open
Abstract
Objective: Despite being a powerful tool to identify novel variants, genome-wide association studies (GWAS) are not sufficient to explain the biological function of variants. In this study, we aimed to elucidate at the gene level the biological mechanisms involved in gastric cancer (GC) development and to identify candidate drug target genes. Materials and methods: We conducted a systematic review for GWAS on GC following the PRISMA guidelines. Single nucleotide polymorphism (SNP)-level meta-analysis and gene-based analysis (GBA) were performed to identify SNPs and genes significantly associated with GC. Expression quantitative trait loci (eQTL), disease network, pathway enrichment, gene ontology, gene-drug, and chemical interaction analyses were conducted to elucidate the function of the genes identified by GBA. Results: A review of GWAS on GC identified 226 SNPs located in 91 genes. In the comprehensive GBA, 44 genes associated with GC were identified, among which 12 genes (THBS3, GBAP1, KRTCAP2, TRIM46, HCN3, MUC1, DAP3, EFNA1, MTX1, PRKAA1, PSCA, and ABO) were eQTL. Using disease network and pathway analyses, we identified that PRKAA, THBS3, and EFNA1 were significantly associated with the PI3K-Alt-mTOR-signaling pathway, which is involved in various oncogenic processes, and that MUC1 acts as a regulator in both the PI3K-Alt-mTOR and P53 signaling pathways. Furthermore, RPKAA1 had the highest number of interactions with drugs and chemicals. Conclusion: Our study suggests that PRKAA1, a gene in the PI3K-Alt-mTOR-signaling pathway, could be a potential target gene for drug development associated with GC in the future. Systematic Review Registration: website, identifier registration number.
Collapse
Affiliation(s)
- Sangjun Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
| | - Han-Kwang Yang
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyuk-Joon Lee
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Do Joong Park
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Seong-Ho Kong
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Sue K. Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
38
|
Wang M, Xie C. DNA Damage Repair and Current Therapeutic Approaches in Gastric Cancer: A Comprehensive Review. Front Genet 2022; 13:931866. [PMID: 36035159 PMCID: PMC9412963 DOI: 10.3389/fgene.2022.931866] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022] Open
Abstract
DNA in cells is frequently damaged by endogenous and exogenous agents. However, comprehensive mechanisms to combat and repair DNA damage have evolved to ensure genomic stability and integrity. Improper DNA damage repair may result in various diseases, including some types of tumors and autoimmune diseases. Therefore, DNA damage repair mechanisms have been proposed as novel antitumor drug targets. To date, numerous drugs targeting DNA damage mechanisms have been developed. For example, PARP inhibitors that elicit synthetic lethality are widely used in individualized cancer therapies. In this review, we describe the latent DNA damage repair mechanisms in gastric cancer, the types of DNA damage that can contribute to the development of gastric cancer, and new therapeutic approaches for gastric cancer that target DNA damage repair pathways.
Collapse
Affiliation(s)
| | - Chuan Xie
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
39
|
Abstract
BACKGROUND An important fraction (>/~10%) of men with high-risk, localized prostate cancer and metastatic prostate cancer carry germline (heritable) pathogenic and likely pathogenic variants (also known as mutations) in DNA repair genes. These can represent known or suspected autosomal dominant cancer predisposition syndromes. Growing evidence suggests that pathogenic variants in key genes involved in homologous recombination and mismatch DNA repair are important in prostate cancer initiation and/or the development of metastases. AIMS Here we provide a comprehensive review regarding individual genes and available literature regarding risks for developing prostate cancer, and discuss current national guidelines for germline genetic testing in the prostate cancer population and treatment implications. RESULTS The association with prostate cancer risk and treatment implications is best understood for those with germline mutations of BRCA2, with emerging data supporting associations with ATM, CHEK2, BRCA1, HOXB13, MSH2, MSH6, PALB2, TP53 and NBN. Treatment implications in the metastatic castration resistant prostate cancer setting include rucaparib and olaparib, and pembrolizumab with potential clinical trial opportunities in earlier disease settings. DISCUSSION The data summarized in this review has led to the expansion of national guidelines for germline genetic testing in prostate cancer. We review these guidelines, and discuss the importance of cascade genetic testing of relatives, diverse populations with attention to inclusion, as well as prostate cancer screening updates and clinical trial opportunities for men who carry genetic risk factors for prostate cancer.
Collapse
Affiliation(s)
- Hiba Khan
- Department of Medicine, Division of Oncology, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Heather H. Cheng
- Department of Medicine, Division of Oncology, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
40
|
Zeng C, Bastarache LA, Tao R, Venner E, Hebbring S, Andujar JD, Bland ST, Crosslin DR, Pratap S, Cooley A, Pacheco JA, Christensen KD, Perez E, Zawatsky CLB, Witkowski L, Zouk H, Weng C, Leppig KA, Sleiman PMA, Hakonarson H, Williams MS, Luo Y, Jarvik GP, Green RC, Chung WK, Gharavi AG, Lennon NJ, Rehm HL, Gibbs RA, Peterson JF, Roden DM, Wiesner GL, Denny JC. Association of Pathogenic Variants in Hereditary Cancer Genes With Multiple Diseases. JAMA Oncol 2022; 8:835-844. [PMID: 35446370 PMCID: PMC9026237 DOI: 10.1001/jamaoncol.2022.0373] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Importance Knowledge about the spectrum of diseases associated with hereditary cancer syndromes may improve disease diagnosis and management for patients and help to identify high-risk individuals. Objective To identify phenotypes associated with hereditary cancer genes through a phenome-wide association study. Design, Setting, and Participants This phenome-wide association study used health data from participants in 3 cohorts. The Electronic Medical Records and Genomics Sequencing (eMERGEseq) data set recruited predominantly healthy individuals from 10 US medical centers from July 16, 2016, through February 18, 2018, with a mean follow-up through electronic health records (EHRs) of 12.7 (7.4) years. The UK Biobank (UKB) cohort recruited participants from March 15, 2006, through August 1, 2010, with a mean (SD) follow-up of 12.4 (1.0) years. The Hereditary Cancer Registry (HCR) recruited patients undergoing clinical genetic testing at Vanderbilt University Medical Center from May 1, 2012, through December 31, 2019, with a mean (SD) follow-up through EHRs of 8.8 (6.5) years. Exposures Germline variants in 23 hereditary cancer genes. Pathogenic and likely pathogenic variants for each gene were aggregated for association analyses. Main Outcomes and Measures Phenotypes in the eMERGEseq and HCR cohorts were derived from the linked EHRs. Phenotypes in UKB were from multiple sources of health-related data. Results A total of 214 020 participants were identified, including 23 544 in eMERGEseq cohort (mean [SD] age, 47.8 [23.7] years; 12 611 women [53.6%]), 187 234 in the UKB cohort (mean [SD] age, 56.7 [8.1] years; 104 055 [55.6%] women), and 3242 in the HCR cohort (mean [SD] age, 52.5 [15.5] years; 2851 [87.9%] women). All 38 established gene-cancer associations were replicated, and 19 new associations were identified. These included the following 7 associations with neoplasms: CHEK2 with leukemia (odds ratio [OR], 3.81 [95% CI, 2.64-5.48]) and plasma cell neoplasms (OR, 3.12 [95% CI, 1.84-5.28]), ATM with gastric cancer (OR, 4.27 [95% CI, 2.35-7.44]) and pancreatic cancer (OR, 4.44 [95% CI, 2.66-7.40]), MUTYH (biallelic) with kidney cancer (OR, 32.28 [95% CI, 6.40-162.73]), MSH6 with bladder cancer (OR, 5.63 [95% CI, 2.75-11.49]), and APC with benign liver/intrahepatic bile duct tumors (OR, 52.01 [95% CI, 14.29-189.29]). The remaining 12 associations with nonneoplastic diseases included BRCA1/2 with ovarian cysts (OR, 3.15 [95% CI, 2.22-4.46] and 3.12 [95% CI, 2.36-4.12], respectively), MEN1 with acute pancreatitis (OR, 33.45 [95% CI, 9.25-121.02]), APC with gastritis and duodenitis (OR, 4.66 [95% CI, 2.61-8.33]), and PTEN with chronic gastritis (OR, 15.68 [95% CI, 6.01-40.92]). Conclusions and Relevance The findings of this genetic association study analyzing the EHRs of 3 large cohorts suggest that these new phenotypes associated with hereditary cancer genes may facilitate early detection and better management of cancers. This study highlights the potential benefits of using EHR data in genomic medicine.
Collapse
Affiliation(s)
- Chenjie Zeng
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Lisa A Bastarache
- Center for Precision Medicine, Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ran Tao
- Department of Biostatistics, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eric Venner
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Scott Hebbring
- Center for Human Genetics, Marshfield Clinic Research Institute, Marshfield, Wisconsin
| | - Justin D Andujar
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Clinical and Translational Hereditary Cancer Program, Division of Genetic Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - Sarah T Bland
- Center for Precision Medicine, Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David R Crosslin
- Department of Biomedical Informatics and Medical Education, University of Washington School of Medicine, Seattle
| | - Siddharth Pratap
- School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee
| | - Ayorinde Cooley
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, Tennessee
| | - Jennifer A Pacheco
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Kurt D Christensen
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, Massachusetts.,Department of Population Medicine, Harvard Medical School, Boston, Massachusetts
| | - Emma Perez
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Carrie L Blout Zawatsky
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Leora Witkowski
- Centre Universitaire de Santé McGill, McGill University Health Centre, Montreal, Quebec, Canada
| | - Hana Zouk
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts.,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Chunhua Weng
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, New York
| | - Kathleen A Leppig
- Genetic Services and Kaiser Permanente Washington Health Research Institute, Kaiser Permanente of Washington, Seattle
| | - Patrick M A Sleiman
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Division of Human Genetics, Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Division of Human Genetics, Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Marc S Williams
- Genomic Medicine Institute, Geisinger, Danville, Pennsylvania
| | - Yuan Luo
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Gail P Jarvik
- Department of Medicine (Medical Genetics), University of Washington, Seattle.,Department of Genome Sciences, University of Washington, Seattle
| | - Robert C Green
- Brigham and Women's Hospital, Broad Institute, Ariadne Labs and Harvard Medical School, Boston, Massachusetts
| | - Wendy K Chung
- Department of Pediatrics, Columbia University, New York, New York.,Department of Medicine, Columbia University, New York, New York
| | - Ali G Gharavi
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York.,Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Niall J Lennon
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Heidi L Rehm
- Medical & Population Genetics Program and Genomics Platform, Broad Institute of MIT and Harvard Cambridge, Cambridge, Massachusetts.,Center for Genomic Medicine, Massachusetts General Hospital, Boston.,Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Josh F Peterson
- Center for Precision Medicine, Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dan M Roden
- Center for Precision Medicine, Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee.,Divisions of Cardiovascular Medicine and Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Georgia L Wiesner
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Clinical and Translational Hereditary Cancer Program, Division of Genetic Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - Joshua C Denny
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
41
|
Aguiar T, Teixeira A, Scliar MO, Sobral de Barros J, Lemes RB, Souza S, Tolezano G, Santos F, Tojal I, Cypriano M, Caminada de Toledo SR, Valadares E, Borges Pinto R, Pinto Artigalas OA, Caetano de Aguirre Neto J, Novak E, Cristofani LM, Miura Sugayama SM, Odone V, Cunha IW, Lima da Costa CM, Rosenberg C, Krepischi A. Unraveling the Genetic Architecture of Hepatoblastoma Risk: Birth Defects and Increased Burden of Germline Damaging Variants in Gastrointestinal/Renal Cancer Predisposition and DNA Repair Genes. Front Genet 2022; 13:858396. [PMID: 35495172 PMCID: PMC9039399 DOI: 10.3389/fgene.2022.858396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/08/2022] [Indexed: 12/21/2022] Open
Abstract
The ultrarare hepatoblastoma (HB) is the most common pediatric liver cancer. HB risk is related to a few rare syndromes, and the molecular bases remain elusive for most cases. We investigated the burden of rare damaging germline variants in 30 Brazilian patients with HB and the presence of additional clinical signs. A high frequency of prematurity (20%) and birth defects (37%), especially craniofacial (17%, including craniosynostosis) and kidney (7%) anomalies, was observed. Putative pathogenic or likely pathogenic monoallelic germline variants mapped to 10 cancer predisposition genes (CPGs: APC, CHEK2, DROSHA, ERCC5, FAH, MSH2, MUTYH, RPS19, TGFBR2 and VHL) were detected in 33% of the patients, only 40% of them with a family history of cancer. These findings showed a predominance of CPGs with a known link to gastrointestinal/colorectal and renal cancer risk. A remarkable feature was an enrichment of rare damaging variants affecting different classes of DNA repair genes, particularly those known as Fanconi anemia genes. Moreover, several potentially deleterious variants mapped to genes impacting liver functions were disclosed. To our knowledge, this is the largest assessment of rare germline variants in HB patients to date, contributing to elucidate the genetic architecture of HB risk.
Collapse
Affiliation(s)
- Talita Aguiar
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Columbia University Irving Medical Center, New York, NY, United States
| | - Anne Teixeira
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Marília O. Scliar
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Juliana Sobral de Barros
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Renan B. Lemes
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Silvia Souza
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Giovanna Tolezano
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Fernanda Santos
- Department of Pediatric Oncology, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Israel Tojal
- International Center for Research, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Monica Cypriano
- GRAACC—Grupo de Apoio Ao Adolescente e Criança Com Câncer, Federal University of São Paulo, São Paulo, Brazil
| | | | - Eugênia Valadares
- Benjamim Guimarães Foundation - Department of Pediatrics Hospital da Baleia, Belo Horizonte, Brazil
| | - Raquel Borges Pinto
- Department of Genetics, Hospital da Criança Conceição, Hospitalar Conceição Group, Porto Alegre, Brazil
| | | | | | - Estela Novak
- Pediatric Cancer Institute (ITACI) at the Pediatric Department, São Paulo University Medical School, São Paulo, Brazil
- Molecular Genetics—Foundation Pro Sangue Blood Center of São Paulo, São Paulo, Brazil
| | - Lilian Maria Cristofani
- Pediatric Cancer Institute (ITACI) at the Pediatric Department, São Paulo University Medical School, São Paulo, Brazil
| | - Sofia M. Miura Sugayama
- Department of Pediatric, Faculty of Medicine of the University of São Paulo, São Paulo, Brazil
| | - Vicente Odone
- Pediatric Cancer Institute (ITACI) at the Pediatric Department, São Paulo University Medical School, São Paulo, Brazil
| | | | | | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Ana Krepischi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- *Correspondence: Ana Krepischi,
| |
Collapse
|
42
|
Jiang X, O'Neill A, Smith KR, Lai Z, Carss K, Wang Q, Petrovski S. Uncovering variable neoplasms between ATM protein-truncating and common missense variants using 394,694 UK Biobank exomes. Genes Chromosomes Cancer 2022; 61:523-529. [PMID: 35394676 DOI: 10.1002/gcc.23042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 11/07/2022] Open
Abstract
As an essential regulator of DNA damage, Ataxia-telangiectasia mutated (ATM) gene has been widely studied in oncology. However, the independent effects of ATM missense variants and protein-truncating variants (PTVs) on neoplasms have not been heavily studied. Whole-exome sequencing data and the clinical health records of ~400K UK Biobank European participants were used in this analysis. We mined genetic associations from gene-level and variant-level phenome-wide association studies, and conducted a variant-level conditional association study to test whether the effects of ATM missense variants on neoplasms were independent of ATM PTV carrier status. The gene-level PTV collapsing analysis was consistent with established ATM PTV literature showing that the aggregated impact of 286 ATM PTVs significantly (P<2x10-9 ) associated with 31 malignant neoplasm phenotypes. Of 773 distinct protein-coding variants in ATM, three individual missense variants significantly (P<2x10-9 ) associated with nine phenotypes. Remarkably, although the nine phenotypes were tumour-related, none overlapped the established ATM PTV-linked malignancies. A subsequent conditional analysis identified that the missense signals were acting independently of the known clinically relevant ATM PTVs.
Collapse
Affiliation(s)
- Xiao Jiang
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Amanda O'Neill
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Katherine R Smith
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Zhongwu Lai
- Translational Medicine, Early Oncology R&D, AstraZeneca, Waltham, MA, USA
| | - Keren Carss
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Quanli Wang
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, USA
| | - Slavé Petrovski
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
43
|
Leite Rocha D, Ashton-Prolla P, Rosset C. Reviewing the occurrence of large genomic rearrangements in patients with inherited cancer predisposing syndromes: importance of a comprehensive molecular diagnosis. Expert Rev Mol Diagn 2022; 22:319-346. [PMID: 35234551 DOI: 10.1080/14737159.2022.2049247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hereditary cancer predisposition syndromes are caused by germline pathogenic or likely pathogenic variants in cancer predisposition genes (CPG). The majority of pathogenic variants in CPGs are point mutations, but large gene rearrangements (LGRs) are present in several CPGs. LGRs can be much more difficult to characterize and perhaps they may have been neglected in molecular diagnoses. AREAS COVERED We aimed to evaluate the frequencies of germline LGRs in studies conducted in different populations worldwide through a qualitative systematic review based on an online literature research in PubMed. Two reviewers independently extracted data from published studies between 2009 and 2020. In total, 126 studies from 37 countries and 5 continents were included in the analysis. The number of studies in different continents ranged from 3 to 48 and for several countries there was an absolute lack of information. Asia and Europe represented most of the studies, and LGR frequencies varied from 3.04 to 15.06% in different continents. MLPA was one of the methods of choice in most studies (93%). EXPERT OPINION The LGR frequencies found in this review reinforce the need for comprehensive molecular testing regardless of the population of origin and should be considered by genetic counseling providers.
Collapse
Affiliation(s)
- Débora Leite Rocha
- Laboratório de Medicina Genômica, Serviço de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, CEP: 90035-930, Porto Alegre, Rio Grande do Sul, Brazil
| | - Patrícia Ashton-Prolla
- Laboratório de Medicina Genômica, Serviço de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, CEP: 90035-930, Porto Alegre, Rio Grande do Sul, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil. Av. Bento Gonçalves, 9500 - Prédio 43312 M, CEP: 91501-970, Caixa Postal 1505, Porto Alegre, Rio Grande do Sul, Brazil.,Serviço de Genética Médica, HCPA, Rio Grande do Sul, Brazil. Rua Ramiro Barcelos, 2350, CEP: 90035-930, Porto Alegre, Rio Grande do Sul, Brazil
| | - Clévia Rosset
- Laboratório de Medicina Genômica, Serviço de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, CEP: 90035-930, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
44
|
Yu Y, Chang K, Chen JS, Bohlender RJ, Fowler J, Zhang D, Huang M, Chang P, Li Y, Wong J, Wang H, Gu J, Wu X, Schildkraut J, Cannon-Albright L, Ye Y, Zhao H, Hildebrandt MA, Permuth JB, Li D, Scheet P, Huff CD. A whole-exome case-control association study to characterize the contribution of rare coding variation to pancreatic cancer risk. HGG ADVANCES 2022; 3:100078. [PMID: 35047863 PMCID: PMC8756505 DOI: 10.1016/j.xhgg.2021.100078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/08/2021] [Indexed: 10/26/2022] Open
Abstract
Pancreatic cancer is a deadly disease that accounts for approximately 5% of cancer deaths worldwide, with a dismal 5-year survival rate of 10%. Known genetic risk factors explain only a modest proportion of the heritable risk of pancreatic cancer. We conducted a whole-exome case-control sequencing study in 1,591 pancreatic cancer cases and 2,134 cancer-free controls of European ancestry. In our gene-based analysis, ATM ranked first, with a genome-wide significant p value of 1 × 10-8. The odds ratio for protein-truncating variants in ATM was 24, which is substantially higher than prior estimates, although ours includes a broad 95% confidence interval (4.0-1000). SIK3 was the second highest ranking gene (p = 3.84 × 10-6, false discovery rate or FDR = 0.032). We observed nominally significant association signals in several genes of a priori interest, including BRCA2 (p = 4.3 × 10-4), STK11 (p = 0.003), PALB2 (p = 0.019), and TP53 (p = 0.037), and reported risk estimates for known pathogenic variants and variants of uncertain significance (VUS) in these genes. The rare variants in established susceptibility genes explain approximately 24% of log familial relative risk, which is comparable to the contribution from established common susceptibility variants (17%). In conclusion, this study provides new insights into the genetic susceptibility of pancreatic cancer, refining rare variant risk estimates in known pancreatic cancer susceptibility genes and identifying SIK3 as a novel candidate susceptibility gene. This study highlights the prominent importance of ATM truncating variants and the underappreciated role of VUS in pancreatic cancer etiology.
Collapse
Affiliation(s)
- Yao Yu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kyle Chang
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiun-Sheng Chen
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ryan J. Bohlender
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jerry Fowler
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Di Zhang
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maosheng Huang
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping Chang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yanan Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Justin Wong
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huamin Wang
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian Gu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xifeng Wu
- Center for Clinical Big Data and Analytics, Bioinformatics and Big Data, The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, PR China
| | - Joellen Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Lisa Cannon-Albright
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Yuanqing Ye
- Center for Clinical Big Data and Analytics, Bioinformatics and Big Data, The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, PR China
| | - Hua Zhao
- Department of Family Medicine and Population Health, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Jennifer B. Permuth
- Departments of Cancer Epidemiology and Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Scheet
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chad D. Huff
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
45
|
Hsiao YW, Lu TP. Race-Specific Genetic Profiles of Homologous Recombination Deficiency in Multiple Cancers. J Pers Med 2021; 11:1287. [PMID: 34945758 PMCID: PMC8705317 DOI: 10.3390/jpm11121287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
Homologous recombination deficiency (HRD) has been used to predict both cancer prognosis and the response to DNA-damaging therapies in many cancer types. HRD has diverse manifestations in different cancers and even in different populations. Many screening strategies have been designed for detecting the sensitivity of a patient's HRD status to targeted therapies. However, these approaches suffer from low sensitivity, and are not specific to each cancer type and population group. Therefore, identifying race-specific and targetable HRD-related genes is of clinical importance. Here, we conducted analyses using genomic sequencing data that was generated by the Pan-Cancer Atlas. Collapsing non-synonymous variants with functional damage to HRD-related genes, we analyzed the association between these genes and race within cancer types using the optimal sequencing kernel association test (SKAT-O). We have identified race-specific mutational patterns of curated HRD-related genes across cancers. Overall, more significant mutation sites were found in ATM, BRCA2, POLE, and TOP2B in both the 'White' and 'Asian' populations, whereas PTEN, EGFG, and RIF1 mutations were observed in both the 'White' and 'African American/Black' populations. Furthermore, supported by pathogenic tendency databases and previous reports, in the 'African American/Black' population, several associations, including BLM with breast invasive carcinoma, ERCC5 with ovarian serous cystadenocarcinoma, as well as PTEN with stomach adenocarcinoma, were newly described here. Although several HRD-related genes are common across cancers, many of them were found to be specific to race. Further studies, using a larger cohort of diverse populations, are necessary to identify HRD-related genes that are specific to race, for guiding gene testing methods.
Collapse
Affiliation(s)
- Yi-Wen Hsiao
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 100, Taiwan;
| | - Tzu-Pin Lu
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 100, Taiwan;
- Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
46
|
Zheng Y, Lei T, Jin G, Guo H, Zhang N, Chai J, Xie M, Xu Y, Wang T, Liu J, Shen Y, Song Y, Wang B, Yu J, Yang M. LncPSCA in the 8q24.3 risk locus drives gastric cancer through destabilizing DDX5. EMBO Rep 2021; 22:e52707. [PMID: 34472665 DOI: 10.15252/embr.202152707] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/23/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified multiple gastric cancer risk loci and several protein-coding susceptibility genes. However, the role of long-noncoding RNAs (lncRNAs) transcribed from these risk loci in gastric cancer development and progression remains to be explored. Here, we functionally characterize a lncRNA, lncPSCA, as a novel tumor suppressor whose expression is fine-regulated by a gastric cancer risk-associated genetic variant. The rs2978980 T > G change in an intronic enhancer of lncPSCA interrupts binding of transcription factor RORA, which down-regulates lncPSCA expression in an allele-specific manner. LncPSCA interacts with DDX5 and promotes DDX5 degradation through ubiquitination. Increased expression of lncPSCA results in low levels of DDX5, less RNA polymerase II (Pol II) binding with DDX5 in the nucleus, thus activating transcription of multiple p53 signaling genes by Pol II. These findings highlight the importance of functionally annotating lncRNAs in GWAS risk loci and the great potential of modulating lncRNAs as innovative cancer therapy.
Collapse
Affiliation(s)
- Yan Zheng
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China.,Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tianshui Lei
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiyang Guo
- Clinical Laboratory, Tumor Marker Detection Engineering Laboratory of Shandong Province, The Second Hospital of Shandong University, Jinan, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Chai
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Mengyu Xie
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yeyang Xu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Tianpei Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiandong Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yue Shen
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yemei Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Bowen Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
47
|
Qian D, Liu H, Zhao L, Luo S, Walsh KM, Huang J, Li CY, Wei Q. A pleiotropic ATM variant (rs1800057 C>G) is associated with risk of multiple cancers. Carcinogenesis 2021; 43:60-66. [PMID: 34643693 DOI: 10.1093/carcin/bgab092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/02/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
ATM (ataxia-telangiectasia mutated) is an important cell-cycle checkpoint kinase required for cellular response to DNA damage. Activated by DNA double strand breaks, ATM regulates the activities of many downstream proteins involved in various carcinogenic events. Therefore, ATM or its genetic variants may have a pleiotropic effect in cancer development. We conducted a pleiotropic analysis to evaluate associations between genetic variants of ATM and risk of multiple cancers. With genotyping data extracted from previously published genome-wide association studies of various cancers, we performed multivariate logistic regression analysis, followed by a meta-analysis for each cancer site, to identify cancer risk-associated single-nucleotide polymorphisms (SNPs). In the ASSET two-sided analysis, we found that two ATM SNPs were significantly associated with risk of multiple cancers. One tagging SNP (rs1800057 C>G) was associated with risk of multiple cancers (two-sided P=5.27×10 -7). Because ATM rs1800057 is a missense variant, we also explored the intermediate phenotypes through which this variant may confer risk of multiple cancers and identified a possible immune-mediated effect of this variant. Our findings indicate that genetic variants of ATM may have a pleiotropic effect on cancer risk and thus provide an important insight into common mechanisms of carcinogenesis.
Collapse
Affiliation(s)
- Danwen Qian
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lingling Zhao
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kyle M Walsh
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Neurosurgery, Duke University, Durham, NC 27710, USA
| | - Jiaoti Huang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of pathology, Duke University, Durham, NC 27710, USA
| | - Chuan-Yuan Li
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Dermatology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
48
|
Pleiotropic Effects of Functional MUC1 Variants on Cardiometabolic, Renal, and Hematological Traits in the Taiwanese Population. Int J Mol Sci 2021; 22:ijms221910641. [PMID: 34638981 PMCID: PMC8509060 DOI: 10.3390/ijms221910641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 12/27/2022] Open
Abstract
MUC1 is a transmembrane mucin involved in carcinogenesis and cell signaling. Functional MUC1 variants are associated with multiple metabolic and biochemical traits. This study investigated the association of functional MUC1 variants with MUC1 DNA methylation and various metabolic, biochemical, and hematological parameters. In total, 80,728 participants from the Taiwan Biobank were enrolled for association analysis using functional MUC1 variants and a nearby gene regional plot association study. A subgroup of 1686 participants was recruited for MUC1 DNA methylation analysis. After Bonferroni correction, we found that two MUC1 variants, rs4072037 and rs12411216, were significantly associated with waist circumference, systolic blood pressure, hemoglobin A1C, renal functional parameters (blood urea nitrogen, serum creatinine levels, and estimated glomerular filtration rate), albuminuria, hematocrit, hemoglobin, red blood cell count, serum uric acid level, and gout risk, with both favorable and unfavorable effects. Causal inference analysis revealed that the association between the variants and gout was partially dependent on the serum uric acid level. Both gene variants showed genome-wide significant associations with MUC1 gene-body methylation. Regional plot association analysis further revealed lead single-nucleotide polymorphisms situated at the nearby TRIM46-MUC1-THBS3-MTX1 gene region for the studied phenotypes. In conclusion, our data demonstrated the pleiotropic effects of MUC1 variants with novel associations for gout, red blood cell parameters, and MUC1 DNA methylation. These results provide further evidence in understanding the critical role of TRIM46-MUC1-THBS3-MTX1 gene region variants in the pathogenesis of cardiometabolic, renal, and hematological disorders.
Collapse
|
49
|
Playing on the Dark Side: SMYD3 Acts as a Cancer Genome Keeper in Gastrointestinal Malignancies. Cancers (Basel) 2021; 13:cancers13174427. [PMID: 34503239 PMCID: PMC8430692 DOI: 10.3390/cancers13174427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 01/17/2023] Open
Abstract
Simple Summary The activity of SMYD3 in promoting carcinogenesis is currently under debate. Growing evidence seems to confirm that SMYD3 overexpression correlates with poor prognosis, cancer growth and invasion, especially in gastrointestinal tumors. In this review, we dissect the emerging role played by SMYD3 in the regulation of cell cycle and DNA damage response by promoting homologous recombination (HR) repair and hence cancer cell genomic stability. Considering the crucial role of PARP1 in other DNA repair mechanisms, we also discuss a recently evaluated synthetic lethality approach based on the combined use of SMYD3 and PARP inhibitors. Interestingly, a significant proportion of HR-proficient gastrointestinal tumors expressing high levels of SMYD3 from the PanCanAtlas dataset seem to be eligible for this innovative strategy. This promising approach could be taken advantage of for therapeutic applications of SMYD3 inhibitors in cancer treatment. Abstract The SMYD3 methyltransferase has been found overexpressed in several types of cancers of the gastrointestinal (GI) tract. While high levels of SMYD3 have been positively correlated with cancer progression in cellular and advanced mice models, suggesting it as a potential risk and prognosis factor, its activity seems dispensable for autonomous in vitro cancer cell proliferation. Here, we present an in-depth analysis of SMYD3 functional role in the regulation of GI cancer progression. We first describe the oncogenic activity of SMYD3 as a transcriptional activator of genes involved in tumorigenesis, cancer development and transformation and as a co-regulator of key cancer-related pathways. Then, we dissect its role in orchestrating cell cycle regulation and DNA damage response (DDR) to genotoxic stress by promoting homologous recombination (HR) repair, thereby sustaining cancer cell genomic stability and tumor progression. Based on this evidence and on the involvement of PARP1 in other DDR mechanisms, we also outline a synthetic lethality approach consisting of the combined use of SMYD3 and PARP inhibitors, which recently showed promising therapeutic potential in HR-proficient GI tumors expressing high levels of SMYD3. Overall, these findings identify SMYD3 as a promising target for drug discovery.
Collapse
|
50
|
Miller AK, Williams SM. Helicobacter pylori infection causes both protective and deleterious effects in human health and disease. Genes Immun 2021; 22:218-226. [PMID: 34244666 PMCID: PMC8390445 DOI: 10.1038/s41435-021-00146-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Infection with Helicobacter pylori (H. pylori) is necessary but not sufficient for the development of gastric cancer, the third leading cause of cancer death globally. H. pylori infection affects over half of people globally; however, it does not affect populations uniformly. H. pylori infection rates are declining in western industrialized countries but are plateauing in developing and newly industrialized countries where gastric cancer is most prevalent. Despite H. pylori infection being the primary causative agent for gastric cancer, H. pylori infection can also cause other effects, detrimental or beneficial, throughout an individual's life, with the beneficial effects often being seen in childhood and the deleterious effects in adulthood. H. pylori is an ancient bacterium and its likelihood of affecting disease or health is dependent on both human and bacterial genetics that have co-evolved over millennia. In this review, we focus on the impact of infection and its genetic bases in different populations and diseases throughout an individual's lifespan, highlighting the benefits of individualized treatment and argue that universal eradication of H. pylori in its host may cause more harm than good for those infected with H. pylori.
Collapse
Affiliation(s)
- Anna K Miller
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH
| | - Scott M Williams
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH,Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH
| |
Collapse
|