1
|
Malumbres M, Villarroya-Beltri C. Mosaic variegated aneuploidy in development, ageing and cancer. Nat Rev Genet 2024; 25:864-878. [PMID: 39169218 DOI: 10.1038/s41576-024-00762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 08/23/2024]
Abstract
Mosaic variegated aneuploidy (MVA) is a rare condition in which abnormal chromosome counts (that is, aneuploidies), affecting different chromosomes in each cell (making it variegated) are found only in a certain number of cells (making it mosaic). MVA is characterized by various developmental defects and, despite its rarity, presents a unique clinical scenario to understand the consequences of chromosomal instability and copy number variation in humans. Research from patients with MVA, genetically engineered mouse models and functional cellular studies have found the genetic causes to be mutations in components of the spindle-assembly checkpoint as well as in related proteins involved in centrosome dynamics during mitosis. MVA is accompanied by tumour susceptibility (depending on the genetic basis) as well as cellular and systemic stress, including chronic immune response and the associated clinical implications.
Collapse
Affiliation(s)
- Marcos Malumbres
- Cancer Cell Cycle Group, Systems Oncology Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO) Madrid, Madrid, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA) Barcelona, Barcelona, Spain.
| | | |
Collapse
|
2
|
Nakano Y, Kuiper RP, Nichols KE, Porter CC, Lesmana H, Meade J, Kratz CP, Godley LA, Maese LD, Achatz MI, Khincha PP, Savage SA, Doria AS, Greer MLC, Chang VY, Wang LL, Plon SE, Walsh MF. Update on Recommendations for Cancer Screening and Surveillance in Children with Genomic Instability Disorders. Clin Cancer Res 2024; 30:5009-5020. [PMID: 39264246 DOI: 10.1158/1078-0432.ccr-24-1098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/30/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
Genomic instability disorders are characterized by DNA or chromosomal instability, resulting in various clinical manifestations, including developmental anomalies, immunodeficiency, and increased risk of developing cancers beginning in childhood. Many of these genomic instability disorders also present with exquisite sensitivity to anticancer treatments such as ionizing radiation and chemotherapy, which may further increase the risk of second cancers. In July 2023, the American Association for Cancer Research held the second Childhood Cancer Predisposition Workshop, where multidisciplinary international experts discussed, reviewed, and updated recommendations for children with cancer predisposition syndromes. This article discusses childhood cancer risks and surveillance recommendations for the group of genomic instability disorders with predominantly recessive inheritance, including the DNA repair disorders ataxia telangiectasia, Nijmegen breakage syndrome, Fanconi anemia, xeroderma pigmentosum, Bloom syndrome, and Rothmund-Thomson syndrome, as well as the telomere biology disorders and mosaic variegated aneuploidy. Recognition of children with genomic instability disorders is important in order to make the proper diagnosis, enable genetic counseling, and inform cancer screening, cancer risk reduction, and choice of anticancer therapy.
Collapse
Affiliation(s)
- Yoshiko Nakano
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology and Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Harry Lesmana
- Department of Pediatric Hematology, Oncology and BMT, Cleveland Clinic, Cleveland, Ohio
| | - Julia Meade
- Pediatric Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Lucy A Godley
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Luke D Maese
- Huntsman Cancer Institute, Primary Children's Hospital, University of Utah, Salt Lake City, Utah
| | | | - Payal P Khincha
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Andrea S Doria
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mary-Louise C Greer
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Vivian Y Chang
- Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, California
| | - Lisa L Wang
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Sharon E Plon
- Department of Pediatrics/Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | - Michael F Walsh
- Division of Solid Tumor and Clinical Genetics, Department of Medicine and Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
3
|
Zhang Z, Yu R, Shi Q, Wu ZJ, Li Q, Mu J, Chen B, Shi J, Ni R, Wu L, Li Q, Fu J, Li R, Sun X, Wang J, He L, Kuang Y, Sang Q, Wang L. COX15 deficiency causes oocyte ferroptosis. Proc Natl Acad Sci U S A 2024; 121:e2406174121. [PMID: 39471219 PMCID: PMC11551447 DOI: 10.1073/pnas.2406174121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/19/2024] [Indexed: 11/01/2024] Open
Abstract
Mitochondria play diverse roles in mammalian physiology. The architecture, activity, and physiological functions of mitochondria in oocytes are largely different from those in somatic cells, but the mitochondrial proteins related to oocyte quality and reproductive longevity remain largely unknown. Here, using whole-exome sequencing data from 1,024 women (characterized by oocyte maturation arrest and degenerated or morphologically abnormal oocytes) and 2,868 healthy controls, we performed a population and gene-based burden test for mitochondrial genes and identified a candidate gene, cytochrome c oxidase assembly protein 15 (COX15). We report that biallelic COX15 pathogenic variants cause human oocyte ferroptosis and female infertility in a recessive inheritance pattern. COX15 variants impaired mitochondrial respiration in Saccharomyces cerevisiae and led to reduced protein levels in HeLa cells. Oocyte-specific deletion of Cox15 led to impaired Fe2+ and reactive oxygen species homeostasis that caused mitochondrial dysfunction and ultimately sensitized oocytes to ferroptosis. In addition, ferrostatin-1 (an inhibitor of ferroptosis) could rescue the oocyte ferroptosis phenotype in vitro and ex vivo. Our findings not only provide a genetic diagnostic marker for oocyte development defects but also expand the spectrum of mitochondrial disorders to female infertility and contribute to unique insights into the role of ferroptosis in human oocyte defects.
Collapse
Affiliation(s)
- Zhihua Zhang
- Institute of Pediatrics, Children’s Hospital of Fudan University, The Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai200032, China
| | - Ran Yu
- Institute of Pediatrics, Children’s Hospital of Fudan University, The Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai200032, China
| | - Qiuwen Shi
- Reproductive Medicine Center, The Third Affiliated Hospital, Guangxi Medical University, Nanning530031, Guangxi, China
| | - Zhi-Jing Wu
- The State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
| | - Qingchun Li
- Department of Reproductive Medicine, Binzhou Medical University Hospital, Binzhou256603, China
| | - Jian Mu
- Institute of Pediatrics, Children’s Hospital of Fudan University, The Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai200032, China
| | - Biaobang Chen
- Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), National Health Commission of the People’s Republic of China, Shanghai200032, China
| | - Juanzi Shi
- Reproductive Medicine Center, Northwest Women’s and Children’s Hospital, Xi’an710069, China
| | - Renmin Ni
- Department of Reproductive Medicine, Kunming Angel Women’s and Children’s Hospital, Kunming650031, Yunnan, China
| | - Ling Wu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
| | - Qiaoli Li
- Institute of Pediatrics, Children’s Hospital of Fudan University, The Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai200032, China
| | - Jing Fu
- Shanghai Ji Ai Genetics and In Vitro Fertilization Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai200011, China
| | - Rong Li
- Reproductive Medicine Center, The Third Affiliated Hospital, Guangxi Medical University, Nanning530031, Guangxi, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics and In Vitro Fertilization Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai200011, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai200438, China
| | - Lin He
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai200030, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
| | - Qing Sang
- Institute of Pediatrics, Children’s Hospital of Fudan University, The Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai200032, China
| | - Lei Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, The Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai200032, China
| |
Collapse
|
4
|
Chen C, Li P, Fan G, Yang E, Jing S, Shi Y, Gong Y, Zhang L, Wang Z. Role of TRIP13 in human cancer development. Mol Biol Rep 2024; 51:1088. [PMID: 39436503 DOI: 10.1007/s11033-024-10012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
As an AAA + ATPase, thyroid hormone receptor interacting protein 13 (TRIP13) primarily functions in DNA double-strand break repair, chromosome recombination, and cell cycle checkpoint regulation; aberrant expression of TRIP13 can result in chromosomal instability (CIN). According to recent research, TRIP13 is aberrantly expressed in a variety of cancers, and a patient's poor prognosis and tumor stage are strongly correlated with high expression of TRIP13. Tumor cell and subcutaneous xenograft growth can be markedly inhibited by TRIP13 knockdown or TRIP13 inhibitor administration. In the initiation and advancement of human malignancies, TRIP13 seems to function as an oncogene. Based on available data, TRIP13 may function as a biological target and biomarker for cancer. The creation of inhibitors that specifically target TRIP13 may present novel approaches to treating cancer.
Collapse
Affiliation(s)
- Chaohu Chen
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Pan Li
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Guangrui Fan
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Enguang Yang
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Suoshi Jing
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Yibo Shi
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Yuwen Gong
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Luyang Zhang
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Zhiping Wang
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China.
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China.
| |
Collapse
|
5
|
Frattini A, Micheloni G, Musio A, Antunes MB, Barbot J, Costa E, Seabra P, Righi R, Orsini F, Montalbano G, Acquati F, Porta G, Pasquali F, Valli R. A Distinctive Type of Mosaic Variegated Aneuploidy: Case Report and Review of the Literature. Am J Med Genet A 2024:e63901. [PMID: 39392177 DOI: 10.1002/ajmg.a.63901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024]
Abstract
Mosaic variegated aneuploidy (MVA) is an autosomal recessive disorder characterized by mosaic aneuploidies, predominantly trisomies, involving multiple different chromosomes and tissues. The proportion of aneuploid cells varies, and most patients present with intrauterine growth delay, microcephaly, and a broad spectrum of congenital abnormalities. We report a patient with a distinctive type of MVA discovered in bone marrow (BM) when she was 3-month-old due to neutropenia and hypocellular bone marrow. She was followed up for more than 20 years, and different trisomic cells were repeatedly discovered in different tissues, whereas her clinical picture has never been severe. The main sign remained intermittent neutropenia, not cyclic and often not too severe, occasionally with anemia and thrombocytopenia. Retromicrognathia was the only dysmorphic sign. Unlike other patients with MVA, the trisomies in all tissues involved almost invariably chromosomes 18 and 19. Therefore, the peculiarities of our patient were the clinical and the atypical cytogenetic pictures. Nevertheless, we looked for mutations in the seven causative genes of the known types of MVA, but the results were negative. Then, we analyzed the entire exome to find out other possible causing mutations, but also this attempt failed to discover a possible cause of this distinctive form of MVA.
Collapse
Affiliation(s)
- Annalisa Frattini
- Genetica Umana e Medica, Dipartimento di Medicina e Chirurgia, Università dell'Insubria, Varese, Italy
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milano, Italy
- Centro di Medicina Genomica - Università dell'Insubria - Varese, Italy
| | - Giovanni Micheloni
- Genetica Umana e Medica, Dipartimento di Medicina e Chirurgia, Università dell'Insubria, Varese, Italy
- Centro di Medicina Genomica - Università dell'Insubria - Varese, Italy
| | - Antonio Musio
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Marika Bini Antunes
- Unidade de Imuno-hematologia e Medicina Transfusional, Serviço de Imuno-hemoterapia, Clínica de Medicina ULS de Santo António, Porto, Portugal
| | - José Barbot
- Serviço de Hematologia pediátrica, Hospital de Crianças Maria Pia, Porto, Portugal
| | - Emília Costa
- Serviço de Pediatria, Departamento da Infância e da adolescência, ULS de Santo António, Porto, Portugal
| | - Patricia Seabra
- Serviço de Hematologia Clínica, Clínica de Medicina, ULS de Santo António, Porto, Portugal
| | - Rossana Righi
- SSD Laboratorio Specialistico, Genetica Medica, Citogenetica e Genetica Molecolare-ASST Sette Laghi-Ospedale di Circolo, Varese, Italy
| | - Francesco Orsini
- SSD Laboratorio Specialistico, Genetica Medica, Citogenetica e Genetica Molecolare-ASST Sette Laghi-Ospedale di Circolo, Varese, Italy
| | - Giuseppe Montalbano
- Genetica Umana e Medica, Dipartimento di Medicina e Chirurgia, Università dell'Insubria, Varese, Italy
| | - Francesco Acquati
- Centro di Medicina Genomica - Università dell'Insubria - Varese, Italy
- Dipartimento di Biotecnologie e Scienze della Vita, Università dell'Insubria, Varese, Italy
| | - Giovanni Porta
- Genetica Umana e Medica, Dipartimento di Medicina e Chirurgia, Università dell'Insubria, Varese, Italy
- Centro di Medicina Genomica - Università dell'Insubria - Varese, Italy
| | - Francesco Pasquali
- Genetica Umana e Medica, Dipartimento di Medicina e Chirurgia, Università dell'Insubria, Varese, Italy
| | - Roberto Valli
- Genetica Umana e Medica, Dipartimento di Medicina e Chirurgia, Università dell'Insubria, Varese, Italy
- Centro di Medicina Genomica - Università dell'Insubria - Varese, Italy
| |
Collapse
|
6
|
Chen J, Liu Y, Wu X, Zhang Y, Huang W, Han W, Chen G, Xu Q, Chen H, Wu Q, Wang J, Huang J. Identification of a novel splicing variant of thyroid hormone receptor interaction protein 13 (TRIP13) in female infertility characterized by oocyte maturation arrest. J Assist Reprod Genet 2024; 41:2777-2785. [PMID: 39297991 PMCID: PMC11535116 DOI: 10.1007/s10815-024-03219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/31/2024] [Indexed: 09/21/2024] Open
Abstract
PURPOSE As a cause of primary female infertility, oocyte maturation arrest (OMA) is characterized by failure to obtain mature oocytes due to abnormal meiosis. We aimed to identify pathogenic variants in two sisters with OMA phenotype from a non-consanguineous family. METHODS Whole-exome sequencing and Sanger sequencing were conducted to identify and validate the disease-causing gene variant. Additionally, we performed a minigene assay, quantitative reverse transcription PCR, and Western blotting to assess the effects of the variant. RESULTS We identified a novel homozygous splicing variant (c.1021-11T>C) in TRIP13, which followed a recessive inheritance pattern. Minigene assay showed that the variant could disrupt the integrity of TRIP13 mRNA, as evidenced by the production of an alternative transcript with intron10 intermediate retention of 79 bp. Compared to normal controls, the expression of TRIP13 mRNA and abundance of TRIP13 protein were also significantly decreased in Epstein-Barr virus-immortalized lymphoblastoid cells derived from affected individuals. CONCLUSION Our findings confirm the contribution of genetic factors to OMA and expand the mutation spectrum of TRIP13 in female infertility.
Collapse
Affiliation(s)
- Jia Chen
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Reproductive Health, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, China
| | - Yuxin Liu
- Department of Clinical Medicine, Nanchang University School of Queen Mary, Nanchang, China
| | - Xingwu Wu
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Reproductive Health, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, China
| | - Yiwei Zhang
- Department of Clinical Medicine, Nanchang University School of Queen Mary, Nanchang, China
| | - Wen Huang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Wenbo Han
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Ge Chen
- Central Laboratory, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Qiang Xu
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Reproductive Health, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, China
| | - Houyang Chen
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Reproductive Health, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, China
| | - Qiongfang Wu
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Reproductive Health, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, China
| | - Jiawei Wang
- Division of Life Sciences and Medicine, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China.
| | - Jialyu Huang
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Reproductive Health, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, China.
| |
Collapse
|
7
|
Jacob Bunu S, Cai H, Wu L, Zhang H, Zhou Z, Xu Z, Shi J, Zhu W. TRIP13 - a potential drug target in cancer pharmacotherapy. Bioorg Chem 2024; 151:107650. [PMID: 39042962 DOI: 10.1016/j.bioorg.2024.107650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024]
Abstract
ATPases Associated with Diverse Cellular Activity (AAA+ATPases) are important enzymatic functional proteins in human cells. Thyroid Hormone Receptor Interacting Protein-13 (TRIP13) is a member of this protein superfamily, that partly regulates DNA repair pathways and spindle assembly checkpoints during mitosis. TRIP13 is reported as an oncogene involving multiple pathways in many human malignancies, including multiple myeloma, brain tumors, etc. The structure of TRIP13 reveals the mechanisms for ATP binding and how TRIP13 recognizes the Mitotic Arrest Deficiency-2 (MAD2) protein, with p31comet acting as an adapter protein. DCZ0415, TI17, DCZ5417, and DCZ5418 are the reported small-molecule inhibitors of TRIP13, which have been demonstrated to inhibit TRIP13's biological functions significantly and effective in suppressing various types of malignant cells, indicating that TRIP13 is a significant anticancer drug target. Currently, no systematic reviews are cutting across the functions, structure, and novel inhibitors of TRIP13. This review provides a comprehensive overview of TRIP13's biological functions, its roles in eighteen different cancers, four small molecule inhibitors, different underlying molecular mechanisms, and its functionality as a potential anticancer drug target.
Collapse
Affiliation(s)
- Samuel Jacob Bunu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Haiyan Cai
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Leyun Wu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Hui Zhang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhaoyin Zhou
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhijian Xu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Jumei Shi
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Weiliang Zhu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
8
|
Gu R, Wu T, Fu J, Sun YJ, Sun XX. Advances in the genetic etiology of female infertility. J Assist Reprod Genet 2024:10.1007/s10815-024-03248-w. [PMID: 39320554 DOI: 10.1007/s10815-024-03248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/07/2024] [Indexed: 09/26/2024] Open
Abstract
Human reproduction is a complex process involving gamete maturation, fertilization, embryo cleavage and development, blastocyst formation, implantation, and live birth. If any of these processes are abnormal or arrest, reproductive failure will occur. Infertility is a state of reproductive dysfunction caused by various factors. Advances in molecular genetics, including cell and molecular genetics, and high-throughput sequencing technologies, have found that genetic factors are important causes of infertility. Genetic variants have been identified in infertile women or men and can cause gamete maturation arrest, poor quality gametes, fertilization failure, and embryonic developmental arrest during assisted reproduction technology (ART), and thus reduce the clinical success rates of ART. This article reviews clinical studies on repeated in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) failures caused by ovarian dysfunction, oocyte maturation defects, oocyte abnormalities, fertilization disorders, and preimplantation embryonic development arrest due to female genetic etiology, the accumulation of pathogenic genes and gene pathogenic loci, and the functional mechanism and clinical significance of pathogenic genes in gametogenesis and early embryonic development.
Collapse
Affiliation(s)
- Ruihuan Gu
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China
| | - Tianyu Wu
- Institute of Pediatrics, State Key Laboratory of Genetic Engineering, Institutes of BiomedicalSciences, Shanghai Key Laboratory of Medical Epigenetics, Children's Hospital of Fudan University, Fudan University, Shanghai, 200032, China
| | - Jing Fu
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China
| | - Yi-Juan Sun
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China.
| | - Xiao-Xi Sun
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China.
| |
Collapse
|
9
|
Chotiner JY, Leu NA, Yang F, Cossu IG, Guan Y, Lin H, Wang PJ. TRIP13 localizes to synapsed chromosomes and functions as a dosage-sensitive regulator of meiosis. eLife 2024; 12:RP92195. [PMID: 39207914 PMCID: PMC11361706 DOI: 10.7554/elife.92195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Meiotic progression requires coordinated assembly and disassembly of protein complexes involved in chromosome synapsis and meiotic recombination. Mouse TRIP13 and its ortholog Pch2 are instrumental in remodeling HORMA domain proteins. HORMAD proteins are associated with unsynapsed chromosome axes but depleted from the synaptonemal complex (SC) of synapsed homologs. Here we report that TRIP13 localizes to the synapsed SC in early pachytene spermatocytes and to telomeres throughout meiotic prophase I. Loss of TRIP13 leads to meiotic arrest and thus sterility in both sexes. Trip13-null meiocytes exhibit abnormal persistence of HORMAD1 and HOMRAD2 on synapsed SC and chromosome asynapsis that preferentially affects XY and centromeric ends. These major phenotypes are consistent with reported phenotypes of Trip13 hypomorph alleles. Trip13 heterozygous mice exhibit meiotic defects that are less severe than the Trip13-null mice, showing that TRIP13 is a dosage-sensitive regulator of meiosis. Localization of TRIP13 to the synapsed SC is independent of SC axial element proteins such as REC8 and SYCP2/SYCP3. Terminal FLAG-tagged TRIP13 proteins are functional and recapitulate the localization of native TRIP13 to SC and telomeres. Therefore, the evolutionarily conserved localization of TRIP13/Pch2 to the synapsed chromosomes provides an explanation for dissociation of HORMA domain proteins upon synapsis in diverse organisms.
Collapse
Affiliation(s)
- Jessica Y Chotiner
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - N Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Fang Yang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Isabella G Cossu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Yongjuan Guan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
- College of Life Sciences, Capital Normal UniversityBeijingChina
| | - Huijuan Lin
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| |
Collapse
|
10
|
Tang R, Tong J, Shang S, Li G, Sun F, Guan X, Yang J. Identification of MAD2L1 and BUB1B as Potential Biomarkers Associated with Progression and Prognosis of Ovarian Cancer. Biochem Genet 2024:10.1007/s10528-024-10817-2. [PMID: 38683465 DOI: 10.1007/s10528-024-10817-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Ovarian cancer develops insidiously and is frequently diagnosed at advanced stages. Screening for ovarian cancer is an effective strategy for reducing mortality. This study aimed to investigate the molecular mechanisms underlying the development of ovarian cancer and identify novel tumor biomarkers for the diagnosis and prognosis of ovarian cancer. Three databases containing gene expression profiles specific to serous ovarian cancer (GSE18520, GSE12470, and GSE26712) were acquired. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were analyzed for the differentially expressed gene (DEGs). The protein-protein interaction (PPI) network was constructed using the STRING database. The pivotal genes in the PPI network were screened using the Cytoscape software. Survival curve analysis was performed using a Kaplan-Meier Plotter. The cancer genome atlas and Gene Expression Omnibus databases were used to find the relationship between Hub gene and serous ovarian cancer. PCR and immunohistochemistry were used to detect the expression of Hub gene in serous ovarian cancer tissues and cells. Downstream pathways of the candidate tumor marker genes were predicted using Gene Set Enrichment Analysis. In this study, 252 DEGs were screened for pathway enrichment. 20 Hub genes were identified. Survival analysis suggested that Aurka, Bub1b, Cenpf, Cks1b, Kif20a, Mad2l1, Racgap1, and Ube2c were associated with the survival of patients with serous ovarian cancer. MAD2L1 and BUB1B levels were significantly different in serous ovarian cancer at different stages. Finally, Mad2l1 was found to play a role in the cell cycle, oocyte meiosis, and ubiquitin-mediated proteolysis. Meanwhile, Bub1b may play a role in the cell cycle, ubiquitin-mediated proteolysis, and spliceosome processes. Mad2l1 and Bub1b could be used as markers to predict ovarian carcinogenesis and prognosis, providing candidate targets for the diagnosis and treatment of serous ovarian cancer.
Collapse
Affiliation(s)
- Rongrong Tang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310018, Zhejiang, People's Republic of China
- School of Medicine, ShaoXing University, ShaoXing, Zhejiang, China
| | - Jinfei Tong
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310018, Zhejiang, People's Republic of China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, Zhejiang, China
| | - Shanliang Shang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Guangxiao Li
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Fangying Sun
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310018, Zhejiang, People's Republic of China
- School of Medicine, ShaoXing University, ShaoXing, Zhejiang, China
| | - Xiaojing Guan
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Jianhua Yang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310018, Zhejiang, People's Republic of China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Mittal K, Cooper GW, Lee BP, Su Y, Skinner KT, Shim J, Jonus HC, Kim WJ, Doshi M, Almanza D, Kynnap BD, Christie AL, Yang X, Cowley GS, Leeper BA, Morton CL, Dwivedi B, Lawrence T, Rupji M, Keskula P, Meyer S, Clinton CM, Bhasin M, Crompton BD, Tseng YY, Boehm JS, Ligon KL, Root DE, Murphy AJ, Weinstock DM, Gokhale PC, Spangle JM, Rivera MN, Mullen EA, Stegmaier K, Goldsmith KC, Hahn WC, Hong AL. Targeting TRIP13 in favorable histology Wilms tumor with nuclear export inhibitors synergizes with doxorubicin. Commun Biol 2024; 7:426. [PMID: 38589567 PMCID: PMC11001930 DOI: 10.1038/s42003-024-06140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/03/2024] [Indexed: 04/10/2024] Open
Abstract
Wilms tumor (WT) is the most common renal malignancy of childhood. Despite improvements in the overall survival, relapse occurs in ~15% of patients with favorable histology WT (FHWT). Half of these patients will succumb to their disease. Identifying novel targeted therapies remains challenging in part due to the lack of faithful preclinical in vitro models. Here we establish twelve patient-derived WT cell lines and demonstrate that these models faithfully recapitulate WT biology using genomic and transcriptomic techniques. We then perform loss-of-function screens to identify the nuclear export gene, XPO1, as a vulnerability. We find that the FDA approved XPO1 inhibitor, KPT-330, suppresses TRIP13 expression, which is required for survival. We further identify synergy between KPT-330 and doxorubicin, a chemotherapy used in high-risk FHWT. Taken together, we identify XPO1 inhibition with KPT-330 as a potential therapeutic option to treat FHWTs and in combination with doxorubicin, leads to durable remissions in vivo.
Collapse
Affiliation(s)
- Karuna Mittal
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Garrett W Cooper
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Benjamin P Lee
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Yongdong Su
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Katie T Skinner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Jenny Shim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Hunter C Jonus
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Won Jun Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mihir Doshi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Diego Almanza
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bryan D Kynnap
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amanda L Christie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xiaoping Yang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Brittaney A Leeper
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Bhakti Dwivedi
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Taylor Lawrence
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Manali Rupji
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Paula Keskula
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephanie Meyer
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Catherine M Clinton
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Manoj Bhasin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Brian D Crompton
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yuen-Yi Tseng
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jesse S Boehm
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Keith L Ligon
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Merck & Co., Rahway, NJ, USA
| | - Prafulla C Gokhale
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jennifer M Spangle
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Miguel N Rivera
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth A Mullen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kimberly Stegmaier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kelly C Goldsmith
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Andrew L Hong
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
12
|
Perotti D, Williams RD, Wegert J, Brzezinski J, Maschietto M, Ciceri S, Gisselsson D, Gadd S, Walz AL, Furtwaengler R, Drost J, Al-Saadi R, Evageliou N, Gooskens SL, Hong AL, Murphy AJ, Ortiz MV, O'Sullivan MJ, Mullen EA, van den Heuvel-Eibrink MM, Fernandez CV, Graf N, Grundy PE, Geller JI, Dome JS, Perlman EJ, Gessler M, Huff V, Pritchard-Jones K. Hallmark discoveries in the biology of Wilms tumour. Nat Rev Urol 2024; 21:158-180. [PMID: 37848532 DOI: 10.1038/s41585-023-00824-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 10/19/2023]
Abstract
The modern study of Wilms tumour was prompted nearly 50 years ago, when Alfred Knudson proposed the 'two-hit' model of tumour development. Since then, the efforts of researchers worldwide have substantially expanded our knowledge of Wilms tumour biology, including major advances in genetics - from cloning the first Wilms tumour gene to high-throughput studies that have revealed the genetic landscape of this tumour. These discoveries improve understanding of the embryonal origin of Wilms tumour, familial occurrences and associated syndromic conditions. Many efforts have been made to find and clinically apply prognostic biomarkers to Wilms tumour, for which outcomes are generally favourable, but treatment of some affected individuals remains challenging. Challenges are also posed by the intratumoural heterogeneity of biomarkers. Furthermore, preclinical models of Wilms tumour, from cell lines to organoid cultures, have evolved. Despite these many achievements, much still remains to be discovered: further molecular understanding of relapse in Wilms tumour and of the multiple origins of bilateral Wilms tumour are two examples of areas under active investigation. International collaboration, especially when large tumour series are required to obtain robust data, will help to answer some of the remaining unresolved questions.
Collapse
Affiliation(s)
- Daniela Perotti
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Richard D Williams
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Section of Genetics and Genomics, Faculty of Medicine, Imperial College London, London, UK
| | - Jenny Wegert
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Wuerzburg University, Wuerzburg, Germany
| | - Jack Brzezinski
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Mariana Maschietto
- Research Center, Boldrini Children's Hospital, Campinas, São Paulo, Brazil
| | - Sara Ciceri
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - David Gisselsson
- Cancer Cell Evolution Unit, Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Genetics, Pathology and Molecular Diagnostics, Office of Medical Services, Skåne, Sweden
| | - Samantha Gadd
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Amy L Walz
- Division of Hematology,Oncology, Neuro-Oncology, and Stem Cell Transplant, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Rhoikos Furtwaengler
- Division of Pediatric Oncology and Hematology, Department of Pediatrics, Inselspital Bern University, Bern, Switzerland
| | - Jarno Drost
- Princess Máxima Center for Paediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Reem Al-Saadi
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Histopathology, Great Ormond Street Hospital for Children, London, UK
| | - Nicholas Evageliou
- Divisions of Hematology and Oncology, Children's Hospital of Philadelphia, CHOP Specialty Care Center, Vorhees, NJ, USA
| | - Saskia L Gooskens
- Princess Máxima Center for Paediatric Oncology, Utrecht, Netherlands
| | - Andrew L Hong
- Aflac Cancer and Blood Disorders Center, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael V Ortiz
- Department of Paediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maureen J O'Sullivan
- Histology Laboratory, Children's Health Ireland at Crumlin, Dublin, Ireland
- Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland
| | - Elizabeth A Mullen
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | | | - Conrad V Fernandez
- Division of Paediatric Hematology Oncology, IWK Health Centre and Dalhousie University, Halifax, Nova Scotia, Canada
| | - Norbert Graf
- Department of Paediatric Oncology and Hematology, Saarland University Hospital, Homburg, Germany
| | - Paul E Grundy
- Department of Paediatrics Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - James I Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Jeffrey S Dome
- Division of Oncology, Center for Cancer and Blood Disorders, Children's National Hospital and the Department of Paediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Elizabeth J Perlman
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Manfred Gessler
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Wuerzburg University, Wuerzburg, Germany
- Comprehensive Cancer Center Mainfranken, Wuerzburg, Germany
| | - Vicki Huff
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathy Pritchard-Jones
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
13
|
Liu W, Bruggeman JW, Lei Q, van Pelt AMM, Koster J, Hamer G. Germline specific genes increase DNA double-strand break repair and radioresistance in lung adenocarcinoma cells. Cell Death Dis 2024; 15:38. [PMID: 38216586 PMCID: PMC10786935 DOI: 10.1038/s41419-024-06433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
In principle, germline cells possess the capability to transmit a nearly unaltered set of genetic material to infinite future generations, whereas somatic cells are limited by strict growth constraints necessary to assure an organism's physical structure and eventual mortality. As the potential to replicate indefinitely is a key feature of cancer, we hypothesized that the activation of a "germline program" in somatic cells can contribute to oncogenesis. Our group recently described over one thousand germline specific genes that can be ectopically expressed in cancer, yet how germline specific processes contribute to the malignant properties of cancer is poorly understood. We here show that the expression of germ cell/cancer (GC) genes correlates with malignancy in lung adenocarcinoma (LUAD). We found that LUAD cells expressing more GC genes can repair DNA double strand breaks more rapidly, show higher rates of proliferation and are more resistant to ionizing radiation, compared to LUAD cells that express fewer GC genes. In particular, we identified the HORMA domain protein regulator TRIP13 to be predominantly responsible for this malignant phenotype, and that TRIP13 inhibition or expression levels affect the response to ionizing radiation and subsequent DNA repair. Our results demonstrate that GC genes are viable targets in oncology, as they induce increased radiation resistance and increased propagation in cancer cells. Because their expression is normally restricted to germline cells, we anticipate that GC gene directed therapeutic options will effectively target cancer, with limited side effects besides (temporary) infertility.
Collapse
Affiliation(s)
- Wenqing Liu
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Jan Willem Bruggeman
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Qijing Lei
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Ans M M van Pelt
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Jan Koster
- Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Geert Hamer
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Guo J, He WB, Dai L, Tian F, Luo Z, Shen F, Tu M, Zheng Y, Zhao L, Tan C, Guo Y, Meng LL, Liu W, Deng M, Wu X, Peng Y, Zhang S, Lu GX, Lin G, Wang H, Tan YQ, Yang Y. Mosaic variegated aneuploidy syndrome with tetraploid, and predisposition to male infertility triggered by mutant CEP192. HGG ADVANCES 2024; 5:100256. [PMID: 37981762 PMCID: PMC10716027 DOI: 10.1016/j.xhgg.2023.100256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023] Open
Abstract
In this study, we report on mosaic variegated aneuploidy (MVA) syndrome with tetraploidy and predisposition to infertility in a family. Sequencing analysis identified that the CEP192 biallelic variants (c.1912C>T, p.His638Tyr and c.5750A>G, p.Asn1917Ser) segregated with microcephaly, short stature, limb-extremity dysplasia, and reduced testicular size, while CEP192 monoallelic variants segregated with infertility and/or reduced testicular size in the family. In 1,264 unrelated patients, variant screening for CEP192 identified a same variant (c.5750A>G, p.Asn1917Ser) and other variants significantly associated with infertility. Two lines of Cep192 mice model that are equivalent to human variants were generated. Embryos with Cep192 biallelic variants arrested at E7 because of cell apoptosis mediated by MVA/tetraploidy cell acumination. Mice with heterozygous variants replicated the predisposition to male infertility. Mouse primary embryonic fibroblasts with Cep192 biallelic variants cultured in vitro showed abnormal morphology, mitotic arresting, and disruption of spindle formation. In patient epithelial cells with biallelic variants cultured in vitro, the number of cells arrested during the prophase increased because of the failure of spindle formation. Accordingly, we present mutant CEP192, which is a link for the MVA syndrome with tetraploidy and the predisposition to male infertility.
Collapse
Affiliation(s)
- Jihong Guo
- Department of Medical Genetics, Hunan Children's Hospital, Xiangya Medical School & Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Bin He
- Hunan Guangxiu Hospital, Hunan Normal University School of Medicine, Changsha, China; Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Lei Dai
- Department of Obstetrics, Xiangya Hospital of Central South University, Changsha, China
| | - Fen Tian
- Department of Medical Genetics, Hunan Children's Hospital, Xiangya Medical School & Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenqing Luo
- Department of Medical Genetics, Hunan Children's Hospital, Xiangya Medical School & Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China
| | - Fang Shen
- Department of Medical Genetics, Hunan Children's Hospital, Xiangya Medical School & Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China
| | - Ming Tu
- Department of Medical Genetics, Hunan Children's Hospital, Xiangya Medical School & Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Zheng
- Department of Medical Genetics, Hunan Children's Hospital, Xiangya Medical School & Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China
| | - Liu Zhao
- Department of Medical Genetics, Hunan Children's Hospital, Xiangya Medical School & Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China
| | - Chen Tan
- Hunan Guangxiu Hospital, Hunan Normal University School of Medicine, Changsha, China; Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Yongteng Guo
- Hunan Guangxiu Hospital, Hunan Normal University School of Medicine, Changsha, China; Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Lan-Lan Meng
- Hunan Guangxiu Hospital, Hunan Normal University School of Medicine, Changsha, China; Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Wei Liu
- Department of Medical Genetics, Hunan Children's Hospital, Xiangya Medical School & Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China
| | - Mei Deng
- Department of Medical Genetics, Hunan Children's Hospital, Xiangya Medical School & Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China
| | - Xinghan Wu
- Department of Medical Genetics, Hunan Children's Hospital, Xiangya Medical School & Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Peng
- Department of Medical Genetics, Hunan Children's Hospital, Xiangya Medical School & Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China
| | - Shuju Zhang
- Department of Medical Genetics, Hunan Children's Hospital, Xiangya Medical School & Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China
| | - Guang-Xiu Lu
- Hunan Guangxiu Hospital, Hunan Normal University School of Medicine, Changsha, China; Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Ge Lin
- Hunan Guangxiu Hospital, Hunan Normal University School of Medicine, Changsha, China; Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Hua Wang
- Department of Medical Genetics, Hunan Children's Hospital, Xiangya Medical School & Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China
| | - Yue-Qiu Tan
- Hunan Guangxiu Hospital, Hunan Normal University School of Medicine, Changsha, China; Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China.
| | - Yongjia Yang
- Department of Medical Genetics, Hunan Children's Hospital, Xiangya Medical School & Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
15
|
Mazzagatti A, Engel JL, Ly P. Boveri and beyond: Chromothripsis and genomic instability from mitotic errors. Mol Cell 2024; 84:55-69. [PMID: 38029753 PMCID: PMC10842135 DOI: 10.1016/j.molcel.2023.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023]
Abstract
Mitotic cell division is tightly monitored by checkpoints that safeguard the genome from instability. Failures in accurate chromosome segregation during mitosis can cause numerical aneuploidy, which was hypothesized by Theodor Boveri over a century ago to promote tumorigenesis. Recent interrogation of pan-cancer genomes has identified unexpected classes of chromosomal abnormalities, including complex rearrangements arising through chromothripsis. This process is driven by mitotic errors that generate abnormal nuclear structures that provoke extensive yet localized shattering of mis-segregated chromosomes. Here, we discuss emerging mechanisms underlying chromothripsis from micronuclei and chromatin bridges, as well as highlight how this mutational cascade converges on the DNA damage response. A fundamental understanding of these catastrophic processes will provide insight into how initial errors in mitosis can precipitate rapid cancer genome evolution.
Collapse
Affiliation(s)
- Alice Mazzagatti
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Justin L Engel
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
16
|
Wu L, Xue Q, Xia X. High expression of TRIP13 is associated with tumor progression in H. pylori infection induced gastric cancer. Mutat Res 2024; 828:111854. [PMID: 38492425 DOI: 10.1016/j.mrfmmm.2024.111854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND/OBJECTIVE H. pylori is a recognized bacterial carcinogen in the world to cause gastric cancer (GC). However, the molecular mechanism of H. pylori infection-induced GC is not completely clear. Thus, there is an urgent need to reveal the precise mechanisms regulating cancer development due to H. pylori infection. METHODS GEO microarray databases and TCGA databases were extracted for the analysis of different expression genes (DEGs). Then, Kaplan-Meier Plotter was used for prognostic analysis. Functional enrichment analysis of TRIP13 was performed by metascape database and TIMER database. Specific role of TRIP13 in GC with H. pylori infection was confirmed by CCK8, cell cycle analysis and WB. RESULTS A total 10 DEGs were substantially elevated in GC and H. pylori+ tissues and might be associated with H. pylori infection in GC and only the highly expressed TRIP13 was statistically associated with poor prognosis in GC patients. Meanwhile, TRIP13 were upregulated in both CagA-transfected epithelial cells and GC cells. And TRIP13 deficiency inhibited cell proliferation and arrested the cell cycle at the G1 phase. CONCLUSION Our study suggested that high expression of TRIP13 can promote the proliferation, cell cycle in GC cells, which could be used as a biomarker for H. pylori infection GC.
Collapse
Affiliation(s)
- Longxiang Wu
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu 226361, China
| | - Qiu Xue
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu 226361, China
| | - Xiaochun Xia
- Department of Radiation Oncology, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu 226361, China.
| |
Collapse
|
17
|
Chotiner JY, Leu NA, Yang F, Cossu IG, Guan Y, Lin H, Wang PJ. TRIP13 localizes to synapsed chromosomes and functions as a dosage-sensitive regulator of meiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559355. [PMID: 37808842 PMCID: PMC10557606 DOI: 10.1101/2023.09.25.559355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Meiotic progression requires coordinated assembly and disassembly of protein complexes involved in chromosome synapsis and meiotic recombination. The AAA+ ATPase TRIP13 and its orthologue Pch2 are instrumental in remodeling HORMA domain proteins. Meiosis-specific HORMAD proteins are associated with unsynapsed chromosome axes but depleted from the synaptonemal complex (SC) of synapsed chromosome homologues. Here we report that TRIP13 localizes to the synapsed SC in early pachytene spermatocytes and to telomeres throughout meiotic prophase I. Loss of TRIP13 leads to meiotic arrest and thus sterility in both sexes. Trip13-null meiocytes exhibit abnormal persistence of HORMAD1 and HOMRAD2 on synapsed SC and chromosome asynapsis that preferentially affects XY and centromeric ends. These findings confirm the previously reported phenotypes of the Trip13 hypomorph alleles. Trip13 heterozygous (Trip13+/-) mice also exhibit meiotic defects that are less severe than the Trip13-null mice, showing that TRIP13 is a dosage-sensitive regulator of meiosis. Localization of TRIP13 to the synapsed SC is independent of SC axial element proteins such as REC8 and SYCP2/SYCP3. The N- or C-terminal FLAG-tagged TRIP13 proteins are functional and recapitulate the localization of native TRIP13 to SC and telomeres in knockin mice. Therefore, the evolutionarily conserved localization of TRIP13/Pch2 to the synapsed chromosomes provides an explanation for dissociation of HORMA domain proteins upon chromosome synapsis in diverse organisms.
Collapse
Affiliation(s)
- Jessica Y. Chotiner
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - N. Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Fang Yang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Isabella G. Cossu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Yongjuan Guan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Huijuan Lin
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - P. Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Makiyama T, Obama T, Watanabe Y, Chatani M, Azetsu Y, Kawaguchi K, Imanaka T, Itabe H. Behavior of intracellular lipid droplets during cell division in HuH7 hepatoma cells. Exp Cell Res 2023; 433:113855. [PMID: 37995922 DOI: 10.1016/j.yexcr.2023.113855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Intracellular lipid droplets (LDs) are ubiquitous organelles found in many cell types. During mitosis, membranous organelles, including mitochondria, are divided into small pieces and transferred to daughter cells; however, the process of LD transfer to daughter cells is not fully elucidated. Herein, we investigated the behavior of LDs during mitosis in HuH7 human hepatoma cells. While fragments of the Golgi apparatus were scattered in the cytosol during mitosis, intracellular LDs retained their size and spherical morphology as they translocated to the two daughter cells. LDs were initially distributed throughout the cell during prophase but positioned outside the spindle in metaphase, aligning at the far sides of the centrioles. A similar distribution of LDs during mitosis was observed in another hepatocarcinoma HepG2 cells. When the spindle was disrupted by nocodazole treatment or never in mitosis gene A-related kinase 2A knockdown, LDs were localized in the area outside the chromosomes, suggesting that spindle formation is not necessary for LD localization at metaphase. The amount of major LD protein perilipin 2 reduced while LDs were enriched in perilipin 3 during mitosis, indicating the potential alteration of LD protein composition. Conclusively, the behavior of LDs during mitosis is distinct from that of other organelles in hepatocytes.
Collapse
Affiliation(s)
- Tomohiko Makiyama
- Department of Biological Chemistry, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan.
| | - Takashi Obama
- Department of Biological Chemistry, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Yuichi Watanabe
- Department of Biological Chemistry, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Masahiro Chatani
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Yuki Azetsu
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Kosuke Kawaguchi
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Tsuneo Imanaka
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan; Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshinkai, Kure City, Hiroshima, 737-0112, Japan
| | - Hiroyuki Itabe
- Department of Biological Chemistry, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| |
Collapse
|
19
|
Abdel-Salam GMH, Hellmuth S, Gradhand E, Käseberg S, Winter J, Pabst AS, Eid MM, Thiele H, Nürnberg P, Budde BS, Toliat MR, Brecht IB, Schroeder C, Gschwind A, Ossowski S, Häuser F, Rossmann H, Abdel-Hamid MS, Hegazy I, Mohamed AG, Schneider DT, Bertoli-Avella A, Bauer P, Pearring JN, Pfundt R, Hoischen A, Gilissen C, Strand D, Zechner U, Tashkandi SA, Faqeih EA, Stemmann O, Strand S, Bolz HJ. Biallelic MAD2L1BP (p31comet) mutation is associated with mosaic aneuploidy and juvenile granulosa cell tumors. JCI Insight 2023; 8:e170079. [PMID: 37796616 PMCID: PMC10721328 DOI: 10.1172/jci.insight.170079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023] Open
Abstract
MAD2L1BP-encoded p31comet mediates Trip13-dependent disassembly of Mad2- and Rev7-containing complexes and, through this antagonism, promotes timely spindle assembly checkpoint (SAC) silencing, faithful chromosome segregation, insulin signaling, and homology-directed repair (HDR) of DNA double-strand breaks. We identified a homozygous MAD2L1BP nonsense variant, R253*, in 2 siblings with microcephaly, epileptic encephalopathy, and juvenile granulosa cell tumors of ovary and testis. Patient-derived cells exhibited high-grade mosaic variegated aneuploidy, slowed-down proliferation, and instability of truncated p31comet mRNA and protein. Corresponding recombinant p31comet was defective in Trip13, Mad2, and Rev7 binding and unable to support SAC silencing or HDR. Furthermore, C-terminal truncation abrogated an identified interaction of p31comet with tp53. Another homozygous truncation, R227*, detected in an early-deceased patient with low-level aneuploidy, severe epileptic encephalopathy, and frequent blood glucose elevations, likely corresponds to complete loss of function, as in Mad2l1bp-/- mice. Thus, human mutations of p31comet are linked to aneuploidy and tumor predisposition.
Collapse
Affiliation(s)
- Ghada M. H. Abdel-Salam
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | | | - Elise Gradhand
- Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt, Germany
| | - Stephan Käseberg
- Institute of Human Genetics, University Medical Center Mainz, Mainz, Germany
| | - Jennifer Winter
- Institute of Human Genetics, University Medical Center Mainz, Mainz, Germany
| | - Ann-Sophie Pabst
- Institute of Human Genetics, University Medical Center Mainz, Mainz, Germany
| | - Maha M. Eid
- Human Cytogenetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | | | - Peter Nürnberg
- Cologne Center for Genomics and
- Center for Molecular Medicine Cologne, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | | | | - Ines B. Brecht
- Paediatric Haematology/Oncology, Department of Paediatrics, University Hospital Tübingen, Tübingen, Germany
| | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, Eberhard-Karls University, Tübingen, Germany
| | - Axel Gschwind
- Institute of Medical Genetics and Applied Genomics, Eberhard-Karls University, Tübingen, Germany
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, Eberhard-Karls University, Tübingen, Germany
| | - Friederike Häuser
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany
| | - Heidi Rossmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany
| | - Mohamed S. Abdel-Hamid
- Medical Molecular Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Ibrahim Hegazy
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Ahmed G. Mohamed
- Pediatrics Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | | | | - Jillian N. Pearring
- Department of Ophthalmology and Visual Sciences and
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Rolph Pfundt
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences and
| | - Alexander Hoischen
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences and
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Christian Gilissen
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences and
| | - Dennis Strand
- Department of Internal Medicine I, University Medical Center Mainz, Mainz, Germany
| | - Ulrich Zechner
- Institute of Human Genetics, University Medical Center Mainz, Mainz, Germany
- Senckenberg Centre for Human Genetics, Frankfurt am Main, Germany
| | - Soha A. Tashkandi
- Cytogenetics Laboratory, Pathology and Clinical Laboratory Medicine Administration (PCLMA), King Fahad Medical City, Second Central Healthcare Cluster (C2), Riyadh, Saudi Arabia
| | - Eissa A. Faqeih
- Section of Medical Genetics, Children’s Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Olaf Stemmann
- Chair of Genetics, University of Bayreuth, Bayreuth, Germany
| | - Susanne Strand
- Department of Internal Medicine I, University Medical Center Mainz, Mainz, Germany
| | - Hanno J. Bolz
- Senckenberg Centre for Human Genetics, Frankfurt am Main, Germany
- Institute of Human Genetics, University Hospital of Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
20
|
Herruzo E, Sánchez-Díaz E, González-Arranz S, Santos B, Carballo JA, San-Segundo PA. Exportin-mediated nucleocytoplasmic transport maintains Pch2 homeostasis during meiosis. PLoS Genet 2023; 19:e1011026. [PMID: 37948444 PMCID: PMC10688877 DOI: 10.1371/journal.pgen.1011026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/30/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
The meiotic recombination checkpoint reinforces the order of events during meiotic prophase I, ensuring the accurate distribution of chromosomes to the gametes. The AAA+ ATPase Pch2 remodels the Hop1 axial protein enabling adequate levels of Hop1-T318 phosphorylation to support the ensuing checkpoint response. While these events are localized at chromosome axes, the checkpoint activating function of Pch2 relies on its cytoplasmic population. In contrast, forced nuclear accumulation of Pch2 leads to checkpoint inactivation. Here, we reveal the mechanism by which Pch2 travels from the cell nucleus to the cytoplasm to maintain Pch2 cellular homeostasis. Leptomycin B treatment provokes the nuclear accumulation of Pch2, indicating that its nucleocytoplasmic transport is mediated by the Crm1 exportin recognizing proteins containing Nuclear Export Signals (NESs). Consistently, leptomycin B leads to checkpoint inactivation and impaired Hop1 axial localization. Pch2 nucleocytoplasmic traffic is independent of its association with Zip1 and Orc1. We also identify a functional NES in the non-catalytic N-terminal domain of Pch2 that is required for its nucleocytoplasmic trafficking and proper checkpoint activity. In sum, we unveil another layer of control of Pch2 function during meiosis involving nuclear export via the exportin pathway that is crucial to maintain the critical balance of Pch2 distribution among different cellular compartments.
Collapse
Affiliation(s)
- Esther Herruzo
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, Spain
| | | | | | - Beatriz Santos
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, Spain
- Departamento de Microbiología y Genética. University of Salamanca. Salamanca, Spain
| | - Jesús A. Carballo
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, Spain
| | | |
Collapse
|
21
|
Xue J, Wu H, Shi Y, Li Z. TRIP13 overexpression in hepatocellular carcinoma: implications for poor prognosis and immune cell infiltration. Discov Oncol 2023; 14:176. [PMID: 37740123 PMCID: PMC10516817 DOI: 10.1007/s12672-023-00792-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Abstract
PURPOSE The overexpression of TRIP13 has been observed in many types of cancer and has been identified as an oncogene. However, its role in hepatocellular carcinoma (HCC) has not been extensively studied. This study aimed to investigate the expression of TRIP13 in HCC and its impact on immune cell infiltration and prognosis. METHODS We analyzed TCGA and GSE62232 datasets to assess TRIP13 expression in HCC. Kaplan-Meier and subgroup analysis were performed to examine the correlation between TRIP13 expression and HCC. Univariate and Cox regression analysis were conducted to determine the predictive value of TRIP13 in assessing patient outcomes. A nomogram was developed using TRIP13 mRNA expression to predict HCC prognosis. TRIP13 expression was validated using immunohistochemistry in our patient cohort. Survival and subgroup analyses were conducted to investigate the role of TRIP13 in HCC prognosis. RESULTS The results indicated that TRIP13 upregulation in HCC was a strong independent predictor of poor outcome, as determined by Kaplan-Meier and Cox regression analyses. A high AUC value of 0.982 from ROC curves suggested that TRIP13 upregulation could serve as a reliable diagnostic indicator for HCC. The immunohistochemical validation of TRIP13 expression in the patient cohort confirmed its prognostic significance, and high TRIP13 expression was found to be associated with increased infiltration of Th2 cells and decreased infiltration of neutrophils, Th17 cells, and dendritic cells. CONCLUSION These findings suggest that TRIP13 could be a potential prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Jiapeng Xue
- Department of General Surgery, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Hongfen Wu
- Department of Gastroenterology, West China (Sanya) Hospital, Sichuan University, Sanya, China
| | - Yun Shi
- Department of General Surgery, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhi Li
- Department of General Surgery, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
22
|
Libes J, Hol J, Neto JCDA, Vallance KL, Tinteren HV, Benedetti DJ, Villar GLR, Duncan C, Ehrlich PF. Pediatric renal tumor epidemiology: Global perspectives, progress, and challenges. Pediatr Blood Cancer 2023; 70 Suppl 2:e30343. [PMID: 37096796 DOI: 10.1002/pbc.30343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 04/26/2023]
Abstract
Pediatric renal tumors account for 3%-11% of childhood cancers, the most common of which is Wilms tumor or nephroblastoma. Epidemiology plays a key role in cancer prevention and control by describing the distribution of cancer and discovering risk factors for cancer. Large pediatric research consortium trials have led to a clearer understanding of pediatric renal tumors, identification of risk factors, and development of more risk-adapted therapies. These therapies have improved event-free and overall survival for children. However, several challenges remain and not all children have benefited from the improved outcomes. In this article, we review the global epidemiology of pediatric renal tumors, including key consortium and global studies. We identify current knowledge gaps and challenges facing both high and low middle-incomes countries.
Collapse
Affiliation(s)
- Jaime Libes
- Department of Pediatrics, University of Illinois College of Medicine, Peoria, Illinois, USA
| | - Janna Hol
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | | | - Kelly L Vallance
- Hematology and Oncology, Cook Children's Medical Center, Fort Worth, Texas, USA
| | | | - Daniel J Benedetti
- Department of Pediatrics, Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Gema Lucia Ramirez Villar
- Hospital Universitario Virgen del Rocio, Pediatric Oncology Unit, University of Seville, Seville, Spain
| | - Catriona Duncan
- Great Ormond Street Hospital for Children (GOSH), NHS Foundation Trust, NIHR, Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Peter F Ehrlich
- Department of Pediatric Surgery, C.S. Mott Children's Hospital, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
23
|
Xiao Z, Li M, Zhang X, Rong X, Xu H. TRIP13 overexpression promotes gefitinib resistance in non‑small cell lung cancer via regulating autophagy and phosphorylation of the EGFR signaling pathway. Oncol Rep 2023; 49:84. [PMID: 36896765 PMCID: PMC10035062 DOI: 10.3892/or.2023.8521] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/16/2023] [Indexed: 03/10/2023] Open
Abstract
Non‑small cell lung cancer (NSCLC) accounts for the majority of lung cancers and remains the most common cause of cancer‑related death. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR‑TKIs) have been used as first‑line treatment for patients with NSCLC showing EGFR mutations. Unfortunately, drug resistance is a crucial barrier affecting the treatment of patients with NSCLC. Thyroid hormone receptor interactor 13 (TRIP13) is an ATPase that is overexpressed in numerous tumors and is involved in drug resistance. However, whether TRIP13 plays a role in regulating sensitivity to EGFR‑TKIs in NSCLC remains unknown. TRIP13 expression was evaluated in gefitinib‑sensitive (HCC827) and ‑resistant (HCC827GR and H1975) cell lines. The effect of TRIP13 on gefitinib sensitivity was assessed using the MTS assay. The expression of TRIP13 was upregulated or knocked down to determine its effect on cell growth, colony formation, apoptosis and autophagy. Additionally, the regulatory mechanism of TRIP13 on EGFR and its downstream pathways in NSCLC cells were examined using western blotting, immunofluorescence and co‑immunoprecipitation assays. The expression levels of TRIP13 were significantly higher in gefitinib‑resistant than in gefitinib‑sensitive NSCLC cells. TRIP13 upregulation enhanced cell proliferation and colony formation while reducing the apoptosis of gefitinib‑resistant NSCLC cells, suggesting that TRIP13 may facilitate gefitinib resistance in NSCLC cells. In addition, TRIP13 improved autophagy to desensitize gefitinib in NSCLC cells. Furthermore, TRIP13 interacted with EGFR and induced its phosphorylation and downstream pathways in NSCLC cells. The present study demonstrated that TRIP13 overexpression promotes gefitinib resistance in NSCLC by regulating autophagy and activating the EGFR signaling pathway. Thus, TRIP13 could be used as a biomarker and therapeutic target for gefitinib resistance in NSCLC.
Collapse
Affiliation(s)
- Zhangxian Xiao
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Mingxi Li
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xiaoqian Zhang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xuezhu Rong
- Department of Pathology, The First Hospital of China Medical University, Heping, Shenyang, Liaoning 110001, P.R. China
| | - Hongtao Xu
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
24
|
Carraro M, Hendriks IA, Hammond CM, Solis-Mezarino V, Völker-Albert M, Elsborg JD, Weisser MB, Spanos C, Montoya G, Rappsilber J, Imhof A, Nielsen ML, Groth A. DAXX adds a de novo H3.3K9me3 deposition pathway to the histone chaperone network. Mol Cell 2023; 83:1075-1092.e9. [PMID: 36868228 PMCID: PMC10114496 DOI: 10.1016/j.molcel.2023.02.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 11/29/2022] [Accepted: 02/08/2023] [Indexed: 03/05/2023]
Abstract
A multitude of histone chaperones are required to support histones from their biosynthesis until DNA deposition. They cooperate through the formation of histone co-chaperone complexes, but the crosstalk between nucleosome assembly pathways remains enigmatic. Using exploratory interactomics, we define the interplay between human histone H3-H4 chaperones in the histone chaperone network. We identify previously uncharacterized histone-dependent complexes and predict the structure of the ASF1 and SPT2 co-chaperone complex, expanding the role of ASF1 in histone dynamics. We show that DAXX provides a unique functionality to the histone chaperone network, recruiting histone methyltransferases to promote H3K9me3 catalysis on new histone H3.3-H4 prior to deposition onto DNA. Hereby, DAXX provides a molecular mechanism for de novo H3K9me3 deposition and heterochromatin assembly. Collectively, our findings provide a framework for understanding how cells orchestrate histone supply and employ targeted deposition of modified histones to underpin specialized chromatin states.
Collapse
Affiliation(s)
- Massimo Carraro
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ivo A Hendriks
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Colin M Hammond
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | - Jonas D Elsborg
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Melanie B Weisser
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christos Spanos
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK; Technische Universität Berlin, Chair of Bioanalytics, Berlin, Germany
| | - Guillermo Montoya
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK; Technische Universität Berlin, Chair of Bioanalytics, Berlin, Germany
| | - Axel Imhof
- EpiQMAx GmbH, Planegg, Germany; Faculty of Medicine, Biomedical Center, Protein Analysis Unit, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Michael L Nielsen
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
25
|
McAinsh AD, Kops GJPL. Principles and dynamics of spindle assembly checkpoint signalling. Nat Rev Mol Cell Biol 2023:10.1038/s41580-023-00593-z. [PMID: 36964313 DOI: 10.1038/s41580-023-00593-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 03/26/2023]
Abstract
The transmission of a complete set of chromosomes to daughter cells during cell division is vital for development and tissue homeostasis. The spindle assembly checkpoint (SAC) ensures correct segregation by informing the cell cycle machinery of potential errors in the interactions of chromosomes with spindle microtubules prior to anaphase. To do so, the SAC monitors microtubule engagement by specialized structures known as kinetochores and integrates local mechanical and chemical cues such that it can signal in a sensitive, responsive and robust manner. In this Review, we discuss how SAC proteins interact to allow production of the mitotic checkpoint complex (MCC) that halts anaphase progression by inhibiting the anaphase-promoting complex/cyclosome (APC/C). We highlight recent advances aimed at understanding the dynamic signalling properties of the SAC and how it interprets various naturally occurring intermediate attachment states. Further, we discuss SAC signalling in the context of the mammalian multisite kinetochore and address the impact of the fibrous corona. We also identify current challenges in understanding how the SAC ensures high-fidelity chromosome segregation.
Collapse
Affiliation(s)
- Andrew D McAinsh
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK.
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
| | - Geert J P L Kops
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
26
|
Libes J, Hol J, Neto JCDA, Vallance KL, Tinteren HV, Benedetti DJ, Villar GLR, Duncan C, Ehrlich PF. Pediatric renal tumor epidemiology: Global perspectives, progress, and challenges. Pediatr Blood Cancer 2023; 70:e30006. [PMID: 36326750 DOI: 10.1002/pbc.30006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022]
Abstract
Pediatric renal tumors account for 3%-11% of childhood cancers, the most common of which is Wilms tumor or nephroblastoma. Epidemiology plays a key role in cancer prevention and control by describing the distribution of cancer and discovering risk factors for cancer. Large pediatric research consortium trials have led to a clearer understanding of pediatric renal tumors, identification of risk factors, and development of more risk-adapted therapies. These therapies have improved event-free and overall survival for children. However, several challenges remain and not all children have benefited from the improved outcomes. In this article, we review the global epidemiology of pediatric renal tumors, including key consortium and global studies. We identify current knowledge gaps and challenges facing both high and low middle-incomes countries.
Collapse
Affiliation(s)
- Jaime Libes
- Department of Pediatrics, University of Illinois College of Medicine, Peoria, Illinois, USA
| | - Janna Hol
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | | | - Kelly L Vallance
- Hematology and Oncology, Cook Children's Medical Center, Fort Worth, Texas, USA
| | | | - Daniel J Benedetti
- Department of Pediatrics, Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Gema Lucia Ramirez Villar
- Hospital Universitario Virgen del Rocio, Pediatric Oncology Unit, University of Seville, Seville, Spain
| | - Catriona Duncan
- Great Ormond Street Hospital for Children (GOSH), NHS Foundation Trust, NIHR, Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Peter F Ehrlich
- Department of Pediatric Surgery, C.S. Mott Children's Hospital, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
27
|
TRIP13 Participates in Immediate-Early Sensing of DNA Strand Breaks and ATM Signaling Amplification through MRE11. Cells 2022; 11:cells11244095. [PMID: 36552858 PMCID: PMC9776959 DOI: 10.3390/cells11244095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Thyroid hormone receptor-interacting protein 13 (TRIP13) participates in various regulatory steps related to the cell cycle, such as the mitotic spindle assembly checkpoint and meiotic recombination, possibly by interacting with members of the HORMA domain protein family. Recently, it was reported that TRIP13 could regulate the choice of the DNA repair pathway, i.e., homologous recombination (HR) or nonhomologous end-joining (NHEJ). However, TRIP13 is recruited to DNA damage sites within a few seconds after damage and may therefore have another function in DNA repair other than regulation of the pathway choice. Furthermore, the depletion of TRIP13 inhibited both HR and NHEJ, suggesting that TRIP13 plays other roles besides regulation of choice between HR and NHEJ. To explore the unidentified functions of TRIP13 in the DNA damage response, we investigated its genome-wide interaction partners in the context of DNA damage using quantitative proteomics with proximity labeling. We identified MRE11 as a novel interacting partner of TRIP13. TRIP13 controlled the recruitment of MDC1 to DNA damage sites by regulating the interaction between MDC1 and the MRN complex. Consistently, TRIP13 was involved in ATM signaling amplification. Our study provides new insight into the function of TRIP13 in immediate-early DNA damage sensing and ATM signaling activation.
Collapse
|
28
|
Splicing-Disrupting Mutations in Inherited Predisposition to Solid Pediatric Cancer. Cancers (Basel) 2022; 14:cancers14235967. [PMID: 36497448 PMCID: PMC9739414 DOI: 10.3390/cancers14235967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
The prevalence of hereditary cancer in children was estimated to be very low until recent studies suggested that at least 10% of pediatric cancer patients carry a germline mutation in a cancer predisposition gene. A significant proportion of pathogenic variants associated with an increased risk of hereditary cancer are variants affecting splicing. RNA splicing is an essential process involved in different cellular processes such as proliferation, survival, and differentiation, and alterations in this pathway have been implicated in many human cancers. Hereditary cancer genes are highly susceptible to splicing mutations, and among them there are several genes that may contribute to pediatric solid tumors when mutated in the germline. In this review, we have focused on the analysis of germline splicing-disrupting mutations found in pediatric solid tumors, as the discovery of pathogenic splice variants in pediatric cancer is a growing field for the development of personalized therapies. Therapies developed to correct aberrant splicing in cancer are also discussed as well as the options to improve the diagnostic yield based on the increase in the knowledge in splicing.
Collapse
|
29
|
Villarroya-Beltri C, Osorio A, Torres-Ruiz R, Gómez-Sánchez D, Trakala M, Sánchez-Belmonte A, Mercadillo F, Hurtado B, Pitarch B, Hernández-Núñez A, Gómez-Caturla A, Rueda D, Perea J, Rodríguez-Perales S, Malumbres M, Urioste M. Biallelic germline mutations in MAD1L1 induce a syndrome of aneuploidy with high tumor susceptibility. SCIENCE ADVANCES 2022; 8:eabq5914. [PMID: 36322655 PMCID: PMC9629740 DOI: 10.1126/sciadv.abq5914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Germline mutations leading to aneuploidy are rare, and their tumor-promoting properties are mostly unknown at the molecular level. We report here novel germline biallelic mutations in MAD1L1, encoding the spindle assembly checkpoint (SAC) protein MAD1, in a 36-year-old female with a dozen of neoplasias. Functional studies demonstrated lack of full-length protein and deficient SAC response, resulting in ~30 to 40% of aneuploid blood cells. Single-cell RNA analysis identified mitochondrial stress accompanied by systemic inflammation with enhanced interferon and NFκB signaling both in aneuploid and euploid cells, suggesting a non-cell autonomous response. MAD1L1 mutations resulted in specific clonal expansions of γδ T cells with chromosome 18 gains and enhanced cytotoxic profile as well as intermediate B cells with chromosome 12 gains and transcriptomic signatures characteristic of leukemia cells. These data point to MAD1L1 mutations as the cause of a new variant of mosaic variegated aneuploidy with systemic inflammation and unprecedented tumor susceptibility.
Collapse
Affiliation(s)
| | - Ana Osorio
- Familial Cancer Clinical Unit, CNIO, Madrid E-28029, Spain
| | - Raúl Torres-Ruiz
- Cytogenetic Unit, CNIO, Madrid E-28029, Spain
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Advanced Therapies Unit, Hematopoietic Innovative Therapies Division, Instituto de Investigación Sanitaria Fundacion Jimenez Díaz (IIS-FJD, UAM), Madrid E-28040, Spain
| | - David Gómez-Sánchez
- Hereditary Cancer Laboratory, Doce de Octubre University Hospital, i+12 Research Institute, Madrid, Spain
- Clinical and Translational Lung Cancer Research Unit, i+12 Research Institute and Biomedical Research Networking Center in Oncology (CIBERONC), Madrid, Spain
| | - Marianna Trakala
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Agustin Sánchez-Belmonte
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | | | - Begoña Hurtado
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | - Borja Pitarch
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | | | | | - Daniel Rueda
- Hereditary Cancer Laboratory, Doce de Octubre University Hospital, i+12 Research Institute, Madrid, Spain
| | - José Perea
- Molecular Medicine Unit, Department of Medicine, Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Surgery Department, Vithas Madrid Arturo Soria Hospital, Madrid, Spain
| | | | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | - Miguel Urioste
- Familial Cancer Clinical Unit, CNIO, Madrid E-28029, Spain
| |
Collapse
|
30
|
Grange LJ, Reynolds JJ, Ullah F, Isidor B, Shearer RF, Latypova X, Baxley RM, Oliver AW, Ganesh A, Cooke SL, Jhujh SS, McNee GS, Hollingworth R, Higgs MR, Natsume T, Khan T, Martos-Moreno GÁ, Chupp S, Mathew CG, Parry D, Simpson MA, Nahavandi N, Yüksel Z, Drasdo M, Kron A, Vogt P, Jonasson A, Seth SA, Gonzaga-Jauregui C, Brigatti KW, Stegmann APA, Kanemaki M, Josifova D, Uchiyama Y, Oh Y, Morimoto A, Osaka H, Ammous Z, Argente J, Matsumoto N, Stumpel CTRM, Taylor AMR, Jackson AP, Bielinsky AK, Mailand N, Le Caignec C, Davis EE, Stewart GS. Pathogenic variants in SLF2 and SMC5 cause segmented chromosomes and mosaic variegated hyperploidy. Nat Commun 2022; 13:6664. [PMID: 36333305 PMCID: PMC9636423 DOI: 10.1038/s41467-022-34349-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Embryonic development is dictated by tight regulation of DNA replication, cell division and differentiation. Mutations in DNA repair and replication genes disrupt this equilibrium, giving rise to neurodevelopmental disease characterized by microcephaly, short stature and chromosomal breakage. Here, we identify biallelic variants in two components of the RAD18-SLF1/2-SMC5/6 genome stability pathway, SLF2 and SMC5, in 11 patients with microcephaly, short stature, cardiac abnormalities and anemia. Patient-derived cells exhibit a unique chromosomal instability phenotype consisting of segmented and dicentric chromosomes with mosaic variegated hyperploidy. To signify the importance of these segmented chromosomes, we have named this disorder Atelís (meaning - incomplete) Syndrome. Analysis of Atelís Syndrome cells reveals elevated levels of replication stress, partly due to a reduced ability to replicate through G-quadruplex DNA structures, and also loss of sister chromatid cohesion. Together, these data strengthen the functional link between SLF2 and the SMC5/6 complex, highlighting a distinct role for this pathway in maintaining genome stability.
Collapse
Affiliation(s)
- Laura J Grange
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - John J Reynolds
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Farid Ullah
- Advanced Center for Genetic and Translational Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
- National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Faisalabad, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU Nantes, Nantes Cedex 1, France
| | - Robert F Shearer
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Xenia Latypova
- Service de Génétique Médicale, CHU Nantes, Nantes Cedex 1, France
| | - Ryan M Baxley
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Antony W Oliver
- Genome Damage and Stability Centre, Science Park Road, University of Sussex, Falmer, Brighton, UK
| | - Anil Ganesh
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Sophie L Cooke
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Satpal S Jhujh
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Gavin S McNee
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Robert Hollingworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Martin R Higgs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Toyoaki Natsume
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka, Japan
| | - Tahir Khan
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
| | - Gabriel Á Martos-Moreno
- Hospital Infantil Universitario Niño Jesús, CIBER de fisiopatología de la obesidad y nutrición (CIBEROBN), Instituto de Salud Carlos III, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Christopher G Mathew
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - David Parry
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, The University of Edinburgh, Edinburgh, Scotland
| | - Michael A Simpson
- Department of Medical and Molecular Genetics, Faculty of Life Science and Medicine, Guy's Hospital, King's College London, London, UK
| | - Nahid Nahavandi
- Bioscientia Institute for Medical Diagnostics, Human Genetics, Ingelheim, Germany
| | - Zafer Yüksel
- Bioscientia Institute for Medical Diagnostics, Human Genetics, Ingelheim, Germany
| | - Mojgan Drasdo
- Bioscientia Institute for Medical Diagnostics, Human Genetics, Ingelheim, Germany
| | - Anja Kron
- Bioscientia Institute for Medical Diagnostics, Human Genetics, Ingelheim, Germany
| | - Petra Vogt
- Bioscientia Institute for Medical Diagnostics, Human Genetics, Ingelheim, Germany
| | - Annemarie Jonasson
- Bioscientia Institute for Medical Diagnostics, Human Genetics, Ingelheim, Germany
| | | | - Claudia Gonzaga-Jauregui
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México, Querétaro, México
| | | | - Alexander P A Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Masato Kanemaki
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | | | - Yuri Uchiyama
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yukiko Oh
- Department of Paediatrics, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Akira Morimoto
- Department of Paediatrics, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Hitoshi Osaka
- Department of Paediatrics, Jichi Medical University School of Medicine, Tochigi, Japan
| | | | - Jesús Argente
- Hospital Infantil Universitario Niño Jesús, CIBER de fisiopatología de la obesidad y nutrición (CIBEROBN), Instituto de Salud Carlos III, Universidad Autónoma de Madrid, Madrid, Spain
- IMDEA Alimentación/IMDEA Food, Madrid, Spain
| | - Naomichi Matsumoto
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Constance T R M Stumpel
- Department of Clinical Genetics and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alexander M R Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Andrew P Jackson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, The University of Edinburgh, Edinburgh, Scotland
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Niels Mailand
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cedric Le Caignec
- Centre Hospitalier Universitaire Toulouse, Service de Génétique Médicale and ToNIC, Toulouse NeuroImaging Center, Inserm, UPS, Université de Toulouse, Toulouse, France.
| | - Erica E Davis
- Advanced Center for Genetic and Translational Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA.
- Department of Pediatrics; Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
31
|
Baker NE, Montagna C. Reducing the aneuploid cell burden - cell competition and the ribosome connection. Dis Model Mech 2022; 15:dmm049673. [PMID: 36444717 PMCID: PMC10621665 DOI: 10.1242/dmm.049673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Aneuploidy, the gain or loss of chromosomes, is the cause of birth defects and miscarriage and is almost ubiquitous in cancer cells. Mosaic aneuploidy causes cancer predisposition, as well as age-related disorders. Despite the cell-intrinsic mechanisms that prevent aneuploidy, sporadic aneuploid cells do arise in otherwise normal tissues. These aneuploid cells can differ from normal cells in the copy number of specific dose-sensitive genes, and may also experience proteotoxic stress associated with mismatched expression levels of many proteins. These differences may mark aneuploid cells for recognition and elimination. The ribosomal protein gene dose in aneuploid cells could be important because, in Drosophila, haploinsufficiency for these genes leads to elimination by the process of cell competition. Constitutive haploinsufficiency for human ribosomal protein genes causes Diamond Blackfan anemia, but it is not yet known whether ribosomal protein gene dose contributes to aneuploid cell elimination in mammals. In this Review, we discuss whether cell competition on the basis of ribosomal protein gene dose is a tumor suppressor mechanism, reducing the accumulation of aneuploid cells. We also discuss how this might relate to the tumor suppressor function of p53 and the p53-mediated elimination of aneuploid cells from murine embryos, and how cell competition defects could contribute to the cancer predisposition of Diamond Blackfan anemia.
Collapse
Affiliation(s)
- Nicholas E. Baker
- Departments of Genetics, Developmental and Molecular Biology, and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Cristina Montagna
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| |
Collapse
|
32
|
Solovova OA, Chernykh VB. Genetics of Oocyte Maturation Defects and Early Embryo Development Arrest. Genes (Basel) 2022; 13:1920. [PMID: 36360157 PMCID: PMC9689903 DOI: 10.3390/genes13111920] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 08/08/2023] Open
Abstract
Various pathogenic factors can lead to oogenesis failure and seriously affect both female reproductive health and fertility. Genetic factors play an important role in folliculogenesis and oocyte maturation but still need to be clarified. Oocyte maturation is a well-organized complex process, regulated by a large number of genes. Pathogenic variants in these genes as well as aneuploidy, defects in mitochondrial genome, and other genetic and epigenetic factors can result in unexplained infertility, early pregnancy loss, and recurrent failures of IVF/ICSI programs due to poor ovarian response to stimulation, oocyte maturation arrest, poor gamete quality, fertilization failure, or early embryonic developmental arrest. In this paper, we review the main genes, as well as provide a description of the defects in the mitochondrial genome, associated with female infertility.
Collapse
|
33
|
Hu H, Zhang S, Guo J, Meng F, Chen X, Gong F, Lu G, Zheng W, Lin G. Identification of Novel Variants of Thyroid Hormone Receptor Interaction Protein 13 That Cause Female Infertility Characterized by Zygotic Cleavage Failure. Front Physiol 2022; 13:899149. [PMID: 35812326 PMCID: PMC9259851 DOI: 10.3389/fphys.2022.899149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Zygotic cleavage failure (ZCF) is a severe, early type of embryonic arrest in which zygotes cannot complete the first cleavage. Although mutations in BTG4 and CHEK1 have been identified as genetic causes of ZCF, these genes only explain a small population of ZCF cases. Thus, the underlying genetic causes for other affected individuals need to be identified. Here, we identified three TRIP13 missense variants responsible for ZCF in two patients and showed that they followed a recessive inheritance pattern. All three variants resulted in obvious changes in hydrogen bonding and consistent increase in DNA damage. Additionally, transcriptomic sequencing of oocytes and arrested embryos containing these variants suggested a greater number of differentially expressed transcripts in germinal vesicle (GV) oocytes than in 1-cell embryos. Vital genes for energy metabolism and cell cycle procession were widely and markedly downregulated, while DNA repair-related genes were significantly upregulated in both GV oocytes and 1-cell embryos of patients. These findings highlight a critical role of TRIP13 in meiosis and mitosis, as well as expand the genetic and phenotypic spectra of TR1P13 variants with respect to female infertility, especially in relation to ZCF.
Collapse
Affiliation(s)
- Huiling Hu
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
| | - Shuoping Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Jing Guo
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Fei Meng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Xueqin Chen
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
| | - Fei Gong
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Guangxiu Lu
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Wei Zheng
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- *Correspondence: Wei Zheng, ; Ge Lin,
| | - Ge Lin
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- *Correspondence: Wei Zheng, ; Ge Lin,
| |
Collapse
|
34
|
Raina VB, Schoot Uiterkamp M, Vader G. Checkpoint control in meiotic prophase: Idiosyncratic demands require unique characteristics. Curr Top Dev Biol 2022; 151:281-315. [PMID: 36681474 DOI: 10.1016/bs.ctdb.2022.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chromosomal transactions such as replication, recombination and segregation are monitored by cell cycle checkpoint cascades. These checkpoints ensure the proper execution of processes that are needed for faithful genome inheritance from one cell to the next, and across generations. In meiotic prophase, a specialized checkpoint monitors defining events of meiosis: programmed DNA break formation, followed by dedicated repair through recombination based on interhomolog (IH) crossovers. This checkpoint shares molecular characteristics with canonical DNA damage checkpoints active during somatic cell cycles. However, idiosyncratic requirements of meiotic prophase have introduced unique features in this signaling cascade. In this review, we discuss the unique features of the meiotic prophase checkpoint. While being related to canonical DNA damage checkpoint cascades, the meiotic prophase checkpoint also shows similarities with the spindle assembly checkpoint (SAC) that guards chromosome segregation. We highlight these emerging similarities in the signaling logic of the checkpoints that govern meiotic prophase and chromosome segregation, and how thinking of these similarities can help us better understand meiotic prophase control. We also discuss work showing that, when aberrantly expressed, components of the meiotic prophase checkpoint might alter DNA repair fidelity and chromosome segregation in cancer cells. Considering checkpoint function in light of demands imposed by the special characteristics of meiotic prophase helps us understand checkpoint integration into the meiotic cell cycle machinery.
Collapse
Affiliation(s)
- Vivek B Raina
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York City, NY, United States
| | - Maud Schoot Uiterkamp
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Section of Oncogenetics, Department of Human Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Gerben Vader
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Section of Oncogenetics, Department of Human Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
35
|
Feng B, Chang G, Zhang Q, Li X, Tang Y, Gu S, Wang Y, Wang J, Wang X. A novel CEP57 variant associated with mosaic variegated aneuploidy syndrome in a Chinese female presenting with short stature, microcephaly, brachydactyly, and small teeth. Mol Genet Genomic Med 2022; 10:e1951. [PMID: 35434947 PMCID: PMC9184657 DOI: 10.1002/mgg3.1951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 11/21/2022] Open
Abstract
Background Mosaic variegated aneuploidy (MVA) syndrome is a rare, autosomal recessive genetic disease. Here, we report an ultra‐rare case of MVA syndrome associated with a CEP57 variant. Methods We retrospectively analyzed the clinical data of a 9‐year‐old female patient and surveyed her family members. Whole‐exome sequencing and karyotype analysis were performed; suspected mutations were verified using Sanger sequencing. Results The patient presented with intrauterine growth restriction, short stature, microcephaly, facial dysmorphism, brachydactyly, and small teeth, and she showed unsatisfactory response to GH replacement therapy. Laboratory tests revealed high insulin‐like growth factor‐1 levels. Karyotype analysis of the peripheral blood showed mosaic variegated aneuploidies. Whole‐exome and Sanger sequencing revealed a novel homozygous nonsense variant, NM_014679.4: c.312 T > G, in CEP57 that leads to translation termination (p.Tyr104*). The parents were heterozygous carriers of the identified variant. Conclusion This study presents an ultra‐rare case of CEP57‐driven MVA syndrome, identifying a novel homozygous nonsense variant of CEP57 (p.Tyr104*). Our findings enrich the CEP57 mutational spectrum and emphasize the importance of genetic testing in patients with microcephaly and short stature. Furthermore, we conclude that growth hormone treatment is ineffective in such patients.
Collapse
Affiliation(s)
- Biyun Feng
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guoying Chang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qianwen Zhang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Li
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yijun Tang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shili Gu
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yirou Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
36
|
Xu H, Ma Z, Mo X, Chen X, Xu F, Wu F, Chen H, Zhou G, Xia H, Zhang C. Inducing Synergistic DNA Damage by TRIP13 and PARP1 Inhibitors Provides a Potential Treatment for Hepatocellular Carcinoma. J Cancer 2022; 13:2226-2237. [PMID: 35517402 PMCID: PMC9066198 DOI: 10.7150/jca.66020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
Thyroid hormone receptor interactor 13 (TRIP13), an AAA-ATPase, participates in the development of many cancers. This study explores the function of TRIP13 and synergistic effects of TRIP13 and PARP1 inhibitors in hepatocellular carcinoma (HCC). The dose-dependent effects of TRIP13 and PARP1 inhibitors on HCC cells proliferation or migration were investigated by the CCK-8 and Transwell assays. Using siRNA or lentivirus to knock down TRIP13, we tested HCC cell and tumor growth in vitro and in vivo. The DNA damage caused by TRIP13 and PARP1 inhibitors was measured by the phosphorylation of H2AX, one of the DNA damage biomarkers. The phosphorylation of H2AX was increased after treatment with DCZ0415 or TRIP13 knockdown. Combining DCZ0415 with PARP1 inhibitor, Olaparib induced synergistic anti-HCC activity. We also found that the overexpression of TRIP13 is significantly associated with early recurrent HCC and poor survival. Up-regulation of TRIP13 in HCC was regulated by transcription factor SP1. In conclusion, our study demonstrated that DCZ0415 targeting TRIP13 impaired non-homologous end-joining repair to inhibit HCC progression and had a synergistic effect with PARP1 inhibitor Olaparib in HCC, suggesting a potential treatment of HCC.
Collapse
Affiliation(s)
- Haojun Xu
- School of Basic Medical Sciences &Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China
| | - Zhijie Ma
- School of Basic Medical Sciences &Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China
| | - Xiao Mo
- Department of Pathology, The first people's hospital of Foshan, Foshan 528041, China.,School of Basic Medical Sciences &Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoli Chen
- Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Fanggui Xu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Fubing Wu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Hongjin Chen
- School of Basic Medical Sciences &Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China
| | - Guoren Zhou
- Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University& Jiangsu Institute of Cancer Research, Nanjing 2100092, China
| | - Hongping Xia
- School of Basic Medical Sciences &Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China.,Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Chengfei Zhang
- Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
37
|
Vukušić K, Tolić IM. Polar Chromosomes-Challenges of a Risky Path. Cells 2022; 11:1531. [PMID: 35563837 PMCID: PMC9101661 DOI: 10.3390/cells11091531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/29/2022] Open
Abstract
The process of chromosome congression and alignment is at the core of mitotic fidelity. In this review, we discuss distinct spatial routes that the chromosomes take to align during prometaphase, which are characterized by distinct biomolecular requirements. Peripheral polar chromosomes are an intriguing case as their alignment depends on the activity of kinetochore motors, polar ejection forces, and a transition from lateral to end-on attachments to microtubules, all of which can result in the delayed alignment of these chromosomes. Due to their undesirable position close to and often behind the spindle pole, these chromosomes may be particularly prone to the formation of erroneous kinetochore-microtubule interactions, such as merotelic attachments. To prevent such errors, the cell employs intricate mechanisms to preposition the spindle poles with respect to chromosomes, ensure the formation of end-on attachments in restricted spindle regions, repair faulty attachments by error correction mechanisms, and delay segregation by the spindle assembly checkpoint. Despite this protective machinery, there are several ways in which polar chromosomes can fail in alignment, mis-segregate, and lead to aneuploidy. In agreement with this, polar chromosomes are present in certain tumors and may even be involved in the process of tumorigenesis.
Collapse
Affiliation(s)
- Kruno Vukušić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | | |
Collapse
|
38
|
Capalbo A, Buonaiuto S, Figliuzzi M, Damaggio G, Girardi L, Caroselli S, Poli M, Patassini C, Cetinkaya M, Yuksel B, Azad A, Grøndahl M, Hoffmann E, Simón C, Colonna V, Kahraman S. A standardized approach for case selection and genomic data analysis of maternal exomes for the diagnosis of oocyte maturation and early embryonic developmental arrest in IVF. Reprod Biomed Online 2022; 45:508-518. [DOI: 10.1016/j.rbmo.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/17/2022] [Indexed: 11/15/2022]
|
39
|
Koranne R, Brown K, Vandenbroek H, Taylor WR. C9ORF78 partially localizes to centromeres and plays a role in chromosome segregation. Exp Cell Res 2022; 413:113063. [PMID: 35167828 DOI: 10.1016/j.yexcr.2022.113063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 11/23/2022]
Abstract
C9ORF78 is a poorly characterized protein found in diverse eukaryotes. Previous work indicated overexpression of C9ORF78 in malignant tissues indicating a possible involvement in growth regulatory pathways. Additional studies in fission yeast and humans uncover a potential function in regulating the spliceosome. In studies of GFP-tagged C9ORF78 we observed a dramatic reduction in protein abundance in cells grown to confluence and/or deprived of serum growth factors. Serum stimulation induced synchronous re-expression of the protein in HeLa cells. This effect was also observed with the endogenous protein. Overexpressing either E2F1 or N-Myc resulted in elevated C9ORF78 expression potentially explaining the serum-dependent upregulation of the protein. Immunofluorescence analysis indicates that C9ORF78 localizes to nuclei in interphase but does not appear to concentrate in speckles as would be expected for a splicing protein. Surprisingly, a subpopulation of C9ORF78 co-localizes with ACA, Mad1 and Ndc80 in mitotic cells suggesting that this protein associates with kinetochores or centromeres. Levels of C9ORF78 at the centromere/kinetochore also increased upon activation of the mitotic checkpoint. Furthermore, knocking-down C9ORF78 caused mitotic defects. These studies uncover novel mitotic function and subcellular localization of C9ORF78.
Collapse
Affiliation(s)
- Radhika Koranne
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft Street, MS 601, Toledo, OH, 43606, USA
| | - Kayla Brown
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft Street, MS 601, Toledo, OH, 43606, USA
| | - Hannah Vandenbroek
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft Street, MS 601, Toledo, OH, 43606, USA
| | - William R Taylor
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft Street, MS 601, Toledo, OH, 43606, USA.
| |
Collapse
|
40
|
Agarwal S, Afaq F, Bajpai P, Kim H, Elkholy A, Behring M, Chandrashekar DS, Diffalha SA, Khushman M, Sugandha SP, Varambally S, Manne U. DCZ0415, a small-molecule inhibitor targeting TRIP13, inhibits EMT and metastasis via inactivation of the FGFR4/STAT3 axis and the Wnt/β-catenin pathway in colorectal cancer. Mol Oncol 2022; 16:1728-1745. [PMID: 35194944 PMCID: PMC9019876 DOI: 10.1002/1878-0261.13201] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 11/11/2022] Open
Abstract
Thyroid receptor-interacting protein 13 (TRIP13), a protein of the AAA-ATPase family, is upregulated in various human cancers, including colorectal cancer (CRC). This study focused on the inhibition of TRIP13-induced CRC progression and signalling by DCZ0415, a small molecule targeting TRIP13. It demonstrated potent antitumour activity in TRIP13-deregulated cancer cell lines, regardless of their p53, KRAS, BRAF, epidermal growth factor receptor or microsatellite instability status. The treatment of CRC cells with DCZ0415 resulted in decreased cell proliferation, induced cell cycle arrest in the G2-M phase and increased apoptosis. DCZ0415 diminished xenograft tumour growth and metastasis of CRC in immunocompromised mice. DCZ0415 reduced expression of fibroblast growth factor receptor 4 (FGFR4), signal transducer and activator of transcription 3 (STAT3), and proteins associated with the epithelial-mesenchymal transition and nuclear factor kappa B (NF-κB) pathways in cells and xenografts exhibiting high expression of TRIP13. Additionally, DCZ0415 decreased cyclin D1, β-catenin and T-cell factor 1, leading to the inactivation of the Wnt/β-catenin pathway. In a syngeneic CRC model, DCZ0415 treatment induced an immune response by decreasing PD1 and CTLA4 levels and increasing granzyme B, perforin and interferon gamma. In sum, DCZ04145 inhibits the TRIP13-FGFR4-STAT3 axis, inactivates NF-κB and Wnt/β-catenin signalling, activates antitumour immune response and reduces the progression and metastasis of CRC. This study provides a rationale to evaluate DCZ0415 clinically for the treatment of a subset of CRCs that exhibit dysregulated TRIP13 and FGFR4.
Collapse
Affiliation(s)
- Sumit Agarwal
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | - Farrukh Afaq
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | - Prachi Bajpai
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | - Hyung‐Gyoon Kim
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | - Amr Elkholy
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | - Michael Behring
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | | | - Sameer Al Diffalha
- Department of PathologyUniversity of Alabama at BirminghamALUSA
- O’Neal Comprehensive Cancer CenterUniversity of Alabama at BirminghamALUSA
| | - Moh’d Khushman
- O’Neal Comprehensive Cancer CenterUniversity of Alabama at BirminghamALUSA
- Department of MedicineDivision of Medical OncologyUniversity of Alabama at BirminghamALUSA
| | - Shajan P. Sugandha
- Department of MedicineDivision of GastroenterologyUniversity of Alabama at BirminghamALUSA
| | - Sooryanarayana Varambally
- Department of PathologyUniversity of Alabama at BirminghamALUSA
- O’Neal Comprehensive Cancer CenterUniversity of Alabama at BirminghamALUSA
| | - Upender Manne
- Department of PathologyUniversity of Alabama at BirminghamALUSA
- O’Neal Comprehensive Cancer CenterUniversity of Alabama at BirminghamALUSA
| |
Collapse
|
41
|
West JD, Everett CA. Preimplantation chromosomal mosaics, chimaeras and confined placental mosaicism. REPRODUCTION AND FERTILITY 2022; 3:R66-R90. [PMID: 35514539 PMCID: PMC9066951 DOI: 10.1530/raf-21-0095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
Some human preimplantation embryos are chromosomally mosaic. For technical reasons, estimates of the overall frequency vary widely from <15 to >90% and the true frequency remains unknown. Aneuploid/diploid and aneuploid/aneuploid mosaics typically arise during early cleavage stages before the embryonic genome is fully activated and when cell cycle checkpoints are not operating normally. Other mosaics include chaotic aneuploid mosaics and mixoploids, some of which arise by abnormal chromosome segregation at the first cleavage division. Chimaeras are similar to mosaics, in having two genetically distinct cell populations, but they arise from more than one zygote and occur less often. After implantation, the frequency of mosaic embryos declines to about 2% and most are trisomic/diploid mosaics, with trisomic cells confined to the placenta. Thus, few babies are born with chromosomal mosaicism. This review discusses the origin of different types of chromosomal mosaics and chimaeras; their fate and the relationship between preimplantation chromosomal mosaicism and confined placental mosaicism in human conceptuses and animal models. Abnormal cells in mosaic embryos may be depleted by cell death, other types of cell selection or cell correction but the most severely affected mosaic embryos probably die. Trisomic cells could become restricted to placental lineages if cell selection or correction is less effective in placental lineages and/or they are preferentially allocated to a placental lineage. However, the relationship between preimplantation mosaicism and confined placental mosaicism may be complex because the specific chromosome(s) involved will influence whether chromosomally abnormal cells survive predominately in the placental trophoblast and/or placental mesenchyme. Lay summary Human cells normally have 23 pairs of chromosomes, which carry the genes. During the first few days of development, some human embryos are chromosomal mosaics. These mosaic embryos have both normal cells and cells with an abnormal number of chromosomes, which arise from the same fertilised egg. (More rarely, the different cell populations arise from more than one fertilised egg and these embryos are called chimaeras.) If chromosomally abnormal cells survive to term, they could cause birth defects. However, few abnormal cells survive and those that do are usually confined to the placenta, where they are less likely to cause harm. It is not yet understood how this restriction occurs but the type of chromosomal abnormality influences which placental tissues are affected. This review discusses the origin of different types of chromosomally abnormal cells, their fate and how they might become confined to the placenta in humans and animal models.
Collapse
Affiliation(s)
- John D West
- Section of Obstetrics and Gynaecology, Clinical Sciences, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Clare A Everett
- Section of Obstetrics and Gynaecology, Clinical Sciences, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
42
|
Lan J, Huang J, Tao X, Gao Y, Zhang L, Huang W, Luo J, Liu C, Deng Y, Liu L, Liu X. Evaluation of the TRIP13 level in breast cancer and insights into potential molecular pathways. J Cell Mol Med 2022; 26:2673-2685. [PMID: 35322916 PMCID: PMC9077308 DOI: 10.1111/jcmm.17278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/10/2022] [Accepted: 02/27/2022] [Indexed: 11/29/2022] Open
Abstract
TRIP13 is a member of the large superfamily of the AAA + ATPase proteins and is associated with a variety of activities. Emerging evidence has shown that TRIP13 may serve as an oncogene. However, the function of TRIP13 in breast cancer (BC) has not yet been elucidated. Here, a variety of bioinformatic tools and laboratory experiments were combined to analyse the expression patterns, prognostic value and functional network of TRIP13 in BC. Multiple databases and immunohistochemistry (IHC) indicated a higher TRIP13 expression in BC tissue compared with normal tissue. TRIP13 was highly expressed in lung metastatic lesions compared with primary tumours in a 4T1 cell implantation BALB/c mouse model of BC. Kaplan–Meier plots also revealed that high TRIP13 expression correlated with poor survival in patients with BC. Furthermore, gene set enrichment analysis revealed that TRIP13 was primarily enriched in the signalling pathway of PI3K‐AKT‐mTOR. Suppressing TRIP13 could inhibit the expression of related genes, as well as the proliferation and migration of BC cell. Finally, 10 hub genes with a high score of connectivity were filtered from the protein–protein interaction (PPI) network, including MAD2L1, CDC20, CDC5L, CDK1, CCNA2, BUB1B, RAD51, SPO11, KIF11 and AURKB. Thus, TRIP13 may be a promising prognostic biomarker and an effective therapeutic target for BC.
Collapse
Affiliation(s)
- Jin Lan
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jingzhan Huang
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xinyi Tao
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yuan Gao
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Longshan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiqiang Huang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Luo
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Chuqin Liu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yunyao Deng
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Lixin Liu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xiaolong Liu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
43
|
Picchetta L, Caroselli S, Figliuzzi M, Cogo F, Zambon P, Costa M, Pergher I, Patassini C, Cortellessa F, Zuccarello D, Poli M, Capalbo A. Molecular tools for the genomic assessment of oocyte’s reproductive competence. J Assist Reprod Genet 2022; 39:847-860. [PMID: 35124783 PMCID: PMC9050973 DOI: 10.1007/s10815-022-02411-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
The most important factor associated with oocytes' developmental competence has been widely identified as the presence of chromosomal abnormalities. However, growing application of genome-wide sequencing (GS) in population diagnostics has enabled the identification of multifactorial genetic predispositions to sub-lethal pathologies, including those affecting IVF outcomes and reproductive fitness. Indeed, GS analysis in families with history of isolated infertility has recently led to the discovery of new genes and variants involved in specific human infertility endophenotypes that impact the availability and the functionality of female gametes by altering unique mechanisms necessary for oocyte maturation and early embryo development. Ongoing advancements in analytical and bioinformatic pipelines for the study of the genetic determinants of oocyte competence may provide the biological evidence required not only for improving the diagnosis of isolated female infertility but also for the development of novel preventive and therapeutic approaches for reproductive failure. Here, we provide an updated discussion and review of the progresses made in preconception genomic medicine in the identification of genetic factors associated with oocyte availability, function, and competence.
Collapse
|
44
|
TRIP13, identified as a hub gene of tumor progression, is the target of microRNA-4693-5p and a potential therapeutic target for colorectal cancer. Cell Death Dis 2022; 8:35. [PMID: 35075117 PMCID: PMC8786872 DOI: 10.1038/s41420-022-00824-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/18/2021] [Accepted: 01/06/2022] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the digestive tract malignancies whose early symptoms are not obvious. This study aimed to identify novel targets for CRC therapy, especially early-stage CRC, by reanalyzing the publicly available GEO and TCGA databases. Thyroid hormone receptor interactor 13 (TRIP13) correlated with tumor progression and prognosis of patients after several rounds of analysis, including weighted gene correlation network analysis (WGCNA), and further chosen for experimental validation in cancer cell lines and patient samples. We identified that mRNA and protein levels of TRIP13 increased in CRC cells and tumor tissues with tumor progression. miR-4693-5p was significantly downregulated in CRC tumor tissues and bound to the 3′ untranslated region (3′UTR) of TRIP13, downregulating TRIP13 expression. DCZ0415, a small molecule inhibitor targeting TRIP13, induced anti-tumor activity in vitro and in vivo. DCZ0415 markedly suppressed CRC cell proliferation, migration, and tumor growth, promoted cell apoptosis, and resulted in the arrest of the cell cycle. Our research suggests that TRIP13 might play a crucial role in CRC progression and could be a potential target for CRC therapy.
Collapse
|
45
|
Carvalhal S, Bader I, Rooimans MA, Oostra AB, Balk JA, Feichtinger RG, Beichler C, Speicher MR, van Hagen JM, Waisfisz Q, van Haelst M, Bruijn M, Tavares A, Mayr JA, Wolthuis RMF, Oliveira RA, de Lange J. Biallelic BUB1 mutations cause microcephaly, developmental delay, and variable effects on cohesion and chromosome segregation. SCIENCE ADVANCES 2022; 8:eabk0114. [PMID: 35044816 PMCID: PMC8769543 DOI: 10.1126/sciadv.abk0114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Budding uninhibited by benzimidazoles (BUB1) contributes to multiple mitotic processes. Here, we describe the first two patients with biallelic BUB1 germline mutations, who both display microcephaly, intellectual disability, and several patient-specific features. The identified mutations cause variable degrees of reduced total protein level and kinase activity, leading to distinct mitotic defects. Both patients’ cells show prolonged mitosis duration, chromosome segregation errors, and an overall functional spindle assembly checkpoint. However, while BUB1 levels mostly affect BUBR1 kinetochore recruitment, impaired kinase activity prohibits centromeric recruitment of Aurora B, SGO1, and TOP2A, correlating with anaphase bridges, aneuploidy, and defective sister chromatid cohesion. We do not observe accelerated cohesion fatigue. We hypothesize that unresolved DNA catenanes increase cohesion strength, with concomitant increase in anaphase bridges. In conclusion, BUB1 mutations cause a neurodevelopmental disorder, with clinical and cellular phenotypes that partially resemble previously described syndromes, including autosomal recessive primary microcephaly, mosaic variegated aneuploidy, and cohesinopathies.
Collapse
Affiliation(s)
- Sara Carvalhal
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, 2780-156 Oeiras, Portugal
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
- Centre for Biomedical Research, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Ingrid Bader
- Unit of Clinical Genetics, Paracelsus Medical University, Salzburg, Austria
| | - Martin A. Rooimans
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Anneke B. Oostra
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Jesper A. Balk
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - René G. Feichtinger
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Christine Beichler
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Michael R. Speicher
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Johanna M. van Hagen
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Quinten Waisfisz
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Mieke van Haelst
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Martijn Bruijn
- Northwest Clinics, Wilhelminalaan 12, 1815 JD Alkmaar, Netherlands
| | - Alexandra Tavares
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, 2780-156 Oeiras, Portugal
| | - Johannes A. Mayr
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Rob M. F. Wolthuis
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Raquel A. Oliveira
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, 2780-156 Oeiras, Portugal
- Corresponding author. (R.A.O.); (J.d.L.)
| | - Job de Lange
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
- Corresponding author. (R.A.O.); (J.d.L.)
| |
Collapse
|
46
|
Gu Y, Desai A, Corbett KD. Evolutionary Dynamics and Molecular Mechanisms of HORMA Domain Protein Signaling. Annu Rev Biochem 2022; 91:541-569. [PMID: 35041460 DOI: 10.1146/annurev-biochem-090920-103246] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Controlled assembly and disassembly of multi-protein complexes is central to cellular signaling. Proteins of the widespread and functionally diverse HORMA family nucleate assembly of signaling complexes by binding short peptide motifs through a distinctive safety-belt mechanism. HORMA proteins are now understood as key signaling proteins across kingdoms, serving as infection sensors in a bacterial immune system and playing central roles in eukaryotic cell cycle, genome stability, sexual reproduction, and cellular homeostasis pathways. Here, we describe how HORMA proteins' unique ability to adopt multiple conformational states underlies their functions in these diverse contexts. We also outline how a dedicated AAA+ ATPase regulator, Pch2/TRIP13, manipulates HORMA proteins' conformational states to activate or inactivate signaling in different cellular contexts. The emergence of Pch2/TRIP13 as a lynchpin for HORMA protein action in multiple genome-maintenance pathways accounts for its frequent misregulation in human cancers and highlights TRIP13 as a novel therapeutic target. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yajie Gu
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, USA;
| | - Arshad Desai
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, USA; .,Section of Cell & Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, USA.,Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, California, USA
| | - Kevin D Corbett
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
47
|
Abstract
Aneuploidy, a genomic alternation characterized by deviations in the copy number of chromosomes, affects organisms from early development through to aging. Although it is a main cause of human pregnancy loss and a hallmark of cancer, how aneuploidy affects cellular function has been elusive. The last two decades have seen rapid advances in the understanding of the causes and consequences of aneuploidy at the molecular and cellular levels. These studies have uncovered effects of aneuploidy that can be beneficial or detrimental to cells and organisms in an environmental context-dependent and karyotype-dependent manner. Aneuploidy also imposes general stress on cells that stems from an imbalanced genome and, consequently, also an imbalanced proteome. These insights provide the fundamental framework for understanding the impact of aneuploidy in genome evolution, human pathogenesis and drug resistance.
Collapse
|
48
|
Spreafico F, Fernandez CV, Brok J, Nakata K, Vujanic G, Geller JI, Gessler M, Maschietto M, Behjati S, Polanco A, Paintsil V, Luna-Fineman S, Pritchard-Jones K. Wilms tumour. Nat Rev Dis Primers 2021; 7:75. [PMID: 34650095 DOI: 10.1038/s41572-021-00308-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 02/08/2023]
Abstract
Wilms tumour (WT) is a childhood embryonal tumour that is paradigmatic of the intersection between disrupted organogenesis and tumorigenesis. Many WT genes play a critical (non-redundant) role in early nephrogenesis. Improving patient outcomes requires advances in understanding and targeting of the multiple genes and cellular control pathways now identified as active in WT development. Decades of clinical and basic research have helped to gradually optimize clinical care. Curative therapy is achievable in 90% of affected children, even those with disseminated disease, yet survival disparities within and between countries exist and deserve commitment to change. Updated epidemiological studies have also provided novel insights into global incidence variations. Introduction of biology-driven approaches to risk stratification and new drug development has been slower in WT than in other childhood tumours. Current prognostic classification for children with WT is grounded in clinical and pathological findings and in dedicated protocols on molecular alterations. Treatment includes conventional cytotoxic chemotherapy and surgery, and radiation therapy in some cases. Advanced imaging to capture tumour composition, optimizing irradiation techniques to reduce target volumes, and evaluation of newer surgical procedures are key areas for future research.
Collapse
Affiliation(s)
- Filippo Spreafico
- Department of Medical Oncology and Hematology, Paediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Conrad V Fernandez
- Department of Paediatrics, IWK Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jesper Brok
- Department of Paediatric Haematology and Oncology, Rigshospitalet, Copenhagen, Denmark
| | - Kayo Nakata
- Cancer Control Center, Osaka International Cancer Institute, Osaka, Japan
| | | | - James I Geller
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Cincinnati, OH, USA
| | - Manfred Gessler
- Theodor-Boveri-Institute, Developmental Biochemistry, and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| | - Mariana Maschietto
- Research Center, Boldrini Children's Hospital, Genetics and Molecular Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Angela Polanco
- National Cancer Research Institute Children's Group Consumer Representative, London, UK
| | - Vivian Paintsil
- Department of Child Health, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Sandra Luna-Fineman
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Paediatrics, University of Colorado, Aurora, CO, USA
| | - Kathy Pritchard-Jones
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
49
|
Santos-Simarro F, Pacio M, Cueto-González AM, Mansilla E, Valenzuela-Palafoll MI, López-Grondona F, Lledín MD, Schuffelmann C, Del Pozo Á, Solis M, Vallcorba P, Lapunzina P, Menéndez Suso JJ, Siccha SM, Montejo JM, Mena R, Jiménez-Rodríguez C, García-Miñaúr S, Palomares-Bralo M. Mosaic Variegated Aneuploidy syndrome 2 caused by biallelic variants in CEP57, two new cases and review of the phenotype. Eur J Med Genet 2021; 64:104338. [PMID: 34500087 DOI: 10.1016/j.ejmg.2021.104338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 11/20/2022]
Abstract
Mosaic Variegated Aneuploidy Syndrome 2 (MVA2; MIM 614114) is a rare autosomal recessive disorder, characterized by mosaic aneuploidies involving multiple chromosomes and tissues, caused by biallelic pathogenic variants in the CEP57 gene. Only 10 patients have been reported to date. We report two additional non related cases born to Moroccan consanguineous parents, carrying the previously described c.915_925dup11 CEP57 homozygous variant. Common features of these 12 cases include growth retardation, typically of prenatal onset, distinctive facial features, endocrine, cardiovascular and skeletal, abnormalities while malignancies have not been reported. This report describes the phenotypical spectrum of MVA2.
Collapse
Affiliation(s)
- Fernando Santos-Simarro
- Instituto de Genética Medica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPAZ, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, U753), ISCIII, Madrid, Spain; European Reference Network, ERN ITHACA, Spain.
| | - Marta Pacio
- Instituto de Genética Medica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPAZ, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, U753), ISCIII, Madrid, Spain; European Reference Network, ERN ITHACA, Spain.
| | - Anna María Cueto-González
- Departamento de Genética Clinical y Molecular,Grupo de Genética Médica, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Institut de Recerca (VHIR), Hospital Universitari, Vall d'Hebron, Barcelona, Spain; European Reference Network, ERN ITHACA, Spain; European Reference Network, ERN CRANIO, Spain.
| | - Elena Mansilla
- Instituto de Genética Medica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPAZ, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, U753), ISCIII, Madrid, Spain; European Reference Network, ERN ITHACA, Spain.
| | - María Irene Valenzuela-Palafoll
- Departamento de Genética Clinical y Molecular,Grupo de Genética Médica, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Institut de Recerca (VHIR), Hospital Universitari, Vall d'Hebron, Barcelona, Spain; European Reference Network, ERN ITHACA, Spain.
| | - Fermina López-Grondona
- Departamento de Genética Clinical y Molecular,Grupo de Genética Médica, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Institut de Recerca (VHIR), Hospital Universitari, Vall d'Hebron, Barcelona, Spain.
| | - María Dolores Lledín
- Servicio de Hepatología Pediátrica, Hospital Universitario La Paz, Madrid, Spain.
| | - Cristina Schuffelmann
- Servicio de Cuidados Intensivos Pediátricos, Hospital Universitario La Paz, Madrid, Spain.
| | - Ángela Del Pozo
- Instituto de Genética Medica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPAZ, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, U753), ISCIII, Madrid, Spain.
| | - Mario Solis
- Instituto de Genética Medica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPAZ, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, U753), ISCIII, Madrid, Spain.
| | - Patricia Vallcorba
- Instituto de Genética Medica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPAZ, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, U753), ISCIII, Madrid, Spain; European Reference Network, ERN ITHACA, Spain.
| | - Pablo Lapunzina
- Instituto de Genética Medica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPAZ, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, U753), ISCIII, Madrid, Spain; European Reference Network, ERN ITHACA, Spain.
| | | | - Sofia M Siccha
- Instituto de Genética Medica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPAZ, Madrid, Spain.
| | - Juan Manuel Montejo
- Instituto de Genética Medica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPAZ, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, U753), ISCIII, Madrid, Spain.
| | - Rocío Mena
- Instituto de Genética Medica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPAZ, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, U753), ISCIII, Madrid, Spain.
| | - Carmen Jiménez-Rodríguez
- Instituto de Genética Medica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPAZ, Madrid, Spain.
| | - Sixto García-Miñaúr
- Instituto de Genética Medica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPAZ, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, U753), ISCIII, Madrid, Spain; European Reference Network, ERN ITHACA, Spain.
| | - María Palomares-Bralo
- Instituto de Genética Medica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPAZ, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, U753), ISCIII, Madrid, Spain; European Reference Network, ERN ITHACA, Spain.
| |
Collapse
|
50
|
Lara-Gonzalez P, Pines J, Desai A. Spindle assembly checkpoint activation and silencing at kinetochores. Semin Cell Dev Biol 2021; 117:86-98. [PMID: 34210579 PMCID: PMC8406419 DOI: 10.1016/j.semcdb.2021.06.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 01/01/2023]
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism that promotes accurate chromosome segregation in mitosis. The checkpoint senses the attachment state of kinetochores, the proteinaceous structures that assemble onto chromosomes in mitosis in order to mediate their interaction with spindle microtubules. When unattached, kinetochores generate a diffusible inhibitor that blocks the activity of the anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase required for sister chromatid separation and exit from mitosis. Work from the past decade has greatly illuminated our understanding of the mechanisms by which the diffusible inhibitor is assembled and how it inhibits the APC/C. However, less is understood about how SAC proteins are recruited to kinetochores in the absence of microtubule attachment, how the kinetochore catalyzes formation of the diffusible inhibitor, and how attachments silence the SAC at the kinetochore. Here, we summarize current understanding of the mechanisms that activate and silence the SAC at kinetochores and highlight open questions for future investigation.
Collapse
Affiliation(s)
- Pablo Lara-Gonzalez
- Ludwig Institute for Cancer Research, USA; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | | | - Arshad Desai
- Ludwig Institute for Cancer Research, USA; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|