1
|
Miyake Y, Tanaka K, Nagata C, Furukawa S, Andoh A, Yokoyama T, Yoshimura N, Mori K, Ninomiya T, Yamamoto Y, Takeshita E, Ikeda Y, Saito M, Ohashi K, Imaeda H, Kakimoto K, Higuchi K, Nunoi H, Mizukami Y, Suzuki S, Hiraoka S, Okada H, Kawasaki K, Higashiyama M, Hokari R, Miura H, Miyake T, Kumagi T, Kato H, Hato N, Sayama K, Hiasa Y. Case-control study of IL23R rs76418789 polymorphism, smoking, and ulcerative colitis in Japan. Cytokine 2024; 183:156743. [PMID: 39213891 DOI: 10.1016/j.cyto.2024.156743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/19/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Interleukin (IL)-23 is involved in the pathogenesis of ulcerative colitis (UC). A genome-wide significant association between IL23R p.G149R (rs76418789) and UC was previously identified in Japan and Korea. This case-control study aims to examine this association within the Japanese population. METHODS The study included 384 cases diagnosed with UC within the past 4 years and 661 control subjects. Adjustment was made for sex, age, and smoking. RESULTS The frequency of the AA genotype of rs76418789 was 0.0 % in cases and 0.5 % in control subjects. In comparison to study subjects with the GG genotype of rs76418789, those with the GA or AA genotype had a significantly reduced risk of UC, with an adjusted odds ratio of 0.67 (95 % confidence interval: 0.44-0.999). A significant multiplicative interaction was observed between rs76418789 and having ever smoked influencing UC (p for interaction = 0.03). A significant positive association was found between having ever smoked and UC in individuals with at least one A allele, while no such positive relationship was observed in those with the GG genotype. CONCLUSION IL23R SNP rs76418789 showed a significant association with UC. This study provides new evidence regarding the interaction between rs76418789 and smoking in relation to UC.
Collapse
Affiliation(s)
- Yoshihiro Miyake
- Department of Epidemiology and Public Health, Ehime University Graduate School of Medicine, Ehime, Japan.
| | - Keiko Tanaka
- Department of Epidemiology and Public Health, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Chisato Nagata
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | - Akira Andoh
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Tetsuji Yokoyama
- Department of Health Promotion, National Institute of Public Health, Saitama, Japan
| | | | - Kenichiro Mori
- Gastroenterology Center, Ehime Prefectural Central Hospital, Ehime, Japan
| | - Tomoyuki Ninomiya
- Gastroenterology Center, Ehime Prefectural Central Hospital, Ehime, Japan
| | | | - Eiji Takeshita
- Center for Inflammatory Bowel Diseases, Ehime University Hospital, Ehime, Japan
| | - Yoshio Ikeda
- Endoscopy Center, Ehime University Hospital, Ehime, Japan
| | - Mitsuru Saito
- Department of Gastroenterology, Tokuyama Central Hospital, Yamaguchi, Japan
| | - Katsuhisa Ohashi
- Ohashi Clinic Participate in Gastro-Enterology and Ano-Proctology, Ehime, Japan
| | - Hirotsugu Imaeda
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Kazuki Kakimoto
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Kazuhide Higuchi
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | | | - Yuji Mizukami
- Department of Gastroenterology, Matsuyama Shimin Hospital, Ehime, Japan
| | | | - Sakiko Hiraoka
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Keitarou Kawasaki
- Department of Internal Medicine and Gastroenterology, Saiseikai Imabari Hospital, Ehime, Japan
| | - Masaaki Higashiyama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Ryota Hokari
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Hiromasa Miura
- Department of Bone and Joint Surgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Teruki Miyake
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Teru Kumagi
- Postgraduate Clinical Training Center, Ehime University Hospital, Ehime, Japan
| | | | - Naohito Hato
- Department of Otolaryngology, Head and Neck Surgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Koji Sayama
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
2
|
Liu H, Guan L, Su X, Zhao L, Shu Q, Zhang J. A broken network of susceptibility genes in the monocytes of Crohn's disease patients. Life Sci Alliance 2024; 7:e202302394. [PMID: 38925865 PMCID: PMC11208737 DOI: 10.26508/lsa.202302394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Genome-wide association studies have identified over 200 genetic loci associated with inflammatory bowel disease; however, the mechanism of such a large amount of susceptibility genes remains uncertain. In this study, we integrated bioinformatics analysis and two independent single-cell transcriptome datasets to investigate the expression network of 232 susceptibility genes in Crohn's disease (CD) patients and healthy controls. The study revealed that most of the susceptibility genes are specifically and strictly expressed in the monocytes of the human intestinal tract. The susceptibility genes established a network within the monocytes of health control. The robustness of a gene network may prevent disease onset that is influenced by the genetic and environmental alteration in the expression of susceptibility genes. In contrast, we showed a sparse network in pediatric/adult CD patients, suggesting the broken network contributed to the CD etiology. The network status of susceptibility genes at the single-cell level of monocytes provided novel insight into the etiology.
Collapse
Affiliation(s)
- Hankui Liu
- Hebei Industrial Technology Research Institute of Genomics in Maternal & Child Health, Clin Lab, BGI Genomics, Shijiazhuang, China
- BGI Genomics, Shenzhen, China
| | - Liping Guan
- Hebei Industrial Technology Research Institute of Genomics in Maternal & Child Health, Clin Lab, BGI Genomics, Shijiazhuang, China
- BGI Genomics, Shenzhen, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xi Su
- BGI Genomics, Shenzhen, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lijian Zhao
- Hebei Industrial Technology Research Institute of Genomics in Maternal & Child Health, Clin Lab, BGI Genomics, Shijiazhuang, China
- BGI Genomics, Shenzhen, China
- Hebei Medical University, Shijiazhuang, China
| | - Qing Shu
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jianguo Zhang
- Hebei Industrial Technology Research Institute of Genomics in Maternal & Child Health, Clin Lab, BGI Genomics, Shijiazhuang, China
- BGI Research, Shenzhen, China
- Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
3
|
Zou C, Zan X, Jia Z, Zheng L, Gu Y, Liu F, Han Y, Xu C, Wu A, Zhi Q. Crosstalk between alternative splicing and inflammatory bowel disease: Basic mechanisms, biotechnological progresses and future perspectives. Clin Transl Med 2023; 13:e1479. [PMID: 37983927 PMCID: PMC10659771 DOI: 10.1002/ctm2.1479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/07/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Alternative splicing (AS) is an omnipresent regulatory mechanism of gene expression that enables the generation of diverse splice isoforms from a single gene. Recently, AS events have gained considerable momentum in the pathogenesis of inflammatory bowel disease (IBD). METHODS Our review has summarized the complex process of RNA splicing, and firstly highlighted the potential involved molecules that target aberrant splicing events in IBD. The quantitative transcriptome analyses such as microarrays, next-generation sequencing (NGS) for AS events in IBD have been also discussed. RESULTS Available evidence suggests that some abnormal splicing RNAs can lead to multiple intestinal disorders during the onset of IBD as well as the progression to colitis-associated cancer (CAC), including gut microbiota perturbations, intestinal barrier dysfunctions, innate/adaptive immune dysregulations, pro-fibrosis activation and some other risk factors. Moreover, current data show that the advanced technologies, including microarrays and NGS, have been pioneeringly employed to screen the AS candidates and elucidate the potential regulatory mechanisms of IBD. Besides, other biotechnological progresses such as the applications of third-generation sequencing (TGS), single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST), will be desired with great expectations. CONCLUSIONS To our knowledge, the current review is the first one to evaluate the potential regulatory mechanisms of AS events in IBD. The expanding list of aberrantly spliced genes in IBD along with the developed technologies provide us new clues to how IBD develops, and how these important AS events can be explored for future treatment.
Collapse
Affiliation(s)
- Chentao Zou
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xinquan Zan
- Department of General SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zhenyu Jia
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Lu Zheng
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yijie Gu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Fei Liu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Ye Han
- Department of General SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Chunfang Xu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Airong Wu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Qiaoming Zhi
- Department of General SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
4
|
Feng S, Zhang C, Chen S, He R, Chao G, Zhang S. TLR5 Signaling in the Regulation of Intestinal Mucosal Immunity. J Inflamm Res 2023; 16:2491-2501. [PMID: 37337514 PMCID: PMC10276996 DOI: 10.2147/jir.s407521] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023] Open
Abstract
Toll-like receptor 5 (TLR5) is a pattern recognition receptor that specifically recognizes flagellin and consequently plays a crucial role in the control of intestinal homeostasis by activating innate and adaptive immune responses. TLR5 overexpression, on the other hand, might disrupt the intestinal mucosal barrier, which serves as the first line of defense against harmful microbes. The intestine symbiotic bacteria, mucous layer, intestinal epithelial cells (IECs), adherens junctions (such as tight junctions and peripheral membrane proteins), the intestinal mucosal immune system, and cytokines make up the intestinal mucosal barrier. Impaired barrier function has been linked to intestinal illnesses such as inflammatory bowel disease (IBD). IBD is a persistent non-specific inflammatory illness of the digestive system with an unknown cause. It is now thought to be linked to infection, environment, genes, immune system, and the gut microbiota. The significance of immunological dysfunction in IBD has received more attention in recent years. The purpose of this paper is to explore TLR5's position in the intestinal mucosal barrier and its relevance to IBD.
Collapse
Affiliation(s)
- Shuyan Feng
- Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Chi Zhang
- Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Shanshan Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, People’s Republic of China
| | - Ruonan He
- Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Guanqun Chao
- Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, 310018, People’s Republic of China
| | - Shuo Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, People’s Republic of China
| |
Collapse
|
5
|
Costi S, Germinario S, Pandolfi M, Pellico MR, Amati A, Gattinara M, Chighizola CB, Caporali R, Marino A. Chronic Nonbacterial Osteomyelitis and Inflammatory Bowel Disease: A Literature Review-Based Cohort. CHILDREN 2023; 10:children10030502. [PMID: 36980060 PMCID: PMC10047775 DOI: 10.3390/children10030502] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Background: Chronic nonbacterial osteomyelitis (CNO) is a rare autoinflammatory bone disorder that mainly involves children and adolescents. The association with other inflammatory disorders, such as inflammatory bowel disease (IBD), psoriasis, and arthritis, has been reported in the literature. In particular, the relationship between bone and intestinal inflammation is still poorly understood. For this purpose, our review aims to describe the cases reported in the literature concerning this association and to compare them with data from our single-center cohort of patients. Methods: We conducted a literature review of published cases of CNO associated with IBD. Eligible articles were identified through a Medline search in the PubMed database until December 2022. We retrospectively reviewed medical records of patients with CNO referred to G. Pini Hospital and compared them with the literature-review-based cohort. Results: Fifty-seven patients with a defined diagnosis of CNO and associated IBD were described in the literature (female 55%). The median age of onset of the disease (CNO or IBD) was 11 years. In 32/53 (60%), a diagnosis of Crohn’s disease (CD) was made, while 18 (34%) patients were classified as suffering from ulcerative colitis (UC) and 3 (6%) from undifferentiated IBD. The diagnosis of CNO preceded the diagnosis of IBD in 59% of cases; while in 24%, IBD anticipated CNO; and in 17%, the two conditions appeared simultaneously. The median time between the two events was 24 months. In our Italian cohort (n = 23 patients), no diagnosis of IBD was made. No significant differences were found when comparing clinical and demographical characteristics of the Italian vs. review-based cohort, except for a significant involvement of rachis in the Italian group. Conclusions: The correlation between autoinflammatory bone disease and intestinal inflammation should be further investigated. It is essential to promote awareness among pediatric rheumatologists and gastroenterologists about this possible association to facilitate the diagnosis and better optimize treatment.
Collapse
Affiliation(s)
- Stefania Costi
- Unit of Pediatric Rheumatology, ASST G. Pini-CTO, 20122 Milan, Italy
| | | | | | | | | | | | - Cecilia Beatrice Chighizola
- Unit of Pediatric Rheumatology, ASST G. Pini-CTO, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Research Center for Pediatric and Adult Rheumatic Diseases (RECAP.RD), University of Milan, 20122 Milan, Italy
| | - Roberto Caporali
- Unit of Pediatric Rheumatology, ASST G. Pini-CTO, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Research Center for Pediatric and Adult Rheumatic Diseases (RECAP.RD), University of Milan, 20122 Milan, Italy
- Department of Rheumatology and Medical Sciences, ASST G. Pini-CTO, 20122 Milan, Italy
| | - Achille Marino
- Unit of Pediatric Rheumatology, ASST G. Pini-CTO, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
6
|
Sezgin E, Kaplan E. Diverse selection pressures shaping the genetic architecture of behçet disease susceptibility. Front Genet 2022; 13:983646. [PMID: 36246630 PMCID: PMC9561091 DOI: 10.3389/fgene.2022.983646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Behçet disease (BD) is a polygenic, multifactorial, multisystem inflammatory condition with unknown etiology. Global distribution of BD is geographically structured, highest prevalence observed among East Asian, Middle Eastern, and Mediterranean populations. Although adaptive selection on a few BD susceptibility loci is speculated, a thorough evolutionary analysis on the genetic architecture of BD is lacking. We aimed to understand whether increased BD risk in the human populations with high prevalence is due to past selection on BD associated genes. We performed population genetics analyses with East Asian (high BD prevalence), European (low/very low BD prevalence), and African (very low/no BD prevalence) populations. Comparison of ancestral and derived alleles' frequencies versus their reported susceptible or protective effect on BD showed both derived and ancestral alleles are associated with increased BD risk. Variants showing higher risk to and more significant association with BD had smaller allele frequency differences, and showed less population differentiation compared to variants that showed smaller risk and less significant association with BD. Results suggest BD alleles are not unique to East Asians but are also found in other world populations at appreciable frequencies, and argue against selection favoring these variants only in populations with high BD prevalence. BD associated gene analyses showed similar evolutionary histories driven by neutral processes for many genes or balancing selection for HLA (Human Leukocyte Antigen) genes in all three populations studied. However, nucleotide diversity in several HLA region genes was much higher in East Asians suggesting selection for high nucleotide and haplotype diversity in East Asians. Recent selective sweep for genes involved in antigen recognition, peptide processing, immune and cellular differentiation regulation was observed only in East Asians. We conclude that the evolutionary processes shaping the genetic diversity in BD risk genes are diverse, and elucidating the underlying specific selection mechanisms is complex. Several of the genes examined in this study are risk factors (such as ERAP1, IL23R, HLA-G) for other inflammatory diseases. Thus, our conclusions are not only limited to BD but may have broader implications for other inflammatory diseases.
Collapse
Affiliation(s)
- Efe Sezgin
- Department of Food Engineering, Izmir Institute of Technology, Izmir, Turkey
- Biotechnology Interdisciplinary Program, Izmir Institute of Technology, Izmir, Turkey
| | - Elif Kaplan
- Biotechnology Interdisciplinary Program, Izmir Institute of Technology, Izmir, Turkey
| |
Collapse
|
7
|
Reflecting on the immunopathology of arthritis associated with inflammatory bowel disease: what do we know and what should we know? Clin Rheumatol 2022; 41:2581-2588. [PMID: 35543893 DOI: 10.1007/s10067-022-06201-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 11/03/2022]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is clinically closely associated with arthritis. Three major arthritis clinical subtypes have been described, peripheral arthritis type 1 (PeA1), peripheral arthritis type 2 (PeA2), and axial spondyloarthritis (axSpA). While genetic overlaps between IBD and arthritis have been defined, detailed pathophysiology for these three major subtypes of arthritis in patients with IBD has only recently begun to be established. The genetic and molecular mechanisms distinguishing axial and peripheral arthropathies in patients with UC and CD need to be better described. Understanding the pathophysiology for PeA1, PeA2, and axSpA in the settings of both UC and CD is necessary to provide the fundamental biology underlying the clinical phenotypes in IBD arthritis. This has been attempted for CD-associated spondyloarthritis, differentiating this from both CD and axSpA, while observing unique peripheral blood mononuclear cells linking gut inflammation to joint disease. We should know more about the processes by which immune cells are perturbed in these disorders, how they translocate to joints, how they are activated, what other molecules and mediators are involved, and how gut microbes and microbial products damage joints. Information from such studies are needed to elucidate whether distinctions between IBD-related peripheral and axSpA are clinically meaningful. IBD-related peripheral and axSpA studies are needed to elucidate whether distinctions between peripheral and axSpA are clinically meaningful, to better understand immunopathogenesis, and to develop novel targeted therapies.
Collapse
|
8
|
Sewell GW, Kaser A. Interleukin-23 in the Pathogenesis of Inflammatory Bowel Disease and Implications for Therapeutic Intervention. J Crohns Colitis 2022; 16:ii3-ii19. [PMID: 35553667 PMCID: PMC9097674 DOI: 10.1093/ecco-jcc/jjac034] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The interleukin-23 [IL-23] cytokine, derived predominantly from macrophages and dendritic cells in response to microbial stimulation, has emerged as a critical promoter of chronic intestinal inflammation. Genome-wide association studies linking variants in IL23R to disease protection, bolstered by experimental evidence from colitis models, and the successful application of therapies against the IL-12/IL-23 shared p40 subunit in the treatment of inflammatory bowel disease [IBD] all provide compelling evidence of a crucial role for IL-23 in disease pathogenesis. Moreover, targeting the p19 subunit specific for IL-23 has shown considerable promise in recent phase 2 studies in IBD. The relative importance of the diverse immunological pathways downstream of IL-23 in propagating mucosal inflammation in the gut, however, remains contentious. Here we review current understanding of IL-23 biology and explore its pleiotropic effects on T cells, and innate lymphoid, myeloid and intestinal epithelial cells in the context of the pathogenesis of IBD. We furthermore discuss these pathways in the light of recent evidence from clinical trials and indicate emerging targets amenable to therapeutic intervention and translation into clinical practice.
Collapse
Affiliation(s)
- Gavin W Sewell
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK,Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Arthur Kaser
- Corresponding author: Arthur Kaser, Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK. Tel: +44 1223 331130;
| |
Collapse
|
9
|
Cho MH, Hobbs BD, Silverman EK. Genetics of chronic obstructive pulmonary disease: understanding the pathobiology and heterogeneity of a complex disorder. THE LANCET. RESPIRATORY MEDICINE 2022; 10:485-496. [PMID: 35427534 PMCID: PMC11197974 DOI: 10.1016/s2213-2600(21)00510-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/20/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a deadly and highly morbid disease. Susceptibility to and heterogeneity of COPD are incompletely explained by environmental factors such as cigarette smoking. Family-based and population-based studies have shown that a substantial proportion of COPD risk is related to genetic variation. Genetic association studies have identified hundreds of genetic variants that affect risk for COPD, decreased lung function, and other COPD-related traits. These genetic variants are associated with other pulmonary and non-pulmonary traits, demonstrate a genetic basis for at least part of COPD heterogeneity, have a substantial effect on COPD risk in aggregate, implicate early-life events in COPD pathogenesis, and often involve genes not previously suspected to have a role in COPD. Additional progress will require larger genetic studies with more ancestral diversity, improved profiling of rare variants, and better statistical methods. Through integration of genetic data with other omics data and comprehensive COPD phenotypes, as well as functional description of causal mechanisms for genetic risk variants, COPD genetics will continue to inform novel approaches to understanding the pathobiology of COPD and developing new strategies for management and treatment.
Collapse
Affiliation(s)
- Michael H Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Brian D Hobbs
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Kondratyev NV, Alfimova MV, Golov AK, Golimbet VE. Bench Research Informed by GWAS Results. Cells 2021; 10:3184. [PMID: 34831407 PMCID: PMC8623533 DOI: 10.3390/cells10113184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
Scientifically interesting as well as practically important phenotypes often belong to the realm of complex traits. To the extent that these traits are hereditary, they are usually 'highly polygenic'. The study of such traits presents a challenge for researchers, as the complex genetic architecture of such traits makes it nearly impossible to utilise many of the usual methods of reverse genetics, which often focus on specific genes. In recent years, thousands of genome-wide association studies (GWAS) were undertaken to explore the relationships between complex traits and a large number of genetic factors, most of which are characterised by tiny effects. In this review, we aim to familiarise 'wet biologists' with approaches for the interpretation of GWAS results, to clarify some issues that may seem counterintuitive and to assess the possibility of using GWAS results in experiments on various complex traits.
Collapse
Affiliation(s)
| | | | - Arkadiy K. Golov
- Mental Health Research Center, 115522 Moscow, Russia; (M.V.A.); (A.K.G.); (V.E.G.)
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vera E. Golimbet
- Mental Health Research Center, 115522 Moscow, Russia; (M.V.A.); (A.K.G.); (V.E.G.)
| |
Collapse
|
11
|
Scheller J, Berg A, Moll JM, Floss DM, Jungesblut C. Current status and relevance of single nucleotide polymorphisms in IL-6-/IL-12-type cytokine receptors. Cytokine 2021; 148:155550. [PMID: 34217594 DOI: 10.1016/j.cyto.2021.155550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 01/06/2023]
Abstract
Cytokines control immune related events and are critically involved in a plethora of patho-physiological processes including autoimmunity and cancer development. In rare cases, single nucleotide polymorphisms (SNPs) or single nucleotide variations (SNVs) in cytokine receptors eventually cause detrimental ligand-independent, constitutive activation of signal transduction. Most SNPs have, however, no or only marginal influences on gene expression, protein stability, localization and function and thereby only slightly affecting pathogenesis probability. The SNP database (dbSNP) is an archive for a broad collection of polymorphisms in which SNPs are categorized and marked with a locus accession number "reference SNP" (rs). Here, we engineered an algorithm to directly align dbSNP information to DNA and protein sequence information to clearly illustrate a genetic SNP landscape exemplified for all tall cytokine receptors of the IL-6/IL-12 family, including IL-23R, IL-12Rβ1, IL-12Rβ2, gp130, LIFR, OSMR and WSX-1. This information was complemented by a comprehensive literature summary and structural insights of relevant disease-causing SNPs in cytokine/cytokine receptor interfaces. In summary, we present a general strategy with potential to apply to other cytokine receptor networks.
Collapse
Affiliation(s)
- Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| | - Anna Berg
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | | |
Collapse
|
12
|
Pang H, Xia Y, Luo S, Huang G, Li X, Xie Z, Zhou Z. Emerging roles of rare and low-frequency genetic variants in type 1 diabetes mellitus. J Med Genet 2021; 58:289-296. [PMID: 33753534 PMCID: PMC8086251 DOI: 10.1136/jmedgenet-2020-107350] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 12/12/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is defined as an autoimmune disorder and has enormous complexity and heterogeneity. Although its precise pathogenic mechanisms are obscure, this disease is widely acknowledged to be precipitated by environmental factors in individuals with genetic susceptibility. To date, the known susceptibility loci, which have mostly been identified by genome-wide association studies, can explain 80%–85% of the heritability of T1DM. Researchers believe that at least a part of its missing genetic component is caused by undetected rare and low-frequency variants. Most common variants have only small to modest effect sizes, which increases the difficulty of dissecting their functions and restricts their potential clinical application. Intriguingly, many studies have indicated that rare and low-frequency variants have larger effect sizes and play more significant roles in susceptibility to common diseases, including T1DM, than common variants do. Therefore, better recognition of rare and low-frequency variants is beneficial for revealing the genetic architecture of T1DM and for providing new and potent therapeutic targets for this disease. Here, we will discuss existing challenges as well as the great significance of this field and review current knowledge of the contributions of rare and low-frequency variants to T1DM.
Collapse
Affiliation(s)
- Haipeng Pang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ying Xia
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shuoming Luo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
13
|
Momozawa Y, Mizukami K. Unique roles of rare variants in the genetics of complex diseases in humans. J Hum Genet 2021; 66:11-23. [PMID: 32948841 PMCID: PMC7728599 DOI: 10.1038/s10038-020-00845-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/06/2020] [Indexed: 12/19/2022]
Abstract
Genome-wide association studies have identified >10,000 genetic variants associated with various phenotypes and diseases. Although the majority are common variants, rare variants with >0.1% of minor allele frequency have been investigated by imputation and using disease-specific custom SNP arrays. Rare variants sequencing analysis mainly revealed have played unique roles in the genetics of complex diseases in humans due to their distinctive features, in contrast to common variants. Unique roles are hypothesis-free evidence for gene causality, a precise target of functional analysis for understanding disease mechanisms, a new favorable target for drug development, and a genetic marker with high disease risk for personalized medicine. As whole-genome sequencing continues to identify more rare variants, the roles associated with rare variants will also increase. However, a better estimation of the functional impact of rare variants across whole genome is needed to enhance their contribution to improvements in human health.
Collapse
Affiliation(s)
- Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.
- Laboratory for Molecular Science for Drug Discovery, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan.
| | - Keijiro Mizukami
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| |
Collapse
|
14
|
Lee M, Chang EB. Inflammatory Bowel Diseases (IBD) and the Microbiome-Searching the Crime Scene for Clues. Gastroenterology 2021; 160:524-537. [PMID: 33253681 PMCID: PMC8098834 DOI: 10.1053/j.gastro.2020.09.056] [Citation(s) in RCA: 312] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel diseases (IBD) develop via convergence of environmental, microbial, immunological, and genetic factors. Alterations in the gut microbiota have been associated with development and progression of IBD, but it is not clear which populations of microbes are involved or how they might contribute to IBD. We review the genetic and environmental factors affecting the gut microbiota, the roles of gut microbes and their bioproducts in the development and clinical course of IBD, and strategies by which microbiome-based therapies can be used to prevent, manage, and eventually cure IBD. We discuss research findings that help bridge the gap between the basic sciences and clinical application.
Collapse
Affiliation(s)
| | - Eugene B Chang
- Department of Medicine, University of Chicago, Chicago, Illinois.
| |
Collapse
|
15
|
Mahmoudi M, Aslani S, Meguro A, Akhtari M, Fatahi Y, Mizuki N, Shahram F. A comprehensive overview on the genetics of Behçet's disease. Int Rev Immunol 2020; 41:84-106. [PMID: 33258398 DOI: 10.1080/08830185.2020.1851372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Behçet's disease (BD) is a systemic and inflammatory disease, characterized mainly by recurrent oral and genital ulcers, eye involvement, and skin lesions. Although the exact etiopathogenesis of BD remains unrevealed, a bulk of studies have implicated the genetic contributing factors as critical players in disease predisposition. In countries along the Silk Road, human leukocyte antigen (HLA)-B51 has been reported as the strongest genetically associated factor for BD. Genome-wide association studies, local genetic polymorphism studies, and meta-analysis of combined data from Turkish, Iranian, and Japanese populations have also identified new genetic associations with BD. Among these, other HLA alleles such as HLA-B*15, HLA-B*27, HLA-B*57, and HLA-A*26 have been found as independent risk factors for BD, whereas HLA-B*49 and HLA-A*03 are independent protective alleles for BD. Moreover, other genes have also reached the genome-wide significance level of association with BD susceptibility, including IL10, IL23R-IL12RB2, IL12A, CCR1-CCR3, STAT4, TNFAIP3, ERAP1, KLRC4, and FUT2. Also, several rare nonsynonymous variants in TLR4, IL23R, NOD2, and MEFV genes have been reported to be involved in BD pathogenesis. According to genetic determinants in the loci outside the MHC region that are contributed to the host defense, immunity, and inflammation pathways, it is suggested that immune responses to the pathogen as an important environmental factor and mucosal immunity contribute to BD susceptibility.
Collapse
Affiliation(s)
- Mahdi Mahmoudi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Akira Meguro
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Maryam Akhtari
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Faculty of Pharmacy, Department of Pharmaceutical Nanotechnology, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Farhad Shahram
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
IL-12 and IL-23-Close Relatives with Structural Homologies but Distinct Immunological Functions. Cells 2020; 9:cells9102184. [PMID: 32998371 PMCID: PMC7600943 DOI: 10.3390/cells9102184] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 12/21/2022] Open
Abstract
Cytokines of the IL-12 family show structural similarities but have distinct functions in the immune system. Prominent members of this cytokine family are the pro-inflammatory cytokines IL-12 and IL-23. These two cytokines share cytokine subunits and receptor chains but have different functions in autoimmune diseases, cancer and infections. Accordingly, structural knowledge about receptor complex formation is essential for the development of new therapeutic strategies preventing and/or inhibiting cytokine:receptor interaction. In addition, intracellular signaling cascades can be targeted to inhibit cytokine-mediated effects. Single nucleotide polymorphisms can lead to alteration in the amino acid sequence and thereby influencing protein functions or protein–protein interactions. To understand the biology of IL-12 and IL-23 and to establish efficient targeting strategies structural knowledge about cytokines and respective receptors is crucial. A highly efficient therapy might be a combination of different drugs targeting extracellular cytokine:receptor assembly and intracellular signaling pathways.
Collapse
|
17
|
Akiyama M. Multi-omics study for interpretation of genome-wide association study. J Hum Genet 2020; 66:3-10. [PMID: 32948838 DOI: 10.1038/s10038-020-00842-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 12/23/2022]
Abstract
Genome-wide association studies (GWASs) have identified thousands of genetic loci associated with complex traits, including a wide variety of diseases. Despite the successful identification of associated loci, interpreting GWAS findings remains challenging and requires other biological resources. Omics, including genomics, transcriptomics, proteomics, metabolomics, and epigenomics, are increasingly used in a broad range of research fields. Integrative analyses applying GWAS with these omics data are expected to expand our knowledge of complex traits and provide insight into the pathogenesis of complex diseases and their causative factors. Recently, associations between genetic variants and omics data have been comprehensively evaluated, providing new information on the influence of genetic variants on omics. Furthermore, recent advances in analytic methods, including single-cell technologies, have revealed previously unknown disease mechanisms. To advance our understanding of complex traits, integrative analysis using GWAS with multi-omics data is needed. In this review, I describe successful examples of integrative analyses based on omics and GWAS, discuss the limitations of current multi-omics analyses, and provide a perspective on future integrative studies.
Collapse
Affiliation(s)
- Masato Akiyama
- Department of Ocular Pathology and Imaging Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan. .,Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.
| |
Collapse
|
18
|
Moore CM, Jacobson SA, Fingerlin TE. Power and Sample Size Calculations for Genetic Association Studies in the Presence of Genetic Model Misspecification. Hum Hered 2020; 84:256-271. [PMID: 32721961 DOI: 10.1159/000508558] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/11/2020] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION When analyzing data from large-scale genetic association studies, such as targeted or genome-wide resequencing studies, it is common to assume a single genetic model, such as dominant or additive, for all tests of association between a given genetic variant and the phenotype. However, for many variants, the chosen model will result in poor model fit and may lack statistical power due to model misspecification. OBJECTIVE We develop power and sample size calculations for tests of gene and gene × environment interaction, allowing for misspecification of the true mode of genetic susceptibility. METHODS The power calculations are based on a likelihood ratio test framework and are implemented in an open-source R package ("genpwr"). RESULTS We use these methods to develop an analysis plan for a resequencing study in idiopathic pulmonary fibrosis and show that using a 2-degree of freedom test can increase power to detect recessive genetic effects while maintaining power to detect dominant and additive effects. CONCLUSIONS Understanding the impact of model misspecification can aid in study design and developing analysis plans that maximize power to detect a range of true underlying genetic effects. In particular, these calculations help identify when a multiple degree of freedom test or other robust test of association may be advantageous.
Collapse
Affiliation(s)
- Camille M Moore
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, USA,
| | - Sean A Jacobson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, USA
| | - Tasha E Fingerlin
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
19
|
Okamoto D, Kawai Y, Kakuta Y, Naito T, Torisu T, Hirano A, Umeno J, Fuyuno Y, Li D, Nakano T, Izumiyama Y, Ichikawa R, Hiramoto K, Moroi R, Kuroha M, Kanazawa Y, Shiga H, Tokunaga K, Nakamura M, Esaki M, Matsumoto T, McGovern DPB, Nagasaki M, Kinouchi Y, Masamune A. Genetic Analysis of Ulcerative Colitis in Japanese Individuals Using Population-specific SNP Array. Inflamm Bowel Dis 2020; 26:1177-1187. [PMID: 32072174 DOI: 10.1093/ibd/izaa033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND To clarify the genetic background of ulcerative colitis (UC) in the Japanese population, we conducted a genome-wide association study (GWAS) using a population-specific single nucleotide polymorphism (SNP) array. METHODS We performed a GWAS and replication study including 1676 UC patients and 2381 healthy controls. The probability of colectomy was compared between genotypes of rs117506082, the top hit SNP at HLA loci, by the Kaplan-Meier method. We studied serum expression of miR-622, a newly identified candidate gene, from 32 UC patients and 8 healthy controls by quantitative reverse-transcription polymerase chain reaction. RESULTS In the GWAS, only the HLA loci showed genome-wide significant associations with UC (rs117506082, P = 6.69E-28). Seven nominally significant regions included 2 known loci, IL23R (rs76418789, P = 6.29E-7) and IRF8 (rs16940202, P = 1.03E-6), and 5 novel loci: MIR622 (rs9560575, P = 8.23E-7), 14q31 (rs117618617, P = 1.53E-6), KAT6B (rs12260609, P = 1.81E-6), PAX3-CCDC140-SGPP2 (rs7589797, P = 2.87E-6), and KCNA2 (rs118020656, P = 4.01E-6). Combined analysis revealed that IL23R p.G149R (rs76418789, P = 9.03E-11; odds ratio [OR], 0.51) had genome-wide significant association with UC. Patients with GG genotype of rs117506082 had a significantly lower probability of total colectomy than those with the GA+AA genotype (P = 1.72E-2). Serum expression of miR-622 in patients with inactive UC tended to be higher than in healthy controls and patients with active UC (inactive UC vs healthy controls, P = 3.03E-02; inactive UC vs active UC, P = 6.44E-02). CONCLUSIONS IL23R p.G149R is a susceptibility locus for UC in Japanese individuals. The GG genotype of rs117506082 at HLA loci may predict a better clinical course.
Collapse
Affiliation(s)
- Daisuke Okamoto
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yoichi Kakuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeo Naito
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takehiro Torisu
- F. Widjaja Family Foundation Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Atsushi Hirano
- F. Widjaja Family Foundation Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Junji Umeno
- F. Widjaja Family Foundation Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yuta Fuyuno
- F. Widjaja Family Foundation Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dalin Li
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeru Nakano
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Izumiyama
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Ichikawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiichiro Hiramoto
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Rintaro Moroi
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masatake Kuroha
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshitake Kanazawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hisashi Shiga
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Minoru Nakamura
- Clinical Research Center, National Hospital Organization (NHO), Nagasaki Medical Center, Omura, Japan
| | - Motohiro Esaki
- F. Widjaja Family Foundation Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Iwate Medical University, Morioka, Japan
| | - Takayuki Matsumoto
- F. Widjaja Family Foundation Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Health Administration Center, Center for the Advancement of Higher Education, Tohoku University, Sendai, Japan
| | - Dermot P B McGovern
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masao Nagasaki
- Human Biosciences Unit for the Top Global Course Center for the Promotion of Interdisciplinary Education and Research (CPIER), Kyoto University, Kyoto, Japan.,Department of Endoscopic Diagnostics and Therapeutics, Saga University, Saga, Japan
| | - Yoshitaka Kinouchi
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
20
|
Saadoun D. Behçet's disease: The French recommendations. Rev Med Interne 2020; 41:437-439. [DOI: 10.1016/j.revmed.2020.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/07/2020] [Accepted: 05/21/2020] [Indexed: 11/30/2022]
|
21
|
Lim KS, Yong ZWE, Wang H, Tan TZ, Huang RYJ, Yamamoto D, Inaki N, Hazawa M, Wong RW, Oshima H, Oshima M, Ito Y, Voon DCC. Inflammatory and mitogenic signals drive interleukin 23 subunit alpha (IL23A) secretion independent of IL12B in intestinal epithelial cells. J Biol Chem 2020; 295:6387-6400. [PMID: 32209656 DOI: 10.1074/jbc.ra120.012943] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/29/2020] [Indexed: 01/15/2023] Open
Abstract
The heterodimeric cytokine interleukin-23 (IL-23 or IL23A/IL12B) is produced by dendritic cells and macrophages and promotes the proinflammatory and regenerative activities of T helper 17 (Th17) and innate lymphoid cells. A recent study has reported that IL-23 is also secreted by lung adenoma cells and generates an inflammatory and immune-suppressed stroma. Here, we observed that proinflammatory tumor necrosis factor (TNF)/NF-κB and mitogen-activated protein kinase (MAPK) signaling strongly induce IL23A expression in intestinal epithelial cells. Moreover, we identified a strong crosstalk between the NF-κB and MAPK/ERK kinase (MEK) pathways, involving the formation of a transcriptional enhancer complex consisting of proto-oncogene c-Jun (c-Jun), RELA proto-oncogene NF-κB subunit (RelA), RUNX family transcription factor 1 (RUNX1), and RUNX3. Collectively, these proteins induced IL23A secretion, confirmed by immunoprecipitation of endogenous IL23A from activated human colorectal cancer (CRC) cell culture supernatants. Interestingly, IL23A was likely secreted in a noncanonical form, as it was not detected by an ELISA specific for heterodimeric IL-23 likely because IL12B expression is absent in CRC cells. Given recent evidence that IL23A promotes tumor formation, we evaluated the efficacy of MAPK/NF-κB inhibitors in attenuating IL23A expression and found that the MEK inhibitor trametinib and BAY 11-7082 (an IKKα/IκB inhibitor) effectively inhibited IL23A in a subset of human CRC lines with mutant KRAS or BRAFV600E mutations. Together, these results indicate that proinflammatory and mitogenic signals dynamically regulate IL23A in epithelial cells. They further reveal its secretion in a noncanonical form independent of IL12B and that small-molecule inhibitors can attenuate IL23A secretion.
Collapse
Affiliation(s)
- Kee Siang Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599.,WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Zachary Wei Ern Yong
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Huajing Wang
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research, Singapore 138669
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599.,Department of Obstetrics & Gynaecology, National University Hospital, Singapore 119228
| | - Daisuke Yamamoto
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan.,Department of Gastroenterological Surgery, Ishikawa Prefectural Central Hospital, Ishikawa 920-8530, Japan
| | - Noriyuki Inaki
- Department of Digestive and General Surgery, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan
| | - Masaharu Hazawa
- Faculty of Natural System, Institute of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan.,Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Richard W Wong
- WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan.,Faculty of Natural System, Institute of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan.,Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroko Oshima
- WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan.,Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Masanobu Oshima
- WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan.,Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599
| | - Dominic Chih-Cheng Voon
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan .,Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
22
|
Cleynen I, Halfvarsson J. How to approach understanding complex trait genetics - inflammatory bowel disease as a model complex trait. United European Gastroenterol J 2019; 7:1426-1430. [PMID: 31839967 DOI: 10.1177/2050640619891120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
23
|
Quraishi MN, Shaheen W, Oo YH, Iqbal TH. Immunological mechanisms underpinning faecal microbiota transplantation for the treatment of inflammatory bowel disease. Clin Exp Immunol 2019; 199:24-38. [PMID: 31777058 DOI: 10.1111/cei.13397] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2019] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal disease that results from a dysregulated immune response against specific environmental triggers in a genetically predisposed individual. Increasing evidence has indicated a causal role for changes in gut microbiota (dysbiosis) contributing to this immune-mediated intestinal inflammation. These mechanisms involve dysregulation of multiple facets of the host immune pathways that are potentially reversible. Faecal microbiota transplantation (FMT) is the transfer of processed stool from a healthy donor into an individual with an illness. FMT has shown promising results in both animal model experiments and clinical studies in IBD in the resolution of intestinal inflammation. The underlying mechanisms, however, are unclear. Insights from these studies have shown interactions between modulation of dysbiosis via changes in abundances of specific members of the gut microbial community and changes in host immunological pathways. Unravelling these causal relationships has promising potential for a translational therapy role to develop targeted microbial therapies and understand the mechanisms that underpin IBD aetiopathogenesis. In this review, we discuss current evidence for the contribution of gut microbiota in the disruption of intestinal immune homeostasis and immunoregulatory mechanisms that are associated with the resolution of inflammation through FMT in IBD.
Collapse
Affiliation(s)
- M N Quraishi
- Centre for Liver and Gastroenterology Research, NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK.,Department of Gastroenterology, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, UK.,University of Birmingham Microbiome Treatment Centre, University of Birmingham, Birmingham, UK
| | - W Shaheen
- Centre for Liver and Gastroenterology Research, NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK.,University of Birmingham Microbiome Treatment Centre, University of Birmingham, Birmingham, UK
| | - Y H Oo
- Centre for Liver and Gastroenterology Research, NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK.,Department of Gastroenterology, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, UK.,Liver Transplant and Hepatobiliary Unit, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, UK
| | - T H Iqbal
- Centre for Liver and Gastroenterology Research, NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK.,Department of Gastroenterology, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, UK.,University of Birmingham Microbiome Treatment Centre, University of Birmingham, Birmingham, UK
| |
Collapse
|
24
|
Venkataraman GR, Rivas MA. Rare and common variant discovery in complex disease: the IBD case study. Hum Mol Genet 2019; 28:R162-R169. [PMID: 31363759 PMCID: PMC6872431 DOI: 10.1093/hmg/ddz189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022] Open
Abstract
Complex diseases such as inflammatory bowel disease (IBD), which consists of ulcerative colitis and Crohn's disease, are a significant medical burden-70 000 new cases of IBD are diagnosed in the United States annually. In this review, we examine the history of genetic variant discovery in complex disease with a focus on IBD. We cover methods that have been applied to microsatellite, common variant, targeted resequencing and whole-exome and -genome data, specifically focusing on the progression of technologies towards rare-variant discovery. The inception of these methods combined with better availability of population level variation data has led to rapid discovery of IBD-causative and/or -associated variants at over 200 loci; over time, these methods have grown exponentially in both power and ascertainment to detect rare variation. We highlight rare-variant discoveries critical to the elucidation of the pathogenesis of IBD, including those in NOD2, IL23R, CARD9, RNF186 and ADCY7. We additionally identify the major areas of rare-variant discovery that will evolve in the coming years. A better understanding of the genetic basis of IBD and other complex diseases will lead to improved diagnosis, prognosis, treatment and surveillance.
Collapse
Affiliation(s)
- Guhan R Venkataraman
- Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA, USA
| | - Manuel A Rivas
- Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
25
|
Zhu Y, Jiang H, Chen Z, Lu B, Li J, Shen X. Genetic association between IL23R rs11209026 and rs10889677 polymorphisms and risk of Crohn’s disease and ulcerative colitis: evidence from 41 studies. Inflamm Res 2019; 69:87-103. [DOI: 10.1007/s00011-019-01296-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/11/2019] [Accepted: 10/31/2019] [Indexed: 01/30/2023] Open
|
26
|
Hurtubise R, Audiger C, Dominguez-Punaro MC, Chabot-Roy G, Chognard G, Raymond-Marchand L, Coderre L, Chemtob S, Michnick SW, Rioux JD, Lesage S. Induced and spontaneous colitis mouse models reveal complex interactions between IL-10 and IL-12/IL-23 pathways. Cytokine 2019; 121:154738. [DOI: 10.1016/j.cyto.2019.154738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/13/2019] [Accepted: 05/28/2019] [Indexed: 02/08/2023]
|
27
|
Romagnoni A, Jégou S, Van Steen K, Wainrib G, Hugot JP. Comparative performances of machine learning methods for classifying Crohn Disease patients using genome-wide genotyping data. Sci Rep 2019; 9:10351. [PMID: 31316157 PMCID: PMC6637191 DOI: 10.1038/s41598-019-46649-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/03/2019] [Indexed: 02/08/2023] Open
Abstract
Crohn Disease (CD) is a complex genetic disorder for which more than 140 genes have been identified using genome wide association studies (GWAS). However, the genetic architecture of the trait remains largely unknown. The recent development of machine learning (ML) approaches incited us to apply them to classify healthy and diseased people according to their genomic information. The Immunochip dataset containing 18,227 CD patients and 34,050 healthy controls enrolled and genotyped by the international Inflammatory Bowel Disease genetic consortium (IIBDGC) has been re-analyzed using a set of ML methods: penalized logistic regression (LR), gradient boosted trees (GBT) and artificial neural networks (NN). The main score used to compare the methods was the Area Under the ROC Curve (AUC) statistics. The impact of quality control (QC), imputing and coding methods on LR results showed that QC methods and imputation of missing genotypes may artificially increase the scores. At the opposite, neither the patient/control ratio nor marker preselection or coding strategies significantly affected the results. LR methods, including Lasso, Ridge and ElasticNet provided similar results with a maximum AUC of 0.80. GBT methods like XGBoost, LightGBM and CatBoost, together with dense NN with one or more hidden layers, provided similar AUC values, suggesting limited epistatic effects in the genetic architecture of the trait. ML methods detected near all the genetic variants previously identified by GWAS among the best predictors plus additional predictors with lower effects. The robustness and complementarity of the different methods are also studied. Compared to LR, non-linear models such as GBT or NN may provide robust complementary approaches to identify and classify genetic markers.
Collapse
Affiliation(s)
- Alberto Romagnoni
- Centre de recherche sur l'inflammation UMR 1149, Inserm - Université Paris Diderot, 75018, Paris, France.,Data Team, Département d'informatique de l'ENS, École normale supérieure, CNRS, PSL Research University, 75005, Paris, France
| | | | - Kristel Van Steen
- WELBIO, GIGA-R Medical Genomics - BIO3, University of Liège, Liège, Belgium.,Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Gilles Wainrib
- Data Team, Département d'informatique de l'ENS, École normale supérieure, CNRS, PSL Research University, 75005, Paris, France.,Owkin, 75011, Paris, France
| | - Jean-Pierre Hugot
- Centre de recherche sur l'inflammation UMR 1149, Inserm - Université Paris Diderot, 75018, Paris, France. .,Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, 75019, Paris, France.
| | | |
Collapse
|
28
|
Zhao M, Burisch J. Impact of Genes and the Environment on the Pathogenesis and Disease Course of Inflammatory Bowel Disease. Dig Dis Sci 2019; 64:1759-1769. [PMID: 31073736 DOI: 10.1007/s10620-019-05648-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Crohn's disease and ulcerative colitis constitute two major subgroups of inflammatory bowel diseases (IBD), a group of complex polygenic diseases characterized by chronic and progressive inflammation in the gastrointestinal tract. In recent years, methodological advances in genetic analysis have greatly expanded our understanding of the genetic background of IBD. So far, more than 240 genetic risk loci have been identified for IBD. However, these risk alleles explain less than 30% of the susceptibility to disease development, suggesting that environmental factors contribute considerably. The increasing occurrence of IBD in Eastern countries following their 'westernization', as well as the increased risk of disease among those who migrate to high-incidence regions, also suggest that the environment is key in the pathogenesis of IBD. In this review, we summarize the current evidence on the role of genetic and environmental factors in the susceptibility to, and disease course of, IBD, and we suggest how these findings might be applied to clinical practice.
Collapse
Affiliation(s)
- Mirabella Zhao
- Gastro Unit, Hvidovre University Hospital, Kettegaard Alle 30, 2650, Hvidovre, Denmark
| | - Johan Burisch
- Gastro Unit, Hvidovre University Hospital, Kettegaard Alle 30, 2650, Hvidovre, Denmark.
| |
Collapse
|
29
|
Nikopoulos K, Cisarova K, Quinodoz M, Koskiniemi-Kuendig H, Miyake N, Farinelli P, Rehman AU, Khan MI, Prunotto A, Akiyama M, Kamatani Y, Terao C, Miya F, Ikeda Y, Ueno S, Fuse N, Murakami A, Wada Y, Terasaki H, Sonoda KH, Ishibashi T, Kubo M, Cremers FPM, Kutalik Z, Matsumoto N, Nishiguchi KM, Nakazawa T, Rivolta C. A frequent variant in the Japanese population determines quasi-Mendelian inheritance of rare retinal ciliopathy. Nat Commun 2019; 10:2884. [PMID: 31253780 PMCID: PMC6599023 DOI: 10.1038/s41467-019-10746-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 05/23/2019] [Indexed: 12/21/2022] Open
Abstract
Hereditary retinal degenerations (HRDs) are Mendelian diseases characterized by progressive blindness and caused by ultra-rare mutations. In a genomic screen of 331 unrelated Japanese patients, we identify a disruptive Alu insertion and a nonsense variant (p.Arg1933*) in the ciliary gene RP1, neither of which are rare alleles in Japan. p.Arg1933* is almost polymorphic (frequency = 0.6%, amongst 12,000 individuals), does not cause disease in homozygosis or heterozygosis, and yet is significantly enriched in HRD patients (frequency = 2.1%, i.e., a 3.5-fold enrichment; p-value = 9.2 × 10-5). Familial co-segregation and association analyses show that p.Arg1933* can act as a Mendelian mutation in trans with the Alu insertion, but might also associate with disease in combination with two alleles in the EYS gene in a non-Mendelian pattern of heredity. Our results suggest that rare conditions such as HRDs can be paradoxically determined by relatively common variants, following a quasi-Mendelian model linking monogenic and complex inheritance.
Collapse
Affiliation(s)
- Konstantinos Nikopoulos
- Unit of Medical Genetics, Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
- Service of Medical Genetics, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
| | - Katarina Cisarova
- Unit of Medical Genetics, Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Mathieu Quinodoz
- Unit of Medical Genetics, Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Hanna Koskiniemi-Kuendig
- Unit of Medical Genetics, Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Pietro Farinelli
- Unit of Medical Genetics, Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Atta Ur Rehman
- Unit of Medical Genetics, Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Muhammad Imran Khan
- Department of Human Genetics, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 GA, Nijmegen, The Netherlands
| | - Andrea Prunotto
- Unit of Medical Genetics, Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Chikashi Terao
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Fuyuki Miya
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Yasuhiro Ikeda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Nobuo Fuse
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Sendai, 980-8573, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Yuko Wada
- Yuko Wada Eye Clinic, Sendai, 980-0011, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 GA, Nijmegen, The Netherlands
| | - Zoltán Kutalik
- Institute of Social and Preventive Medicine, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Koji M Nishiguchi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Carlo Rivolta
- Unit of Medical Genetics, Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland.
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK.
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland.
- University of Basel, 4001, Basel, Switzerland.
| |
Collapse
|
30
|
Motegi T, Kochi Y, Matsuda K, Kubo M, Yamamoto K, Momozawa Y. Identification of rare coding variants in TYK2 protective for rheumatoid arthritis in the Japanese population and their effects on cytokine signalling. Ann Rheum Dis 2019; 78:1062-1069. [PMID: 31118190 DOI: 10.1136/annrheumdis-2019-215062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/19/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Although genome-wide association studies (GWAS) have identified approximately 100 loci for rheumatoid arthritis (RA), the disease mechanisms are not completely understood. We evaluated the pathogenesis of RA by focusing on rare coding variants. METHODS The coding regions of 98 candidate genes identified by GWAS were sequenced in 2294 patients with RA and 4461 controls in Japan. An association analysis was performed using cases and controls for variants, genes and domains of TYK2. Cytokine responses for two associated variants (R231W, rs201917359; and R703W, rs55882956) in TYK2 as well as a previously reported risk variant (P1004A, rs34536443) for multiple autoimmune diseases were evaluated by reporter assays. RESULTS A variant in TYK2 (R703W) showed a suggestive association (p=5.47×10-8, OR=0.48). We observed more accumulation of rare coding variants in controls in TYK2 (p=3.94×10-12, OR=0.56). The four-point-one, ezrin, radixin, moesin (FERM; 2.14×10-3, OR=0.66) and pseudokinase domains (1.63×10-8, OR=0.52) of TYK2 also showed enrichment of variants in controls. R231W in FERM domain especially reduced interleukin (IL)-6 and interferon (IFN)-γ signalling, whereas P1104A in kinase domain reduced IL-12, IL-23 and IFN-α signalling. R703W in pseudokinase domain reduced cytokine signals similarly to P1104A, but the effects were weaker than those of P1104A. CONCLUSIONS The FERM and pseudokinase domains in TYK2 were associated with the risk of RA in the Japanese population. Variants in TYK2 had different effects on cytokine signalling, suggesting that the regulation of selective cytokine signalling is a target for RA treatment.
Collapse
Affiliation(s)
- Tomoki Motegi
- Veterinary Medical Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yuta Kochi
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
31
|
Wang W, Corominas R, Lin GN. De novo Mutations From Whole Exome Sequencing in Neurodevelopmental and Psychiatric Disorders: From Discovery to Application. Front Genet 2019; 10:258. [PMID: 31001316 PMCID: PMC6456656 DOI: 10.3389/fgene.2019.00258] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
Neurodevelopmental and psychiatric disorders are a highly disabling and heterogeneous group of developmental and mental disorders, resulting from complex interactions of genetic and environmental risk factors. The nature of multifactorial traits and the presence of comorbidity and polygenicity in these disorders present challenges in both disease risk identification and clinical diagnoses. The genetic component has been firmly established, but the identification of all the causative variants remains elusive. The development of next-generation sequencing, especially whole exome sequencing (WES), has greatly enriched our knowledge of the precise genetic alterations of human diseases, including brain-related disorders. In particular, the extensive usage of WES in research studies has uncovered the important contribution of de novo mutations (DNMs) to these disorders. Trio and quad familial WES are a particularly useful approach to discover DNMs. Here, we review the major WES studies in neurodevelopmental and psychiatric disorders and summarize how genes hit by discovered DNMs are shared among different disorders. Next, we discuss different integrative approaches utilized to interrogate DNMs and to identify biological pathways that may disrupt brain development and shed light on our understanding of the genetic architecture underlying these disorders. Lastly, we discuss the current state of the transition from WES research to its routine clinical application. This review will assist researchers and clinicians in the interpretation of variants obtained from WES studies, and highlights the need to develop consensus analytical protocols and validated lists of genes appropriate for clinical laboratory analysis, in order to reach the growing demands.
Collapse
Affiliation(s)
- Weidi Wang
- Shanghai Mental Health Center, School of Biomedical Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Roser Corominas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Valencia, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Guan Ning Lin
- Shanghai Mental Health Center, School of Biomedical Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
32
|
Hong J, Yang HR, Moon JS, Chang JY, Ko JS. Association of IL23R Variants With Crohn's Disease in Korean Children. Front Pediatr 2019; 7:472. [PMID: 31799225 PMCID: PMC6878822 DOI: 10.3389/fped.2019.00472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/28/2019] [Indexed: 12/23/2022] Open
Abstract
Background: The interleukin 23 receptor gene (IL23R) is strongly associated with Crohn's disease (CD). It is unknown whether genetic variations in IL23R determine susceptibility for pediatric CD in Asian populations. Here, we investigated the association between IL23R variants and CD in Korean children. Methods: Four single nucleotide polymorphisms (SNPs) of IL23R [rs76418789 (G149R), rs1004819, rs7517847, and rs1495965] were genotyped in 141 children with CD and 150 controls using DNA direct sequencing. The risk allele and genotype frequencies were compared between patients and controls. The association between clinical phenotypes and genotypes of patients was also analyzed. Results: Two IL23R SNPs, rs76418789 (G149R), and rs1495965, were associated with CD in Korean pediatric patients as defense and risk loci, respectively. The odds ratio (OR) for rs76418789 (G149R) and rs1495965 was 0.409 (95% confidence interval [CI], 0.177-0.944; p = 0.031) and 1.484 (95% CI, 1.070-2.059; p = 0.018), respectively. Patients with the homozygous G allele of rs1495965 showed higher CD risk than those with other genotypes (GG vs. AA: OR, 2.256; 95% CI, 1.136-4.478; p = 0.019; GG vs. GA+AA: OR, 2.000; 95% CI, 1.175-3.404; p = 0.010). Additionally, they were more likely to have relatively invasive disease behavior of stenosis and/or penetration than simple inflammation (OR, 2.297; 95% CI, 1.065-4.950; p = 0.032). Conclusions: This is the first study reporting IL23R variants in Asian pediatric patients with CD. IL23R was significantly associated with Korean pediatric CD, and the rs1495965 may influence the clinical features of CD in Korean children.
Collapse
Affiliation(s)
- Jeana Hong
- Department of Pediatrics, Kangwon National University School of Medicine, Chuncheon, South Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Hye Ran Yang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea.,Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam-si, South Korea
| | - Jin Soo Moon
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Ju Young Chang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea.,Department of Pediatrics, SMG-SNU Boramae Medical Center, Seoul, South Korea
| | - Jae Sung Ko
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
33
|
Gaare JJ, Nido GS, Sztromwasser P, Knappskog PM, Dahl O, Lund-Johansen M, Maple-Grødem J, Alves G, Tysnes OB, Johansson S, Haugarvoll K, Tzoulis C. Rare genetic variation in mitochondrial pathways influences the risk for Parkinson's disease. Mov Disord 2018; 33:1591-1600. [PMID: 30256453 PMCID: PMC6282592 DOI: 10.1002/mds.64] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/21/2018] [Accepted: 05/31/2018] [Indexed: 12/18/2022] Open
Abstract
Background: Mitochondrial dysfunction plays a key role in PD, but the underlying molecular mechanisms remain unresolved. We hypothesized that the disruption of mitochondrial function in PD is primed by rare, protein‐altering variation in nuclear genes controlling mitochondrial structure and function. Objective: The objective of this study was to assess whether genetic variation in genes associated with mitochondrial function influences the risk of idiopathic PD. Methods: We employed whole‐exome sequencing data from 2 independent cohorts of clinically validated idiopathic PD and controls, the Norwegian ParkWest cohort (n = 411) and the North American Parkinson's Progression Markers Initiative (n = 640). We applied burden‐based and variance‐based collapsing methods to assess the enrichment of rare, nonsynonymous, and damaging genetic variants on genes, exome‐wide, and on a comprehensive set of mitochondrial pathways, defined as groups of genes controlling specific mitochondrial functions. Results: Using the sequence kernel association test, we detected a significant polygenic enrichment of rare, nonsynonymous variants in the gene‐set encoding the pathway of mitochondrial DNA maintenance. Notably, this was the strongest association in both cohorts and survived multiple testing correction (ParkWest P = 6.3 × 10−3, Parkinson's Progression Markers Initiative P = 6.9 × 10−5, metaanalysis P = 3.2 × 10−6). Conclusions: Our results show that the enrichment of rare inherited variation in the pathway controlling mitochondrial DNA replication and repair influences the risk of PD. We propose that this polygenic enrichment contributes to the impairment of mitochondrial DNA homeostasis, thought to be a key mechanism in the pathogenesis of PD, and explains part of the disorder's “missing heritability.” © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Johannes J Gaare
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Gonzalo S Nido
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Paweł Sztromwasser
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway.,Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Per M Knappskog
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway.,K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Olav Dahl
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Bergen, Norway
| | - Morten Lund-Johansen
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Neurosurgery, Haukeland University Hospital, Bergen, Bergen, Norway
| | - Jodi Maple-Grødem
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.,Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Guido Alves
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.,Department of Neurology, Stavanger University Hospital, Stavanger, Norway.,Department of Mathematics and Natural Sciences, University of Stavanger, Stavanger, Norway
| | - Ole-Bjørn Tysnes
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Stefan Johansson
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway.,K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kristoffer Haugarvoll
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Charalampos Tzoulis
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
34
|
Moon CM, Kim SW, Ahn JB, Ma HW, Che X, Kim TI, Kim WH, Cheon JH. Deep Resequencing of Ulcerative Colitis-Associated Genes Identifies Novel Variants in Candidate Genes in the Korean Population. Inflamm Bowel Dis 2018; 24:1706-1717. [PMID: 29733354 DOI: 10.1093/ibd/izy122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Genome-wide association studies and meta-analyses have revealed the genetic background of ulcerative colitis (UC) by identifying common variants. However, these variants do not fully explain the disease variance in UC. To identify novel variants, we performed deep resequencing of UC-associated genes in Korean UC patients and subsequently investigated the functional roles of identified susceptibility genes. METHODS We performed targeted deep resequencing of 108 genes in 24 Korean UC patients and then performed association analysis with data from 126 healthy controls. We validated these variants using 2-stage replication studies including 793 UC patients and 783 controls. We performed in silico and pathway analyses and functional analyses. RESULTS The combined analysis including 2 replication studies identified 6 novel susceptibility loci and reconfirmed 10 previously reported loci. Among the novel single nucleotide variants (SNVs), rs10035653 in C5orf55 (P = 2.08 × 10-3; OR = 1.50), rs41417449 in BTNL2 (P = 1.27 × 10-2; OR = 1.32), rs3117099 in HCG23 (P = 9.98 × 10-6; OR = 1.40), rs7192 in HLA-DRA (P = 6.95 × 10-9; OR = 1.57), and rs3744246 in ORMDL3 (P = 2.21 × 10-2; OR = 1.21) were identified as causal variants, whereas rs713669 in IL17REL (P = 2.69 × 10-2; OR = 0.84) as a protective variant for UC. When correcting multiple testing, 3 novel SNVs (rs41417449 in BTNL2, rs3744246 in ORMDL3, and rs713669 in IL17REL) and 4 previously reported SNVs did not reach a statistical significance. Functional study suggested that SNVs of BTNL2 and C5orf55 exacerbated the inflammatory response both in vitro and in vivo. CONCLUSIONS This study identified 3 novel susceptibility loci and validated 6 previously reported SNVs for UC through deep resequencing in Koreans and revealed the functional roles of BTNL2 and C5orf55.
Collapse
Affiliation(s)
- Chang Mo Moon
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Won Kim
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Bum Ahn
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Woo Ma
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Xiumei Che
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae Il Kim
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won Ho Kim
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Hee Cheon
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
35
|
Momozawa Y, Dmitrieva J, Théâtre E, Deffontaine V, Rahmouni S, Charloteaux B, Crins F, Docampo E, Elansary M, Gori AS, Lecut C, Mariman R, Mni M, Oury C, Altukhov I, Alexeev D, Aulchenko Y, Amininejad L, Bouma G, Hoentjen F, Löwenberg M, Oldenburg B, Pierik MJ, Vander Meulen-de Jong AE, Janneke van der Woude C, Visschedijk MC, Lathrop M, Hugot JP, Weersma RK, De Vos M, Franchimont D, Vermeire S, Kubo M, Louis E, Georges M. IBD risk loci are enriched in multigenic regulatory modules encompassing putative causative genes. Nat Commun 2018; 9:2427. [PMID: 29930244 PMCID: PMC6013502 DOI: 10.1038/s41467-018-04365-8] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 04/24/2018] [Indexed: 02/08/2023] Open
Abstract
GWAS have identified >200 risk loci for Inflammatory Bowel Disease (IBD). The majority of disease associations are known to be driven by regulatory variants. To identify the putative causative genes that are perturbed by these variants, we generate a large transcriptome data set (nine disease-relevant cell types) and identify 23,650 cis-eQTL. We show that these are determined by ∼9720 regulatory modules, of which ∼3000 operate in multiple tissues and ∼970 on multiple genes. We identify regulatory modules that drive the disease association for 63 of the 200 risk loci, and show that these are enriched in multigenic modules. Based on these analyses, we resequence 45 of the corresponding 100 candidate genes in 6600 Crohn disease (CD) cases and 5500 controls, and show with burden tests that they include likely causative genes. Our analyses indicate that ≥10-fold larger sample sizes will be required to demonstrate the causality of individual genes using this approach.
Collapse
Affiliation(s)
- Yukihide Momozawa
- Unit of Animal Genomics, WELBIO, GIGA-R & Faculty of Veterinary Medicine, University of Liège (B34), 1 Avenue de l'Hôpital, Liège, 4000, Belgium
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Julia Dmitrieva
- Unit of Animal Genomics, WELBIO, GIGA-R & Faculty of Veterinary Medicine, University of Liège (B34), 1 Avenue de l'Hôpital, Liège, 4000, Belgium
| | - Emilie Théâtre
- Unit of Animal Genomics, WELBIO, GIGA-R & Faculty of Veterinary Medicine, University of Liège (B34), 1 Avenue de l'Hôpital, Liège, 4000, Belgium
| | - Valérie Deffontaine
- Unit of Animal Genomics, WELBIO, GIGA-R & Faculty of Veterinary Medicine, University of Liège (B34), 1 Avenue de l'Hôpital, Liège, 4000, Belgium
| | - Souad Rahmouni
- Unit of Animal Genomics, WELBIO, GIGA-R & Faculty of Veterinary Medicine, University of Liège (B34), 1 Avenue de l'Hôpital, Liège, 4000, Belgium
| | - Benoît Charloteaux
- Unit of Animal Genomics, WELBIO, GIGA-R & Faculty of Veterinary Medicine, University of Liège (B34), 1 Avenue de l'Hôpital, Liège, 4000, Belgium
| | - François Crins
- Unit of Animal Genomics, WELBIO, GIGA-R & Faculty of Veterinary Medicine, University of Liège (B34), 1 Avenue de l'Hôpital, Liège, 4000, Belgium
| | - Elisa Docampo
- Unit of Animal Genomics, WELBIO, GIGA-R & Faculty of Veterinary Medicine, University of Liège (B34), 1 Avenue de l'Hôpital, Liège, 4000, Belgium
| | - Mahmoud Elansary
- Unit of Animal Genomics, WELBIO, GIGA-R & Faculty of Veterinary Medicine, University of Liège (B34), 1 Avenue de l'Hôpital, Liège, 4000, Belgium
| | - Ann-Stephan Gori
- Unit of Animal Genomics, WELBIO, GIGA-R & Faculty of Veterinary Medicine, University of Liège (B34), 1 Avenue de l'Hôpital, Liège, 4000, Belgium
| | - Christelle Lecut
- Laboratory of Thrombosis and Hemostasis, GIGA-R, University of Liège (B34), 1 Avenue de l'Hôpital, 4000, Liège, Belgium
| | - Rob Mariman
- Unit of Animal Genomics, WELBIO, GIGA-R & Faculty of Veterinary Medicine, University of Liège (B34), 1 Avenue de l'Hôpital, Liège, 4000, Belgium
| | - Myriam Mni
- Unit of Animal Genomics, WELBIO, GIGA-R & Faculty of Veterinary Medicine, University of Liège (B34), 1 Avenue de l'Hôpital, Liège, 4000, Belgium
| | - Cécile Oury
- Laboratory of Thrombosis and Hemostasis, GIGA-R, University of Liège (B34), 1 Avenue de l'Hôpital, 4000, Liège, Belgium
| | - Ilya Altukhov
- Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, 141700, Russian Federation
| | - Dmitry Alexeev
- Novosibirsk State University, Pirogova ave. 2, Novosibirsk, 630090, Russian Federation
| | - Yuri Aulchenko
- PolyOmica, Het Vlaggeschip 61, 's-Hertogenbosch, 5237 PA, The Netherlands
- Institute of Cytology and Genetics SD RAS, Lavrentyeva ave. 10, 630090, Novosibirsk, Russia
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, UK
| | - Leila Amininejad
- Gastroentérologie Médicale, Faculté de Médicine, Université Libre de Bruxelles, Route de Lennik 808, Anderlecht, 1070, Belgium
| | - Gerd Bouma
- Department of Gastroenterology and Hepatology, VU University Medical Centre, Amsterdam, 1081 HV, The Netherlands
| | - Frank Hoentjen
- Department of Gastroenterology and Hepatology, University Medical Centre St. Radboud, Nijmegen, 6525 GA, The Netherlands
| | - Mark Löwenberg
- Department of Gastroenterology and Hepatology, Amsterdam Medical Centre, Amsterdam, 1105 AZ, The Netherlands
| | - Bas Oldenburg
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, 3584 cX, Utrecht, The Netherlands
| | - Marieke J Pierik
- Department of Gastroenterology and Hepatology, University Medical Centre Maastricht, Maastricht, 6229 HX, The Netherlands
| | | | - C Janneke van der Woude
- Department of Gastroenterology and Hepatology, Erasmus Medical Centre, Rotterdam, 3015 CE, The Netherlands
| | - Marijn C Visschedijk
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, Groningen, 9713 GZ, The Netherlands
| | - Mark Lathrop
- McGill University Centre for Molecular and Computational Genomics, 740 Dr. Penfield Avenue, Montreal, H3A 0G1, QC, Canada
| | - Jean-Pierre Hugot
- UMR 1149 INSERM/Université Paris-Diderot Sorbonne Paris-Cité, Assistance Publique Hôpitaux de Paris, 48 Bd Sérurier, Paris, 75019, France
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, Groningen, 9713 GZ, The Netherlands
| | - Martine De Vos
- Department of Gastroenterology, University Hospital, De Pintelaan 185, Gent, 9000, Belgium
| | - Denis Franchimont
- Gastroentérologie Médicale, Faculté de Médicine, Université Libre de Bruxelles, Route de Lennik 808, Anderlecht, 1070, Belgium
| | - Severine Vermeire
- Translational Research in Gastrointestinal Disorders, Department of Clinical and Experimental Medicine, KU Leuven, UZ Herestraat 49, Leuven, 3000, Belgium
| | - Michiaki Kubo
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Edouard Louis
- CHU-Liège and Unit of Gastroenterology, GIGA-R & Faculty of Medicine, University of Liège, 1 Avenue de l'Hôpital, Liège, 4000, Belgium
| | - Michel Georges
- Unit of Animal Genomics, WELBIO, GIGA-R & Faculty of Veterinary Medicine, University of Liège (B34), 1 Avenue de l'Hôpital, Liège, 4000, Belgium.
| |
Collapse
|
36
|
Amininejad L, Charloteaux B, Theatre E, Liefferinckx C, Dmitrieva J, Hayard P, Muls V, Maisin JM, Schapira M, Ghislain JM, Closset P, Talib M, Abramowicz M, Momozawa Y, Deffontaine V, Crins F, Mni M, Karim L, Cambisano N, Ornemese S, Zucchi A, Minsart C, Deviere J, Hugot JP, De Vos M, Louis E, Vermeire S, Van Gossum A, Coppieters W, Twizere JC, Georges M, Franchimont D. Analysis of Genes Associated With Monogenic Primary Immunodeficiency Identifies Rare Variants in XIAP in Patients With Crohn's Disease. Gastroenterology 2018; 154:2165-2177. [PMID: 29501442 DOI: 10.1053/j.gastro.2018.02.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 02/15/2018] [Accepted: 02/17/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS A few rare monogenic primary immunodeficiencies (PIDs) are characterized by chronic intestinal inflammation that resembles Crohn's disease (CD). We investigated whether 23 genes associated with 10 of these monogenic disorders contain common, low-frequency, or rare variants that increase risk for CD. METHODS Common and low frequency variants in 1 Mb loci centered on the candidate genes were analyzed using meta-data corresponding to genotypes of approximately 17,000 patients with CD or without CD (controls) in Europe. The contribution of rare variants was assessed by high-throughput sequencing of 4750 individuals, including 660 early-onset and/or familial cases among the 2390 patients with CD. Variants were expressed from vectors in SW480 or HeLa cells and functions of their products were analyzed in immunofluorescence, luciferase, immunoprecipitation, and immunoblot assays. RESULTS We reproduced the association of the interleukin 10 locus with CD (P = .007), although none of the significantly associated variants modified the coding sequence of interleukin 10. We found XIAP to be significantly enriched for rare coding mutations in patients with CD vs controls (P = .02). We identified 4 previously unreported missense variants associated with CD. Variants in XIAP cause the PID X-linked lymphoproliferative disease type 2, yet none of the carriers of these variants had all the clinical features of X-linked lymphoproliferative disease type 2. Identified XIAP variants S123N, R233Q, and P257A were associated with an impaired activation of NOD2 signaling after muramyl dipeptide stimulation. CONCLUSIONS In a systematic analysis of variants in 23 PID-associated genes, we confirmed the association of variants in XIAP with CD. Further screenings for CD-associated variants and analyses of their functions could increase our understanding of the relationship between PID-associated genes and CD pathogenesis.
Collapse
Affiliation(s)
- Leila Amininejad
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology and Laboratory of Experimental Gastroenterology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Benoit Charloteaux
- Unit of Animal Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée and Faculty of Veterinary Medecine, University of Liège, Liège, Belgium
| | - Emilie Theatre
- Unit of Animal Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée and Faculty of Veterinary Medecine, University of Liège, Liège, Belgium
| | - Claire Liefferinckx
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology and Laboratory of Experimental Gastroenterology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Julia Dmitrieva
- Unit of Animal Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée and Faculty of Veterinary Medecine, University of Liège, Liège, Belgium
| | - Pierre Hayard
- Department of Gastroenterology Charleroi University Hospital, Charleroi, Belgium
| | - Vincianne Muls
- Department of Gastroenterology, Saint Pierre Hospital, Brussels, Belgium
| | - Jean-Marc Maisin
- Department of Gastroenterology, Jolimont Hospital, La Louvière, Belgium
| | - Michael Schapira
- Department of Gastroenterology, Jolimont Hospital, La Louvière, Belgium
| | | | - Pierre Closset
- Department of Gastroenterology, Ixelles Hospital, Brussels, Belgium
| | - Mehdi Talib
- Department of Gastroenterology, Brugmann Hospital, Brussels, Belgium
| | - Marc Abramowicz
- Department of Human genetics, Erasme hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Yukihide Momozawa
- Unit of Animal Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée and Faculty of Veterinary Medecine, University of Liège, Liège, Belgium
| | - Valerie Deffontaine
- Unit of Animal Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée and Faculty of Veterinary Medecine, University of Liège, Liège, Belgium
| | - François Crins
- Unit of Animal Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée and Faculty of Veterinary Medecine, University of Liège, Liège, Belgium
| | - Myriam Mni
- Unit of Animal Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée and Faculty of Veterinary Medecine, University of Liège, Liège, Belgium
| | - Latifa Karim
- Unit of Animal Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée and Faculty of Veterinary Medecine, University of Liège, Liège, Belgium; Groupe Interdisciplinaire de Génoprotéomique Appliquée Genomics Platform, University of Liège, Liège, Belgium
| | - Nadine Cambisano
- Unit of Animal Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée and Faculty of Veterinary Medecine, University of Liège, Liège, Belgium; Groupe Interdisciplinaire de Génoprotéomique Appliquée Genomics Platform, University of Liège, Liège, Belgium
| | - Sandra Ornemese
- Grappe Interdisciplinaire de Génoprotéomique Appliquée Imaging Platform, University of Liège, Liège, Belgium
| | - Alessandro Zucchi
- Laboratory of Parasitology, Université Libre de Bruxelles, Brussels, Belgium
| | - Charlotte Minsart
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology and Laboratory of Experimental Gastroenterology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jacques Deviere
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology and Laboratory of Experimental Gastroenterology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Pierre Hugot
- Institut National de la Santé et de la Recherche Médicale U843, Hôpital Robert Debré, Paris, France
| | - Martine De Vos
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Edouard Louis
- Department of Gastroenterology, Sart Tilman Hospital, University of Liège, Liège, Belgium
| | - Severine Vermeire
- Department of Clinical and Experimental Medecine, Gastroenterology Section, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Andre Van Gossum
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology and Laboratory of Experimental Gastroenterology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Wouter Coppieters
- Unit of Animal Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée and Faculty of Veterinary Medecine, University of Liège, Liège, Belgium; Groupe Interdisciplinaire de Génoprotéomique Appliquée Genomics Platform, University of Liège, Liège, Belgium
| | - Jean-Claude Twizere
- Laboratory of Protein Signalling and Interactions, Groupe Interdisciplinaire de Génoprotéomique Appliquée, University of Liège, Liège, Belgium
| | - Michel Georges
- Unit of Animal Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée and Faculty of Veterinary Medecine, University of Liège, Liège, Belgium
| | - Denis Franchimont
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology and Laboratory of Experimental Gastroenterology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium.
| | | |
Collapse
|
37
|
Gerry CJ, Schreiber SL. Chemical probes and drug leads from advances in synthetic planning and methodology. Nat Rev Drug Discov 2018; 17:333-352. [PMID: 29651105 PMCID: PMC6707071 DOI: 10.1038/nrd.2018.53] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Screening of small-molecule libraries is a productive method for identifying both chemical probes of disease-related targets and potential starting points for drug discovery. In this article, we focus on strategies such as diversity-oriented synthesis that aim to explore novel areas of chemical space efficiently by populating small-molecule libraries with compounds containing structural features that are typically under-represented in commercially available screening collections. Drawing from more than a decade's worth of examples, we highlight how the design and synthesis of such libraries have been enabled by modern synthetic chemistry, and we illustrate the impact of the resultant chemical probes and drug leads in a wide range of diseases.
Collapse
Affiliation(s)
- Christopher J Gerry
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- The Broad Institute of Harvard & MIT, Cambridge, MA, USA
| | - Stuart L Schreiber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- The Broad Institute of Harvard & MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| |
Collapse
|
38
|
Zhang B, Chen MY, Shen YJ, Zhuo XB, Gao P, Zhou FS, Liang B, Zu J, Zhang Q, Suleman S, Xu YH, Xu MG, Xu JK, Liu CC, Giannareas N, Xia JH, Zhao Y, Huang ZL, Yang Z, Cheng HD, Li N, Hong YY, Li W, Zhang MJ, Yu KD, Li G, Sun MH, Chen ZD, Wei GH, Shao ZM. A Large-Scale, Exome-Wide Association Study of Han Chinese Women Identifies Three Novel Loci Predisposing to Breast Cancer. Cancer Res 2018; 78:3087-3097. [PMID: 29572226 DOI: 10.1158/0008-5472.can-17-1721] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/25/2017] [Accepted: 03/20/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Bo Zhang
- Department of Oncology, No. 2 Hospital, Anhui Medical University, Hefei, Anhui, China.
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Men-Yun Chen
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yu-Jun Shen
- State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology, Hefei, Anhui, China
| | - Xian-Bo Zhuo
- State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology, Hefei, Anhui, China
| | - Ping Gao
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Fu-Sheng Zhou
- State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology, Hefei, Anhui, China
| | - Bo Liang
- State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology, Hefei, Anhui, China
| | - Jun Zu
- State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology, Hefei, Anhui, China
| | - Qin Zhang
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Sufyan Suleman
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Yi-Hui Xu
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Min-Gui Xu
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jin-Kai Xu
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Chen-Cheng Liu
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Nikolaos Giannareas
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Ji-Han Xia
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Yuan Zhao
- State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology, Hefei, Anhui, China
| | - Zhong-Lian Huang
- Department of Oncology, No. 2 Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Zhen Yang
- Department of Oncology, No. 2 Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Huai-Dong Cheng
- Department of Oncology, No. 2 Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Na Li
- Department of Oncology, No. 2 Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Yan-Yan Hong
- Department of Oncology, No. 2 Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Wei Li
- Department of Oncology, No. 2 Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Min-Jun Zhang
- Department of Oncology, No. 2 Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Ke-Da Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center/Cancer Institute, Shanghai, China
| | - Guoliang Li
- Bio-Medical Center, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Meng-Hong Sun
- Department of Breast Surgery, Fudan University Shanghai Cancer Center/Cancer Institute, Shanghai, China
| | - Zhen-Dong Chen
- Department of Oncology, No. 2 Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Gong-Hong Wei
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| | - Zhi-Min Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center/Cancer Institute, Shanghai, China.
| |
Collapse
|
39
|
Onoufriadis A, Stone K, Katsiamides A, Amar A, Omar Y, de Lange KM, Taylor K, Barrett JC, Pollok R, Hayee B, Mansfield JC, Sanderson JD, Simpson MA, Mathew CG, Prescott NJ. Exome Sequencing and Genotyping Identify a Rare Variant in NLRP7 Gene Associated With Ulcerative Colitis. J Crohns Colitis 2018; 12:321-326. [PMID: 29211899 PMCID: PMC6290881 DOI: 10.1093/ecco-jcc/jjx157] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/31/2017] [Accepted: 11/30/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Although genome-wide association studies [GWAS] in inflammatory bowel disease [IBD] have identified a large number of common disease susceptibility alleles for both Crohn's disease [CD] and ulcerative colitis [UC], a substantial fraction of IBD heritability remains unexplained, suggesting that rare coding genetic variants may also have a role in pathogenesis. We used high-throughput sequencing in families with multiple cases of IBD, followed by genotyping of cases and controls, to investigate whether rare protein-altering genetic variants are associated with susceptibility to IBD. METHODS Whole-exome sequencing was carried out in 10 families in whom three or more individuals were affected with IBD. A stepwise filtering approach was applied to exome variants, to identify potential causal variants. Follow-up genotyping was performed in 6025 IBD cases [2948 CD; 3077 UC] and 7238 controls. RESULTS Our exome variant analysis revealed coding variants in the NLRP7 gene that were present in affected individuals in two distinct families. Genotyping of the two variants, p.S361L and p.R801H, in IBD cases and controls showed that the p.S361L variant was significantly associated with an increased risk of ulcerative colitis [odds ratio 4.79, p = 0.0039] and IBD [odds ratio 3.17, p = 0.037]. A combined analysis of both variants showed suggestive association with an increased risk of IBD [odds ratio 2.77, p = 0.018]. CONCLUSIONS The results suggest that NLRP7 signalling and inflammasome formation may be a significant component in the pathogenesis of IBD.
Collapse
Affiliation(s)
| | - Kristina Stone
- Department of Medical and Molecular Genetics, King’s College London, London, UK
| | - Antreas Katsiamides
- Department of Medical and Molecular Genetics, King’s College London, London, UK
| | - Ariella Amar
- Department of Medical and Molecular Genetics, King’s College London, London, UK
| | - Yasmin Omar
- Department of Medical and Molecular Genetics, King’s College London, London, UK
| | | | - Kirstin Taylor
- Department of Medical and Molecular Genetics, King’s College London, London, UK
| | | | - Richard Pollok
- Department Gastroenterology and Hepatology, St George’s University Hospitals NHS Foundation Trust, London, UK
| | - Bu’Hussain Hayee
- IBD Service, King’s College Hospital NHS Foundation Trust, London, UK
| | - John C Mansfield
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Jeremy D Sanderson
- Department of Gastroenterology, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Michael A Simpson
- Department of Medical and Molecular Genetics, King’s College London, London, UK
| | - Christopher G Mathew
- Department of Medical and Molecular Genetics, King’s College London, London, UK
- Sydney Brenner Institute for Molecular Bioscience, University of Witwatersrand, Johannesburg, South Africa
| | - Natalie J Prescott
- Department of Medical and Molecular Genetics, King’s College London, London, UK
| |
Collapse
|
40
|
Lu ZK, Chen ZR, Zhu JY, Xu Y, Hua X. Analysis of the association of single nucleotide polymorphisms of interleukin-23 receptor (IL-23R) and inflammatory bowel disease in a Chinese Han cohort. Oncotarget 2018; 7:67851-67856. [PMID: 27765927 PMCID: PMC5356524 DOI: 10.18632/oncotarget.12296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/31/2016] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, complex genetic disease with rapidly increasing prevalence in China. The interactions of genetic, environmental, and microbial factors contribute to the development of IBD, however, the precise etiologies of IBD are not well understood yet. Interleukin-23 receptor (IL-23R) encodes a subunit of receptor for IL-23, which is an important proinflammatory cytokine. In this study, we investigated the relationship between the single nucleotide polymorphism (SNP) of IL-23R gene and IBD in Chinese Han population. We genotyped three nonsynonymous IL-23R SNPs with amino acid changes (rs11209026, p.Arg381Gln; rs41313262 p.Val362Ile and rs11465797 p.Thr175Asn) in 198 patients with IBD (124 UC and 74 CD) and 100 healthy controls. The prevalence of the A allele in IL-23R Arg381Gln of CD appeared less than controls, but it was not statistically significant (2.70% vs. 6.00%, p > 0.05). There was no statistical difference between UC and controls (5.65% vs. 6.00%, p = 0.91). The p.Val362Ile variant was present in 2.42% of UC patients, in 2.70% of CD patients, which was similar in the control (2.00%). There was no statistical difference among these three groups. We did not detect Thr175Asn (rs11465797 c.524 C>A) in all the three groups. In conclusion, our study demonstrated that the p.Val362Ile and Arg381Gln were not associated with susceptibility to IBD in Chinese Han population.
Collapse
Affiliation(s)
- Zhong-Kai Lu
- Department of Gastroenterology, Suzhou Municipal Hospital (Eastern), Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Zhi-Rong Chen
- Department of Gastroenterology, Suzhou Municipal Hospital (Eastern), Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Jun-Yi Zhu
- Department of Gastroenterology, Suzhou Municipal Hospital (Eastern), Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Ya Xu
- Department of Gastroenterology, Suzhou Municipal Hospital (Eastern), Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Xian Hua
- Department of Gastroenterology, Suzhou Municipal Hospital (Eastern), Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China
| |
Collapse
|
41
|
Bloch Y, Bouchareychas L, Merceron R, Składanowska K, Van den Bossche L, Detry S, Govindarajan S, Elewaut D, Haerynck F, Dullaers M, Adamopoulos IE, Savvides SN. Structural Activation of Pro-inflammatory Human Cytokine IL-23 by Cognate IL-23 Receptor Enables Recruitment of the Shared Receptor IL-12Rβ1. Immunity 2018; 48:45-58.e6. [PMID: 29287995 PMCID: PMC5773378 DOI: 10.1016/j.immuni.2017.12.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/15/2017] [Accepted: 12/05/2017] [Indexed: 01/13/2023]
Abstract
Interleukin-23 (IL-23), an IL-12 family cytokine, plays pivotal roles in pro-inflammatory T helper 17 cell responses linked to autoimmune and inflammatory diseases. Despite intense therapeutic targeting, structural and mechanistic insights into receptor complexes mediated by IL-23, and by IL-12 family members in general, have remained elusive. We determined a crystal structure of human IL-23 in complex with its cognate receptor, IL-23R, and revealed that IL-23R bound to IL-23 exclusively via its N-terminal immunoglobulin domain. The structural and functional hotspot of this interaction partially restructured the helical IL-23p19 subunit of IL-23 and restrained its IL-12p40 subunit to cooperatively bind the shared receptor IL-12Rβ1 with high affinity. Together with structural insights from the interaction of IL-23 with the inhibitory antibody briakinumab and by leveraging additional IL-23:antibody complexes, we propose a mechanistic paradigm for IL-23 and IL-12 whereby cognate receptor binding to the helical cytokine subunits primes recruitment of the shared receptors via the IL-12p40 subunit.
Collapse
Affiliation(s)
- Yehudi Bloch
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium; VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium
| | - Laura Bouchareychas
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA
| | - Romain Merceron
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium; VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium
| | - Katarzyna Składanowska
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium; VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium
| | - Lien Van den Bossche
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, 9000 Ghent, Belgium; Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, 9000 Ghent, Belgium
| | - Sammy Detry
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium; VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium
| | - Srinath Govindarajan
- VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium; Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Dirk Elewaut
- VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium; Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Filomeen Haerynck
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, 9000 Ghent, Belgium; Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, 9000 Ghent, Belgium; Department of Pediatrics, Division of Pediatric Immunology and Pulmonology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Melissa Dullaers
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, 9000 Ghent, Belgium; Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, 9000 Ghent, Belgium; Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Iannis E Adamopoulos
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA
| | - Savvas N Savvides
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium; VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium.
| |
Collapse
|
42
|
Genetic profile of patients with early onset inflammatory bowel disease. Gene 2017; 645:18-29. [PMID: 29248579 DOI: 10.1016/j.gene.2017.12.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/22/2017] [Accepted: 12/13/2017] [Indexed: 02/07/2023]
Abstract
Inflammatory Bowel disease (IBD) is a widespread pathological condition with clinical heterogeneity and with different levels of severity. Although IBD usually occurs in young adults, onset in childhood and infancy are described in patients within the 10th and second year of age. By genome-wide association studies and meta-analysis, several genetic loci have been identified associated with an increased risk of developing IBD in Western populations with variants that may alter the normal mucosal immunity in the gastrointestinal tract. The clinical complexity and the heterogeneity of the IBD phenotype probably reflect the presence of genetic heterogeneity where different genes or combinations of them may be involved, together with environmental factors. We hypothesized that patients with early onset IBD could have either more severe genetic variants in genes associated with IBD or multiple variants in different genes. Under the multifactorial diseases is crucial to consider the small contribution of a single variant in all not only to other small variations in the same gene but also in different genes belonging to the same pathway. We performed direct gene sequencing looking for 94 variations in NOD2, ATG16L1, IL23R, IL10R, IL10 and XIAP genes previously shown as correlated with IBD both in multifactorial and in Mendelian models. All variants identified are known in literature as being associated with IBD except for three variants in the genes NOD2, IL10 and IL10RB that even though present in online databases have never been involved in association studies on IBD patients. Moreover, we coupled genetic variants identification with an accurate "in silico" analysis to verify their predictive impact on the protein structure and function. The in-silico prediction of these variants results as benign therefore even if they exhibit a very low frequency in control population being benign, they cannot be considered pathogenic as monogenic disease but fall within the multifactorial range. The variants identified in our study partially reflect the association data described in the literature but there are no significant differences with the onset of disease (VEO vs EO-IBD).
Collapse
|
43
|
Russo E, Lombardelli L, Giudici F, Cavalli T, Ficari F, Fazi M, Scaringi S, Biancone L, Logiodice F, Nesi M, Latiano A, Annese V, Torcia MG, Bechi P, Tonelli F, Piccinni MP, Malentacchi C. Crohn's Colitis: Development of a multiplex gene expression assay comparing mRNA levels of susceptibility genes. Clin Res Hepatol Gastroenterol 2017; 41:435-444. [PMID: 28365139 DOI: 10.1016/j.clinre.2017.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 02/28/2017] [Indexed: 02/04/2023]
Abstract
Crohn's disease (CD) is a multifactorial immunologically mediated disease. In this study we explored, for the first time, the efficacy of the Multiplex Gene Assay technology for detecting mRNA expression profile of 24 selected CD related genes in endoscopic biopsies and surgical specimens from CD patients with colonic localization of the disease. The polymorphisms of genes most frequently associated with CD were also analysed in DNA samples from the same patients. The analysis of endoscopic samples showed increased expression of 7 genes in inflamed mucosa compared to non-inflamed mucosa and suggests the activation of the autophagy process and of a Th17 adaptive response. The analysis of surgical specimens showed increased expression of 16 genes in inflamed tissue compared to non-inflamed internal controls and revealed the activation of immune-adaptive Th17 response in association with a Th1 response. Furthermore, an increased expression of genes involved in ionic transport and signal transduction was found in inflamed mucosa compared to non-inflamed internal controls. This study confirms the activation of Th17 and Th1 adaptive-immune response also in colonic CD. It should be stressed that these responses have been disclosed in biopsy tissue, while only Th17 differentiation is revealed in endoscopic tissue. Interestingly, the polymorphisms analysis revealed that a homozygous genotype is associated to a more complicated clinical course.
Collapse
Affiliation(s)
- Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy.
| | - Letizia Lombardelli
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Francesco Giudici
- Department of Surgery and Translational Medicine (DCMT), Section of Surgery, University of Florence, Florence, Italy
| | - Tiziana Cavalli
- Department of Surgery and Translational Medicine (DCMT), Section of Surgery, University of Florence, Florence, Italy
| | - Ferdinando Ficari
- Department of Surgery and Translational Medicine (DCMT), Section of Surgery, University of Florence, Florence, Italy
| | - Marilena Fazi
- Department of Surgery and Translational Medicine (DCMT), Section of Surgery, University of Florence, Florence, Italy
| | - Stefano Scaringi
- Department of Surgery and Translational Medicine (DCMT), Section of Surgery, University of Florence, Florence, Italy; Gastroenterology Unit SOD2, AOUC Careggi, Florence, Italy
| | - Livia Biancone
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Federica Logiodice
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Mariateresa Nesi
- Department of Experimental and Clinical Biomedical Sciences (SBSC) "Mario Serio", University of Florence, Florence, Italy
| | - Anna Latiano
- Division of Gastroenterology, IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Vito Annese
- Gastroenterology Unit SOD2, AOUC Careggi, Florence, Italy
| | - Maria Gabriella Torcia
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Paolo Bechi
- Department of Surgery and Translational Medicine (DCMT), Section of Surgery, University of Florence, Florence, Italy
| | - Francesco Tonelli
- Department of Surgery and Translational Medicine (DCMT), Section of Surgery, University of Florence, Florence, Italy
| | - Marie-Pierre Piccinni
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Cecilia Malentacchi
- Department of Experimental and Clinical Biomedical Sciences (SBSC) "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
44
|
Huang H, Fang M, Jostins L, Umićević Mirkov M, Boucher G, Anderson CA, Andersen V, Cleynen I, Cortes A, Crins F, D'Amato M, Deffontaine V, Dmitrieva J, Docampo E, Elansary M, Farh KKH, Franke A, Gori AS, Goyette P, Halfvarson J, Haritunians T, Knight J, Lawrance IC, Lees CW, Louis E, Mariman R, Meuwissen T, Mni M, Momozawa Y, Parkes M, Spain SL, Théâtre E, Trynka G, Satsangi J, van Sommeren S, Vermeire S, Xavier RJ, Weersma RK, Duerr RH, Mathew CG, Rioux JD, McGovern DPB, Cho JH, Georges M, Daly MJ, Barrett JC. Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature 2017; 547:173-178. [PMID: 28658209 PMCID: PMC5511510 DOI: 10.1038/nature22969] [Citation(s) in RCA: 392] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 05/07/2017] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel diseases are chronic gastrointestinal inflammatory disorders that affect millions of people worldwide. Genome-wide association studies have identified 200 inflammatory bowel disease-associated loci, but few have been conclusively resolved to specific functional variants. Here we report fine-mapping of 94 inflammatory bowel disease loci using high-density genotyping in 67,852 individuals. We pinpoint 18 associations to a single causal variant with greater than 95% certainty, and an additional 27 associations to a single variant with greater than 50% certainty. These 45 variants are significantly enriched for protein-coding changes (n = 13), direct disruption of transcription-factor binding sites (n = 3), and tissue-specific epigenetic marks (n = 10), with the last category showing enrichment in specific immune cells among associations stronger in Crohn's disease and in gut mucosa among associations stronger in ulcerative colitis. The results of this study suggest that high-resolution fine-mapping in large samples can convert many discoveries from genome-wide association studies into statistically convincing causal variants, providing a powerful substrate for experimental elucidation of disease mechanisms.
Collapse
Affiliation(s)
- Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA
| | - Ming Fang
- Unit of Medical Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-R) Research Center and WELBIO, University of Liège, 4000 Liège, Belgium.,Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Luke Jostins
- Wellcome Trust Centre for Human Genetics, University of Oxford, Headington OX3 7BN, UK.,Christ Church, University of Oxford, St Aldates OX1 1DP, UK
| | - Maša Umićević Mirkov
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Gabrielle Boucher
- Research Center, Montreal Heart Institute, Montréal, Québec H1T 1C8, Canada
| | - Carl A Anderson
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Vibeke Andersen
- Focused research unit for Molecular Diagnostic and Clinical Research (MOK), IRS-Center Sonderjylland, Hospital of Southern Jutland, 6200 Åbenrå, Denmark.,Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | | | - Adrian Cortes
- Wellcome Trust Centre for Human Genetics, University of Oxford, Headington OX3 7BN, UK.,Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - François Crins
- Unit of Medical Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-R) Research Center and WELBIO, University of Liège, 4000 Liège, Belgium.,Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Mauro D'Amato
- Clinical Epidemiology Unit, Department of Medicine Solna, Karolinska Institutet, 17176 Stockholm, Sweden.,Department of Gastrointestinal and Liver Diseases, BioDonostia Health Research Institute, 20014 San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Valérie Deffontaine
- Unit of Medical Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-R) Research Center and WELBIO, University of Liège, 4000 Liège, Belgium.,Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Julia Dmitrieva
- Unit of Medical Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-R) Research Center and WELBIO, University of Liège, 4000 Liège, Belgium.,Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Elisa Docampo
- Unit of Medical Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-R) Research Center and WELBIO, University of Liège, 4000 Liège, Belgium.,Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Mahmoud Elansary
- Unit of Medical Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-R) Research Center and WELBIO, University of Liège, 4000 Liège, Belgium.,Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Kyle Kai-How Farh
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA.,Illumina, San Diego, California 92122, USA
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Ann-Stephan Gori
- Unit of Medical Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-R) Research Center and WELBIO, University of Liège, 4000 Liège, Belgium.,Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Philippe Goyette
- Research Center, Montreal Heart Institute, Montréal, Québec H1T 1C8, Canada
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, SE-70182 Örebro, Sweden
| | - Talin Haritunians
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | - Jo Knight
- Data Science Institute and Lancaster Medical School, Lancaster University, Lancaster LA1 4YG, UK
| | - Ian C Lawrance
- Centre for Inflammatory Bowel Diseases, Saint John of God Hospital, Subiaco, Western Australia 6008, Australia.,Harry Perkins Institute for Medical Research, School of Medicine and Pharmacology, University of Western Australia, Murdoch, Western Australia 6150, Australia
| | - Charlie W Lees
- Gastrointestinal Unit, Western General Hospital University of Edinburgh, Edinburgh, UK
| | - Edouard Louis
- Unit of Medical Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-R) Research Center and WELBIO, University of Liège, 4000 Liège, Belgium.,Division of Gastroenterology, Centre Hospitalier Universitaire (CHU) de Liège, 4000 Liège, Belgium
| | - Rob Mariman
- Unit of Medical Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-R) Research Center and WELBIO, University of Liège, 4000 Liège, Belgium.,Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Theo Meuwissen
- Institute of Livestock and Aquacultural Sciences, Norwegian University of Life Sciences, 1430 Ås, Norway
| | - Myriam Mni
- Unit of Medical Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-R) Research Center and WELBIO, University of Liège, 4000 Liège, Belgium.,Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Yukihide Momozawa
- Unit of Medical Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-R) Research Center and WELBIO, University of Liège, 4000 Liège, Belgium.,Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium.,Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Miles Parkes
- Inflammatory Bowel Disease Research Group, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Sarah L Spain
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK.,Open Targets, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Emilie Théâtre
- Unit of Medical Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-R) Research Center and WELBIO, University of Liège, 4000 Liège, Belgium.,Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Gosia Trynka
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Jack Satsangi
- Gastrointestinal Unit, Western General Hospital University of Edinburgh, Edinburgh, UK
| | - Suzanne van Sommeren
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, 9700RB Groningen, The Netherlands
| | - Severine Vermeire
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium.,Division of Gastroenterology, University Hospital Gasthuisberg, 3000 Leuven, Belgium
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA.,Gastroenterology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, 9700RB Groningen, The Netherlands
| | - Richard H Duerr
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania 15261, USA
| | - Christopher G Mathew
- Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, UK.,Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - John D Rioux
- Research Center, Montreal Heart Institute, Montréal, Québec H1T 1C8, Canada.,Faculté de Médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Dermot P B McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | - Judy H Cho
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Michel Georges
- Unit of Medical Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-R) Research Center and WELBIO, University of Liège, 4000 Liège, Belgium.,Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA
| | - Jeffrey C Barrett
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| |
Collapse
|
45
|
Li J, Zou L, Zhou Y, Li L, Zhu Y, Yang Y, Gong Y, Lou J, Ke J, Zhang Y, Tian J, Zou D, Peng X, Chang J, Gong J, Zhong R, Zhou X, Miao X. A low-frequency variant in SMAD7 modulates TGF-β signaling and confers risk for colorectal cancer in Chinese population. Mol Carcinog 2017; 56:1798-1807. [PMID: 28218435 DOI: 10.1002/mc.22637] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/08/2017] [Accepted: 02/16/2017] [Indexed: 12/22/2022]
Abstract
The TGF-β pathway plays an essential role in regulating cell proliferation and differentiation. GWASs and candidate approaches have identified a battery of genetic variants in the TGF-β pathway contributing to colorectal cancer (CRC). However, most of the significant variants are common variants and their functions remain ambiguous. To identify causal variants with low-frequency in the TGF-β pathway contributing to CRC susceptibility in Chinese population, we performed targeted sequencing of 12 key genes in TGF-β signaling in CRC patients followed by a two-stage case-control study with a total of 5109 cases and 5169 controls. Bioinformatic annotations and biochemical experiments were applied to reveal the potential functions of significant variants. Seven low-frequency genetic variants were captured through targeted sequencing. The two stage association studies showed that missense variant rs3764482 (c. 83C>T; p. S28F) in the gene SMAD7 was consistently and significantly associated with CRC risk. Compared with the wild type, the ORs for variant allele were 1.37 (95%CI: 1.10-1.70, P = 0.005), 1.55 (95%CI: 1.30-1.86, P = 1.15 × 106 ), and 1.48 (1.29-1.70, P = 2.44 × 10;8 ) in stage 1, stage 2, and the combined analyses, respectively. Functional annotations revealed that the minor allele T of rs3764482 was more effective than the major allele C in blocking the TGF-β signaling and inhibiting the phosphorylation of receptor-regulated SMADs (R-SMADs). In conclusion, low-frequency coding variant rs3764482 in SMAD7 is associated with CRC risk in Chinese population. The rs3764482 variant may block the TGF-β signaling via impeding the activation of downstream genes, leading to cancer cell proliferation, thus contributing to CRC pathogenesis.
Collapse
Affiliation(s)
- Jiaoyuan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Li Zou
- Department of Health Care, Bao'an Maternal and Child Health Hospital, Shenzhen, China
| | - Ying Zhou
- Institute of Orthopaedics, the First Affiliated Hospital of Chinese PLA General Hospial, Beijing, China
| | - Lu Li
- Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Yang Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Yajie Gong
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Jiao Lou
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Juntao Ke
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Yi Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Danyi Zou
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Xiating Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Jiang Chang
- Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Jing Gong
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Xiaobo Zhou
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, Massachusetts
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| |
Collapse
|
46
|
Petersen BS, Fredrich B, Hoeppner MP, Ellinghaus D, Franke A. Opportunities and challenges of whole-genome and -exome sequencing. BMC Genet 2017; 18:14. [PMID: 28193154 PMCID: PMC5307692 DOI: 10.1186/s12863-017-0479-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/26/2017] [Indexed: 01/08/2023] Open
Abstract
Recent advances in the development of sequencing technologies provide researchers with unprecedented possibilities for genetic analyses. In this review, we will discuss the history of genetic studies and the progress driven by next-generation sequencing (NGS), using complex inflammatory bowel diseases as an example. We focus on the opportunities, but also challenges that researchers are facing when working with NGS data to unravel the genetic causes underlying diseases.
Collapse
Affiliation(s)
| | - Broder Fredrich
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Marc P Hoeppner
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany.
| |
Collapse
|
47
|
Genetics of inflammatory bowel disease: beyond NOD2. Lancet Gastroenterol Hepatol 2017; 2:224-234. [PMID: 28404137 DOI: 10.1016/s2468-1253(16)30111-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 01/11/2023]
Abstract
The study of the genetic underpinnings of inflammatory bowel disease has made great progress since the identification of NOD2 as a major susceptibility gene. Novel genotyping and sequencing technologies have led to the discovery of 242 common susceptibility loci, 45 of which have been fine-mapped to statistically conclusive causal variants; 50 genes associated with very-early-onset inflammatory disease have been identified. The evolving genetic architecture of inflammatory bowel disease has deepened our understanding of its pathogenesis through identification of major disease associated pathways-knowledge that has the potential to indicate novel drug targets or markers for personalised medicine. However, many causal variants have yet to be identified, and a large proportion of missing heritability still needs to be accounted for. In addition, the medical and scientific communities are probably not yet fully harnessing the power of these genetic discoveries.
Collapse
|
48
|
Coskun M, Vermeire S, Nielsen OH. Novel Targeted Therapies for Inflammatory Bowel Disease. Trends Pharmacol Sci 2016; 38:127-142. [PMID: 27916280 DOI: 10.1016/j.tips.2016.10.014] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/21/2016] [Accepted: 10/26/2016] [Indexed: 02/07/2023]
Abstract
Our growing understanding of the immunopathogenesis of inflammatory bowel disease (IBD) has opened new avenues for developing targeted therapies. These advances in treatment options targeting different mechanisms of action offer new hope for personalized management. In this review we highlight emerging novel and easily administered therapeutics that may be viable candidates for the management of IBD, such as antibodies against interleukin 6 (IL-6) and IL-12/23, small molecules including Janus kinase inhibitors, antisense oligonucleotide against SMAD7 mRNA, and inhibitors of leukocyte trafficking to intestinal sites of inflammation (e.g., sphingosine 1-phosphate receptor modulators). We also provide an update on the current status in clinical development of these new classes of therapeutics.
Collapse
Affiliation(s)
- Mehmet Coskun
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Denmark; The Bioinformatics Centre, Department of Biology, and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | - Severine Vermeire
- Department of Gastroenterology, University Hospital Gasthuisberg, Leuven, Belgium
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Denmark.
| |
Collapse
|
49
|
Uniken Venema WT, Voskuil MD, Dijkstra G, Weersma RK, Festen EA. The genetic background of inflammatory bowel disease: from correlation to causality. J Pathol 2016; 241:146-158. [PMID: 27785786 DOI: 10.1002/path.4817] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/13/2016] [Accepted: 09/27/2016] [Indexed: 12/12/2022]
Abstract
Recent studies have greatly improved our insight into the genetic background of inflammatory bowel disease (IBD). New high-throughput technologies and large-scale international collaborations have contributed to the identification of 200 independent genetic risk loci for IBD. However, in most of these loci, it is unclear which gene conveys the risk for IBD. More importantly, it is unclear which variant within or near the gene is causal to the disease. Using targeted GWAS, imputation, resequencing of risk loci, and in silico fine-mapping of densely typed loci, several causal variants have been identified in IBD risk genes, and various pathological pathways have been uncovered. Current research in the field of IBD focuses on the effect of these causal variants on gene expression and protein function. However, more elements than only the genome must be taken into account to disentangle the multifactorial pathology of IBD. The genetic risk loci identified to date only explain a small part of genetic variance in disease risk. Currently, large multi-omics studies are incorporating factors ranging from the gut microbiome to the environment. In this review, we present the progress that has been made in IBD genetic research and stress the importance of studying causality to increase our understanding of the pathogenesis of IBD. We highlight important causal genetic variants in the candidate genes NOD2, ATG16L1, IRGM, IL23R, CARD9, RNF186, and PRDM1. We describe their downstream effects on protein function and their direct effects on the gut immune system. Furthermore, we discuss the future role of genetics in unravelling disease mechanisms in IBD. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Werna Tc Uniken Venema
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Michiel D Voskuil
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Eleonora Am Festen
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands.,Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
50
|
Abstract
The cause of Crohn’s disease (CD) has posed a conundrum for at least a century. A large body of work coupled with recent technological advances in genome research have at last started to provide some of the answers. Initially this review seeks to explain and to differentiate between bowel inflammation in the primary immunodeficiencies that generally lead to very early onset diffuse bowel inflammation in humans and in animal models, and the real syndrome of CD. In the latter, a trigger, almost certainly enteric infection by one of a multitude of organisms, allows the faeces access to the tissues, at which stage the response of individuals predisposed to CD is abnormal. Direct investigation of patients’ inflammatory response together with genome-wide association studies (GWAS) and DNA sequencing indicate that in CD the failure of acute inflammation and the clearance of bacteria from the tissues, and from within cells, is defective. The retained faecal products result in the characteristic chronic granulomatous inflammation and adaptive immune response. In this review I will examine the contemporary evidence that has led to this understanding, and look for explanations for the recent dramatic increase in the incidence of this disease.
Collapse
|