1
|
Li Y, Sun Y, Yu K, Li Z, Miao H, Xiao W. Keratin: A potential driver of tumor metastasis. Int J Biol Macromol 2025; 307:141752. [PMID: 40049479 DOI: 10.1016/j.ijbiomac.2025.141752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Keratins, as essential components of intermediate filaments in epithelial cells, play a crucial role in maintaining cell structure and function. In various malignant epithelial tumors, abnormal keratin expression is frequently observed and serves not only as a diagnostic marker but also closely correlates with tumor progression. Extensive research has demonstrated that keratins are pivotal in multiple stages of tumor metastasis, including responding to mechanical forces, evading the immune system, reprogramming metabolism, promoting angiogenesis, and resisting apoptosis. Here we emphasize that keratins significantly enhance the migratory and invasive capabilities of tumor cells, making them critical drivers of tumor metastasis. These findings highlight the importance of targeting keratins as a strategic approach to combat tumor metastasis, thereby advancing our understanding of their role in cancer progression and offering new therapeutic opportunities.
Collapse
Affiliation(s)
- Yuening Li
- Army Medical University, Chongqing, China
| | - Yiming Sun
- Department of General Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Kun Yu
- Department of General Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Zhixi Li
- Department of General Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China.
| | - Hongming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China; Jinfeng Laboratory, Chongqing, China.
| | - Weidong Xiao
- Department of General Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China.
| |
Collapse
|
2
|
Krantz S, Bell B, Lund K, Parra NS, Ng Y, De Oliveira Rosa N, Mukhopadhyay S, Croix BS, Sarin KY, Weigert R, Raimondi F, Iglesias-Bartolome R. Dissection of Gαs and Hedgehog signaling crosstalk reveals therapeutic opportunities to target adenosine receptor 2b in Hedgehog-dependent tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.21.639530. [PMID: 40060632 PMCID: PMC11888225 DOI: 10.1101/2025.02.21.639530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Basal cell carcinoma (BCC), the most common human cancer, is driven by hyperactivation of Hedgehog Smoothened (SMO) and GLI transcription. Gαs and protein kinase A (PKA) negatively regulate Hedgehog signaling, offering an alternative BCC development and treatment pathway. Here, using histology alongside bulk and single-cell RNA sequencing, we find that mouse BCC-like tumors that originate from Gαs pathway inactivation are strikingly similar to those driven by canonical Hedgehog SMO. Interestingly, mutations that reduce Gαs and PKA activity are present in human BCC. Tumors from Gαs pathway inactivation are independent of the canonical Hedgehog regulators SMO and GPR161, establishing them as an SMO-independent oncogenic Hedgehog signaling model. Finally, we demonstrate that activation of the Gαs-coupled adenosine 2B receptor counteracts oncogenic SMO, reducing Hedgehog signaling and tumor formation and offering a potential therapeutic strategy for BCC.
Collapse
Affiliation(s)
- Sarah Krantz
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Braden Bell
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Katherine Lund
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Natalia Salinas Parra
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Yeap Ng
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
- Intravital Microscopy Core, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | | | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Texas, United States
| | - Brad St Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States
| | - Kavita Y Sarin
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, United States
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
- Intravital Microscopy Core, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | | | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
3
|
Benson TM, Markey GE, Hammer JA, Simerly L, Dzieciatkowska M, Jordan KR, Capocelli KE, Scullion KM, Crowe L, Ryan S, Black JO, Crue T, Andrews R, Burger C, McNamee EN, Furuta GT, Menard-Katcher C, Masterson JC. CSF1-dependent macrophage support matrisome and epithelial stress-induced keratin remodeling in Eosinophilic esophagitis. Mucosal Immunol 2025; 18:105-120. [PMID: 39343055 DOI: 10.1016/j.mucimm.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Atopic diseases such as Eosinophilic Esophagitis (EoE) often progress into fibrosis (FS-EoE), compromising organ function with limited targeted treatment options. Mechanistic understanding of FS-EoE progression is confounded by the lack of preclinical models and the heavy focus of research on eosinophils themselves. We found that macrophage accumulation precedes esophageal fibrosis in FS-EoE patients. We developed a FS-EoE model via chronic administration of oxazalone allergen, in a transgenic mouse over-expressing esophageal epithelial hIL-5 (L2-IL5OXA). These mice display striking histopathologic features congruent with that found in FS-EoE patients. Unbiased proteomic analysis, using a unique extracellular-matrix (ECM) focused technique, identified an inflammation-reactive provisional basal lamina membrane signature and this was validated in two independent EoE patient RNA-sequencing/proteomic cohorts, supporting model significance. A wound healing signature was also observed involving hemostasis-associated molecules previously unnoted in EoE. We further identified the ECM glycoprotein, Tenascin-C (TNC), and the stress-responsive keratin-16 (KRT16) as IL-4 and IL-13 responsive mediators, acting as biomarkers of FS-EoE. To mechanistically address how the immune infiltrate shapes FS-EoE progression, we phenotyped the major immune cell subsets that coalesce with fibrosis in both the L2-IL5OXA mice and in FS-EoE patients. We found that macrophage are required for matrisome and cytoskeletal remodeling. Importantly, we show that macrophage accumulation precedes esophageal fibrosis and provide a novel therapeutic target in FS-EoE as their depletion with anti-CSF1 attenuated reactive matrisome and cytoskeletal changes. Thus, macrophage-based treatments and the exploration of TNC and KRT16 as biomarkers may provide novel therapeutic options for patients with fibrostenosis.
Collapse
Affiliation(s)
- Taylor M Benson
- Allergy, Inflammation & Remodeling Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland; Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children's Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, CO, USA
| | - Gary E Markey
- Allergy, Inflammation & Remodeling Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland
| | - Juliet A Hammer
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children's Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, CO, USA
| | - Luke Simerly
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children's Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, CO, USA
| | | | - Kimberly R Jordan
- School of Medicine, University of Colorado, CO, USA; Department of Immunology and Microbiology, University of Colorado, CO, USA
| | | | - Kathleen M Scullion
- Mucosal Immunology Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland
| | - Louise Crowe
- Allergy, Inflammation & Remodeling Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland
| | - Sinéad Ryan
- Allergy, Inflammation & Remodeling Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland
| | - Jennifer O Black
- Department of Pathology, Children's Hospital Colorado, Aurora, CO, USA
| | - Taylor Crue
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children's Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, CO, USA
| | - Rachel Andrews
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children's Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, CO, USA
| | - Cassandra Burger
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children's Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, CO, USA
| | - Eóin N McNamee
- Mucosal Immunology Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland
| | - Glenn T Furuta
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children's Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, CO, USA
| | - Calies Menard-Katcher
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children's Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, CO, USA
| | - Joanne C Masterson
- Allergy, Inflammation & Remodeling Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland; Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children's Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, CO, USA.
| |
Collapse
|
4
|
Ahmed S, Altman J, Jones G, Lee TJ, Robertson DM, Zhi W, Sharma S, Sharma A. Mass spectrometric detection of keratins in tear fluid. Exp Eye Res 2025; 251:110231. [PMID: 39761842 PMCID: PMC11798696 DOI: 10.1016/j.exer.2025.110231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
PURPOSE Keratin contamination is a common problem in mass spectrometry proteomic analyses, particularly in bottom-up mass spectrometry. The purpose of this study was to determine the protein contaminants introduced during the proteomic analysis of tear fluid. METHODS Human tear fluid samples were collected using Schirmer strips. Proteomic analyses were performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) on blank Schirmer strips and tear fluid samples, with empty vials serving as controls for assessing environmental contaminant proteins. RESULTS We detected 26 contaminant proteins (18 keratins and 8 non-keratins). 98.2% of the total protein contamination can be attributed to the 9 keratins, including KRT10 (23.6%), KRT1 (23.5%), KRT2 (15.7%), KRT14 (7.6%), KRT16 (7.0%), KRT5 (6.1%), KRT9 (5.9%), KRT6B (4.6%), and KRT6A (4.3%). A comparison to the proteomic profile of blank Schirmer strips and controls (empty vials) found a strong correlation (R2 = 0.9753), indicating that these proteins were not from the blank Schirmer strips but are environmental contaminants. On the other hand, several keratins including KRT19, KRT13, KRT4, KRT7, KRT15, KRT8 and KRT18 were present in tear fluid, but either not detected or were negligible in blank strips. Another set of keratins, including KRT5, KRT6A, KRT14, KRT16, and KRT17, were identified as components of tear fluid as well as environmental contaminants. CONCLUSIONS This study revealed nine major contaminant keratins in the mass spectrometry analysis. Several other keratins were identified as constituents of tear fluid. Background subtraction is necessary for the accurate analysis of tear fluid using mass spectrometry.
Collapse
Affiliation(s)
- Saleh Ahmed
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Jeremy Altman
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Garrett Jones
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Danielle M Robertson
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
5
|
Razquin C, Fernandez-Irigoyen J, Barrio-López MT, López B, Ravassa S, Ramos P, Macías-Ruíz R, Ibañez Criado A, Santamaría E, Goni L, Castellanos E, Ibañez Criado JL, Tercedor L, García-Bolao I, Martínez-González MA, Almendral J, Ruiz-Canela M. Proteomics and Recurrence of Atrial Fibrillation: A Pilot Study Nested in the PREDIMAR Trial. Lifestyle Genom 2025; 18:52-58. [PMID: 39864423 DOI: 10.1159/000543639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025] Open
Abstract
INTRODUCTION Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia worldwide. Although catheter ablation is the most efficacious therapy, relapses occur frequently (30%) in the first year after ablation. Novel biomarkers of recurrence are needed for a better prediction of recurrence and management of AF. In this pilot study, we aimed to analyze the baseline proteome of subjects included in a case-control study to find differential proteins associated with AF recurrence. METHODS Baseline serum proteomics (354 proteins) data from 16 cases (recurrent AF) and 17 controls (non-recurrent) were obtained using MS/MS analysis. A false discovery rate was performed using a nonlinear fitting method for the selection of proteins. Logistic regression models were used to further analyze the association between differentially expressed proteins and AF recurrence. RESULTS Ten proteins were differentially represented in cases vs. controls. Two were upregulated in the cases compared to the controls: keratin type I cytoskeletal 17 (Fold-change [FC] = 2.14; p = 0.017) and endoplasmic bifunctional protein (FC = 1.65; p = 0.032). Eight were downregulated in the cases compared to the controls: C4bpA (FC = 0.64; p = 0.006), coagulation factor XI (FC = 0.83; p = 0.011), CLIC1 (FC = 0.62; p = 0.017), haptoglobin (FC = 0.37; p = 0.021), Ig alpha-2 chain C region (FC = 0.49; p = 0.022), C4bpB (FC = 0.73; p = 0.028), N-acetylglucosamine-1-phosphotransferase subunit gamma (FC = 0.61; p = 0.033), and platelet glycoprotein Ib alpha chain (FC = 0.84; p = 0.038). CONCLUSION This pilot study identifies ten differentially expressed serum proteins associated with AF recurrence, offering potential biomarkers for improved prediction and management.
Collapse
Affiliation(s)
- Cristina Razquin
- Department of Preventive Medicine and Public Health, IDISNA (Instituto de Investigación Sanitaria de Navarra), University of Navarra, Pamplona, Spain,
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain,
| | - Joaquín Fernandez-Irigoyen
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - María Teresa Barrio-López
- Electrophysiology Laboratory and Arrhythmia Unit, HM CIEC MADRID (Centro Integral de Enfermedades Cardiovasculares), Hospital Universitario HM Montepríncipe, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
| | - Begoña López
- Program of Cardiovascular Disease, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), Carlos III Institute of Health, Madrid, Spain
| | - Susana Ravassa
- Program of Cardiovascular Disease, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), Carlos III Institute of Health, Madrid, Spain
| | - Pablo Ramos
- Arrhythmia Unit, Department of Cardiology and Cardiac Surgery, Clinica Universidad de Navarra, Pamplona, Spain
| | - Rosa Macías-Ruíz
- Biosanitary Research Institute of Granada (ibs.GRANADA), Virgen de las Nieves University Hospital, Granada, Spain
| | - Alicia Ibañez Criado
- Arrhythmia Unit, Alicante Institute of Health and Biomedical Research (ISABIAL-FISABIO Foundation, Cardiology Service, University General Hospital of Alicante), Alicante, Spain
| | - Enrique Santamaría
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Leticia Goni
- Department of Preventive Medicine and Public Health, IDISNA (Instituto de Investigación Sanitaria de Navarra), University of Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Castellanos
- Electrophysiology Laboratory and Arrhythmia Unit, HM CIEC MADRID (Centro Integral de Enfermedades Cardiovasculares), Hospital Universitario HM Montepríncipe, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
| | - Jose Luis Ibañez Criado
- Arrhythmia Unit, Alicante Institute of Health and Biomedical Research (ISABIAL-FISABIO Foundation, Cardiology Service, University General Hospital of Alicante), Alicante, Spain
| | - Luis Tercedor
- Biosanitary Research Institute of Granada (ibs.GRANADA), Virgen de las Nieves University Hospital, Granada, Spain
| | - Ignacio García-Bolao
- Arrhythmia Unit, Department of Cardiology and Cardiac Surgery, Clinica Universidad de Navarra, Pamplona, Spain
| | - Miguel A Martínez-González
- Department of Preventive Medicine and Public Health, IDISNA (Instituto de Investigación Sanitaria de Navarra), University of Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Nutrition, Harvard TH Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Jesús Almendral
- Electrophysiology Laboratory and Arrhythmia Unit, HM CIEC MADRID (Centro Integral de Enfermedades Cardiovasculares), Hospital Universitario HM Montepríncipe, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
| | - Miguel Ruiz-Canela
- Department of Preventive Medicine and Public Health, IDISNA (Instituto de Investigación Sanitaria de Navarra), University of Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Jiang Z, Xiong N, Yan R, Li ST, Liu H, Mao Q, Sun Y, Shen S, Ye L, Gao P, Zhang P, Jia W, Zhang H. PDHX acetylation facilitates tumor progression by disrupting PDC assembly and activating lactylation-mediated gene expression. Protein Cell 2025; 16:49-63. [PMID: 39311688 DOI: 10.1093/procel/pwae052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/29/2024] [Indexed: 01/07/2025] Open
Abstract
Deactivation of the mitochondrial pyruvate dehydrogenase complex (PDC) is important for the metabolic switching of cancer cell from oxidative phosphorylation to aerobic glycolysis. Studies examining PDC activity regulation have mainly focused on the phosphorylation of pyruvate dehydrogenase (E1), leaving other post-translational modifications largely unexplored. Here, we demonstrate that the acetylation of Lys 488 of pyruvate dehydrogenase complex component X (PDHX) commonly occurs in hepatocellular carcinoma, disrupting PDC assembly and contributing to lactate-driven epigenetic control of gene expression. PDHX, an E3-binding protein in the PDC, is acetylated by the p300 at Lys 488, impeding the interaction between PDHX and dihydrolipoyl transacetylase (E2), thereby disrupting PDC assembly to inhibit its activation. PDC disruption results in the conversion of most glucose to lactate, contributing to the aerobic glycolysis and H3K56 lactylation-mediated gene expression, facilitating tumor progression. These findings highlight a previously unrecognized role of PDHX acetylation in regulating PDC assembly and activity, linking PDHX Lys 488 acetylation and histone lactylation during hepatocellular carcinoma progression and providing a potential biomarker and therapeutic target for further development.
Collapse
Affiliation(s)
- Zetan Jiang
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Nanchi Xiong
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
- Insitute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| | - Ronghui Yan
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Shi-Ting Li
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
| | - Haiying Liu
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Qiankun Mao
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yuchen Sun
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Shengqi Shen
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
| | - Ling Ye
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Ping Gao
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
| | - Pinggen Zhang
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Weidong Jia
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Huafeng Zhang
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
- Insitute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| |
Collapse
|
7
|
Chen S, Fan Y, Wu Q, Zhang G, Wang Y, Li W, Yang S, Matucci-Cerinic M, Furst DE. Integrative Transcriptomic Analysis of Peripheral Blood Monocytes in Systemic Sclerosis and Shared Pathogenic Pathways in Autoimmune Diseases. Arch Med Res 2025; 56:103072. [PMID: 39208548 DOI: 10.1016/j.arcmed.2024.103072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/04/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Systemic sclerosis (SSc) is an autoimmune disease (AD), that receives less attention compared to rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and primary Sjögren's syndrome (pSS). This study aims to analyze transcriptional profiles and immune cell composition in peripheral blood mononuclear cells (PBMC) from SSc patients compared to other ADs. METHODS RNA-seq data from 119 untreated patients (eight with SSc, 42 with RA, 41 with pSS, 28 with SLE) and 20 healthy controls were analyzed. Bioinformatics tools were employed to identify differentially expressed genes (DEGs), biological functions and immune cell profiles unique to SSc and shared with other ADs. RESULTS 1,148 DEGs were found in SSc, with upregulated genes associated with megakaryocyte processes and downregulated genes associated with neutrophil function and immune response. DEGs, including ALDH1A1 and MEGF9, were associated with neutropenia. Upregulated transcription factors (TFs) were linked to embryonic hematopoiesis and downregulated TFs were involved in leukocyte differentiation and immune regulation. Comparative analysis with other ADs revealed common pathogenic pathways, emphasizing megakaryocyte proliferation. Neutrophils count was significantly decreased in ADs (p <0.001) compared to healthy controls. Comparative analysis highlighted common pathways, particularly in megakaryocyte proliferation, and unique genes (MEGF9, MMP8, and KRT family members) in SSc, suggesting roles in neutrophil function, skin integrity, and fibrosis. CONCLUSIONS This study identifies dysregulated gene expression (KRT and MMP8) associated with neutrophil function and increased megakaryocytes in SSc, highlighting common patterns across autoimmune diseases. These findings offer new insights into the potential pathogenesis of SSc, and help to explore new targets for the treatment.
Collapse
MESH Headings
- Humans
- Scleroderma, Systemic/genetics
- Scleroderma, Systemic/immunology
- Scleroderma, Systemic/blood
- Female
- Middle Aged
- Male
- Gene Expression Profiling
- Adult
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Transcriptome
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/blood
- Monocytes/metabolism
- Monocytes/immunology
- Sjogren's Syndrome/genetics
- Sjogren's Syndrome/immunology
- Sjogren's Syndrome/blood
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/immunology
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/blood
- Case-Control Studies
- Aged
Collapse
Affiliation(s)
- Shaoqi Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yu Fan
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Qiulin Wu
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Guohong Zhang
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yukai Wang
- Department of Rheumatology and Immunology, Shantou Central Hospital, Shantou, Guangdong, China
| | - Weiping Li
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| | - Shengli Yang
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China; Shanghai Academician Consulting and Academic Activities Center of Chinese Academy of Engineering, Shanghai, China.
| | - Marco Matucci-Cerinic
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, San Raffaele Hospital, Milan, Italy
| | - Daniel E Furst
- Division of Rheumatology, School of Medicine, University of California at Los Angeles, California, USA
| |
Collapse
|
8
|
Meng S, Whitt AG, Eaton JW, Yaddanapudi K, Li C. The efficacy of an embryonic stem cell-based vaccine for lung cancer prevention depends on the undifferentiated state of the stem cells. Sci Rep 2024; 14:32127. [PMID: 39739089 PMCID: PMC11685895 DOI: 10.1038/s41598-024-83932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
Based on the antigenic similarity between tumor cells and embryonic stem cells (ESCs), several recent studies report the use of intact murine ESCs or exosomes from murine ESCs as cancer vaccines. Since the capacity for self-renewal is one of the most specialized properties shared between ESCs and a subset of tumor cells, cancer stem cells (CSCs), we investigated whether the undifferentiated state of murine ESCs is essential for the prophylactic effectiveness of an ESC-based vaccine. The undifferentiated state of ES-D3, a murine ESC line, was essential for their anchorage-independent growth potential. Importantly, differentiation of ES-D3 cells decreased their efficacy in preventing the outgrowth of implanted lung tumors. Furthermore, the long-term cancer-preventive potential of this vaccine was also inhibited by the differentiation of these cells. To examine the antigenicity of the ESC-derived vaccine, we performed combined affinity chromatography shotgun immunoproteomic experiments to identify antigens specific to the whole-cell ES vaccine as well as to the ESC-derived exosome vaccine. Our data demonstrate that antibodies against several lung cancer-associated keratin members were enriched in the serum of vaccinated mice. In summary, these data suggest that the tumor-preventing efficacy of ESC-based vaccine is reliant on the differentiation properties of these stem cells.
Collapse
Affiliation(s)
- Shuhan Meng
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
- Experimental Therapeutics Group, Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Aaron G Whitt
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
- Experimental Therapeutics Group, Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - John W Eaton
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
- Experimental Therapeutics Group, Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Kavitha Yaddanapudi
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA.
- Immuno-Oncology Program, Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY, USA.
- Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, KY, USA.
| | - Chi Li
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.
- Experimental Therapeutics Group, Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
9
|
Mateescu LA, Savu AP, Mutu CC, Vaida CD, Șerban ED, Bucur Ș, Poenaru E, Nicolescu AC, Constantin MM. The Intersection of Psoriasis and Neoplasia: Risk Factors, Therapeutic Approaches, and Management Strategies. Cancers (Basel) 2024; 16:4224. [PMID: 39766123 PMCID: PMC11674284 DOI: 10.3390/cancers16244224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The association between psoriasis and increased cancer risk is gaining recognition as studies reveal shared inflammatory and immune pathways. This review examines the relationship between psoriasis and neoplasia, focusing on cancer risk factors in psoriasis patients, the biological pathways underlying this connection, and the impact of various psoriasis treatments on cancer development. Psoriasis patients have a heightened incidence of certain cancers, such as lymphomas, skin cancers, and urological malignancies, potentially linked to immune dysregulation and chronic inflammation. Immunomodulatory treatments for psoriasis, including conventional systemic therapies and biologics, present varied cancer risks, with others, such as phototherapy, associated with an elevated risk of skin cancers. For oncologic patients with psoriasis, management necessitates a tailored approach, balancing effective psoriasis control with minimizing cancer progression risks. The emergence of IL-17 inhibitors, IL-23 inhibitors, and small-molecule therapies offers promising therapeutic alternatives with favorable safety profiles for these patients. This review underscores the need for interdisciplinary collaboration to optimize care for patients managing both psoriasis and malignancy.
Collapse
Affiliation(s)
- Larisa-Alexandra Mateescu
- 2nd Department of Dermatology, Colentina Clinical Hospital, 020125 Bucharest, Romania; (C.-C.M.); (C.-D.V.); (E.-D.Ș.); (Ș.B.); (M.-M.C.)
| | - Alexandra-Petruța Savu
- 2nd Department of Dermatology, Colentina Clinical Hospital, 020125 Bucharest, Romania; (C.-C.M.); (C.-D.V.); (E.-D.Ș.); (Ș.B.); (M.-M.C.)
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.P.); (A.-C.N.)
| | - Costina-Cristiana Mutu
- 2nd Department of Dermatology, Colentina Clinical Hospital, 020125 Bucharest, Romania; (C.-C.M.); (C.-D.V.); (E.-D.Ș.); (Ș.B.); (M.-M.C.)
| | - Cezara-Diana Vaida
- 2nd Department of Dermatology, Colentina Clinical Hospital, 020125 Bucharest, Romania; (C.-C.M.); (C.-D.V.); (E.-D.Ș.); (Ș.B.); (M.-M.C.)
| | - Elena-Daniela Șerban
- 2nd Department of Dermatology, Colentina Clinical Hospital, 020125 Bucharest, Romania; (C.-C.M.); (C.-D.V.); (E.-D.Ș.); (Ș.B.); (M.-M.C.)
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.P.); (A.-C.N.)
| | - Ștefana Bucur
- 2nd Department of Dermatology, Colentina Clinical Hospital, 020125 Bucharest, Romania; (C.-C.M.); (C.-D.V.); (E.-D.Ș.); (Ș.B.); (M.-M.C.)
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.P.); (A.-C.N.)
| | - Elena Poenaru
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.P.); (A.-C.N.)
| | - Alin-Codruț Nicolescu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.P.); (A.-C.N.)
- EgoClinic, District 1, 010235 Bucharest, Romania
| | - Maria-Magdalena Constantin
- 2nd Department of Dermatology, Colentina Clinical Hospital, 020125 Bucharest, Romania; (C.-C.M.); (C.-D.V.); (E.-D.Ș.); (Ș.B.); (M.-M.C.)
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.P.); (A.-C.N.)
| |
Collapse
|
10
|
McCarthy RL, de Brito M, O'Toole EA. Pachyonychia congenita: pathogenesis of pain and approaches to treatment. Clin Exp Dermatol 2024; 49:1510-1517. [PMID: 38805703 DOI: 10.1093/ced/llae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024]
Abstract
Pachyonychia congenita (PC) is an autosomal dominant genodermatosis characterized by a triad of chronic severe plantar pain, focal palmoplantar keratoderma and hypertrophic nail dystrophy. Plantar pain can be debilitating and have a profound impact on quality of life. Current therapeutic options for pain in PC are limited to lifestyle adjustment and mechanical techniques, with a small subgroup of patients benefiting from oral retinoids. This review investigates the pathogenesis of pain in PC and provides a summary of the current and future therapeutic options.
Collapse
Affiliation(s)
- Rebecca L McCarthy
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, The Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Marianne de Brito
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, The Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Edel A O'Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, The Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, UK
| |
Collapse
|
11
|
de Brito M, O'Toole EA. Exploring the role of cytokeratin 17 in skin tumorigenesis and human papillomavirus persistence. Br J Dermatol 2024; 191:862-863. [PMID: 39049691 DOI: 10.1093/bjd/ljae294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/23/2024] [Indexed: 07/27/2024]
Affiliation(s)
- Marianne de Brito
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University London
| | - Edel A O'Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University London
| |
Collapse
|
12
|
Morel VJ, Rössler J, Bernasconi M. Targeted immunotherapy and nanomedicine for rhabdomyosarcoma: The way of the future. Med Res Rev 2024; 44:2730-2773. [PMID: 38885148 DOI: 10.1002/med.22059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024]
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood. Histology separates two main subtypes: embryonal RMS (eRMS; 60%-70%) and alveolar RMS (aRMS; 20%-30%). The aggressive aRMS carry one of two characteristic chromosomal translocations that result in the expression of a PAX3::FOXO1 or PAX7::FOXO1 fusion transcription factor; therefore, aRMS are now classified as fusion-positive (FP) RMS. Embryonal RMS have a better prognosis and are clinically indistinguishable from fusion-negative (FN) RMS. Next to histology and molecular characteristics, RMS risk groupings are now available defining low risk tumors with excellent outcomes and advanced stage disease with poor prognosis, with an overall survival of about only 20% despite intensified multimodal treatment. Therefore, development of novel effective targeted strategies to increase survival and to decrease long-term side effects is urgently needed. Recently, immunotherapies and nanomedicine have been emerging for potent and effective tumor treatments with minimal side effects, raising hopes for effective and safe cures for RMS patients. This review aims to describe the most relevant preclinical and clinical studies in immunotherapy and targeted nanomedicine performed so far in RMS and to provide an insight in future developments.
Collapse
Affiliation(s)
- Victoria Judith Morel
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Jochen Rössler
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Michele Bernasconi
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Bao L, Juarez CFG, Li J, Pigors M, Emtenani S, Liu Y, Ahmed A, Ishii N, Hashimoto T, White BEP, Green S, Kunstman K, Nowak NC, Cole C, Macias V, Sverdlov M, McAlexander MA, McCrae C, Nazaroff CD, Schmidt E, Amber KT. IgG autoantibodies in bullous pemphigoid directly induce a pathogenic MyD88-dependent pro-inflammatory response in keratinocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.616103. [PMID: 39569141 PMCID: PMC11577246 DOI: 10.1101/2024.10.07.616103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
While autoantibodies in bullous pemphigoid (BP) are known to activate the innate immune response, their direct effect on keratinocytes, and the contribution of BP-IgG autoantibody-dependent keratinocyte responses to BP pathology is largely unknown. Herein, we performed multiplex immunoassays and bulk RNA-seq on primary keratinocytes treated with IgG from BP patients or controls. We identified a pro-inflammatory and proteolytic response with release of several cytokines (IL-6, IL-24, TGF-β1), chemokines (CXCL16, CTACK, MIP-3β, RANTES), C1s, DPP4, and MMP-9. We further validated this response using spatial transcriptomics and scRNA-seq of diseased and control skin. Blistering itself appeared to be major driver of this inflammatory response, with attached BP skin and spongiotic dermatitis revealing highly similar transcriptomes. Based on elevated levels of MyD88 and MyD88-dependent cytokines, we studied the impact of MyD88 deficiency in keratinocytes and demonstrated that MyD88 regulates BP-IgG-induced expression of IL-8, IL-24, and MMP-9. Induction of experimental BP in mice with Krt14 -specific Myd88 knockout revealed significantly decreased disease severity with decreased serum levels of IL-1β, IL-4, and IL-9 indicating the contributory role of keratinocyte-derived skin inflammation towards systemic response. Our work demonstrates the key contributions of keratinocyte and MyD88 dependent signaling in response to autoantibodies in BP. Key Messages -IgG antibodies from bullous pemphigoid (BP) patients induce significant upregulation of several inflammatory markers in keratinocytes including cytokines (IL-6, IL-24, TGF-β1), chemokines (CXCL16, CTACK, MIP-3β, RANTES), C1s, DPP4, and MMP9. Several of these markers, including IL-8, IL-24, and MMP9 are regulated by MyD88.-Spatial transcriptomics reveals that BP patient blistered skin demonstrated similar transcriptomic profiles to BP-IgG-treated keratinocytes. With attached skin demonstrating a comparable transcriptome to that seen in spongiotic dermatitis.-In a mouse BP model, keratinocyte-specific MyD88 deficiency results in decreased disease severity with a subsequent decrease in serum IL-1β, IL-4, and IL-9 levels. Capsule summary IgG from patients with bullous pemphigoid (BP) induces a pro-inflammatory response in keratinocytes, indicating their direct role in driving the inflammatory response in BP.
Collapse
|
14
|
Odunitan TT, Apanisile BT, Akinboade MW, Abdulazeez WO, Oyaronbi AO, Ajayi TM, Oyekola SA, Ibrahim NO, Nafiu T, Afolabi HO, Olayiwola DM, David OT, Adeyemo SF, Ayodeji OD, Akinade EM, Saibu OA. Microbial mysteries: Staphylococcus aureus and the enigma of carcinogenesis. Microb Pathog 2024; 194:106831. [PMID: 39089512 DOI: 10.1016/j.micpath.2024.106831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Staphylococcus aureus, a common human pathogen, has long been the focus of scientific investigation due to its association with various infections. However, recent research has unveiled a tantalizing enigma surrounding this bacterium and its potential involvement in carcinogenesis. Chronic S. aureus infections have been linked to an elevated risk of certain cancers, including skin cancer and oral cancer. This review explores the current state of knowledge regarding this connection, examining epidemiological evidence, pathogenic mechanisms, and biological interactions that suggest a correlation. Although initial studies point to a possible link, the precise mechanisms through which S. aureus may contribute to cancer development remain elusive. Emerging evidence suggests that the chronic inflammation induced by persistent S. aureus infections may create a tumor-promoting environment. This inflammation can lead to DNA damage, disrupt cellular signaling pathways, and generate an immunosuppressive microenvironment conducive to cancer progression. Additionally, S. aureus produces a variety of toxins and metabolites that can directly interact with host cells, potentially inducing oncogenic transformations. Despite these insights, significant gaps remain in our understanding of the exact biological processes involved. This review emphasizes the urgent need for more comprehensive research to clarify these microbiological mysteries. Understanding the role of S. aureus in cancer development could lead to novel strategies for cancer prevention and treatment, potentially transforming therapeutic approaches.
Collapse
Affiliation(s)
- Tope T Odunitan
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria; Microbiology Unit, Helix Biogen Institute, Ogbomosho, Oyo State, Nigeria; Ehigie's Biochemistry and Biocomputational Laboratory, Ogbomosho, Oyo State, Nigeria.
| | - Boluwatife T Apanisile
- Department of Nutrition and Dietetics, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Modinat W Akinboade
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Waliu O Abdulazeez
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Adegboye O Oyaronbi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Temitope M Ajayi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Samuel A Oyekola
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Najahtulahi O Ibrahim
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Tawakalitu Nafiu
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Hezekiah O Afolabi
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Dolapo M Olayiwola
- Department of Medical Laboratory Science, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Oladunni T David
- Microbiology Unit, Helix Biogen Institute, Ogbomosho, Oyo State, Nigeria
| | - Stephen F Adeyemo
- Department of Biological Sciences, First Technical University, Ibadan, Oyo State, Nigeria; Division of Medical Artificial Intelligence, Helix Biogen Institute, Ogbomosho, Oyo State, Nigeria
| | - Oluwatobi D Ayodeji
- Department of Nursing, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Esther M Akinade
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Oluwatosin A Saibu
- Department of Chemistry and Biochemistry, New Mexico State University, USA
| |
Collapse
|
15
|
Wang W, Pope A, Ward-Shaw E, Buehler D, Bachelerie F, Lambert PF. Increased Susceptibility of WHIM Mice to Papillomavirus-induced Disease is Dependent upon Immune Cell Dysfunction. PLoS Pathog 2024; 20:e1012472. [PMID: 39226327 PMCID: PMC11398641 DOI: 10.1371/journal.ppat.1012472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/13/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024] Open
Abstract
Warts, Hypogammaglobulinemia, Infections, and Myelokathexis (WHIM) syndrome is a rare primary immunodeficiency disease in humans caused by a gain of function in CXCR4, mostly due to inherited heterozygous mutations in CXCR4. One major clinical symptom of WHIM patients is their high susceptibility to human papillomavirus (HPV) induced disease, such as warts. Persistent high risk HPV infections cause 5% of all human cancers, including cervical, anogenital, head and neck and some skin cancers. WHIM mice bearing the same mutation identified in WHIM patients were created to study the underlying causes for the symptoms manifest in patients suffering from the WHIM syndrome. Using murine papillomavirus (MmuPV1) as an infection model in mice for HPV-induced disease, we demonstrate that WHIM mice are more susceptible to MmuPV1-induced warts (papillomas) compared to wild type mice. Namely, the incidence of papillomas is higher in WHIM mice compared to wild type mice when mice are exposed to low doses of MmuPV1. MmuPV1 infection facilitated both myeloid and lymphoid cell mobilization in the blood of wild type mice but not in WHIM mice. Higher incidence and larger size of papillomas in WHIM mice correlated with lower abundance of infiltrating T cells within the papillomas. Finally, we demonstrate that transplantation of bone marrow from wild type mice into WHIM mice normalized the incidence and size of papillomas, consistent with the WHIM mutation in hematopoietic cells contributing to higher susceptibility of WHIM mice to MmuPV1-induced disease. Our results provide evidence that MmuPV1 infection in WHIM mice is a powerful preclinical infectious model to investigate treatment options for alleviating papillomavirus infections in WHIM syndrome.
Collapse
Affiliation(s)
- Wei Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, Michigan, United States of America
| | - Ali Pope
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Ella Ward-Shaw
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Darya Buehler
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Francoise Bachelerie
- Inflammation, Microbiome and Immunosurveillance, INSERM UMR-996, Université Paris-Saclay, Orsay, France
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
16
|
Wan G, Jiang ZY, Shi N, Xiong YG, Zheng RQ. Integrated Morphological, Comparative Transcriptomic, and Metabolomic Analyses Reveal Mechanisms Underlying Seasonal Patterns of Variation in Spines of the Giant Spiny Frog ( Quasipaa spinosa). Int J Mol Sci 2024; 25:9128. [PMID: 39201815 PMCID: PMC11354522 DOI: 10.3390/ijms25169128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/02/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
Quasipaa spinosa, commonly known as the spiny frog, is an economically valued amphibian in China prized for its tender meat and nutritional value. This species exhibits marked sexual dimorphism, most notably the prominent spiny structures on males that are pivotal for mating success and species identification. The spines of Q. spinosa exhibit strong seasonal variation, changing significantly with the reproductive cycle, which typically spans from April to October. Sexually mature males develop densely packed, irregularly arranged round papillae with black spines on their chests during the breeding season, which may then reduce or disappear afterward, while females have smooth chest skin. Despite their ecological importance, the developmental mechanisms and biological functions of these spines have been inadequately explored. This study integrates morphological, transcriptomic, and metabolomic analyses to elucidate the mechanisms underlying the seasonal variation in spine characteristics of Q. spinosa. Our results demonstrate that spine density inversely correlates with body size and that spine development is accompanied by significant changes in epidermal thickness and keratinization during the breeding season. Comparative transcriptomic analysis across different breeding stages revealed significant gene expression alterations in pathways related to extracellular matrix interactions, tyrosine metabolism, Wnt signaling, and melanogenesis. Metabolomic analysis further identified significant seasonal shifts in metabolites essential for energy metabolism and melanin synthesis, including notable increases in citric acid and β-alanine. These molecular changes are consistent with the observed morphological adaptations, suggesting a complex regulatory mechanism supporting spine development and functionality. This study provides novel insights into the molecular basis of spine morphogenesis and its seasonal dynamics in Q. spinosa, contributing valuable information for the species' conservation and aquaculture.
Collapse
Affiliation(s)
| | | | | | | | - Rong-Quan Zheng
- Provincial Key Laboratory of Wildlife Biotechnology and Conservation and Utilization, Zhejiang Normal University, Jinhua 321004, China (N.S.)
| |
Collapse
|
17
|
Romashin DD, Tolstova TV, Varshaver AM, Kozhin PM, Rusanov AL, Luzgina NG. Keratins 6, 16, and 17 in Health and Disease: A Summary of Recent Findings. Curr Issues Mol Biol 2024; 46:8627-8641. [PMID: 39194725 DOI: 10.3390/cimb46080508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Keratins 6, 16, and 17 occupy unique positions within the keratin family. These proteins are not commonly found in the healthy, intact epidermis, but their expression increases in response to damage, inflammation, and hereditary skin conditions, as well as cancerous cell transformations and tumor growth. As a result, there is an active investigation into the potential use of these proteins as biomarkers for different pathologies. Recent studies have revealed the role of these keratins in regulating keratinocyte migration, proliferation, and growth, and more recently, their nuclear functions, including their role in maintaining nuclear structure and responding to DNA damage, have also been identified. This review aims to summarize the latest research on keratins 6, 16, and 17, their regulation in the epidermis, and their potential use as biomarkers in various skin conditions.
Collapse
Affiliation(s)
| | | | | | - Peter M Kozhin
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | | | | |
Collapse
|
18
|
Xu Y, Cohen E, Johnson CN, Parent CA, Coulombe PA. Repeated stress to the skin amplifies neutrophil infiltration in a keratin 17- and PKCα-dependent manner. PLoS Biol 2024; 22:e3002779. [PMID: 39159283 PMCID: PMC11361748 DOI: 10.1371/journal.pbio.3002779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 08/29/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024] Open
Abstract
Neutrophils are the first immune cells to reach inflamed sites and contribute to the pathogenesis of chronic inflammatory skin diseases. Yet, little is known about the pattern of neutrophil infiltration in inflamed skin in vivo and the mechanisms mediating their recruitment. Here, we provide insight into the dynamics of neutrophil infiltration in skin in response to acute or repeated inflammatory stress, highlighting a novel keratinocyte- and keratin 17 (K17)-dependent mechanism that regulates neutrophil recruitment to inflamed skin. We used the phorbol ester TPA and UVB, alone or in combination, to induce sterile inflammation in mouse skin. A single TPA treatment results in a neutrophil influx in the dermis that peaks at 12 h and resolves within 24 h. A subsequent TPA treatment or a UVB challenge, when applied 24 h but not 48 h later, accelerates, amplifies, and prolongs neutrophil infiltration. This transient amplification response (TAR) is mediated by local signals in inflamed skin, can be recapitulated in ex vivo culture, and involves the K17-dependent sustainment of protein kinase Cα (PKCα) activity and release of chemoattractants by stressed keratinocytes. K17 binds RACK1, a scaffold protein essential for PKCα activity. The N-terminal head domain of K17 is crucial for its association with RACK1 and regulation of PKCα activity. Analysis of RNAseq data reveals a signature consistent with TAR and PKCα activation in inflammatory skin diseases. These findings uncover a novel, keratin-dependent mechanism that amplifies neutrophil recruitment in skin under stress, with direct implications for inflammatory skin disorders.
Collapse
Affiliation(s)
- Yang Xu
- Graduate Program in Pharmacology and Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Erez Cohen
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Craig N. Johnson
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Carole A. Parent
- Graduate Program in Pharmacology and Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Life Science Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Pierre A. Coulombe
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
19
|
Li Y, Li Q, Cao Z, Wu J. Multicenter proteome-wide Mendelian randomization study identifies causal plasma proteins in melanoma and non-melanoma skin cancers. Commun Biol 2024; 7:857. [PMID: 39003418 PMCID: PMC11246481 DOI: 10.1038/s42003-024-06538-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024] Open
Abstract
This study addresses the diagnostic and therapeutic challenges in malignant melanoma (MM) and non-melanoma skin cancers (NMSC). We aim to identify circulating proteins causally linked to MM and NMSC traits using a multicenter Mendelian randomization (MR) framework. We utilized large-scale cis-MR to estimate the impact of numerous plasma proteins on MM, NMSC, squamous cell carcinoma (SCC), and basal cell carcinoma (BCC). To ensure robustness, additional analyses like MR Steiger and Bayesian colocalization are conducted, followed by replication through meta-analytical methods. The associations between identified proteins and outcomes are also validated at the tissue level using Transcriptome-Wide Association Study methods. Furthermore, a protein-protein interaction analysis is conducted to explore the relationship between identified proteins and existing cancer medication targets. The MR analysis has identified associations of 13 plasma proteins with BCC, 2 with SCC, and 1 with MM. Specifically, ASIP and KRT5 are associated with BCC, with ASIP also potentially targeting MM. CTSS and TNFSF8 are identified as promising druggability candidates for BCC. This multidimensional approach nominates ASIP, KRT5, CTSS, and TNFSF8 as potential diagnostic and therapeutic targets for skin cancers.
Collapse
Affiliation(s)
- Yajia Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qiangxiang Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziqin Cao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.
| | - Jianhuang Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
20
|
Linck Moroni J, Tsoi S, Wenger II, Plastow GS, Dyck MK. Placental Transcriptome Analysis in Connection with Low Litter Birth Weight Phenotype (LBWP) Sows. Genes (Basel) 2024; 15:703. [PMID: 38927639 PMCID: PMC11203121 DOI: 10.3390/genes15060703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
It is possible to identify sub-populations of sows in every pig herd that consistently give birth to low birth weight (BW) piglets, irrespective of the litter size. A previous study from our group demonstrated that placental development is a main factor affecting the litter birth weight phenotype (LBWP) in sows, thereby impacting the BW of entire litters, but the biological and molecular pathways behind this phenomenon are largely unknown. The aim of this study was to investigate the differential gene expression in placental tissues at day 30 of gestation between low LBWP (LLBWP) vs. high LBWP (HLBWP) sows from a purebred Large White maternal line. Using mRNA sequencing, we found 45 differentially expressed genes (DEGs) in placental tissues of LLBWP and HLBWP sows. Furthermore, (GO) enrichment of upregulated DEGs predicted that there were two biological processes significantly related to cornification and regulation of cell population proliferation. To better understand the molecular interaction between cell proliferation and cornification, we conducted transcriptional factor binding site (TFBS) prediction analysis. The results indicated that a highly significant TFBS was located at the 5' upstream of all four upregulated genes (CDSN, DSG3, KLK14, KRT17), recognized by transcription factors EGR4 and FOSL1. Our findings provide novel insight into how transcriptional regulation of two different biological processes interact in placental tissues of LLBWP sows.
Collapse
Affiliation(s)
| | | | | | | | - Michael K. Dyck
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (J.L.M.); (S.T.); (I.I.W.); (G.S.P.)
| |
Collapse
|
21
|
Sun L, Yin H, Li YT, Qiao YX, Wang J, He QY, Xiao ZW, Kuai L, Xiang YW. Shengjihuayu formula ameliorates the oxidative injury in human keratinocytes via blocking JNK/c-Jun/MMPs signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117938. [PMID: 38395178 DOI: 10.1016/j.jep.2024.117938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The reactive oxygen species (ROS) surge in the chronic wound tissue of diabetic ulcers (DUs) aggravates the inflammatory response. The oxidative stress state during inflammation will exacerbate inflammation and cause tissue damage, resulting in prolonged wound healing. Shengjihuayu Formula (SJHYF) is a renowned Chinese medicine prescription for treating chronic wounds in diabetic ulcers. Growing clinical evidence has demonstrated that SJHYF exhibits superior therapeutic efficacy and has a favorable safety profile. However, the underlying mechanisms by which SJHYF ameliorates oxidative damage under pathological conditions of DUs remain unclear. OBJECTIVE To investigate the cytoprotective properties of SJHYF on hydrogen peroxide (H2O2)-induced cell damage in human HaCaT keratinocytes and to explore its potential targets and molecular pathways in treating DUs using RNA-seq. METHODS HaCaT cells were incubated with H2O2 for 24 h to construct an oxidative stress cell model. Cell viability and proliferation were measured using the MTT and EdU assays, respectively. Cell migration was assessed using the scratch assay, and the fluorescence intensity of ROS was measured using the DCFH-DA probe. The chemical components of SJHYF were analyzed by UPLC-Q-TOF/MS, while the therapeutic effects of SJHYF on H2O2-induced HaCaT cells were analyzed using RNA-Seq. The potential target genes were validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). At the same time, the pathway phenotype expression of SJHYF on the protection of H2O2-induced HaCaT cells was explored using Western Blot. RESULTS The application of SJHY at a concentration of 0.25 mg/mL promoted cell proliferation, cell migration, and reduced ROS production. In addition, SJHYF was detected to have a total of 93 active compounds, including key components such as Galloyl-beta-D-glucose, Danshensu, Procyanidin B2, Catechin, and Alkannin. The RNA-seq analysis identified several core targets namely KRT17, TGM1, JUNB, PRDX5, TXNIP, PRDX1, HSP90AA1, HSP90AB1, HSPA8, and TNF-α. Western blot revealed the presence of the JNK/c-Jun/MMPs pathway and its related transcription factors. CONCLUSION SJHYF displays significant protective effects on H2O2-induced oxidative cell damage in HaCaT cells via blocking the JNK/c-Jun/MMPs pathway.
Collapse
Affiliation(s)
- Lu Sun
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Yin
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Ting Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun-Xiao Qiao
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing-Yi He
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Wei Xiao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-Wei Xiang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China.
| |
Collapse
|
22
|
Delgado-Coka L, Horowitz M, Torrente-Goncalves M, Roa-Peña L, Leiton CV, Hasan M, Babu S, Fassler D, Oentoro J, Bai JDK, Petricoin EF, Matrisian LM, Blais EM, Marchenko N, Allard FD, Jiang W, Larson B, Hendifar A, Chen C, Abousamra S, Samaras D, Kurc T, Saltz J, Escobar-Hoyos LF, Shroyer KR. Keratin 17 modulates the immune topography of pancreatic cancer. J Transl Med 2024; 22:443. [PMID: 38730319 PMCID: PMC11087249 DOI: 10.1186/s12967-024-05252-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND The immune microenvironment impacts tumor growth, invasion, metastasis, and patient survival and may provide opportunities for therapeutic intervention in pancreatic ductal adenocarcinoma (PDAC). Although never studied as a potential modulator of the immune response in most cancers, Keratin 17 (K17), a biomarker of the most aggressive (basal) molecular subtype of PDAC, is intimately involved in the histogenesis of the immune response in psoriasis, basal cell carcinoma, and cervical squamous cell carcinoma. Thus, we hypothesized that K17 expression could also impact the immune cell response in PDAC, and that uncovering this relationship could provide insight to guide the development of immunotherapeutic opportunities to extend patient survival. METHODS Multiplex immunohistochemistry (mIHC) and automated image analysis based on novel computational imaging technology were used to decipher the abundance and spatial distribution of T cells, macrophages, and tumor cells, relative to K17 expression in 235 PDACs. RESULTS K17 expression had profound effects on the exclusion of intratumoral CD8+ T cells and was also associated with decreased numbers of peritumoral CD8+ T cells, CD16+ macrophages, and CD163+ macrophages (p < 0.0001). The differences in the intratumor and peritumoral CD8+ T cell abundance were not impacted by neoadjuvant therapy, tumor stage, grade, lymph node status, histologic subtype, nor KRAS, p53, SMAD4, or CDKN2A mutations. CONCLUSIONS Thus, K17 expression correlates with major differences in the immune microenvironment that are independent of any tested clinicopathologic or tumor intrinsic variables, suggesting that targeting K17-mediated immune effects on the immune system could restore the innate immunologic response to PDAC and might provide novel opportunities to restore immunotherapeutic approaches for this most deadly form of cancer.
Collapse
Affiliation(s)
- Lyanne Delgado-Coka
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA
- Program of Public Health and Department of Preventative Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Michael Horowitz
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Mariana Torrente-Goncalves
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Lucia Roa-Peña
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA
- Department of Pathology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Cindy V Leiton
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Mahmudul Hasan
- Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
| | - Sruthi Babu
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Danielle Fassler
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Jaymie Oentoro
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Ji-Dong K Bai
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA, USA
- Perthera, McLean, VA, USA
| | - Lynn M Matrisian
- Scientific and Medical Affairs, Pancreatic Cancer Action Network, Manhattan Beach, CA, USA
| | | | - Natalia Marchenko
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Felicia D Allard
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Wei Jiang
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Brent Larson
- Departments of Pathology and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrew Hendifar
- Departments of Pathology and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chao Chen
- Department of Biomedical Informatics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Shahira Abousamra
- Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
| | - Dimitris Samaras
- Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
| | - Tahsin Kurc
- Department of Biomedical Informatics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Joel Saltz
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA.
- Department of Biomedical Informatics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| | - Luisa F Escobar-Hoyos
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA.
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
- Division of Oncology, Department of Medicine, Yale University, New Haven, CT, USA.
| | - Kenneth R Shroyer
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA.
| |
Collapse
|
23
|
Dong S, Li D, Shi D. Skin barrier-inflammatory pathway is a driver of the psoriasis-atopic dermatitis transition. Front Med (Lausanne) 2024; 11:1335551. [PMID: 38606161 PMCID: PMC11007107 DOI: 10.3389/fmed.2024.1335551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/13/2024] [Indexed: 04/13/2024] Open
Abstract
As chronic inflammatory conditions driven by immune dysregulation are influenced by genetics and environment factors, psoriasis and atopic dermatitis (AD) have traditionally been considered to be distinct diseases characterized by different T cell responses. Psoriasis, associated with type 17 helper T (Th17)-mediated inflammation, presents as well-defined scaly plaques with minimal pruritus. AD, primarily linked to Th2-mediated inflammation, presents with poorly defined erythema, dry skin, and intense itching. However, psoriasis and AD may overlap or transition into one another spontaneously, independent of biological agent usage. Emerging evidence suggests that defects in skin barrier-related molecules interact with the polarization of T cells, which forms a skin barrier-inflammatory loop with them. This loop contributes to the chronicity of the primary disease or the transition between psoriasis and AD. This review aimed to elucidate the mechanisms underlying skin barrier defects in driving the overlap between psoriasis and AD. In this review, the importance of repairing the skin barrier was underscored, and the significance of tailoring biologic treatments based on individual immune status instead of solely adhering to the treatment guidelines for AD or psoriasis was emphasized.
Collapse
Affiliation(s)
- Sitan Dong
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Dongmei Shi
- Department of Dermatology/Laboratory of Medical Mycology, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
24
|
Abel TR, Kosarek NN, Parvizi R, Jarnagin H, Torres GM, Bhandari R, Huang M, Toledo DM, Smith A, Popovich D, Mariani MP, Yang H, Wood T, Garlick J, Pioli PA, Whitfield ML. Single-cell epigenomic dysregulation of Systemic Sclerosis fibroblasts via CREB1/EGR1 axis in self-assembled human skin equivalents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586316. [PMID: 38585776 PMCID: PMC10996484 DOI: 10.1101/2024.03.22.586316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by skin fibrosis, internal organ involvement and vascular dropout. We previously developed and phenotypically characterized an in vitro 3D skin-like tissue model of SSc, and now analyze the transcriptomic (scRNA-seq) and epigenetic (scATAC-seq) characteristics of this model at single-cell resolution. SSc 3D skin-like tissues were fabricated using autologous fibroblasts, macrophages, and plasma from SSc patients or healthy control (HC) donors. SSc tissues displayed increased dermal thickness and contractility, as well as increased α-SMA staining. Single-cell transcriptomic and epigenomic analyses identified keratinocytes, macrophages, and five populations of fibroblasts (labeled FB1 - 5). Notably, FB1 APOE-expressing fibroblasts were 12-fold enriched in SSc tissues and were characterized by high EGR1 motif accessibility. Pseudotime analysis suggests that FB1 fibroblasts differentiate from a TGF-β1-responsive fibroblast population and ligand-receptor analysis indicates that the FB1 fibroblasts are active in macrophage crosstalk via soluble ligands including FGF2 and APP. These findings provide characterization of the 3D skin-like model at single cell resolution and establish that it recapitulates subsets of fibroblasts and macrophage phenotypes observed in skin biopsies.
Collapse
|
25
|
Zhi Y, Wang Q, Zi M, Zhang S, Ge J, Liu K, Lu L, Fan C, Yan Q, Shi L, Chen P, Fan S, Liao Q, Guo C, Wang F, Gong Z, Xiong W, Zeng Z. Spatial Transcriptomic and Metabolomic Landscapes of Oral Submucous Fibrosis-Derived Oral Squamous Cell Carcinoma and its Tumor Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306515. [PMID: 38229179 PMCID: PMC10966560 DOI: 10.1002/advs.202306515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/19/2023] [Indexed: 01/18/2024]
Abstract
In South and Southeast Asia, the habit of chewing betel nuts is prevalent, which leads to oral submucous fibrosis (OSF). OSF is a well-established precancerous lesion, and a portion of OSF cases eventually progress to oral squamous cell carcinoma (OSCC). However, the specific molecular mechanisms underlying the malignant transformation of OSCC from OSF are poorly understood. In this study, the leading-edge techniques of Spatial Transcriptomics (ST) and Spatial Metabolomics (SM) are integrated to obtain spatial location information of cancer cells, fibroblasts, and immune cells, as well as the transcriptomic and metabolomic landscapes in OSF-derived OSCC tissues. This work reveals for the first time that some OSF-derived OSCC cells undergo partial epithelial-mesenchymal transition (pEMT) within the in situ carcinoma (ISC) region, eventually acquiring fibroblast-like phenotypes and participating in collagen deposition. Complex interactions among epithelial cells, fibroblasts, and immune cells in the tumor microenvironment are demonstrated. Most importantly, significant metabolic reprogramming in OSF-derived OSCC, including abnormal polyamine metabolism, potentially playing a pivotal role in promoting tumorigenesis and immune evasion is discovered. The ST and SM data in this study shed new light on deciphering the mechanisms of OSF-derived OSCC. The work also offers invaluable clues for the prevention and treatment of OSCC.
Collapse
Affiliation(s)
- Yuan Zhi
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunan410078China
| | - Qian Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunan410078China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine SciencesCentral South UniversityChangshaHunan410078China
| | - Moxin Zi
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunan410078China
| | - Shanshan Zhang
- Department of StomatologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Junshang Ge
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine SciencesCentral South UniversityChangshaHunan410078China
| | - Keyue Liu
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Linsong Lu
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Chunmei Fan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine SciencesCentral South UniversityChangshaHunan410078China
| | - Qijia Yan
- Department of StomatologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Lei Shi
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunan410078China
| | - Songqing Fan
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunan410078China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine SciencesCentral South UniversityChangshaHunan410078China
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine SciencesCentral South UniversityChangshaHunan410078China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine SciencesCentral South UniversityChangshaHunan410078China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunan410078China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine SciencesCentral South UniversityChangshaHunan410078China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunan410078China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine SciencesCentral South UniversityChangshaHunan410078China
| |
Collapse
|
26
|
Liang W, Jie H, Xie H, Zhou Y, Li W, Huang L, Liang Z, Liu H, Zheng X, Zeng Z, Kang L. High KRT17 expression in tumour budding indicates immunologically 'hot' tumour budding and predicts good survival in patients with colorectal cancer. Clin Transl Immunology 2024; 13:e1495. [PMID: 38433762 PMCID: PMC10903186 DOI: 10.1002/cti2.1495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/07/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024] Open
Abstract
Objectives Emerging evidence has demonstrated that tumour budding (TB) is negatively associated with T-lymphocyte infiltration in CRC. Despite extensive research, the molecular characteristics of immunologically 'hot' TB remain poorly understood. Methods We quantified the number of TB by haematoxylin-eosin (H&E) sections and the densities of CD3+ and CD8+ T-lymphocytes by immunohistochemistry in a CRC cohort of 351 cases who underwent curative resection. We analysed the differential expression and T-lymphocyte infiltration score of 37 human epithelial keratins in CRC using RNA sequencing from the TCGA dataset. In 278 TB-positive cases, KRT17 expression was evaluated in tumour centre (TC) and TB with a staining score. Patient demographic, clinicopathological features and survival rates were analysed. Results In a CRC cohort of 351 cases, low-grade TB was associated with high CD3+ and CD8+ T-cell densities in the invasive margin (IM) but not in the TC. Of 37 human epithelial keratins, only KRT17 expression in TB had an apparent association with TB-grade and T-lymphocyte infiltration. In 278 TB-positive cases, high KRT17 expression in TB (KRT17TB) was negatively associated with low-grade TB and positively associated with high CD3+ and CD8+ T-cell densities in IM. High KRT17TB predicted early tumour grade, absence of lymph node metastasis and absence of tumour deposits. Additionally, patients with high KRT17TB had good overall survival and disease-free survival. Notably, low KRT17TB can specifically identify those patients with a poor prognosis among colorectal cancer patients with low TB and high T-lymphocyte infiltration. Conclusions KRT17 can be employed as a new indicator for distinguishing different immunological TBs.
Collapse
Affiliation(s)
- Wenfeng Liang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Haiqing Jie
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Hao Xie
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yebohao Zhou
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Wenxin Li
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Liang Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Zhenxing Liang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Huashan Liu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xiaobin Zheng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Ziwei Zeng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Liang Kang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
27
|
Delgado-Coka LA, Horowitz M, Torrente-Goncalves M, Roa-Peña L, Leiton CV, Hasan M, Babu S, Fassler D, Oentoro J, Karen Bai JD, Petricoin EF, Matrisian LM, Blais EM, Marchenko N, Allard FD, Jiang W, Larson B, Hendifar A, Chen C, Abousamra S, Samaras D, Kurc T, Saltz J, Escobar-Hoyos LF, Shroyer K. Keratin 17 modulates the immune topography of pancreatic cancer. RESEARCH SQUARE 2024:rs.3.rs-3886691. [PMID: 38464123 PMCID: PMC10925455 DOI: 10.21203/rs.3.rs-3886691/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background The immune microenvironment impacts tumor growth, invasion, metastasis, and patient survival and may provide opportunities for therapeutic intervention in pancreatic ductal adenocarcinoma (PDAC). Although never studied as a potential modulator of the immune response in most cancers, Keratin 17 (K17), a biomarker of the most aggressive (basal) molecular subtype of PDAC, is intimately involved in the histogenesis of the immune response in psoriasis, basal cell carcinoma, and cervical squamous cell carcinoma. Thus, we hypothesized that K17 expression could also impact the immune cell response in PDAC, and that uncovering this relationship could provide insight to guide the development of immunotherapeutic opportunities to extend patient survival. Methods Multiplex immunohistochemistry (mIHC) and automated image analysis based on novel computational imaging technology were used to decipher the abundance and spatial distribution of T cells, macrophages, and tumor cells, relative to K17 expression in 235 PDACs. Results K17 expression had profound effects on the exclusion of intratumoral CD8 + T cells and was also associated with decreased numbers of peritumoral CD8 + T cells, CD16 + macrophages, and CD163 + macrophages (p < 0.0001). The differences in the intratumor and peritumoral CD8 + T cell abundance were not impacted by neoadjuvant therapy, tumor stage, grade, lymph node status, histologic subtype, nor KRAS, p53, SMAD4, or CDKN2A mutations. Conclusions Thus, K17 expression correlates with major differences in the immune microenvironment that are independent of any tested clinicopathologic or tumor intrinsic variables, suggesting that targeting K17-mediated immune effects on the immune system could restore the innate immunologic response to PDAC and might provide novel opportunities to restore immunotherapeutic approaches for this most deadly form of cancer.
Collapse
|
28
|
Cohen E, Johnson CN, Wasikowski R, Billi AC, Tsoi LC, Kahlenberg JM, Gudjonsson JE, Coulombe PA. Significance of stress keratin expression in normal and diseased epithelia. iScience 2024; 27:108805. [PMID: 38299111 PMCID: PMC10828818 DOI: 10.1016/j.isci.2024.108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/30/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
A group of keratin intermediate filament genes, the type II KRT6A-C and type I KRT16 and KRT17, are deemed stress responsive as they are induced in keratinocytes of surface epithelia in response to environmental stressors, in skin disorders (e.g., psoriasis) and in carcinomas. Monitoring stress keratins is widely used to identify keratinocytes in an activated state. Here, we analyze single-cell transcriptomic data from healthy and diseased human skin to explore the properties of stress keratins. Relative to keratins occurring in healthy skin, stress-induced keratins are expressed at lower levels and show lesser type I-type II pairwise regulation. Stress keratins do not "replace" the keratins expressed during normal differentiation nor reflect cellular proliferation. Instead, stress keratins are consistently co-regulated with genes with roles in differentiation, inflammation, and/or activation of innate immunity at the single-cell level. These findings provide a roadmap toward explaining the broad diversity and contextual regulation of keratins.
Collapse
Affiliation(s)
- Erez Cohen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Craig N. Johnson
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Rachael Wasikowski
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Allison C. Billi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lam C. Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - J. Michelle Kahlenberg
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Johann E. Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Pierre A. Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
29
|
Ganier C, Mazin P, Herrera-Oropeza G, Du-Harpur X, Blakeley M, Gabriel J, Predeus AV, Cakir B, Prete M, Harun N, Darrigrand JF, Haiser A, Wyles S, Shaw T, Teichmann SA, Haniffa M, Watt FM, Lynch MD. Multiscale spatial mapping of cell populations across anatomical sites in healthy human skin and basal cell carcinoma. Proc Natl Acad Sci U S A 2024; 121:e2313326120. [PMID: 38165934 PMCID: PMC10786309 DOI: 10.1073/pnas.2313326120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/13/2023] [Indexed: 01/04/2024] Open
Abstract
Our understanding of how human skin cells differ according to anatomical site and tumour formation is limited. To address this, we have created a multiscale spatial atlas of healthy skin and basal cell carcinoma (BCC), incorporating in vivo optical coherence tomography, single-cell RNA sequencing, spatial global transcriptional profiling, and in situ sequencing. Computational spatial deconvolution and projection revealed the localisation of distinct cell populations to specific tissue contexts. Although cell populations were conserved between healthy anatomical sites and in BCC, mesenchymal cell populations including fibroblasts and pericytes retained signatures of developmental origin. Spatial profiling and in silico lineage tracing support a hair follicle origin for BCC and demonstrate that cancer-associated fibroblasts are an expansion of a POSTN+ subpopulation associated with hair follicles in healthy skin. RGS5+ pericytes are also expanded in BCC suggesting a role in vascular remodelling. We propose that the identity of mesenchymal cell populations is regulated by signals emanating from adjacent structures and that these signals are repurposed to promote the expansion of skin cancer stroma. The resource we have created is publicly available in an interactive format for the research community.
Collapse
Affiliation(s)
- Clarisse Ganier
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, LondonSE1 9RT, United Kingdom
| | - Pavel Mazin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SA, United Kingdom
| | - Gabriel Herrera-Oropeza
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, LondonSE1 1UL, United Kingdom
| | - Xinyi Du-Harpur
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, LondonSE1 9RT, United Kingdom
- The Francis Crick Institute, LondonNW1 1AT, United Kingdom
| | - Matthew Blakeley
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, LondonSE1 9RT, United Kingdom
| | - Jeyrroy Gabriel
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, LondonSE1 9RT, United Kingdom
| | - Alexander V. Predeus
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SA, United Kingdom
| | - Batuhan Cakir
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SA, United Kingdom
| | - Martin Prete
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SA, United Kingdom
| | - Nasrat Harun
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, LondonSE1 9RT, United Kingdom
| | - Jean-Francois Darrigrand
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, LondonSE1 9RT, United Kingdom
| | - Alexander Haiser
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, LondonSE1 9RT, United Kingdom
| | - Saranya Wyles
- Department of Dermatology, Mayo Clinic, Rochester, MN55905
| | - Tanya Shaw
- Centre for Inflammation Biology and Cancer Immunology, King’s College London, LondonSE1 1UL, United Kingdom
| | - Sarah A. Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SA, United Kingdom
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, CambridgeCB3 0HE, United Kingdom
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SA, United Kingdom
- Biosciences Institute, Newcastle University, Newcastle upon TyneNE2 4HH, United Kingdom
- National Institute for Health Research Newcastle Biomedical Research Centre, Newcastle Hospitals National Health Service Foundation Trust, Newcastle upon TyneNE1 4LP, United Kingdom
| | - Fiona M. Watt
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, LondonSE1 9RT, United Kingdom
- Directors’ Unit, European Molecular Biology Laboratory, Heidelberg69117, Germany
| | - Magnus D. Lynch
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, LondonSE1 9RT, United Kingdom
- St. John’s Institute of Dermatology, King’s College London, Guy’s Hospital, LondonSE1 9RT, United Kingdom
| |
Collapse
|
30
|
Yue Z, Lin J, Lu X, Gao Q, Pan M, Zhang Y, Shen S, Zhu WG, Paus R. Keratin 17 Impacts Global Gene Expression and Controls G2/M Cell Cycle Transition in Ionizing Radiation-Induced Skin Damage. J Invest Dermatol 2023; 143:2436-2446.e13. [PMID: 37414246 DOI: 10.1016/j.jid.2023.02.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 07/08/2023]
Abstract
Keratin 17 (K17) is a cytoskeletal protein that is part of the intermediate filaments in epidermal keratinocytes. In K17-/- mice, ionizing radiation induced more severe hair follicle damage, whereas the epidermal inflammatory response was attenuated compared with that in wild-type mice. Both p53 and K17 have a major impact on global gene expression because over 70% of the differentially expressed genes in the skin of wild-type mice showed no expression change in p53-/- or K17-/- skin after ionizing radiation. K17 does not interfere with the dynamics of p53 activation; rather, global p53 binding in the genome is altered in K17-/- mice. The absence of K17 leads to aberrant cell cycle progression and mitotic catastrophe in epidermal keratinocytes, which is due to nuclear retention, thus reducing the degradation of B-Myb, a key regulator of the G2/M cell cycle transition. These results expand our understanding of the role of K17 in regulating global gene expression and ionizing radiation-induced skin damage.
Collapse
Affiliation(s)
- ZhiCao Yue
- Department of Cell Biology & Medical Genetics, Shenzhen University Medical School, Shenzhen, China; International Cancer Center, Shenzhen University Medical School, Shenzhen, China; Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Medical School, Shenzhen, China.
| | - JianQiong Lin
- Department of Cell Biology & Medical Genetics, Shenzhen University Medical School, Shenzhen, China; International Cancer Center, Shenzhen University Medical School, Shenzhen, China; Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Medical School, Shenzhen, China
| | - XiaoPeng Lu
- International Cancer Center, Shenzhen University Medical School, Shenzhen, China; Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Medical School, Shenzhen, China; Department of Biochemistry & Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - QingXiang Gao
- Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - MeiPing Pan
- Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - YaFei Zhang
- Department of Cell Biology & Medical Genetics, Shenzhen University Medical School, Shenzhen, China; International Cancer Center, Shenzhen University Medical School, Shenzhen, China; Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Medical School, Shenzhen, China
| | - SiTing Shen
- Department of Cell Biology & Medical Genetics, Shenzhen University Medical School, Shenzhen, China; International Cancer Center, Shenzhen University Medical School, Shenzhen, China; Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Medical School, Shenzhen, China
| | - Wei-Guo Zhu
- International Cancer Center, Shenzhen University Medical School, Shenzhen, China; Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Medical School, Shenzhen, China; Department of Biochemistry & Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Ralf Paus
- Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Center for Dermatology Research, School of Biological Sciences, The University of Manchester and NIHR Biomedical Research Center, Manchester, United Kingdom
| |
Collapse
|
31
|
Zhou P, Feng H, Qin W, Li Q. KRT17 from skin cells with high glucose stimulation promotes keratinocytes proliferation and migration. Front Endocrinol (Lausanne) 2023; 14:1237048. [PMID: 37929023 PMCID: PMC10622786 DOI: 10.3389/fendo.2023.1237048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/19/2023] [Indexed: 11/07/2023] Open
Abstract
Impaired diabetic wound healing is an important issue in diabetic complications. Proliferation and migration of keratinocytes are major processes of skin wound repair after injury. However, hyperkeratosis can affect the speed of wound healing. Based on the results of preliminary experiments on increased KRT17 expression after high glucose stimulation of human skin tissue cells, a cell model of human immortalized keratinocyte (HaCaT) stimulation with different concentrations of KRT17 was established in vitro, and the promotion in cell proliferation and migration were discovered. KRT17 silencing promoted diabetic wound healing in the db/db diabetic wound model. Transcriptome sequencing (RNA-seq) was performed on HaCaT cells after KRT17 stimulation, and analysis showed significant enrichment in the PI3K-AKT signaling pathway, in which the regulation of cell c-MYB mRNA, a key molecule regulating cell proliferation and migration, was significantly upregulated. In vitro assays showed increased c-MYB expression and enhanced pAKT activity after HaCaT cell stimulation by KRT17. We speculate that KRT17 is upregulated under high glucose and promotes keratinocyte proliferation and migration caused hyperkeratosis, through the c-MYB/PI3K-AKT pathway, contributing to delayed wound healing.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haijun Feng
- Department of Vascular Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenhui Qin
- Department of Endocrinology, Jingshan Union Hospital of Huazhong University of Science and Technology, Jingshan, China
| | - Qin Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Xu Y, Cohen E, Johnson CN, Parent CA, Coulombe PA. Keratin 17- and PKCα-dependent transient amplification of neutrophil influx after repeated stress to the skin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561954. [PMID: 37873256 PMCID: PMC10592713 DOI: 10.1101/2023.10.11.561954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Neutrophils contribute to the pathogenesis of chronic inflammatory skin diseases. Little is known about the source and identity of the signals mediating their recruitment in inflamed skin. We used the phorbol ester TPA and UVB, alone or in combination, to induce sterile inflammation in mouse skin and assess whether keratinocyte-derived signals impact neutrophil recruitment. A single TPA treatment results in a neutrophil influx in the dermis that peaks at 12h and resolves within 24h. A second TPA treatment or a UVB challenge, when applied at 24h but not 48h later, accelerates, amplifies, and prolongs neutrophil infiltration. This transient amplification response (TAR) is mediated by local signals in inflamed skin, can be recapitulated in ex vivo culture, and involves the K17-dependent sustainment of protein kinase Cα (PKCα) activity and release of neutrophil chemoattractants by stressed keratinocytes. We show that K17 binds RACK1, a scaffold essential for PKCα activity. Finally, analyses of RNAseq data reveal the presence of a transcriptomic signature consistent with TAR and PKCα activation in chronic inflammatory skin diseases. These findings uncover a novel, transient, and keratin-dependent mechanism that amplifies neutrophil recruitment to the skin under stress, with direct implications for inflammatory skin disorders.
Collapse
|
33
|
Wu L, Ding W, Wang X, Li X, Yang J. Interference KRT17 reverses doxorubicin resistance in triple-negative breast cancer cells by Wnt/β-catenin signaling pathway. Genes Genomics 2023; 45:1329-1338. [PMID: 37634232 PMCID: PMC10504156 DOI: 10.1007/s13258-023-01437-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a subtype of breast cancer with the highest degree of malignancy and is easily resistant to drugs due to the lack of hormone receptors. Research on the resistance mechanisms in TNBC is particularly important. Keratin 17 (KRT17) is highly expressed in TNBC. Anthracycline doxorubicin (Dox) is a commonly used chemotherapeutic drug for early stage triple-negative breast cancer. OBJECTIVE This study investigated the role of KRT17 in TNBC-Dox resistance. METHODS Immuno-histochemical staining, qPCR, western blotting (WB), and immunofluorescence were used to detect the expression of KRT17 in TNBC-Dox-resistant patients and in TNBC-Dox-resistant MDA-MB-468 and MDA-MB-231. the effect of KRT17 on the proliferation and migration in KRT17 knockdown of TNBC-Dox-resistant cells was determined by the CCK8, clone formation, transwell invasion and wound healing assays were used to determine. RESULTS KRT17 was highly expressed in the TNBC-Dox-resistant cells. Knockdown of KRT17 significantly reduced the IC50s of TNBC-Dox-resistant and parental strains and also reduced the proliferation and invasion abilities of TNBC-Dox-resistant cell lines. KRT17 regulated the Wnt/β-catenin signaling pathway. The inhibitory effect of KRT17 knockdown on the proliferation and migration of TNBC-Dox-resistant cells was reversed by an activator of the Wnt signaling pathway. CONCLUSION KRT17 can inhibit the Wnt/β-catenin signaling pathway, thereby reducing the proliferation and invasion ability of TNBC-Dox-resistant cells.
Collapse
Affiliation(s)
- Liqiong Wu
- Department of Pathology, Guangzhou First People's Hospital, 51080, Guangzhou, R.P. China
- The Second Affiliated Hospital of South, China University of Technology, 51080, Guangzhou, R.P. China
| | - Wenshuang Ding
- Department of Pathology, Guangzhou First People's Hospital, 51080, Guangzhou, R.P. China
- The Second Affiliated Hospital of South, China University of Technology, 51080, Guangzhou, R.P. China
| | - Xiaopai Wang
- Department of Pathology, Guangzhou First People's Hospital, 51080, Guangzhou, R.P. China
- The Second Affiliated Hospital of South, China University of Technology, 51080, Guangzhou, R.P. China
| | - Xiubo Li
- Department of Pathology, Guangzhou First People's Hospital, 51080, Guangzhou, R.P. China
- The Second Affiliated Hospital of South, China University of Technology, 51080, Guangzhou, R.P. China
| | - Jing Yang
- Department of Pathology, Guangzhou First People's Hospital, 51080, Guangzhou, R.P. China.
- The Second Affiliated Hospital of South, China University of Technology, 51080, Guangzhou, R.P. China.
| |
Collapse
|
34
|
Wu X, Ma Y, Wang L, Qin X. A Route for Investigating Psoriasis: From the Perspective of the Pathological Mechanisms and Therapeutic Strategies of Cancer. Int J Mol Sci 2023; 24:14390. [PMID: 37762693 PMCID: PMC10532365 DOI: 10.3390/ijms241814390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Psoriasis is an incurable skin disease that develops in about two-thirds of patients before the age of 40 and requires lifelong treatment; its pathological mechanisms have not been fully elucidated. The core pathological process of psoriasis is epidermal thickening caused by the excessive proliferation of epidermal keratinocytes, which is similar to the key feature of cancer; the malignant proliferation of cancer cells causes tumor enlargement, suggesting that there is a certain degree of commonality between psoriasis and cancer. This article reviews the pathological mechanisms that are common to psoriasis and cancer, including the interaction between cell proliferation and an abnormal immune microenvironment, metabolic reprogramming, and epigenetic reprogramming. In addition, there are common therapeutic agents and drug targets between psoriasis and cancer. Thus, psoriasis and cancer share a common pathological mechanisms-drug targets-therapeutic agents framework. On this basis, it is proposed that investigating psoriasis from a cancer perspective is beneficial to enriching the research strategies related to psoriasis.
Collapse
Affiliation(s)
- Xingkang Wu
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China; (Y.M.); (L.W.)
| | | | | | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China; (Y.M.); (L.W.)
| |
Collapse
|
35
|
Hao RC, Li ZL, Wang FY, Tang J, Li PL, Yin BF, Li XT, Han MY, Mao N, Liu B, Ding L, Zhu H. Single-cell transcriptomic analysis identifies a highly replicating Cd168 + skeletal stem/progenitor cell population in mouse long bones. J Genet Genomics 2023; 50:702-712. [PMID: 37075860 DOI: 10.1016/j.jgg.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 04/21/2023]
Abstract
Skeletal stem/progenitor cells (SSPCs) are tissue-specific stem/progenitor cells localized within skeletons and contribute to bone development, homeostasis, and regeneration. However, the heterogeneity of SSPC populations in mouse long bones and their respective regenerative capacity remain to be further clarified. In this study, we perform integrated analysis using single-cell RNA sequencing (scRNA-seq) datasets of mouse hindlimb buds, postnatal long bones, and fractured long bones. Our analyses reveal the heterogeneity of osteochondrogenic lineage cells and recapitulate the developmental trajectories during mouse long bone growth. In addition, we identify a novel Cd168+ SSPC population with highly replicating capacity and osteochondrogenic potential in embryonic and postnatal long bones. Moreover, the Cd168+ SSPCs can contribute to newly formed skeletal tissues during fracture healing. Furthermore, the results of multicolor immunofluorescence show that Cd168+ SSPCs reside in the superficial zone of articular cartilage as well as in growth plates of postnatal mouse long bones. In summary, we identify a novel Cd168+ SSPC population with regenerative potential in mouse long bones, which adds to the knowledge of the tissue-specific stem cells in skeletons.
Collapse
Affiliation(s)
- Rui-Cong Hao
- Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhi-Ling Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Fei-Yan Wang
- Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jie Tang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Pei-Lin Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bo-Feng Yin
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiao-Tong Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Meng-Yue Han
- Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ning Mao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Li Ding
- Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, China; Air Force Medical Center, PLA, Beijing 100142, China.
| | - Heng Zhu
- Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, China; Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
36
|
Heryanto YD, Imoto S. Identifying Key Regulators of Keratinization in Lung Squamous Cell Cancer Using Integrated TCGA Analysis. Cancers (Basel) 2023; 15:cancers15072066. [PMID: 37046726 PMCID: PMC10092975 DOI: 10.3390/cancers15072066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Keratinization is one of lung squamous cell cancer’s (LUSC) hallmark histopathology features. Epithelial cells produce keratin to protect their integrity from external harmful substances. In addition to their roles as cell protectors, recent studies have shown that keratins have important roles in regulating either normal cell or tumor cell functions. The objective of this study is to identify the genes and microRNAs (miRNAs) that act as key regulators of the keratinization process in LUSC. To address this goal, we classified LUSC samples from GDC-TCGA databases based on their keratinization molecular signatures. Then, we performed differential analyses of genes, methylation, and miRNA expression between high keratinization and low keratinization samples. By reconstruction and analysis of the differentially expressed genes (DEGs) network, we found that TP63 and SOX2 were the hub genes that were highly connected to other genes and displayed significant correlations with several keratin genes. Methylation analysis showed that the P63, P73, and P53 DNA-binding motif sites were significantly enriched for differentially methylated probes. We identified SNAI2, GRHL3, TP63, ZNF750, and FOXE1 as the top transcription factors associated with these binding sites. Finally, we identified 12 miRNAs that influence the keratinization process by using miRNA–mRNA correlation analysis.
Collapse
Affiliation(s)
- Yusri Dwi Heryanto
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Correspondence:
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Laboratory of Sequence Analysis, Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
37
|
Jung JM, Yoon HK, Jung CJ, Jo SY, Hwang SG, Lee HJ, Lee WJ, Chang SE, Won CH. Cold Plasma Treatment Promotes Full-thickness Healing of Skin Wounds in Murine Models. THE INTERNATIONAL JOURNAL OF LOWER EXTREMITY WOUNDS 2023; 22:77-84. [PMID: 33856260 DOI: 10.1177/15347346211002144] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cold plasma can be beneficial for promoting skin wound healing and has a high potential of being effectively used in treating various wounds. Our aim was to verify the effect of cold plasma in accelerating wound healing and investigate its underlying mechanism in vitro and in vivo. For the in vivo experiments, 2 full-thickness dermal wounds were created in each mouse (n = 30). While one wound was exposed to 2 daily plasma treatments for 3 min, the other wound served as a control. The wounds were evaluated by imaging and histological analyses at 4, 7, and 11 days post the wound infliction process. Immunohistochemical studies were also performed at the same time points. In vitro proliferation and scratch assay using HaCaT keratinocytes and fibroblasts were performed. The expression levels of wound healing-related genes were analyzed by real-time polymerase chain reaction and western blot analysis. On day 7, the wound healing rates were 53.94% and 63.58% for the control group and the plasma-treated group, respectively. On day 11, these rates were 76.05% and 93.44% for the control and plasma-treated groups, respectively, and the difference between them was significant (P = .039). Histological analysis demonstrated that plasma treatment promotes the formation of epidermal keratin and granular layers. Immunohistochemical studies also revealed that collagen 1, collagen 3, and alpha-smooth muscle actin appeared more abundantly in the plasma-treated group than in the control group. In vitro, the proliferation of keratinocytes was promoted by plasma exposure. Scratch assay showed that fibroblast exposure to plasma increased their migration. The expression levels of collagen 1, collagen 3, and alpha-smooth muscle actin were elevated upon plasma treatment. In conclusion, cold plasma can accelerate skin wound healing and is well tolerated.
Collapse
Affiliation(s)
- Joon M Jung
- University of Ulsan College of Medicine, Seoul, Korea
| | - Hae K Yoon
- University of Ulsan College of Medicine, Seoul, Korea
| | - Chang J Jung
- University of Ulsan College of Medicine, Seoul, Korea
| | - Soo Y Jo
- University of Ulsan College of Medicine, Seoul, Korea
| | - Sang G Hwang
- University of Ulsan College of Medicine, Seoul, Korea
| | - Heun J Lee
- 58920Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woo J Lee
- University of Ulsan College of Medicine, Seoul, Korea
| | - Sung E Chang
- University of Ulsan College of Medicine, Seoul, Korea
| | - Chong H Won
- University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
38
|
Yang L, Zhen L, Li Z, Zhu S, Xu W, Luo Q, Peng L, Xie C. Human liver tissue transcriptomics revealed immunometabolic disturbances and related biomarkers in hepatitis B virus-related acute-on-chronic liver failure. Front Microbiol 2022; 13:1080484. [PMID: 36532504 PMCID: PMC9752073 DOI: 10.3389/fmicb.2022.1080484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 04/06/2024] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a major cause of liver-related death worldwide, but its key pathological features remain incompletely defined. This study aimed to reveal the molecular basis of hepatitis B virus-related ACLF (HBV-ACLF) by transcriptome sequencing of human liver tissue. A total of 18 human liver tissues from patients with different stages of HBV-related disease were collected for RNA sequencing, and liver tissues from patients and mouse models with ACLF were used for subsequent validation. Specifically, 6,853 differentially expressed genes (DEGs) and 5,038 differentially expressed transcripts were identified in patients with ACLF compared to patients with chronic hepatitis B (CHB) and normal controls (NCs). Investigation of functional by KEGG pathway enrichment analysis revealed prominent immune and metabolic dysregulation at the ACLF stage. We found that the key genes FGF19, ADCY8 and KRT17, which are related to immunometabolic disturbances, were significantly upregulated in the progression of ACLF. The three key genes were validated in human and mouse samples, indicating their prognostic and therapeutic potential in ACLF. In summary, our work reveals that immunometabolic disorder is involved in HBV-ACLF pathogenesis and indicates that FGF19, ADCY8 and KRT17 may be sensitive biomarkers for HBV-related ACLF.
Collapse
Affiliation(s)
- Luo Yang
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Limin Zhen
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhihui Li
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shu Zhu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenxiong Xu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiumin Luo
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liang Peng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Guangzhou, China
| | - Chan Xie
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Guangzhou, China
| |
Collapse
|
39
|
Bălănescu A, Băicuș C, Bălănescu E, Bălănescu P. Circulatory cytokeratin 17, marginal zone B1 protein and leucine-rich α2-glycoprotein-1 as biomarkers for disease severity and fibrosis in systemic sclerosis patients. Biochem Med (Zagreb) 2022; 32:030707. [PMID: 36277429 PMCID: PMC9562799 DOI: 10.11613/bm.2022.030707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Systemic sclerosis (Ssc) is a multiorgan debilitating autoimmune disease that associates the triad: vascular involvement, tissue fibrosis and profound immune response alterations. Numerous previous studies focused on identification of candidate proteomic Ssc biomarkers using mass-spectrometry techniques and a large number of candidate Ssc biomarkers emerged. These biomarkers must firstly be confirmed in independent patient groups. The aim of the present study was to investigate the association of cytokeratin 17 (CK17), marginal zone B1 protein (MZB1) and leucine-rich α2-glycoprotein-1 (LRG1) with clinical and biological Ssc characteristics. Material and methods Serum CK17, MZB1 and LRG1 were assessed in samples of the available Ssc biobank comprising of samples from 53 Ssc patients and 26 matched age and gender controls. Results Circulatory CK17, LRG1 and MZB1 concentrations were increased in Ssc patients. Cytokeratin 17 is independently associated with Ssc disease activity. Patients with pulmonary fibrosis expressed higher LRG1 and MZB1 concentrations. Serum MZB1 concentrations were also associated with extensive skin fibrosis. Conclusions Serum CK17, MZB1 and LRG1 were confirmed biomarkers for Ssc. LRG1 seems a good biomarker for pulmonary fibrosis, while MZB1 is a good biomarker for extensive skin fibrosis. CK17 proved to be independently associated with Ssc disease severity, higher CK17 values being protective for a more active disease.
Collapse
Affiliation(s)
- Anca Bălănescu
- Pediatrics Department, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Cristian Băicuș
- Internal Medicine Department, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Eugenia Bălănescu
- Clinical Immunology Laboratory CDPC, Colentina Clinical Hospital, Bucharest, Romania
| | - Paul Bălănescu
- Internal Medicine Department, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| |
Collapse
|
40
|
Yan X, Hong B, Feng J, Jin Y, Chen M, Li F, Qian Y. B7-H4 is a potential diagnostic and prognostic biomarker in colorectal cancer and correlates with the epithelial-mesenchymal transition. BMC Cancer 2022; 22:1053. [PMID: 36217128 PMCID: PMC9549643 DOI: 10.1186/s12885-022-10159-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/06/2022] [Indexed: 12/01/2022] Open
Abstract
Background As a negative co-stimulatory molecule of the B7 family, B7-H4 has recently attracted increased attention. However, the clinical value of B7-H4 in colorectal cancer (CRC) remains controversial and requires further investigation. This study aimed to investigate the role of B7-H4 in the clinical diagnosis and survival prognosis of CRC. Methods The relationships between B7-H4 expression, immune cell infiltration, epithelial-mesenchymal transition (EMT), clinicopathological features, and survival prognosis were determined through the TCGA database and verified in a large CRC cohort (n = 1118). Results The results showed the level of B7-H4 mRNA expression was significantly increased in the CRC tumor tissues compared with normal tissues (P < 0.001). Immunohistochemistry showed that B7-H4 protein expression was also up-regulated in CRC. The positive rate of B7-H4 in CRC tumor tissues was 76.38%, which was significantly higher than that in non-tumor tissues (P < 0.001). Overexpression of B7-H4 was positively correlated with lymph node metastasis, advanced TNM stage, and poor tumor differentiation (P = 0.012; 0.009; 0.014). Prognostic analysis showed high B7-H4 expression was associated with significantly shorter OS. Multivariate analysis demonstrated the risk of death in CRC patients with high B7-H4 expression is 1.487 times that of low B7-H4 expression. In addition, B7-H4 expression was negatively correlated with the epithelial marker E-cadherin (P < 0.001) and positively correlated with the mesenchymal marker vimentin (P < 0.001) in CRC tissues. However, B7-H4 expression was not associated with the immunosuppressive microenvironment in CRC. Conclusion B7-H4 may represent a potential biomarker for the diagnosis and prognosis of CRC and enhance CRC invasion by promoting EMT. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10159-5.
Collapse
Affiliation(s)
- Xiaotian Yan
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, 166 North Qiutao Road, Hangzhou, Zhejiang Province, 310006, China
| | - Bo Hong
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Jie Feng
- Department of Blood Transfusion, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Yuanqing Jin
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Mengting Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Fugang Li
- Shanghai Upper Bio Tech Pharma Company Limited, Shanghai, 201201, China
| | - Yun Qian
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, 166 North Qiutao Road, Hangzhou, Zhejiang Province, 310006, China.
| |
Collapse
|
41
|
KRT17 Accelerates Cell Proliferative and Invasive Potential of Laryngeal Squamous Cell Carcinoma (LSCC) through Regulating AKT/mTOR and Wnt/ β-Catenin Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6176043. [PMID: 36248412 PMCID: PMC9556256 DOI: 10.1155/2022/6176043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022]
Abstract
Background Laryngeal squamous cell carcinoma (LSCC) is a prevalent malignant tumor of the head and neck with a dismal prognosis. Keratin17 (KRT17) has been proven to serve as an oncogene in various cancers, but it has never been explored in LSCC. We proposed to assess the impact and possible mechanisms of KRT17 in the development of LSCC. Methods Quantitative reverse transcription-PCR (qRT-PCR) was utilized to examine the mRNA levels. The Kaplan-Meier method was used to calculate the relationship between KRT17 expression and survival curves in LSCC patients. Cell counting kit-8 (CCK-8), colony formation, and flow cytometry assays were utilized to estimate LSCC cell proliferation. The migration and invasion abilities of LSCC cells were ascertained by wound-healing and transwell assays. Immunohistochemical and western blot assays were utilized to appraise protein levels. The xenograft tumor model was used to determine the effect of KRT17 on tumor growth. Results In the present study, KRT17 was extremely high in LSCC tissues and cells and correlated with a poor prognosis. Inhibition of KRT17 weakens cell proliferative, migratory, and invasive abilities in LSCC and contributes to cell cycle arrest. Besides, we approved that knockdown of KRT17 extraordinarily restrained the xenograft tumor growth in vivo. We preliminarily investigated the role of KRT17 on the AKT/mTOR and Wnt/β-catenin signaling axes and found that these signaling pathways were largely blocked by KRT17 deletion. Conclusion Collectively, we uncovered that exhaustion of KRT17 suppresses LSCC progression through coordinating AKT/mTOR and Wnt/β-catenin signaling axes, illustrating KRT17 as a promising biomarker for making strides in LSCC treatment.
Collapse
|
42
|
Wang X, Niu L, Kang A, Pang Y, Zhang Y, Wang W, Zhang Y, Huang X, Liu Q, Geng Z, He L, Niu Y, Zhang R. Effects of ambient PM 2.5 on development of psoriasiform inflammation through KRT17-dependent activation of AKT/mTOR/HIF-1α pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:114008. [PMID: 36029575 DOI: 10.1016/j.ecoenv.2022.114008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Exposure to fine particulate matter (PM2.5) has significant effects on human skin health, mainly disrupting skin homeostasis and accelerating aging. To date, the effects of PM2.5 on psoriasis (PSO) have not been elucidated. An ambient particulate matter exposed and well characterized imiquimod (IMQ)-induced psoriasis mouse model was established. Thirty male C57BL/6 mice aged 8 weeks were randomly divided into three groups: filtered air (FA) group (Control group), PSO+ FA group and PSO + PM2.5 group. A KRT17 knockdown (KRT17-KD) mouse model was simultaneously established by subcutaneously injecting KRT17-KD lentivirus. Forty male C57BL/6 mice were randomly divided into four groups: PSO + FA + KRT17-RNAi negative control lentivirus (KRT17-NC) group, PSO+ FA+ KRT17-KD group, PSO + PM2.5 + KRT17-NC group and PSO + PM2.5 + KRT17-KD group. PM2.5 exposure continued for 8 weeks. Psoriasis was induced by topically applying IMQ on the dorsal skin of the mice for 6 days during week 8. Morphometric and histological analyses were performed to investigate the changes in psoriatic lesions. Differentially expressed genes and enriched pathways were explored using bioinformatics analysis and showed that KRT17 gene and the vascular endothelial growth factor receptor signaling pathway were associated with psoriasis. HaCaT cells were stimulated with interleukin-17A and infected with KRT17-KD lentivirus to establish an in vitro KRT17 knockdown psoriasis cell model. Notably, PM2.5 exposure increased the expression of KRT17 protein and activated AKT/mTOR/HIF-1α signaling pathway in vivo. Moreover, specific agonist of AKT (740Y-P) reversed the decreased neovascularization induced by KRT17 knockdown through AKT/mTOR/HIF-1α signaling pathway in vitro. Consequently, PM2.5 exposure could promote the development and progression of psoriasis through KRT17-dependent activation of AKT/mTOR/HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Xueliang Wang
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, People's Republic of China; Department of Dermatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China
| | - Linpeng Niu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China
| | - Aijuan Kang
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Yaxian Pang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Yaling Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Wenqing Wang
- Department of Dermatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China
| | - Yan Zhang
- Department of Dermatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China
| | - Xiaoyan Huang
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Qingping Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Zihan Geng
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Liyi He
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, People's Republic of China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, People's Republic of China.
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, People's Republic of China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, People's Republic of China.
| |
Collapse
|
43
|
Duan C, Townley H. Exploitation of High Tumour GSH Levels for Targeted siRNA Delivery in Rhabdomyosarcoma Cells. Biomolecules 2022; 12:biom12081129. [PMID: 36009022 PMCID: PMC9405954 DOI: 10.3390/biom12081129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Metastatic alveolar rhabdomyosarcoma (aRMS) is an aggressive paediatric cancer with a poor prognosis. Downregulation of critical tumour genes using targeted siRNA remains an obstacle, but association with nanoparticles could help to deliver, protect, target, and enhance penetration. siRNA towards two genes was investigated: (i) Human αB-crystallin (CRYAB) and Heat Shock Protein Family B (Small) Member 2 (HSPB2), and (ii) Keratin 17 (KRT17). A mesoporous silica based nanosystem was linked to siRNA via disulfide bonds and loaded with IR820 dye. Transfection efficiency and signalling was evaluated, and the metabolic effects and cell proliferation were monitored in 2D culture and 3D spheroid models. The bound siRNA was protected from degradation with RNase I for at least 24 h. The delivered siRNA showed significant suppression of viability; 53.21 ± 23.40% for CRYAB and HSPB2 siRNA, and 88.06 ± 17.28% for KRT17 siRNA. After 72 h this increased to >50% cell apoptosis and necrosis. Intracellular total glutathione (GSH) levels were also compared with fibroblasts, and the RMS cell lines showed a several-fold increase. IR820 cellular uptake rate and penetration depth was significantly improved by nanoparticle delivery. Targetted siRNA delivery may pave the way for less invasive and more effective treatments of aRMS.
Collapse
Affiliation(s)
- Chengchen Duan
- Nuffield Department of Women’s and Reproductive Health, Oxford University John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Helen Townley
- Nuffield Department of Women’s and Reproductive Health, Oxford University John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
- Department of Engineering Science, Oxford University, Parks Road, Oxford OX1 3PJ, UK
- Correspondence: ; Tel.: +44-1865-283792
| |
Collapse
|
44
|
Leitão C, Pereira SO, Marques C, Cennamo N, Zeni L, Shaimerdenova M, Ayupova T, Tosi D. Cost-Effective Fiber Optic Solutions for Biosensing. BIOSENSORS 2022; 12:575. [PMID: 36004971 PMCID: PMC9405647 DOI: 10.3390/bios12080575] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 05/13/2023]
Abstract
In the last years, optical fiber sensors have proven to be a reliable and versatile biosensing tool. Optical fiber biosensors (OFBs) are analytical devices that use optical fibers as transducers, with the advantages of being easily coated and biofunctionalized, allowing the monitorization of all functionalization and detection in real-time, as well as being small in size and geometrically flexible, thus allowing device miniaturization and portability for point-of-care (POC) testing. Knowing the potential of such biosensing tools, this paper reviews the reported OFBs which are, at the moment, the most cost-effective. Different fiber configurations are highlighted, namely, end-face reflected, unclad, D- and U-shaped, tips, ball resonators, tapered, light-diffusing, and specialty fibers. Packaging techniques to enhance OFBs' application in the medical field, namely for implementing in subcutaneous, percutaneous, and endoscopic operations as well as in wearable structures, are presented and discussed. Interrogation approaches of OFBs using smartphones' hardware are a great way to obtain cost-effective sensing approaches. In this review paper, different architectures of such interrogation methods and their respective applications are presented. Finally, the application of OFBs in monitoring three crucial fields of human life and wellbeing are reported: detection of cancer biomarkers, detection of cardiovascular biomarkers, and environmental monitoring.
Collapse
Affiliation(s)
- Cátia Leitão
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Sónia O. Pereira
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Carlos Marques
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Nunzio Cennamo
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (N.C.); (L.Z.)
| | - Luigi Zeni
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (N.C.); (L.Z.)
| | - Madina Shaimerdenova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
| | - Takhmina Ayupova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
- Laboratory of Biosensors and Bioinstruments, National Laboratory Astana, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
45
|
Mohamad J, Sarig O, Beattie P, Malovitski K, Assaf S, O'Toole E, Schwartz J, Evans H, Samuelov L, Sprecher E. A unique skin phenotype resulting from a large heterozygous deletion spanning six keratin genes. Br J Dermatol 2022; 187:773-777. [PMID: 35822506 DOI: 10.1111/bjd.21766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/03/2022] [Accepted: 07/09/2022] [Indexed: 12/01/2022]
Abstract
The phenotypic spectrum of genodermatoses is continuously expanding. Three siblings were referred because of a highly unusual phenotype comprising alopecia, dystrophic nails, palmoplantar keratoderma, and trauma-induced skin blistering. Whole exome sequencing analysis identified a heterozygous large genomic alteration of ~116,0000 bp resulting in the deletion of the KRT9, KRT14, KRT15, KRT16, KRT19 genes as well as part of KRT17. This genomic change leads to the generation of a truncated KRT17 protein composed of the first 3 exons of the gene and part of intron 3. The three patients were found to carry the heterozygous genomic deletion while their healthy parents did not, indicative of germline mosaicism. The genomic alteration was found to result in reduced KRT17 expression in patient skin. More importantly, the abnormal truncated KRT17 was found to exert a deleterious effect on keratinocyte cytoskeleton formation, leading to keratin aggregation. Co-expression of wildtype and truncated KRT17 proteins also caused keratin aggregation, demonstrating that the deletion exerts a dominant negative effect. In conclusion, we are reporting on a novel clinical phenotype that was found to result from germline mosaicism for a large genomic deletion spanning 6 keratin genes, thus expanding the spectrum of clinical manifestations associated with keratin disorders.
Collapse
Affiliation(s)
- Janan Mohamad
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Sarig
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Paula Beattie
- Department of Dermatology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Kiril Malovitski
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sari Assaf
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Edel O'Toole
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Dermatology, The Royal London Hospital, London, United Kingdom
| | | | - Holly Evans
- Pachyonychia Congenita Project, Holladay, Utah, USA
| | - Liat Samuelov
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eli Sprecher
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
46
|
Wang W, Lozar T, Golfinos AE, Lee D, Gronski E, Ward-Shaw E, Hayes M, Bruce JY, Kimple RJ, Hu R, Harari PM, Xu J, Keske A, Sondel PM, Fitzpatrick MB, Dinh HQ, Lambert PF. Stress Keratin 17 Expression in Head and Neck Cancer Contributes to Immune Evasion and Resistance to Immune-Checkpoint Blockade. Clin Cancer Res 2022; 28:2953-2968. [PMID: 35621713 PMCID: PMC9250640 DOI: 10.1158/1078-0432.ccr-21-3039] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/25/2021] [Accepted: 04/20/2022] [Indexed: 01/03/2023]
Abstract
PURPOSE We investigated whether in human head and neck squamous cell carcinoma (HNSCC) high levels of expression of stress keratin 17 (K17) are associated with poor survival and resistance to immunotherapy. EXPERIMENTAL DESIGN We investigated the role of K17 in regulating both the tumor microenvironment and immune responsiveness of HNSCC using a syngeneic mouse HNSCC model, MOC2. MOC2 gives rise to immunologically cold tumors that are resistant to immune-checkpoint blockade (ICB). We engineered multiple, independent K17 knockout (KO) MOC2 cell lines and monitored their growth and response to ICB. We also measured K17 expression in human HNSCC of patients undergoing ICB. RESULTS MOC2 tumors were found to express K17 at high levels. When knocked out for K17 (K17KO MOC2), these cells formed tumors that grew slowly or spontaneously regressed and had a high CD8+ T-cell infiltrate in immunocompetent syngeneic C57BL/6 mice compared with parental MOC2 tumors. This phenotype was reversed when we depleted mice for T cells. Whereas parental MOC2 tumors were resistant to ICB treatment, K17KO MOC2 tumors that did not spontaneously regress were eliminated upon ICB treatment. In a cohort of patients with HNSCC receiving pembrolizumab, high K17 expression correlated with poor response. Single-cell RNA-sequencing analysis revealed broad differences in the immune landscape of K17KO MOC2 tumors compared with parental MOC2 tumors, including differences in multiple lymphoid and myeloid cell types. CONCLUSIONS We demonstrate that K17 expression in HNSCC contributes to immune evasion and resistance to ICB treatment by broadly altering immune landscapes of tumors.
Collapse
Affiliation(s)
- Wei Wang
- McArdle Laboratory for Cancer Research/ Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison WI, USA
| | - Taja Lozar
- McArdle Laboratory for Cancer Research/ Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison WI, USA,University of Ljubljana, Ljubljana, Slovenia
| | - Athena E. Golfinos
- McArdle Laboratory for Cancer Research/ Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison WI, USA
| | - Denis Lee
- McArdle Laboratory for Cancer Research/ Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison WI, USA
| | - Ellery Gronski
- McArdle Laboratory for Cancer Research/ Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison WI, USA
| | - Ella Ward-Shaw
- McArdle Laboratory for Cancer Research/ Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison WI, USA
| | - Mitchell Hayes
- McArdle Laboratory for Cancer Research/ Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison WI, USA
| | - Justine Y. Bruce
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Randall J Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison WI, USA
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Paul M. Harari
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison WI, USA
| | - Jin Xu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Aysenur Keske
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Paul M. Sondel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison WI, USA,University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison
| | - Megan B. Fitzpatrick
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Huy Q. Dinh
- McArdle Laboratory for Cancer Research/ Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison WI, USA,University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison,Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison WI, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research/ Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison WI, USA,University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison
| |
Collapse
|
47
|
Zhang H, Zhang Y, Feng Z, Lu L, Li Y, Liu Y, Chen Y. Analysis of the Expression and Role of Keratin 17 in Human Tumors. Front Genet 2022; 13:801698. [PMID: 35646078 PMCID: PMC9133940 DOI: 10.3389/fgene.2022.801698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/25/2022] [Indexed: 11/25/2022] Open
Abstract
Objective: We aimed to explore the expression and carcinogenic effect of KRT17 in human tumors and provide useful information for the study of KRT17. Methods: We used databases including the Cancer Genome Atlas, Gene Expression Omnibus, GTEx, and GEPIA2 to analyze the expression, mutation, and prognosis of KRT17 in human tumors. Through webservers, including UALCAN, TIMER2.0, and STRING, we learned about the genetic variation, immune cell penetration, and enrichment analysis of KRT17-related genes. Results: KRT17 was highly expressed in most tumors (such as esophageal cancer, lung cancer, cervical cancer, etc.), and the high expression level correlated with tumor stage and prognosis. In addition, amplification was the main type of KRT17 tumor variation, with an amplification rate of about 9%, followed by mutation, with a mutation rate of 4%. Moreover, KRT17 was strongly associated with tumor-infiltrating immune cells (such as macrophages, CD8+T, Tregs, and cancer-associated fibroblasts). KEGG analysis suggested that KRT17 may play a role in tumor pathogenesis following human papillomavirus infection, and the gene ontology enrichment analysis indicated that the carcinogenicity of KRT17 can be attributed to cadherin binding, intermediate fibrocytoskeleton and epidermal development. Conclusion: KRT17 may play an important role in the occurrence, development, and prognosis of malignant tumors. We provided a relatively comprehensive description of the carcinogenic role of KRT17 in different tumors for the first time.
Collapse
Affiliation(s)
- Hanqun Zhang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yun Zhang
- Department of Pathology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Zhiyu Feng
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Liang Lu
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yong Li
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yuncong Liu
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yanping Chen
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| |
Collapse
|
48
|
Krueger A, Mohamed A, Kolka CM, Stoll T, Zaugg J, Linedale R, Morrison M, Soyer HP, Hugenholtz P, Frazer IH, Hill MM. Skin Cancer-Associated S. aureus Strains Can Induce DNA Damage in Human Keratinocytes by Downregulating DNA Repair and Promoting Oxidative Stress. Cancers (Basel) 2022; 14:2143. [PMID: 35565272 PMCID: PMC9106025 DOI: 10.3390/cancers14092143] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 12/19/2022] Open
Abstract
Actinic keratosis (AK) is a premalignant lesion, common on severely photodamaged skin, that can progress over time to cutaneous squamous cell carcinoma (SCC). A high bacterial load of Staphylococcus aureus is associated with AK and SCC, but it is unknown whether this has a direct impact on skin cancer development. To determine whether S. aureus can have cancer-promoting effects on skin cells, we performed RNA sequencing and shotgun proteomics on primary human keratinocytes after challenge with sterile culture supernatant ('secretome') from four S. aureus clinical strains isolated from AK and SCC. Secretomes of two of the S. aureus strains induced keratinocytes to overexpress biomarkers associated with skin carcinogenesis and upregulated the expression of enzymes linked to reduced skin barrier function. Further, these strains induced oxidative stress markers and all secretomes downregulated DNA repair mechanisms. Subsequent experiments on an expanded set of lesion-associated S. aureus strains confirmed that exposure to their secretomes led to increased oxidative stress and DNA damage in primary human keratinocytes. A significant correlation between the concentration of S. aureus phenol soluble modulin toxins in secretome and the secretome-induced level of oxidative stress and genotoxicity in keratinocytes was observed. Taken together, these data demonstrate that secreted compounds from lesion-associated clinical isolates of S. aureus can have cancer-promoting effects in keratinocytes that may be relevant to skin oncogenesis.
Collapse
Affiliation(s)
- Annika Krueger
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; (A.K.); (R.L.); (M.M.); (I.H.F.)
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; (A.M.); (C.M.K.); (T.S.)
| | - Ahmed Mohamed
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; (A.M.); (C.M.K.); (T.S.)
| | - Cathryn M. Kolka
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; (A.M.); (C.M.K.); (T.S.)
| | - Thomas Stoll
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; (A.M.); (C.M.K.); (T.S.)
| | - Julian Zaugg
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (J.Z.); (P.H.)
| | - Richard Linedale
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; (A.K.); (R.L.); (M.M.); (I.H.F.)
| | - Mark Morrison
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; (A.K.); (R.L.); (M.M.); (I.H.F.)
| | - H. Peter Soyer
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD 4102, Australia;
- Dermatology Department, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (J.Z.); (P.H.)
| | - Ian H. Frazer
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; (A.K.); (R.L.); (M.M.); (I.H.F.)
| | - Michelle M. Hill
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; (A.K.); (R.L.); (M.M.); (I.H.F.)
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; (A.M.); (C.M.K.); (T.S.)
- The University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| |
Collapse
|
49
|
Luo Y, Zhu Z, Li B, Bai X, Fang H, Qiao P, Chen J, Zhang C, Zhi D, Dang E, Wang G. Keratin 17 Promotes T Cell Response in Allergic Contact Dermatitis by Upregulating C-C Motif Chemokine Ligand 20. Front Immunol 2022; 13:764793. [PMID: 35178048 PMCID: PMC8845002 DOI: 10.3389/fimmu.2022.764793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
Allergic contact dermatitis (ACD) is a delayed-type hypersensitivity response to skin contact allergens in which keratinocytes are critical in the initiation of early responses. Keratin 17 (K17) is a cytoskeletal protein inducible under stressful conditions and regulates multiple cellular processes, especially in skin inflammatory diseases; however, knowledge regarding its contribution to ACD pathogenesis remains ill defined. In the present study, we clarified the proinflammatory role of K17 in an oxazolone (OXA)-induced contact hypersensitivity (CHS) murine model and identified the underlying molecular mechanisms. Our results showed that K17 was highly expressed in the lesional skin of ACD patients and OXA-induced CHS mice. Mice lacking K17 exhibited alleviated OXA-induced skin inflammation, including milder ear swelling, a reduced frequency of T cell infiltration, and decreased inflammatory cytokine levels. In vitro, K17 stimulated and activated human keratinocytes to produce plenty of proinflammatory mediators, especially the chemokine CCL20, and promoted keratinocyte-mediated T cell trafficking. The neutralization of CCL20 with a CCL20-neutralizing monoclonal antibody significantly alleviated OXA-induced skin inflammation in vivo. Moreover, K17 could translocate into the nucleus of activated keratinocytes through a process dependent on the nuclear-localization signal (NLS) and nuclear-export signal (NES) sequences, thus facilitating the activation and nuclear translocation of signal transducer and activator of transcription 3 (STAT3), further promoting the production of CCL20 and T cell trafficking to the lesional skin. Taken together, these results highlight the novel roles of K17 in driving allergen-induced skin inflammation and suggest targeting K17 as a potential strategy for ACD.
Collapse
Affiliation(s)
- Yixin Luo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhenlai Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bing Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaocui Bai
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui Fang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiaoling Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chen Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dalong Zhi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
50
|
Zhang H, Zhang Y, Xia T, Lu L, Luo M, Chen Y, Liu Y, Li Y. The Role of Keratin17 in Human Tumours. Front Cell Dev Biol 2022; 10:818416. [PMID: 35281081 PMCID: PMC8912659 DOI: 10.3389/fcell.2022.818416] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/03/2022] [Indexed: 12/24/2022] Open
Abstract
Keratins are a group of proteins that can constitute intermediate fibers. It is a component of the cytoskeleton and plays an important role in cell protection and structural support. Keratin 17, a Type I keratin, is a multifunctional protein that regulates a variety of biological processes, including cell growth, proliferation, migration, apoptosis and signal transduction. Abnormal expression of KRT17 is associated with a variety of diseases, such as skin diseases. In recent years, studies have shown that KRT17 is abnormally expressed in a variety of malignant tumours, such as lung cancer, cervical cancer, oral squamous cell carcinoma and sarcoma. These abnormal expressions are related to the occurrence, development and prognosis of malignant tumors. In this review, we summarized the expression patterns of KRT17 in a variety of malignant tumours, the role of KRT17 in the development and prognosis of different malignant tumors and its molecular mechanisms. We also discuss the potential clinical application of KRT17 as a valuable therapeutic target.
Collapse
Affiliation(s)
- Hanqun Zhang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Yun Zhang
- Department of Pathology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Tingting Xia
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Liang Lu
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Min Luo
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Yanping Chen
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Yuncong Liu
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
- *Correspondence: Yuncong Liu, ; Yong Li,
| | - Yong Li
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
- *Correspondence: Yuncong Liu, ; Yong Li,
| |
Collapse
|