1
|
Shaw T, Barr FG, Üren A. The PAX Genes: Roles in Development, Cancer, and Other Diseases. Cancers (Basel) 2024; 16:1022. [PMID: 38473380 PMCID: PMC10931086 DOI: 10.3390/cancers16051022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Since their 1986 discovery in Drosophila, Paired box (PAX) genes have been shown to play major roles in the early development of the eye, muscle, skeleton, kidney, and other organs. Consistent with their roles as master regulators of tissue formation, the PAX family members are evolutionarily conserved, regulate large transcriptional networks, and in turn can be regulated by a variety of mechanisms. Losses or mutations in these genes can result in developmental disorders or cancers. The precise mechanisms by which PAX genes control disease pathogenesis are well understood in some cases, but much remains to be explored. A deeper understanding of the biology of these genes, therefore, has the potential to aid in the improvement of disease diagnosis and the development of new treatments.
Collapse
Affiliation(s)
- Taryn Shaw
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20001, USA
| | - Frederic G Barr
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Aykut Üren
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20001, USA
| |
Collapse
|
2
|
Khasnavis A, Fernandes M. Peters anomaly: An overview. Taiwan J Ophthalmol 2023; 13:434-442. [PMID: 38249502 PMCID: PMC10798386 DOI: 10.4103/tjo.tjo-d-23-00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/16/2023] [Indexed: 01/23/2024] Open
Abstract
Peters anomaly (PA) is a rare, often bilateral, congenital corneal opacity, usually with a sporadic inheritance pattern, characterized by corneal opacities and irido-corneal or lenticular-corneal adhesions with a defect in the Descemet's membrane, occurring due to anterior segment dysgenesis during fetal development. Due to other ocular and systemic comorbidities, a team comprising pediatric cornea, glaucoma, and strabismus specialists in addition to a pediatrician and geneticist is necessary for the appropriate management of these children. Since the outcome of pediatric penetrating keratoplasty is variable and has a higher chance of failure when accompanied by additional procedures, such as lensectomy and vitrectomy, minimally invasive alternatives are increasingly being offered to these patients. Of note is the recently reported novel procedure: selective endothelialectomy for PA, which avoids the need for a corneal transplant and results in gradual clearing of the corneal opacity over time. In this overview, we aimed to describe the etiology, classification, pathophysiology, histopathology, clinical features, and management of PA.
Collapse
Affiliation(s)
- Arpita Khasnavis
- Academy for Eye Care Education, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Cornea and Anterior Segment Service, Shantilal Shanghvi Cornea Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Merle Fernandes
- Cornea and Anterior Segment Service, Shantilal Shanghvi Cornea Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India
| |
Collapse
|
3
|
Daruich A, Duncan M, Robert MP, Lagali N, Semina EV, Aberdam D, Ferrari S, Romano V, des Roziers CB, Benkortebi R, De Vergnes N, Polak M, Chiambaretta F, Nischal KK, Behar-Cohen F, Valleix S, Bremond-Gignac D. Congenital aniridia beyond black eyes: From phenotype and novel genetic mechanisms to innovative therapeutic approaches. Prog Retin Eye Res 2023; 95:101133. [PMID: 36280537 PMCID: PMC11062406 DOI: 10.1016/j.preteyeres.2022.101133] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Congenital PAX6-aniridia, initially characterized by the absence of the iris, has progressively been shown to be associated with other developmental ocular abnormalities and systemic features making congenital aniridia a complex syndromic disorder rather than a simple isolated disease of the iris. Moreover, foveal hypoplasia is now recognized as a more frequent feature than complete iris hypoplasia and a major visual prognosis determinant, reversing the classical clinical picture of this disease. Conversely, iris malformation is also a feature of various anterior segment dysgenesis disorders caused by PAX6-related developmental genes, adding a level of genetic complexity for accurate molecular diagnosis of aniridia. Therefore, the clinical recognition and differential genetic diagnosis of PAX6-related aniridia has been revealed to be much more challenging than initially thought, and still remains under-investigated. Here, we update specific clinical features of aniridia, with emphasis on their genotype correlations, as well as provide new knowledge regarding the PAX6 gene and its mutational spectrum, and highlight the beneficial utility of clinically implementing targeted Next-Generation Sequencing combined with Whole-Genome Sequencing to increase the genetic diagnostic yield of aniridia. We also present new molecular mechanisms underlying aniridia and aniridia-like phenotypes. Finally, we discuss the appropriate medical and surgical management of aniridic eyes, as well as innovative therapeutic options. Altogether, these combined clinical-genetic approaches will help to accelerate time to diagnosis, provide better determination of the disease prognosis and management, and confirm eligibility for future clinical trials or genetic-specific therapies.
Collapse
Affiliation(s)
- Alejandra Daruich
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Melinda Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Matthieu P Robert
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; Borelli Centre, UMR 9010, CNRS-SSA-ENS Paris Saclay-Paris Cité University, Paris, France
| | - Neil Lagali
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, 581 83, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
| | - Elena V Semina
- Department of Pediatrics, Children's Research Institute at the Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI, 53226, USA
| | - Daniel Aberdam
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Stefano Ferrari
- Fondazione Banca degli Occhi del Veneto, Via Paccagnella 11, Venice, Italy
| | - Vito Romano
- Department of Medical and Surgical Specialties, Radiolological Sciences, and Public Health, Ophthalmology Clinic, University of Brescia, Italy
| | - Cyril Burin des Roziers
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Rabia Benkortebi
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Nathalie De Vergnes
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Michel Polak
- Pediatric Endocrinology, Gynecology and Diabetology, Hôpital Universitaire Necker Enfants Malades, AP-HP, Paris Cité University, INSERM U1016, Institut IMAGINE, France
| | | | - Ken K Nischal
- Division of Pediatric Ophthalmology, Strabismus, and Adult Motility, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; UPMC Eye Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Francine Behar-Cohen
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Sophie Valleix
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Dominique Bremond-Gignac
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France.
| |
Collapse
|
4
|
Swamynathan SK, Swamynathan S. Corneal epithelial development and homeostasis. Differentiation 2023; 132:4-14. [PMID: 36870804 PMCID: PMC10363238 DOI: 10.1016/j.diff.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/27/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
The corneal epithelium (CE), the most anterior cellular structure of the eye, is a self-renewing stratified squamous tissue that protects the rest of the eye from external elements. Each cell in this exquisite three-dimensional structure needs to have proper polarity and positional awareness for the CE to serve as a transparent, refractive, and protective tissue. Recent studies have begun to elucidate the molecular and cellular events involved in the embryonic development, post-natal maturation, and homeostasis of the CE, and how they are regulated by a well-coordinated network of transcription factors. This review summarizes the status of related knowledge and aims to provide insight into the pathophysiology of disorders caused by disruption of CE development, and/or homeostasis.
Collapse
Affiliation(s)
| | - Sudha Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| |
Collapse
|
5
|
Villalba MF, Li CM, Pakravan P, Bademci G, Chang TCP. Commercial Gene Panels for Congenital Anterior Segment Anomalies: Are They All the Same? Am J Ophthalmol 2023; 251:90-103. [PMID: 36906093 PMCID: PMC10247492 DOI: 10.1016/j.ajo.2023.02.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023]
Abstract
PURPOSE We compared next generation sequencing multigene panels (NGS-MGP) from 5 commercial laboratories to inform ophthalmologists' decision making in diagnostic genetic testing for congenital anterior segment anomalies (CASAs). DESIGN Comparison of commercial genetic testing panels. METHODS This observational study gathered publicly available information on NGS-MGP from 5 commercial laboratories for the following: cataracts, glaucoma, anterior segment dysgenesis (ASD), microphthalmia-anophthalmia-coloboma (MAC), corneal dystrophies, and Axenfeld-Rieger syndrome (ARS). We compared gene panel composition, consensus rate (genes covered by all the panels per condition, "concurrent"), dissensus rate (genes covered by only 1 panel per condition, "standalone"), and intronic variant coverage. For individual genes, we compared publication history and association with systemic conditions. RESULTS Altogether, cataract, glaucoma, corneal dystrophies, MAC, ASD, and ARS panels tested 239, 60, 36, 292, and 10 discrete genes, respectively. The consensus rate varied between 16% and 50%, and the dissensus rate varied between 14% and 74%. After pooling concurrent genes from all conditions, 20% of these genes were concurrent in 2 or more conditions. For both cataract and glaucoma, concurrent genes had significantly stronger correlation with the condition than standalone genes. CONCLUSIONS The genetic testing of CASAs using NGS-MGPs is complicated, owing to their number, variety, and phenotypic and genetic overlap. Although the inclusion of additional genes, such as the standalone ones, might increase diagnostic yield, these genes are also less well studied, indicating uncertainty over their role in CASA pathogenesis. Rigorous prospective diagnostic yield studies of NGS-MGPs will aid in making decisions of panel selection for the diagnosis of CASAs.
Collapse
Affiliation(s)
- Maria Fernanda Villalba
- From the Bascom Palmer Eye Institute (M.F.V., T.C.P.C.), University of Miami Miller School of Medicine, Miami, Florida, USA; John P. Hussmann Institute for Human Genomics (M.F.V., G.B.), University of Miami Miller School of Medicine, Miami, Florida, USA; University of Miami Miller School of Medicine (M.F.V., C.M.L., P.P.), Miami, Florida, USA
| | - Chris Michael Li
- University of Miami Miller School of Medicine (M.F.V., C.M.L., P.P.), Miami, Florida, USA
| | - Parastou Pakravan
- University of Miami Miller School of Medicine (M.F.V., C.M.L., P.P.), Miami, Florida, USA
| | - Guney Bademci
- John P. Hussmann Institute for Human Genomics (M.F.V., G.B.), University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Human Genetics (G.B.), University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ta Chen Peter Chang
- From the Bascom Palmer Eye Institute (M.F.V., T.C.P.C.), University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
6
|
Abstract
BACKGROUND Peters' anomaly (PA) is the most commonly encountered congenital corneal opacity (CCO) and displays a wide phenotypical range. The relatively recent adoption of high-quality anterior segment imaging in the form of high-frequency ultrasound biomicroscopy and anterior segment optical coherence tomography has aided in the accurate diagnosis of CCOs, facilitated distinction of PA from "pseudo-Peters' anomaly," and aided in prognostication and surgical risk stratification in PA. While the definitive management of PA, especially the more severe forms, is penetrating keratoplasty (PK), long-term success rates have overall been disappointing. This spurred the development of more non-invasive procedures, such as optical iridectomy and the more recently described selective endothelial removal, which represent viable alternatives to PK, at least in the less severe phenotypes of PA. METHODS Literature searches for the components of this review were performed using PubMed, in September 2021. The following keywords and their iterations were employed for the searches: "Peters' anomaly," "anterior segment dysgenesis," "kerato-irido-lenticular dysgenesis," "congenital corneal opacities." These were entered into the PubMed search engine, revealing 2852 related articles. The inclusion criteria included publications in the English language, specific to Peters' anomaly. Fifty-five studies that were published as systematic reviews or as nonrandomized comparative studies (cohort or case series) on the topic of Peters' anomaly were finally selected for this review. RESULTS This review provides a summary of Peters' anomaly in the context of advances in diagnosis, classification, and genotype-phenotype correlation of congenital corneal opacities, with a focus on penetrating keratoplasty, its outcomes, and non-invasive surgical options. While conservative therapies such as spontaneous clearing, mydriatic eye drops, and optical iridectomy may have variable success in milder variants of PA, penetrating keratoplasty in these eyes is fraught with several challenges and typically results in poor long-term functional outcomes. The management strategy depends on several variables such as phenotypical severity of PA, laterality, age at presentation, and capacity to adhere to the follow-up schedule. Notwithstanding the choice of treatment, it is essential that early and aggressive amblyopia therapy, a thorough systemic examination, and appropriate referral are undertaken for all patients of PA. CONCLUSION Peters' anomaly has seen recent advances in diagnosis, but treatment options remain limited. Focus directed towards less-invasive alternatives to keratoplasty may yield better functional outcomes.
Collapse
Affiliation(s)
- Raksheeth Nathan Rajagopal
- Academy for eye care education, L V Prasad Eye Institute, Hyderabad, India
- Cornea and Anterior Segment Service, The Cornea Institute, L V Prasad Eye Institute, Hyderabad, India
| | - Merle Fernandes
- Cornea and Anterior Segment Service, The Cornea Institute, L V Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
7
|
Cvekl A, Camerino MJ. Generation of Lens Progenitor Cells and Lentoid Bodies from Pluripotent Stem Cells: Novel Tools for Human Lens Development and Ocular Disease Etiology. Cells 2022; 11:3516. [PMID: 36359912 PMCID: PMC9658148 DOI: 10.3390/cells11213516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
In vitro differentiation of human pluripotent stem cells (hPSCs) into specialized tissues and organs represents a powerful approach to gain insight into those cellular and molecular mechanisms regulating human development. Although normal embryonic eye development is a complex process, generation of ocular organoids and specific ocular tissues from pluripotent stem cells has provided invaluable insights into the formation of lineage-committed progenitor cell populations, signal transduction pathways, and self-organization principles. This review provides a comprehensive summary of recent advances in generation of adenohypophyseal, olfactory, and lens placodes, lens progenitor cells and three-dimensional (3D) primitive lenses, "lentoid bodies", and "micro-lenses". These cells are produced alone or "community-grown" with other ocular tissues. Lentoid bodies/micro-lenses generated from human patients carrying mutations in crystallin genes demonstrate proof-of-principle that these cells are suitable for mechanistic studies of cataractogenesis. Taken together, current and emerging advanced in vitro differentiation methods pave the road to understand molecular mechanisms of cataract formation caused by the entire spectrum of mutations in DNA-binding regulatory genes, such as PAX6, SOX2, FOXE3, MAF, PITX3, and HSF4, individual crystallins, and other genes such as BFSP1, BFSP2, EPHA2, GJA3, GJA8, LIM2, MIP, and TDRD7 represented in human cataract patients.
Collapse
Affiliation(s)
- Aleš Cvekl
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael John Camerino
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
8
|
van Heyningen V. A Journey Through Genetics to Biology. Annu Rev Genomics Hum Genet 2022; 23:1-27. [PMID: 35567277 DOI: 10.1146/annurev-genom-010622-095109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although my engagement with human genetics emerged gradually, and sometimes serendipitously, it has held me spellbound for decades. Without my teachers, students, postdocs, colleagues, and collaborators, I would not be writing this review of my scientific adventures. Early gene and disease mapping was a satisfying puzzle-solving exercise, but building biological insight was my main goal. The project trajectory was hugely influenced by the evolutionarily conserved nature of the implicated genes and by the pace of progress in genetic technologies. The rich detail of clinical observations, particularly in eye disease, makes humans an excellent model, especially when complemented by the use of multiple other animal species for experimental validation. The contributions of collaborators and rivals also influenced our approach. We are very fortunate to work in this era of unprecedented progress in genetics and genomics. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Veronica van Heyningen
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom;
| |
Collapse
|
9
|
Chesneau B, Aubert-Mucca M, Fremont F, Pechmeja J, Soler V, Isidor B, Nizon M, Dollfus H, Kaplan J, Fares-Taie L, Rozet JM, Busa T, Lacombe D, Naudion S, Amiel J, Rio M, Attie-Bitach T, Lesage C, Thouvenin D, Odent S, Morel G, Vincent-Delorme C, Boute O, Vanlerberghe C, Dieux A, Boussion S, Faivre L, Pinson L, Laffargue F, Le Guyader G, Le Meur G, Prieur F, Lambert V, Laudier B, Cottereau E, Ayuso C, Corton-Pérez M, Bouneau L, Le Caignec C, Gaston V, Jeanton-Scaramouche C, Dupin-Deguine D, Calvas P, Chassaing N, Plaisancié J. First evidence of SOX2 mutations in Peters' anomaly: lessons from molecular screening of 95 patients. Clin Genet 2022; 101:494-506. [PMID: 35170016 DOI: 10.1111/cge.14123] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 11/30/2022]
Abstract
Peters' anomaly (PA) is a rare anterior segment dysgenesis characterized by central corneal opacity and irido-lenticulo-corneal adhesions. Several genes are involved in syndromic or isolated PA (B3GLCT, PAX6, PITX3, FOXE3, CYP1B1). Some Copy Number Variations (CNVs) have also been occasionally reported. Despite this genetic heterogeneity, most of patients remain without genetic diagnosis. We retrieved a cohort of 95 individuals with PA and performed genotyping using a combination of Comparative genomic hybridization, whole genome, exome and targeted sequencing of 119 genes associated with ocular development anomalies. Causative genetic defects involving 12 genes and CNVs were identified for 1/3 of patients. Unsurprisingly, B3GLCT and PAX6 were the most frequently implicated genes, respectively in syndromic and isolated PA. Unexpectedly, the third gene involved in our cohort was SOX2, the major gene of micro-anophthalmia. Four unrelated patients with PA (isolated or with microphthalmia) were carrying pathogenic variants in this gene that was never associated with PA before. Here we described the largest cohort of PA patients ever reported. The genetic bases of PA are still to be explored as genetic diagnosis was unavailable for 2/3 of patients. Nevertheless, we showed here for the first time the involvement of SOX2 in PA, offering new evidence for its role in corneal transparency and anterior segment development. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bertrand Chesneau
- Génétique Médicale, Hôpital Purpan, CHU, Toulouse, France.,Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU, Toulouse, France
| | | | - Félix Fremont
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU, Toulouse, France.,Service d'ophtalmologie, Hôpital Purpan, CHU Toulouse, France
| | - Jacmine Pechmeja
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU, Toulouse, France.,Service d'ophtalmologie, Hôpital Purpan, CHU Toulouse, France
| | - Vincent Soler
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU, Toulouse, France.,Service d'ophtalmologie, Hôpital Purpan, CHU Toulouse, France
| | - Bertrand Isidor
- Génétique Médicale, Institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Mathilde Nizon
- Génétique Médicale, Institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Hélène Dollfus
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), Hôpitaux Universitaires, Strasbourg, France
| | - Josseline Kaplan
- Laboratoire de Génétique Ophtalmologique, INSERM U1163, Institut Imagine, Paris, France
| | - Lucas Fares-Taie
- Laboratoire de Génétique Ophtalmologique, INSERM U1163, Institut Imagine, Paris, France
| | - Jean-Michel Rozet
- Laboratoire de Génétique Ophtalmologique, INSERM U1163, Institut Imagine, Paris, France
| | - Tiffany Busa
- Génétique Clinique, AP- HM CHU Timone Enfants, Marseille, France
| | - Didier Lacombe
- Département de Génétique Médicale, CHU Bordeaux, Bordeaux, France
| | - Sophie Naudion
- Département de Génétique Médicale, CHU Bordeaux, Bordeaux, France
| | - Jeanne Amiel
- Service de Génétique Médicale, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Marlène Rio
- Service de Génétique Médicale, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Tania Attie-Bitach
- Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, AP-, HP, Paris, France
| | | | | | - Sylvie Odent
- Service de Génétique Clinique, Centre Labellisé pour les Anomalies du Développement Ouest, CHU Rennes; Institut de Génétique et Développement de Rennes, CNRS, UMR 6290, Université de Rennes, ERN ITHACA, France
| | - Godelieve Morel
- Service de Génétique Clinique, Centre Labellisé pour les Anomalies du Développement Ouest, CHU Rennes; Institut de Génétique et Développement de Rennes, CNRS, UMR 6290, Université de Rennes, ERN ITHACA, France
| | | | | | | | | | | | - Laurence Faivre
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, CHU, Dijon, France
| | - Lucile Pinson
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU de Montpellier, France
| | | | | | | | | | - Victor Lambert
- Service d'ophtalmologie, Hôpital Nord, Saint-Etienne, France
| | | | | | - Carmen Ayuso
- Genetics & Genomics Department, Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD-UAM). Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Marta Corton-Pérez
- Genetics & Genomics Department, Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD-UAM). Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | | | | | | | | | | | - Patrick Calvas
- Génétique Médicale, Hôpital Purpan, CHU, Toulouse, France.,Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU, Toulouse, France
| | - Nicolas Chassaing
- Génétique Médicale, Hôpital Purpan, CHU, Toulouse, France.,Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU, Toulouse, France
| | - Julie Plaisancié
- Génétique Médicale, Hôpital Purpan, CHU, Toulouse, France.,Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU, Toulouse, France.,INSERM U1214, ToNIC, Université Toulouse III, France
| |
Collapse
|
10
|
Decreased FABP5 and DSG1 protein expression following PAX6 knockdown of differentiated human limbal epithelial cells. Exp Eye Res 2021; 215:108904. [PMID: 34954205 DOI: 10.1016/j.exer.2021.108904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022]
Abstract
PAX6 haploinsufficiency related aniridia is characterized by disorder of limbal epithelial cells (LECs) and aniridia related keratopathy. In the limbal epithelial cells of aniridia patients, deregulated retinoic acid (RA) signaling components were identified. We aimed to visualize differentiation marker and RA signaling component expression in LECs, combining a differentiation triggering growth condition with a small interfering RNA (siRNA) based aniridia cell model (PAX6 knock down). Primary LECs were isolated from corneoscleral rims of healthy donors and cultured in serum free low Ca2+ medium (KSFM) and in KSFM supplemented with 0.9 mmol/L Ca2+. In addition, LECs were treated with siRNA against PAX6. DSG1, PAX6, KRT12, KRT 3, ADH7, RDH10, ALDH1A1, ALDH3A1, STRA6, CYP1B1, RBP1, CRABP2, FABP5, PPARG, VEGFA and ELOVL7 expression was determined using qPCR and western blot. DSG1, FABP5, ADH7, ALDH1A1, RBP1, CRABP2 and PAX6 mRNA and FABP5 protein expression increased (p ≤ 0.03), PPARG, CYP1B1 mRNA expression decreased (p ≤ 0.0003) and DSG1 protein expression was only visible after Ca2+ supplementation. After PAX6 knock down and Ca2+ supplementation, ADH7 and ALDH1A1 mRNA and DSG1 and FABP5 protein expression decreased (p ≤ 0.04), compared to Ca2+ supplementation alone. Using our cell model, with Ca2+ supplementation and PAX6 knockdown with siRNA treatment against PAX6, we provide evidence that haploinsufficiency of the master regulatory gene PAX6 contributes to differentiation defect in the corneal epithelium through alterations of RA signalling. Upon PAX6 knockdown, DSG1 differentiation marker and FABP5 RA signaling component mRNA expression decreases. A similar effect becomes apparent at protein level though differentiation triggering Ca2+ supplementation in the siRNA-based aniridia cell model. Expression data from this cell model and from our siRNA aniridia cell model strongly indicate that FABP5 expression is PAX6 dependent. These new findings may lead to a better understanding of differentiation processes in LECs and are able to explain the insufficient cell function in AAK.
Collapse
|
11
|
D'Oria F, Barraquer R, Alio JL. Crystalline lens alterations in congenital aniridia. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2021; 96 Suppl 1:38-51. [PMID: 34836587 DOI: 10.1016/j.oftale.2020.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/15/2020] [Indexed: 06/13/2023]
Abstract
Congenital aniridia is a rare genetic disease associated with mutations in the PAX6 gene. Changes in the lens in aniridia can be alterations of size and shape, of position - which generally reveal zonular weakness and determines subluxation of the lens - and mainly changes in transparency, cataracts, with variable morphology of polar, cortical, subcapsular, lamellar, and more rarely, nuclear cataract. Visual acuity and quality of vision in patients with congenital aniridia complicated by cataracts can be improved by carefully planned surgery, when lack of media transparency justifies surgical indication. Most patients have some improvement in visual acuity and quality of retinal image. Cataract surgery with aniridia is complicated by pathological changes due to the underlying cause of the aniridia. Challenges include corneal opacification, friable capsule and, above all, iris and pupil reconstruction. It can also determine late complications, such as secondary glaucoma or deterioration of pre-existent glaucoma, and corneal endothelial decompensation. After crystalline lens surgery in these patients, either by cataract or dislocation, for visual rehabilitation there are various techniques such as keratopigmentation, prosthetic iris devices or Morcher intraocular lenses with a black diaphragm. An appropriate individualised surgical plan should be selected depending on patient and surgical experience, in order to minimise complications and give the best chance of postoperative success.
Collapse
Affiliation(s)
- F D'Oria
- Vissum Innovation, Alicante, Spain; Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari, Bari, Italy
| | - R Barraquer
- Instituto Universitario Barraquer, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J L Alio
- Vissum Innovation, Alicante, Spain; División de Oftalmología, Universidad Miguel Hernández, Alicante, Spain.
| |
Collapse
|
12
|
French CR. Mechanistic Insights into Axenfeld-Rieger Syndrome from Zebrafish foxc1 and pitx2 Mutants. Int J Mol Sci 2021; 22:ijms221810001. [PMID: 34576164 PMCID: PMC8472202 DOI: 10.3390/ijms221810001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022] Open
Abstract
Axenfeld-Rieger syndrome (ARS) encompasses a group of developmental disorders that affect the anterior segment of the eye, as well as systemic developmental defects in some patients. Malformation of the ocular anterior segment often leads to secondary glaucoma, while some patients also present with cardiovascular malformations, craniofacial and dental abnormalities and additional periumbilical skin. Genes that encode two transcription factors, FOXC1 and PITX2, account for almost half of known cases, while the genetic lesions in the remaining cases remain unresolved. Given the genetic similarity between zebrafish and humans, as well as robust antisense inhibition and gene editing technologies available for use in these animals, loss of function zebrafish models for ARS have been created and shed light on the mechanism(s) whereby mutations in these two transcription factors cause such a wide array of developmental phenotypes. This review summarizes the published phenotypes in zebrafish foxc1 and pitx2 loss of function models and discusses possible mechanisms that may be used to target pharmaceutical development and therapeutic interventions.
Collapse
Affiliation(s)
- Curtis R French
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland and Labrador, St. John's, NL A1B 3V6, Canada
| |
Collapse
|
13
|
Balikov DA, Jacobson A, Prasov L. Glaucoma Syndromes: Insights into Glaucoma Genetics and Pathogenesis from Monogenic Syndromic Disorders. Genes (Basel) 2021; 12:genes12091403. [PMID: 34573386 PMCID: PMC8471311 DOI: 10.3390/genes12091403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022] Open
Abstract
Monogenic syndromic disorders frequently feature ocular manifestations, one of which is glaucoma. In many cases, glaucoma in children may go undetected, especially in those that have other severe systemic conditions that affect other parts of the eye and the body. Similarly, glaucoma may be the first presenting sign of a systemic syndrome. Awareness of syndromes associated with glaucoma is thus critical both for medical geneticists and ophthalmologists. In this review, we highlight six categories of disorders that feature glaucoma and other ocular or systemic manifestations: anterior segment dysgenesis syndromes, aniridia, metabolic disorders, collagen/vascular disorders, immunogenetic disorders, and nanophthalmos. The genetics, ocular and systemic features, and current and future treatment strategies are discussed. Findings from rare diseases also uncover important genes and pathways that may be involved in more common forms of glaucoma, and potential novel therapeutic strategies to target these pathways.
Collapse
Affiliation(s)
- Daniel A. Balikov
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (D.A.B.); (A.J.)
| | - Adam Jacobson
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (D.A.B.); (A.J.)
| | - Lev Prasov
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (D.A.B.); (A.J.)
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence:
| |
Collapse
|
14
|
Kit V, Cunha DL, Hagag AM, Moosajee M. Longitudinal genotype-phenotype analysis in 86 patients with PAX6-related aniridia. JCI Insight 2021; 6:e148406. [PMID: 34101622 PMCID: PMC8410060 DOI: 10.1172/jci.insight.148406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/03/2021] [Indexed: 12/30/2022] Open
Abstract
Aniridia is most commonly caused by haploinsufficiency of the PAX6 gene, characterized by variable iris and foveal hypoplasia, nystagmus, cataracts, glaucoma, and aniridia-related keratopathy (ARK). Genotype-phenotype correlations have previously been described; however, detailed longitudinal studies of aniridia are less commonly reported. We identified 86 patients from 62 unrelated families with molecularly confirmed heterozygous PAX6 variants from a UK-based single-center ocular genetics service. They were categorized into mutation groups, and a retrospective review of clinical characteristics (ocular and systemic) from baseline to most recent was recorded. One hundred and seventy-two eyes were evaluated, with a mean follow-up period of 16.3 ± 12.7 years. Nystagmus was recorded in 87.2% of the eyes, and foveal hypoplasia was found in 75%. Cataracts were diagnosed in 70.3%, glaucoma in 20.6%, and ARK in 68.6% of eyes. Prevalence, age of diagnosis and surgical intervention, and need for surgical intervention varied among mutation groups. Overall, the missense mutation subgroup had the mildest phenotype, and surgically naive eyes maintained better visual acuity. Systemic evaluation identified type 2 diabetes in 12.8% of the study group, which is twice the UK prevalence. This is the largest longitudinal study of aniridia in the UK, and as such, it can provide insights into prognostic indicators for patients and guiding clinical management of both ocular and systemic features.
Collapse
Affiliation(s)
- Vivienne Kit
- Moorfields Eye Hospital, NHS Foundation Trust, London, United Kingdom.,UCL Institute of Ophthalmology, London, United Kingdom
| | | | - Ahmed M Hagag
- Moorfields Eye Hospital, NHS Foundation Trust, London, United Kingdom.,UCL Institute of Ophthalmology, London, United Kingdom
| | - Mariya Moosajee
- Moorfields Eye Hospital, NHS Foundation Trust, London, United Kingdom.,UCL Institute of Ophthalmology, London, United Kingdom.,Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
15
|
Chaurasia S, Jakati S, Ramappa M, Mishra DK, Edward DP. Anterior segment alterations in congenital primary aphakia-a clinicopathologic report of five cases. Indian J Ophthalmol 2021; 68:1564-1568. [PMID: 32709777 PMCID: PMC7640842 DOI: 10.4103/ijo.ijo_2078_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Purpose: To report the clinicopathological features of corneal buttons in patients with congenital primary aphakia. Methods: Five corneal specimens of five patients with congenital primary aphakia who underwent penetrating keratoplasty (PKP) were studied by light microscopy, and immunohistochemistry with anti-smooth muscle (SMA) antibody. Results: All patients were born from consanguineous parents. Of the five, two patients were identical twins. All eyes were microphthalmic. In four patients, congenital primary aphakia was bilateral and in one patient (Patient 3), it was unilateral. PKP failed in all eyes due to hypotony. Histologically, Bowman's layer was absent in all specimens. The corneal stroma was thin; however, the stromal collagen showed thick and irregularly arranged fibers with neovascularization in all eyes. Descemet's membrane and the corneal endothelium were absent in all specimens. In three specimens, atrophic iris tissue without dilator muscle was adherent to the posterior corneal surface. In addition, anteriorly displaced hypoplastic ciliary body and/or pigmented and non-pigmented ciliary epithelium were attached to the posterior corneal surface in three of the five specimens. SMA staining demonstrated disorganized ciliary muscle in one case. SMA-positive stromal keratocytes demonstrated their myofibroblast nature. Conclusion: The corneal findings in congenital primary aphakia are similar to that seen in other causes of congenital corneal opacification. The anteriorly displaced hypoplastic ciliary body that was partially excised during keratoplasty explains the ocular hypotony in these eyes.
Collapse
Affiliation(s)
- Sunita Chaurasia
- Cornea and Anterior Segment Services, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Saumya Jakati
- Ocular Pathology Services, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Muralidhar Ramappa
- Cornea and Anterior Segment Services, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Dilip K Mishra
- Ocular Pathology Services, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Deepak P Edward
- King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia; University of Illinois Eye and Ear Infirmary, Chicago, Illinois, US
| |
Collapse
|
16
|
D'Oria F, Barraquer R, Alio JL. Crystalline lens alterations in congenital aniridia. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2021; 96:S0365-6691(21)00028-9. [PMID: 33612366 DOI: 10.1016/j.oftal.2020.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 11/27/2022]
Abstract
Congenital aniridia is a rare genetic disease associated with mutations in the PAX6 gene. Changes in the lens in aniridia can be alterations of size and shape, of position - which generally reveal zonular weakness and determines subluxation of the lens - and mainly changes in transparency, cataracts, with variable morphology of polar, cortical, subcapsular, lamellar, and more rarely, nuclear cataract. Visual acuity and quality of vision in patients with congenital aniridia complicated by cataracts can be improved by carefully planned surgery, when lack of media transparency justifies surgical indication. Most patients have some improvement in visual acuity and quality of retinal image. Cataract surgery with aniridia is complicated by pathological changes due to the underlying cause of the aniridia. Challenges include corneal opacification, friable capsule and, above all, iris and pupil reconstruction. It can also determine late complications, such as secondary glaucoma or deterioration of pre-existent glaucoma, and corneal endothelial decompensation. After crystalline lens surgery in these patients, either by cataract or dislocation, for visual rehabilitation there are various techniques such as keratopigmentation, prosthetic iris devices or Morcher intraocular lenses with a black diaphragm. An appropriate individualised surgical plan should be selected depending on patient and surgical experience, in order to minimise complications and give the best chance of postoperative success.
Collapse
Affiliation(s)
- F D'Oria
- Vissum Innovation, Alicante, España; Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari, Bari, Italia
| | - R Barraquer
- Instituto Universitario Barraquer, Universitat Autònoma de Barcelona, Barcelona, España
| | - J L Alio
- Vissum Innovation, Alicante, España; División de Oftalmología, Universidad Miguel Hernández, Alicante, España.
| |
Collapse
|
17
|
Morphometric analysis of the lens in human aniridia and mouse Small eye. Exp Eye Res 2020; 203:108371. [PMID: 33248069 DOI: 10.1016/j.exer.2020.108371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 12/16/2022]
Abstract
Congenital aniridia is caused by heterozygous mutations in the PAX6 gene. In this disease, congenital iris and foveal hypoplasia is associated with juvenile onset cataract, glaucoma, and corneal keratopathy. In rodents, Pax6 mutations result in a congenital reduction in ocular size that is not typically described in human aniridia. Here, the ocular morphometry of aniridia patients is compared with the lens phenotype of Pax6+/tm1/Pgr mice to reveal whether there are species differences in Pax6 regulation of lens development and homeostasis. Ultrasound biometry (UBM) revealed that eleven percent of aniridia patients exhibited mild microphthalmia while the anterior chamber depth of aniridic eyes was significantly reduced from 6 months of age onward. Although aniridic lens thickness was normal from birth, it was significantly decreased in aniridic lenses older than 30. Notably, 86% of aniridic lenses exhibited cataractous changes in this cohort. In addition, a significant proportion of aniridia patients develop lens subluxation as they age associated with reduced lens diameter as measured by anterior segment optical coherence tomography (AS-OCT). Analysis of young adult Pax6+/tm1/Pgr mouse lenses by micro-computed tomography (microCT), bright field and dark field imaging revealed that they are reduced in size but did not exhibit overt cataracts at this age. Overall, this study reveals that congenital microphthalmia as assessed by axial length, or microphakia, as assessed by lens thickness, are not typical in human aniridia, although these are primary manifestations of Pax6 mutations in mice, suggesting that PAX6 regulates some aspects of lens development differently between these species.
Collapse
|
18
|
Mudhar HS, Milman T, Eagle RC, Sanderson T, Pheasey L, Paine S, Salvi S, Rennie IG, Rundle P, Shields CL, Shields JA. Usefulness of PAX8 Immunohistochemistry in Adult Intraocular Tumor Diagnosis. Ophthalmology 2020; 128:765-778. [PMID: 33002562 DOI: 10.1016/j.ophtha.2020.09.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/26/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022] Open
Abstract
PURPOSE To evaluate the distribution of the PAX8 transcription factor protein in ocular tissues and to investigate if immunohistochemical stains for this biomarker are useful in the diagnosis of intraocular tumors. DESIGN Observational case series. PARTICIPANTS Excision and cytologic analysis specimens of 6 ciliary body epithelial neoplasms, 2 iris epithelial neoplasms, 3 retinal pigment epithelial neoplasms, 3 intraocular medulloepitheliomas, 15 uveal melanomas, and 5 uveal melanocytomas. METHODS Hematoxylin-eosin and PAX8 immunohistochemical stains were performed on all specimens. In appropriate cases, bleached preparations and other immunohistochemical stains, including AE1/AE3 cytokeratin, Lin28A, and CD45, were performed. MAIN OUTCOME MEASURES Distribution of PAX8 expression in normal and neoplastic tissue. RESULTS Strong nuclear PAX8 expression was observed in the normal corneal epithelium, iris sphincter pupillae muscle, iris pigment epithelium and dilator muscle complex, nonpigmented and pigmented epithelia of the ciliary body, lens epithelium, and a subset of retinal neurons. The normal retinal pigment epithelium and uveal melanocytes did not stain for PAX8. The ciliary body epithelial and neuroepithelial tumors (adenoma, adenocarcinoma, and medulloepithelioma) showed uniform strong nuclear PAX8 immunoreactivity. All melanocytic tumors (iris melanoma, ciliary-choroidal melanoma, and melanocytoma) and retinal pigment epithelial neoplasms showed negative results for PAX8. A subset of tumor-associated lymphocytes, most prominent in uveal melanoma, showed positive results for PAX8. The uniformity of the PAX8 staining was superior to the variable cytokeratin staining in the ciliary epithelial neoplasms and the variable Lin28A staining in malignant medulloepithelioma. The veracity of PAX8 staining was equally as robust on cytologic analysis and open-flap biopsy specimens of ciliary epithelial and iris epithelial neoplasms, melanocytoma, and melanoma. CONCLUSIONS PAX8 has proven to be a very useful diagnostic marker in a select group of adult intraocular tumors, and we highly recommend its inclusion in diagnostic antibody panels of morphologically challenging intraocular neoplasms.
Collapse
Affiliation(s)
- Hardeep Singh Mudhar
- National Specialist Ophthalmic Pathology Service, Department of Histopathology, Royal Hallamshire Hospital, Sheffield, United Kingdom.
| | - Tatyana Milman
- Department of Pathology, Wills Eye Hospital, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ralph C Eagle
- Department of Pathology, Wills Eye Hospital, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Tracy Sanderson
- Immunohistochemistry, Department of Histopathology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Leanne Pheasey
- Immunohistochemistry, Department of Histopathology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Simon Paine
- Neuropathology, Department of Cellular Pathology, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham, United Kingdom
| | - Sachin Salvi
- Sheffield Ocular Oncology Service, Department of Ophthalmology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Ian G Rennie
- Sheffield Ocular Oncology Service, Department of Ophthalmology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Paul Rundle
- Sheffield Ocular Oncology Service, Department of Ophthalmology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Carol L Shields
- Ocular Oncology Service, Wills Eye Hospital, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jerry A Shields
- Ocular Oncology Service, Wills Eye Hospital, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Tidu A, Schanne-Klein MC, Borderie VM. Development, structure, and bioengineering of the human corneal stroma: A review of collagen-based implants. Exp Eye Res 2020; 200:108256. [PMID: 32971095 DOI: 10.1016/j.exer.2020.108256] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 01/15/2023]
Abstract
Bio-engineering technologies are currently used to produce biomimetic artificial corneas that should present structural, chemical, optical, and biomechanical properties close to the native tissue. These properties are mainly supported by the corneal stroma which accounts for 90% of corneal thickness and is mainly made of collagen type I. The stromal collagen fibrils are arranged in lamellae that have a plywood-like organization. The fibril diameter is between 25 and 35 nm and the interfibrillar space about 57 nm. The number of lamellae in the central stroma is estimated to be 300. In the anterior part, their size is 10-40 μm. They appear to be larger in the posterior part of the stroma with a size of 60-120 μm. Their thicknesses also vary from 0.2 to 2.5 μm. During development, the acellular corneal stroma, which features a complex pattern of organization, serves as a scaffold for mesenchymal cells that invade and further produce the cellular stroma. Several pathways including Bmp4, Wnt/β-catenin, Notch, retinoic acid, and TGF-β, in addition to EFTFs including the mastering gene Pax-6, are involved in corneal development. Besides, retinoic acid and TGF- β seem to have a crucial role in the neural crest cell migration in the stroma. Several technologies can be used to produce artificial stroma. Taking advantage of the liquid-crystal properties of acid-soluble collagen, it is possible to produce transparent stroma-like matrices with native-like collagen I fibrils and plywood-like organization, where epithelial cells can adhere and proliferate. Other approaches include the use of recombinant collagen, cross-linkers, vitrification, plastically compressed collagen or magnetically aligned collagen, providing interesting optical and mechanical properties. These technologies can be classified according to collagen type and origin, presence of telopeptides and native-like fibrils, structure, and transparency. Collagen matrices feature transparency >80% for the appropriate 500-μm thickness. Non-collagenous matrices made of biopolymers including gelatin, silk, or fish scale have been developed which feature interesting properties but are less biomimetic. These bioengineered matrices still need to be colonized by stromal cells to fully reproduce the native stroma.
Collapse
Affiliation(s)
- Aurélien Tidu
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Centre Hospitalier, National d'Ophtalmologie des 15-20, 75571, Paris, France; Groupe de Recherche Clinique 32, Sorbonne Université, Paris, France
| | - Marie-Claire Schanne-Klein
- Laboratory for Optics and Biosciences, LOB, Ecole Polytechnique, CNRS, Inserm, Université Paris-Saclay, 91128, Palaiseau, France
| | - Vincent M Borderie
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Centre Hospitalier, National d'Ophtalmologie des 15-20, 75571, Paris, France; Groupe de Recherche Clinique 32, Sorbonne Université, Paris, France.
| |
Collapse
|
20
|
Moazzeni H, Khani M, Elahi E. Insights into the regulatory molecules involved in glaucoma pathogenesis. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:782-827. [PMID: 32935930 DOI: 10.1002/ajmg.c.31833] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022]
Abstract
Glaucoma is an important cause of irreversible blindness, characterized by optic nerve anomalies. Increased intraocular pressure (IOP) and aging are major risk factors. Retinal ganglion cells and trabecular meshwork cells are certainly involved in the etiology of glaucoma. Glaucoma is usually a complex disease, and various genes and functions may contribute to its etiology. Among these may be genes that encode regulatory molecules. In this review, regulatory molecules including 18 transcription factors (TFs), 195 microRNAs (miRNAs), 106 long noncoding RNAs (lncRNAs), and two circular RNAs (circRNAs) that are reasonable candidates for having roles in glaucoma pathogenesis are described. The targets of the regulators are reported. Glaucoma-related features including apoptosis, stress responses, immune functions, ECM properties, IOP, and eye development are affected by the targeted genes. The targeted genes that are frequently targeted by multiple regulators most often affect apoptosis and the related features of cell death and cell survival. BCL2, CDKN1A, and TP53 are among the frequent targets of three types of glaucoma-relevant regulators, TFs, miRNAs, and lncRNAs. TP53 was itself identified as a glaucoma-relevant TF. Several of the glaucoma-relevant TFs are themselves among frequent targets of regulatory molecules, which is consistent with existence of a complex network involved in glaucoma pathogenesis.
Collapse
Affiliation(s)
- Hamidreza Moazzeni
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Marzieh Khani
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
21
|
Utz VM, Brightman DS, Sandoval MA, Hufnagel RB, Saal HM. Systemic and ocular manifestations of a patient with mosaic ARID1A-associated Coffin-Siris syndrome and review of select mosaic conditions with ophthalmic manifestations. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2020; 184:644-655. [PMID: 32888375 PMCID: PMC8808370 DOI: 10.1002/ajmg.c.31839] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/06/2020] [Accepted: 08/09/2020] [Indexed: 12/16/2022]
Abstract
Mosaic genetic mutations may be somatic, germline, or "gonosomal" and have the potential to cause genetic syndromes, disorders, or malformations. Mutations can occur at any point in embryonic development and the timing determines the extent of distribution of the mutation throughout the body and different tissue types. The eye and visual pathway offer a unique opportunity to study somatic and gonosomal mosaic mutations as the eye consists of tissues derived from all three germ layers allowing disease pathology to be assessed with noninvasive imaging. In this review, we describe systemic and ocular manifestations in a child with mosaic Coffin-Siris syndrome. The patient presented with a significant medical history of accommodative esotropia and hyperopia, macrocephaly, polydactyly, global developmental delay, hypotonia, ureteropelvic junction (UPJ) obstruction, and brain MRI abnormalities. The ophthalmic findings in this patient were nonspecific, however, they are consistent with ocular manifestations reported in other patients with Coffin-Siris syndrome. We also review ophthalmic findings of select mosaic chromosomal and single-gene disorders. Ophthalmic assessment alongside clinical genetic testing may play an important role in diagnosis of genetic syndromes as well as understanding disease pathology, particularly when mosaicism plays a role.
Collapse
Affiliation(s)
- Virginia Miraldi Utz
- Abrahamson Pediatric Eye Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Ophthalmology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Diana S. Brightman
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Monica A. Sandoval
- Abrahamson Pediatric Eye Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Robert B. Hufnagel
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Howard M. Saal
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- College of Medicine, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
22
|
Cross E, Duncan-Flavell PJ, Howarth RJ, Crooks RO, Thomas NS, Bunyan DJ. Screening of a large PAX6 cohort identified many novel variants and emphasises the importance of the paired and homeobox domains. Eur J Med Genet 2020; 63:103940. [DOI: 10.1016/j.ejmg.2020.103940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/20/2019] [Accepted: 04/23/2020] [Indexed: 12/21/2022]
|
23
|
CPAMD8 loss-of-function underlies non-dominant congenital glaucoma with variable anterior segment dysgenesis and abnormal extracellular matrix. Hum Genet 2020; 139:1209-1231. [PMID: 32274568 DOI: 10.1007/s00439-020-02164-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/03/2020] [Indexed: 01/08/2023]
Abstract
Abnormal development of the ocular anterior segment may lead to a spectrum of clinical phenotypes ranging from primary congenital glaucoma (PCG) to variable anterior segment dysgenesis (ASD). The main objective of this study was to identify the genetic alterations underlying recessive congenital glaucoma with ASD (CG-ASD). Next-generation DNA sequencing identified rare biallelic CPAMD8 variants in four patients with CG-ASD and in one case with PCG. CPAMD8 is a gene of unknown function and recently associated with ASD. Bioinformatic and in vitro functional evaluation of the variants using quantitative reverse transcription PCR and minigene analysis supported a loss-of-function pathogenic mechanism. Optical and electron microscopy of the trabeculectomy specimen from one of the CG-ASD cases revealed an abnormal anterior chamber angle, with altered extracellular matrix, and apoptotic trabecular meshwork cells. The CPAMD8 protein was immunodetected in adult human ocular fluids and anterior segment tissues involved in glaucoma and ASD (i.e., aqueous humor, non-pigmented ciliary epithelium, and iris muscles), as well as in periocular mesenchyme-like cells of zebrafish embryos. CRISPR/Cas9 disruption of this gene in F0 zebrafish embryos (96 hpf) resulted in varying degrees of gross developmental abnormalities, including microphthalmia, pharyngeal maldevelopment, and pericardial and periocular edemas. Optical and electron microscopy examination of these embryos showed iridocorneal angle hypoplasia (characterized by altered iris stroma cells, reduced anterior chamber, and collagen disorganized corneal stroma extracellular matrix), recapitulating some patients' features. Our data support the notion that CPAMD8 loss-of-function underlies a spectrum of recessive CG-ASD phenotypes associated with extracellular matrix disorganization and provide new insights into the normal and disease roles of this gene.
Collapse
|
24
|
Williamson KA, Hall HN, Owen LJ, Livesey BJ, Hanson IM, Adams GGW, Bodek S, Calvas P, Castle B, Clarke M, Deng AT, Edery P, Fisher R, Gillessen-Kaesbach G, Heon E, Hurst J, Josifova D, Lorenz B, McKee S, Meire F, Moore AT, Parker M, Reiff CM, Self J, Tobias ES, Verheij JBGM, Willems M, Williams D, van Heyningen V, Marsh JA, FitzPatrick DR. Recurrent heterozygous PAX6 missense variants cause severe bilateral microphthalmia via predictable effects on DNA-protein interaction. Genet Med 2020; 22:598-609. [PMID: 31700164 PMCID: PMC7056646 DOI: 10.1038/s41436-019-0685-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Most classical aniridia is caused by PAX6 haploinsufficiency. PAX6 missense variants can be hypomorphic or mimic haploinsufficiency. We hypothesized that missense variants also cause previously undescribed disease by altering the affinity and/or specificity of PAX6 genomic interactions. METHODS We screened PAX6 in 372 individuals with bilateral microphthalmia, anophthalmia, or coloboma (MAC) from the Medical Research Council Human Genetics Unit eye malformation cohort (HGUeye) and reviewed data from the Deciphering Developmental Disorders study. We performed cluster analysis on PAX6-associated ocular phenotypes by variant type and molecular modeling of the structural impact of 86 different PAX6 causative missense variants. RESULTS Eight different PAX6 missense variants were identified in 17 individuals (15 families) with MAC, accounting for 4% (15/372) of our cohort. Seven altered the paired domain (p.[Arg26Gln]x1, p.[Gly36Val]x1, p.[Arg38Trp]x2, p.[Arg38Gln]x1, p.[Gly51Arg]x2, p.[Ser54Arg]x2, p.[Asn124Lys]x5) and one the homeodomain (p.[Asn260Tyr]x1). p.Ser54Arg and p.Asn124Lys were exclusively associated with severe bilateral microphthalmia. MAC-associated variants were predicted to alter but not ablate DNA interaction, consistent with the electrophoretic mobility shifts observed using mutant paired domains with well-characterized PAX6-binding sites. We found no strong evidence for novel PAX6-associated extraocular disease. CONCLUSION Altering the affinity and specificity of PAX6-binding genome-wide provides a plausible mechanism for the worse-than-null effects of MAC-associated missense variants.
Collapse
Affiliation(s)
- Kathleen A Williamson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - H Nikki Hall
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Liusaidh J Owen
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Benjamin J Livesey
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Isabel M Hanson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | | | - Simon Bodek
- Department of Clinical Genetics, St Michael's Hospital, Southwell Street, Bristol, UK
| | - Patrick Calvas
- CHU Toulouse, Service de Génétique Médicale, Hôpital Purpan, Toulouse, France
| | - Bruce Castle
- Peninsula Clinical Genetics, Royal Devon and Exeter Hospitals (Heavitree), Exeter, UK
| | - Michael Clarke
- Newcastle Eye Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Royal Victoria Infirmary, Newcastle Upon Tyne, UK
| | - Alexander T Deng
- Clinical Genetics, Guys and St Thomas NHS Trust, Great Maze Pond, London, UK
| | - Patrick Edery
- Hospices Civils de Lyon, Genetic Department and National HHT Reference Center, Femme-Mère-Enfants Hospital, Bron, France
| | - Richard Fisher
- Teeside Genetics Unit, The James Cook University Hospital, Middlesbrough, UK
| | | | - Elise Heon
- Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, Toronto, ON, Canada
| | - Jane Hurst
- Department of Clinical Genetics, Great Ormond Street Hospital for Children, London, UK
| | - Dragana Josifova
- Clinical Genetics, Guys and St Thomas NHS Trust, Great Maze Pond, London, UK
| | - Birgit Lorenz
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Shane McKee
- Northern Ireland Regional Genetics Service (NIRGS), Belfast City Hospital, Belfast, UK
| | - Francoise Meire
- Department of Ophthalmology, Hôpital Universitaire des Enfants Reine Fabiola, Brussels, Belgium
| | | | - Michael Parker
- Department of Clinical Genetics, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Charlotte M Reiff
- Department of Ophthalmology, University of Freiburg, Freiburg, Germany
| | - Jay Self
- University Hospital Southampton, Southampton, UK
- Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Edward S Tobias
- Academic Medical Genetics and Pathology, University of Glasgow, Queen Elizabeth University Hospital, Glasgow, UK
| | - Joke B G M Verheij
- Department of Genetics, University of Groningen, University Medical Center, Groningen, The Netherlands
| | | | - Denise Williams
- Clinical Genetics Unit, Birmingham Women's Hospital, Birmingham, UK
| | - Veronica van Heyningen
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - David R FitzPatrick
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
25
|
Abstract
Mutations in human PAX6 gene are associated with various congenital eye malformations including aniridia, foveal hypoplasia, and congenital nystagmus. These various phenotypes may depend on the mutation spectrums that can affect DNA-binding affinity, although this hypothesis is debatable. We screened PAX6 mutations in two unrelated patients with congenital nystagmus, and measured DNA-binding affinity through isothermal titration calorimetry (ITC). To elucidate phenotypic differences according to DNA-binding affinity, we also compared DNA-binding affinity among the previously reported PAX6 missense mutations within the linker region between two subdomains of the paired domain (PD). We identified two novel mutations of PAX6 gene: c.214 G > T (p.Gly72Cys) and c.249_250delinsCGC (p.Val84Alafs*8). Both were located within the linker region between the two subdomains of the PD. ITC measurement revealed that the mutation p.Val84Alafs*8 had no DNA-binding affinity, while the p.Gly72Cys mutation showed a decreased binding affinity (Kd = 0.58 μM) by approximately 1.4 times compared to the wild type-PAX6 (Kd = 0.41 μM). We also found that there was no close relationship between DNA-binding affinity and phenotypic differences. Our results suggest that the DNA-binding affinity alone might be insufficient to determine PAX6-related phenotypes, and that other modifier genes or environmental factors might affect phenotypes of the PAX6 gene.
Collapse
|
26
|
Wawrocka A, Walczak-Sztulpa J, Bukowska-Olech E, Jamsheer A, Jaworski M, Jaworski P, Krawczynski MR. Two sisters with microphthalmia and anterior segment dysgenesis secondary to a PAX6 pathogenic variant with clinically healthy parents: a case of gonadal mosaicism? Jpn J Ophthalmol 2020; 64:134-139. [DOI: 10.1007/s10384-020-00715-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/09/2019] [Indexed: 01/19/2023]
|
27
|
Lima Cunha D, Arno G, Corton M, Moosajee M. The Spectrum of PAX6 Mutations and Genotype-Phenotype Correlations in the Eye. Genes (Basel) 2019; 10:genes10121050. [PMID: 31861090 PMCID: PMC6947179 DOI: 10.3390/genes10121050] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022] Open
Abstract
The transcription factor PAX6 is essential in ocular development in vertebrates, being considered the master regulator of the eye. During eye development, it is essential for the correct patterning and formation of the multi-layered optic cup and it is involved in the developing lens and corneal epithelium. In adulthood, it is mostly expressed in cornea, iris, and lens. PAX6 is a dosage-sensitive gene and it is highly regulated by several elements located upstream, downstream, and within the gene. There are more than 500 different mutations described to affect PAX6 and its regulatory regions, the majority of which lead to PAX6 haploinsufficiency, causing several ocular and systemic abnormalities. Aniridia is an autosomal dominant disorder that is marked by the complete or partial absence of the iris, foveal hypoplasia, and nystagmus, and is caused by heterozygous PAX6 mutations. Other ocular abnormalities have also been associated with PAX6 changes, and genotype-phenotype correlations are emerging. This review will cover recent advancements in PAX6 regulation, particularly the role of several enhancers that are known to regulate PAX6 during eye development and disease. We will also present an updated overview of the mutation spectrum, where an increasing number of mutations in the non-coding regions have been reported. Novel genotype-phenotype correlations will also be discussed.
Collapse
Affiliation(s)
| | - Gavin Arno
- Institute of Ophthalmology, UCL, London EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Marta Corton
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital—Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Mariya Moosajee
- Institute of Ophthalmology, UCL, London EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- Correspondence:
| |
Collapse
|
28
|
Moazzeni H, Mirrahimi M, Moghadam A, Banaei-Esfahani A, Yazdani S, Elahi E. Identification of genes involved in glaucoma pathogenesis using combined network analysis and empirical studies. Hum Mol Genet 2019; 28:3637-3663. [PMID: 31518395 DOI: 10.1093/hmg/ddz222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/25/2022] Open
Abstract
Glaucoma is a leading cause of blindness. We aimed in this study to identify genes that may make subtle and cumulative contributions to glaucoma pathogenesis. To this end, we identified molecular interactions and pathways that include transcription factors (TFs) FOXC1, PITX2, PAX6 and NFKB1 and various microRNAs including miR-204 known to have relevance to trabecular meshwork (TM) functions and/or glaucoma. TM tissue is involved in glaucoma pathogenesis. In-house microarray transcriptome results and data sources were used to identify target genes of the regulatory molecules. Bioinformatics analyses were done to filter TM and glaucoma relevant genes. These were submitted to network-creating softwares to define interactions, pathways and a network that would include the genes. The network was stringently scrutinized and minimized, then expanded by addition of microarray data and data on TF and microRNA-binding sites. Selected features of the network were confirmed by empirical studies such as dual luciferase assays, real-time PCR and western blot experiments and apoptosis assays. MYOC, WDR36, LTPBP2, RHOA, CYP1B1, OPA1, SPARC, MEIS2, PLEKHG5, RGS5, BBS5, ALDH1A1, NOMO2, CXCL6, FMNL2, ADAMTS5, CLOCK and DKK1 were among the genes included in the final network. Pathways identified included those that affect ECM properties, IOP, ciliary body functions, retinal ganglion cell viability, apoptosis, focal adhesion and oxidative stress response. The identification of many genes potentially involved in glaucoma pathology is consistent with its being a complex disease. The inclusion of several known glaucoma-related genes validates the approach used.
Collapse
Affiliation(s)
- Hamidreza Moazzeni
- School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehraban Mirrahimi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Abolfazl Moghadam
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Amir Banaei-Esfahani
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Shahin Yazdani
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
29
|
Calvas P, Traboulsi EI, Ragge N. Through the looking glass: eye anomalies in the age of molecular science. Hum Genet 2019; 138:795-798. [PMID: 31392423 DOI: 10.1007/s00439-019-02056-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/01/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Patrick Calvas
- INSERM U1056, Centre de Référence des Anomalies Rares en Génétique Ophtalmologique, Service de Génétique Médicale, Centre Hospitalier Universitaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Elias I Traboulsi
- Center for Genetic Eye Diseases/i32, Cole Eye Institute, The Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Nicola Ragge
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK. .,West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, B15 2TG, UK.
| |
Collapse
|
30
|
Zhao Y, Zheng D, Cvekl A. Profiling of chromatin accessibility and identification of general cis-regulatory mechanisms that control two ocular lens differentiation pathways. Epigenetics Chromatin 2019; 12:27. [PMID: 31053165 PMCID: PMC6498704 DOI: 10.1186/s13072-019-0272-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Promoters and enhancers are cis-regulatory DNA sequences that control specificity and quantity of transcription. Both are rich on clusters of cis-acting sites that interact with sequence-specific DNA-binding transcription factors (TFs). At the level of chromatin, these regions display increased nuclease sensitivity, reduced nucleosome density, including nucleosome-free regions, and specific combinations of posttranslational modifications of core histone proteins. Together, "open" and "closed" chromatins represent transcriptionally active and repressed states of individual genes, respectively. Cellular differentiation is marked by changes in local chromatin structure. Lens morphogenesis, regulated by TF Pax6, includes differentiation of epithelial precursor cells into lens fibers in parallel with differentiation of epithelial precursors into the mature lens epithelium. RESULTS Using ATAC-seq, we investigated dynamics of chromatin changes during mouse lens fibers and epithelium differentiation. Tissue-specific features of these processes are demonstrated via comparative studies of embryonic stem cells, forebrain, and liver chromatins. Unbiased analysis reveals cis-regulatory logic of lens differentiation through known (e.g., AP-1, Ets, Hsf4, Maf, and Pax6 sites) and novel (e.g., CTCF, Tead, and NF1) motifs. Twenty-six DNA-binding TFs, recognizing these cis-motifs, are markedly up-regulated in differentiating lens fibers. As specific examples, our ATAC-seq data uncovered both the regulatory regions and TF binding motifs in Foxe3, Prox1, and Mip loci that are consistent with previous, though incomplete, experimental data. A cross-examination of Pax6 binding with ATAC-seq data demonstrated that Pax6 bound to both open (H3K27ac and P300-enriched) and closed chromatin domains in lens and forebrain. CONCLUSIONS Our study has generated the first lens chromatin accessibility maps that support a general model of stage-specific chromatin changes associated with transcriptional activities of batteries of genes required for lens fiber cell formation. Analysis of active (or open) promoters and enhancers reveals important cis-DNA motifs that establish the molecular foundation for temporally and spatially regulated gene expression in lens. Together, our data and models open new avenues for the field to conduct mechanistic studies of transcriptional control regions, reconstruction of gene regulatory networks that govern lens morphogenesis, and identification of cataract-causing mutations in noncoding sequences.
Collapse
Affiliation(s)
- Yilin Zhao
- The Departments of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Deyou Zheng
- The Departments of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Ales Cvekl
- The Departments of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| |
Collapse
|
31
|
Ohuchi H, Sato K, Habuta M, Fujita H, Bando T. Congenital eye anomalies: More mosaic than thought? Congenit Anom (Kyoto) 2019; 59:56-73. [PMID: 30039880 DOI: 10.1111/cga.12304] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022]
Abstract
The eye is a sensory organ that primarily captures light and provides the sense of sight, as well as delivering non-visual light information involving biological rhythms and neurophysiological activities to the brain. Since the early 1990s, rapid advances in molecular biology have enabled the identification of developmental genes, genes responsible for human congenital diseases, and relevant genes of mutant animals with various anomalies. In this review, we first look at the development of the eye, and we highlight seminal reports regarding archetypal gene defects underlying three developmental ocular disorders in humans: (1) holoprosencephaly (HPE), with cyclopia being exhibited in the most severe cases; (2) microphthalmia, anophthalmia, and coloboma (MAC) phenotypes; and (3) anterior segment dysgenesis (ASDG), known as Peters anomaly and its related disorders. The recently developed methods, such as next-generation sequencing and genome editing techniques, have aided the discovery of gene mutations in congenital eye diseases and gene functions in normal eye development. Finally, we discuss Pax6-genome edited mosaic eyes and propose that somatic mosaicism in developmental gene mutations should be considered a causal factor for variable phenotypes, sporadic cases, and de novo mutations in human developmental disorders.
Collapse
Affiliation(s)
- Hideyo Ohuchi
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keita Sato
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Munenori Habuta
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirofumi Fujita
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tetsuya Bando
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
32
|
Sonam S, Srnak JA, Perry KJ, Henry JJ. Molecular markers for corneal epithelial cells in larval vs. adult Xenopus frogs. Exp Eye Res 2019; 184:107-125. [PMID: 30981716 DOI: 10.1016/j.exer.2019.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/08/2019] [Indexed: 12/14/2022]
Abstract
Corneal Epithelial Stem Cells (CESCs) and their proliferative progeny, the Transit Amplifying Cells (TACs), are responsible for maintaining the integrity and transparency of the cornea. These stem cells (SCs) are widely used in corneal transplants and ocular surface reconstruction. Molecular markers are essential to identify, isolate and enrich for these cells, yet no definitive CESC marker has been established. An extensive literature survey shows variability in the expression of putative CESC markers among vertebrates; being attributed to species-specific variations, or other differences in developmental stages of these animals, approaches used in these studies and marker specificity. Here, we expanded the search for CESC markers using the amphibian model Xenopus laevis. In previous studies we found that long-term label retaining cells (suggestive of CESCs and TACs) are present throughout the larval basal corneal epithelium. In adult frogs, these cells become concentrated in the peripheral cornea (limbal region). Here, we used immunofluorescence to characterize the expression of nine proteins in the corneas of both Xenopus larvae and adults (post-metamorphic). We found that localization of some markers change between larval and adult stages. Markers such as p63, Keratin 19, and β1-integrin are restricted to basal corneal epithelial cells of the larvae. After metamorphosis their expression is found in basal and intermediate layer cells of the adult frog corneal epithelium. Another protein, Pax6 was expressed in the larval corneas, but surprisingly it was not detected in the adult corneal epithelium. For the first time we report that Tcf7l2 can be used as a marker to differentiate cornea vs. skin in frogs. Tcf7l2 is present only in the frog skin, which differs from reports indicating that the protein is expressed in the human cornea. Furthermore, we identified the transition between the inner, and the outer surface of the adult frog eyelid as a key boundary in terms of marker expression. Although these markers are useful to identify different regions and cellular layers of the frog corneal epithelium, none is unique to CESCs or TACs. Our results confirm that there is no single conserved CESC marker in vertebrates. This molecular characterization of the Xenopus cornea facilitates its use as a vertebrate model to understand the functions of key proteins in corneal homeostasis and wound repair.
Collapse
Affiliation(s)
- Surabhi Sonam
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Jennifer A Srnak
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Kimberly J Perry
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Jonathan J Henry
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
33
|
Bhattacharya S, Serror L, Nir E, Dhiraj D, Altshuler A, Khreish M, Tiosano B, Hasson P, Panman L, Luxenburg C, Aberdam D, Shalom-Feuerstein R. SOX2 Regulates P63 and Stem/Progenitor Cell State in the Corneal Epithelium. Stem Cells 2019; 37:417-429. [PMID: 30548157 PMCID: PMC6850148 DOI: 10.1002/stem.2959] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/07/2018] [Accepted: 11/24/2018] [Indexed: 11/22/2022]
Abstract
Mutations in key transcription factors SOX2 and P63 were linked with developmental defects and postnatal abnormalities such as corneal opacification, neovascularization, and blindness. The latter phenotypes suggest that SOX2 and P63 may be involved in corneal epithelial regeneration. Although P63 has been shown to be a key regulator of limbal stem cells, the expression pattern and function of SOX2 in the adult cornea remained unclear. Here, we show that SOX2 regulates P63 to control corneal epithelial stem/progenitor cell function. SOX2 and P63 were co‐expressed in the stem/progenitor cell compartments of the murine cornea in vivo and in undifferentiated human limbal epithelial stem/progenitor cells in vitro. In line, a new consensus site that allows SOX2‐mediated regulation of P63 enhancer was identified while repression of SOX2 reduced P63 expression, suggesting that SOX2 is upstream to P63. Importantly, knockdown of SOX2 significantly attenuated cell proliferation, long‐term colony‐forming potential of stem/progenitor cells, and induced robust cell differentiation. However, this effect was reverted by forced expression of P63, suggesting that SOX2 acts, at least in part, through P63. Finally, miR‐450b was identified as a direct repressor of SOX2 that was required for SOX2/P63 downregulation and cell differentiation. Altogether, we propose that SOX2/P63 pathway is an essential regulator of corneal stem/progenitor cells while mutations in SOX2 or P63 may disrupt epithelial regeneration, leading to loss of corneal transparency and blindness. Stem Cells2019;37:417–429
Collapse
Affiliation(s)
- Swarnabh Bhattacharya
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Laura Serror
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Eshkar Nir
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Dalbir Dhiraj
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Anna Altshuler
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Maroun Khreish
- Department of Ophthalmology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Beatrice Tiosano
- Department of Ophthalmology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Peleg Hasson
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Lia Panman
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Chen Luxenburg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Aberdam
- INSERM U976 and Université Paris-Diderot, Hôpital St-Louis, Paris, France
| | - Ruby Shalom-Feuerstein
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
34
|
Gaspar P, Almudi I, Nunes MDS, McGregor AP. Human eye conditions: insights from the fly eye. Hum Genet 2018; 138:973-991. [PMID: 30386938 DOI: 10.1007/s00439-018-1948-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/20/2018] [Indexed: 12/22/2022]
Abstract
The fruit fly Drosophila melanogaster has served as an excellent model to study and understand the genetics of many human diseases from cancer to neurodegeneration. Studying the regulation of growth, determination and differentiation of the compound eyes of this fly, in particular, have provided key insights into a wide range of diseases. Here we review the regulation of the development of fly eyes in light of shared aspects with human eye development. We also show how understanding conserved regulatory pathways in eye development together with the application of tools for genetic screening and functional analyses makes Drosophila a powerful model to diagnose and characterize the genetics underlying many human eye conditions, such as aniridia and retinitis pigmentosa. This further emphasizes the importance and vast potential of basic research to underpin applied research including identifying and treating the genetic basis of human diseases.
Collapse
Affiliation(s)
- Pedro Gaspar
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Isabel Almudi
- Centro Andaluz de Biología del Desarrollo, CSIC/ Universidad Pablo de Olavide, Carretera de Utrera Km1, 41013, Sevilla, Spain
| | - Maria D S Nunes
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
35
|
Plaisancié J, Tarilonte M, Ramos P, Jeanton-Scaramouche C, Gaston V, Dollfus H, Aguilera D, Kaplan J, Fares-Taie L, Blanco-Kelly F, Villaverde C, Francannet C, Goldenberg A, Arroyo I, Rozet JM, Ayuso C, Chassaing N, Calvas P, Corton M. Implication of non-coding PAX6 mutations in aniridia. Hum Genet 2018; 137:831-846. [PMID: 30291432 DOI: 10.1007/s00439-018-1940-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/23/2018] [Indexed: 01/14/2023]
Abstract
There is an increasing implication of non-coding regions in pathological processes of genetic origin. This is partly due to the emergence of sophisticated techniques that have transformed research into gene expression by allowing a more global understanding of the genome, both at the genomic, epigenomic and chromatin levels. Here, we implemented the analysis of PAX6, whose coding loss-of-function variants are mainly implied in aniridia, by studying its non-coding regions (untranslated regions, introns and cis-regulatory sequences). In particular, we have taken advantage of the development of high-throughput approaches to screen the upstream and downstream regulatory regions of PAX6 in 47 aniridia patients without identified mutation in the coding sequence. This was made possible through the use of custom targeted resequencing and/or CGH array to analyze the entire PAX6 locus on 11p13. We found candidate variants in 30 of the 47 patients. 9/30 correspond to the well-known described 3' deletions encompassing SIMO and other enhancer elements. In addition, we identified numerous different variants in various non-coding regions, in particular untranslated regions. Among these latter, most of them demonstrated an in vitro functional effect using a minigene strategy, and 12/21 are thus considered as causative mutations or very likely to explain the phenotypes. This new analysis strategy brings molecular diagnosis to more than 90% of our aniridia patients. This study revealed an outstanding mutation pattern in non-coding PAX6 regions confirming that PAX6 remains the major gene for aniridia.
Collapse
Affiliation(s)
- Julie Plaisancié
- Service de Génétique Médicale, Pavillon Lefebvre, Hôpital Purpan, CHU Toulouse, Place du Dr Baylac, 31059, Toulouse Cedex 9, France.
- INSERM U1056, Université Toulouse III, Toulouse, France.
| | - M Tarilonte
- Department of Genetics, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - P Ramos
- Department of Genetics, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - C Jeanton-Scaramouche
- Service de Génétique Médicale, Pavillon Lefebvre, Hôpital Purpan, CHU Toulouse, Place du Dr Baylac, 31059, Toulouse Cedex 9, France
| | - V Gaston
- Service de Génétique Médicale, Pavillon Lefebvre, Hôpital Purpan, CHU Toulouse, Place du Dr Baylac, 31059, Toulouse Cedex 9, France
| | - H Dollfus
- Centre de Référence pour les affections rares en génétique ophtalmologique, CARGO, Filière SENSGENE, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - D Aguilera
- Department of Genetics, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - J Kaplan
- Laboratoire de Génétique Ophtalmologique INSERM U1163, Institut Imagine, Paris, France
| | - L Fares-Taie
- Laboratoire de Génétique Ophtalmologique INSERM U1163, Institut Imagine, Paris, France
| | - F Blanco-Kelly
- Department of Genetics, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - C Villaverde
- Department of Genetics, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - C Francannet
- Service de Génétique Médicale, CHU Estaing, Clermont-Ferrand, France
| | - A Goldenberg
- Service de Génétique, CHU de Rouen, Centre Normand de Génomique Médicale et Médecine Personnalisée, Rouen, France
| | - I Arroyo
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Department of Genetics, Hospital of Cáceres, Cáceres, Spain
| | - J M Rozet
- Laboratoire de Génétique Ophtalmologique INSERM U1163, Institut Imagine, Paris, France
| | - C Ayuso
- Department of Genetics, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - N Chassaing
- Service de Génétique Médicale, Pavillon Lefebvre, Hôpital Purpan, CHU Toulouse, Place du Dr Baylac, 31059, Toulouse Cedex 9, France
- INSERM U1056, Université Toulouse III, Toulouse, France
| | - P Calvas
- Service de Génétique Médicale, Pavillon Lefebvre, Hôpital Purpan, CHU Toulouse, Place du Dr Baylac, 31059, Toulouse Cedex 9, France
- INSERM U1056, Université Toulouse III, Toulouse, France
| | - M Corton
- Department of Genetics, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| |
Collapse
|
36
|
Phenotype–genotype correlations and emerging pathways in ocular anterior segment dysgenesis. Hum Genet 2018; 138:899-915. [DOI: 10.1007/s00439-018-1935-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
|
37
|
Phenotypic Variation in a Four-Generation Family with Aniridia Carrying a Novel PAX6 Mutation. J Ophthalmol 2018; 2018:5978293. [PMID: 29850208 PMCID: PMC5904767 DOI: 10.1155/2018/5978293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/05/2018] [Indexed: 12/14/2022] Open
Abstract
Aniridia is a congenital disease that affects almost all eye structures and is primarily caused by loss-of-function mutations in the PAX6 gene. The degree of vision loss in aniridia varies and is dependent on the extent of foveal, iris, and optic nerve hypoplasia and the presence of glaucoma, cataracts, and corneal opacification. Here, we describe a 4-generation family in which 7 individuals across 2 generations carry a novel disease-causing frameshift mutation (NM_000280.4(PAX6):c.565TC>T) in PAX6. This mutation results in an early stop codon in exon 8, which is predicted to cause nonsense-mediated decay of the truncated mRNA and a functionally null PAX6 allele. Family members with aniridia showed differences in multiple eye phenotypes including iris and optic nerve hypoplasia, congenital and acquired corneal opacification, glaucoma, and strabismus. Visual acuity ranged from 20/100 to less than 20/800. Patients who required surgical intervention for glaucoma or corneal opacification had worse visual outcomes. Our results show that family members carrying a novel PAX6 frameshift mutation have variable expressivity, leading to different ocular comorbidities and visual outcomes.
Collapse
|
38
|
Chauhan BK, Medsinge A, Baumgartner MP, Scanga HL, Kamakari S, Gajdosova E, Camacho CJ, Nischal KK. Case series: Pyramidal cataracts, intact irides and nystagmus from three novel PAX6 mutations. Am J Ophthalmol Case Rep 2018; 10:172-179. [PMID: 29780932 PMCID: PMC5956696 DOI: 10.1016/j.ajoc.2018.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/07/2018] [Accepted: 02/26/2018] [Indexed: 11/29/2022] Open
Abstract
Purpose To investigate the association between novel PAX6 mutations to bilateral anterior pyramidal congenital cataracts (APyC), complete and intact irides, and nystagmus. Observations This is a retrospective observational case series in a multi-center setting with genetic testing. Three female patients were diagnosed with bilateral APyC, intact irides and nystagmus. Genetic testing identified the three patients had novel missense mutations in PAX6 – c.128C > T; p.Ser43Phe (S43F), c. 197T > A; p.Ile66Asn (I66N) and c.781C > G; p.Arg261Gly (R261G). Conclusions and importance This study demonstrates a novel phenotype of bilateral APyC, intact irides, and nystagmus in whom genetic testing for PAX6 identified novel missense mutations (S43F, I66N, R261G) in highly conserved DNA-binding domains. Implications of understanding why the iris is present in these cases is discussed.
Collapse
Affiliation(s)
- Bharesh K Chauhan
- UPMC Eye Center, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.,Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Anagha Medsinge
- UPMC Eye Center, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Matthew P Baumgartner
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Hannah L Scanga
- UPMC Eye Center, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Smaragda Kamakari
- Ophthalmic Genetics Unit, OMMA, Ophthalmological Institute of Athens, Katehaki 74, 11525, Athens, Greece
| | - Eva Gajdosova
- Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| | - Carlos J Camacho
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Ken K Nischal
- UPMC Eye Center, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.,Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
39
|
Wawrocka A, Krawczynski MR. The genetics of aniridia - simple things become complicated. J Appl Genet 2018; 59:151-159. [PMID: 29460221 PMCID: PMC5895662 DOI: 10.1007/s13353-017-0426-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/21/2017] [Accepted: 12/21/2017] [Indexed: 12/26/2022]
Abstract
Aniridia is a rare, panocular disorder characterized by a variable degree of hypoplasia or the absence of iris tissue associated with additional ocular abnormalities. It is inherited in an autosomal dominant manner, with high penetrance and variable expression even within the same family. In most cases the disease is caused by haploinsufficiency truncating mutations in the PAX6 gene; however, in up to 30% of aniridia patients, disease results from chromosomal rearrangements at the 11p13 region. The aim of this review is to present the clinical and genetic aspects of the disease. Furthermore, we present a molecular diagnostic strategy in the aniridia patients. Recent improvement in the genetic diagnostic approach will precisely diagnosis aniridia patients, which is essential especially for children with aniridia in order to determine the risk of developing a Wilms tumor or neurodevelopmental disorder. Finally, based on the previous studies we describe the current knowledge and latest research findings in the topic of pathogenesis of aniridia and possible future treatment.
Collapse
Affiliation(s)
- Anna Wawrocka
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland.
| | - Maciej R Krawczynski
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland
- Centers for Medical Genetics GENESIS, Poznan, Poland
| |
Collapse
|
40
|
Lee HK, Kim MK, Oh JY. Corneal Abnormalities in Congenital Aniridia: Congenital Central Corneal Opacity Versus Aniridia-associated Keratopathy. Am J Ophthalmol 2018; 185:75-80. [PMID: 29101006 DOI: 10.1016/j.ajo.2017.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/21/2017] [Accepted: 10/22/2017] [Indexed: 11/29/2022]
Abstract
PURPOSE To clinically characterize and compare 2 types of corneal abnormalities in patients with congenital aniridia: (1) congenital central corneal opacity from birth (CCO) and (2) aniridia-associated keratopathy (AAK) that develops progressively with age. DESIGN Retrospective cohort study. METHODS Medical records of Korean patients who were diagnosed with congenital aniridia at Seoul National University Hospital between 1991 and 2016 were reviewed. Prevalence of corneal abnormalities (CCO and AAK), other ocular and systemic comorbidities, severity of AAK depending on the age, logarithm of the minimum angle of resolution (logMAR) visual acuities, and types and results of surgical intervention were collected. RESULTS Among a total of 275 eyes (138 patients), 13% (35 eyes, 20 patients) had CCO and 25% (68 eyes, 35 patients) developed AAK. The AAK became prominent at a mean of 21.6 years of age, and the severity progressed with age. Glaucoma was more prevalent in aniridia patients with CCO (74%), compared to those with AAK (37%) (P = .0003). Cataract frequently occurred in patients with AAK (78%), who required cataract surgeries at mean 26.6 years. The logMAR visual acuity was worse in patients with CCO (2.04 ± 0.71) than in those with AAK (1.29 ± 0.62) (P < .0001). Penetrating keratoplasty was performed in 6 eyes with CCO, and the graft survival was 33.3% during mean 45 months of follow-up (range 14-79 months). CONCLUSIONS In total, 13% of aniridia patients had CCO at birth, while 25% progressively developed clinically significant AAK with age. The visual outcome was worse in patients with CCO than in those with AAK.
Collapse
Affiliation(s)
- Hyo Kyung Lee
- Department of Ophthalmology and the Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Mee Kum Kim
- Department of Ophthalmology and the Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Joo Youn Oh
- Department of Ophthalmology and the Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.
| |
Collapse
|
41
|
Abu-Amero KK, Kondkar AA, Khan AO. A microdeletion in the GRHL2 Gene in two unrelated patients with congenital fibrosis of the extra ocular muscles. BMC Res Notes 2017; 10:562. [PMID: 29110737 PMCID: PMC5674732 DOI: 10.1186/s13104-017-2888-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/31/2017] [Indexed: 12/13/2022] Open
Abstract
Objective Congenital fibrosis of the extraocular muscles type 1 (CFEOM1) is known to be caused by mutations in KIF21A or TUBB3 or other known genes (SALL4, CHN1, HOXA1). However, affected children may harbor other genetic defects. Therefore, a candidate gene analysis (KIF21A, TUBB3 SALL4, CHN1, HOXA1) and a high-resolution array comparative genomic hybridization (arrayCGH) was performed in two unrelated children with sporadic CFEOM1. Results Two unrelated Saudi patients did not have any mutation(s) after sequencing the full coding regions of SALL4, CHN1, HOXA1, and TUBB3 genes; and exons 8, 20, and 21 of the KIF21A gene. However, arrayCGH revealed a 3.17 Kb deletion at chromosome 8p22 with copy number state equal to 1, indicating a heterozygous deletion. This deletion was absent in proband’s mother or father or 220 unrelated healthy individuals of similar ethnicity. The deletion encompassed only one functional gene, GRHL2, which encodes a transcription factor. In humans, defects in this gene are a cause of non-syndromic sensorineural deafness, autosomal dominant type 28 (DFNA28). We speculate that GRHL2 gene may have a role in orbital innervations and the defect in this gene (deletion) may be related to the CFEOM1 phenotype in these two children.
Collapse
Affiliation(s)
- Khaled K Abu-Amero
- Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia. .,Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Altaf A Kondkar
- Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Arif O Khan
- Division of Pediatric Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia.,Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
42
|
Chen T, Cavari B, Schartl M, Hong Y. Identification and Expression of Conserved and Novel RNA Variants of Medakapax6bGene. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:412-422. [PMID: 28547909 DOI: 10.1002/jez.b.22742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/18/2017] [Accepted: 03/24/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Tiansheng Chen
- Key Laboratory of Freshwater Animal Breeding; Ministry of Agriculture and College of Fisheries; Huazhong Agricultural University; Wuhan Hubei China
| | - Benzion Cavari
- Israel Oceanographic and Limnological Research; Tel Shikmona; Halfa Israel
| | - Manfred Schartl
- Department of Physiological Chemistry I, Biocenter; University of Würzburg; Würzburg Germany
| | - Yunhan Hong
- Department of Biological Sciences; National University of Singapore; Singapore
| |
Collapse
|
43
|
Micheal S, Siddiqui SN, Zafar SN, Villanueva-Mendoza C, Cortés-González V, Khan MI, den Hollander AI. A Novel Homozygous Mutation in FOXC1 Causes Axenfeld Rieger Syndrome with Congenital Glaucoma. PLoS One 2016; 11:e0160016. [PMID: 27463523 PMCID: PMC4963127 DOI: 10.1371/journal.pone.0160016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/12/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Anterior segment dysgenesis (ASD) disorders are a group of clinically and genetically heterogeneous phenotypes in which frequently cornea, iris, and lens are affected. This study aimed to identify novel mutations in PAX6, PITX2 and FOXC1 in families with anterior segment dysgenesis disorders. METHODS We studied 14 Pakistani and one Mexican family with Axenfeld Rieger syndrome (ARS; n = 10) or aniridia (n = 5). All affected and unaffected family members underwent full ophthalmologic and general examinations. Total genomic DNA was isolated from peripheral blood. PCR and Sanger sequencing were performed for the exons and intron-exon boundaries of the FOXC1, PAX6, and PITX2 genes. RESULTS Mutations were identified in five of the 15 probands; four variants were novel and one variant was described previously. A novel de novo variant (c.225C>A; p.Tyr75*) was identified in the PAX6 gene in two unrelated probands with aniridia. In addition, a known variant (c.649C>T; p.Arg217*) in PAX6 segregated in a family with aniridia. In the FOXC1 gene, a novel heterozygous variant (c.454T>C; p.Trp152Arg) segregated with the disease in a Mexican family with ARS. A novel homozygous variant (c.92_100del; p.Ala31_Ala33del) in the FOXC1 gene segregated in a Pakistani family with ARS and congenital glaucoma. CONCLUSIONS Our study expands the mutation spectrum of the PAX6 and FOXC1 genes in individuals with anterior segment dysgenesis disorders. In addition, our study suggests that FOXC1 mutations, besides typical autosomal dominant ARS, can also cause ARS with congenital glaucoma through an autosomal recessive inheritance pattern. Our results thus expand the disease spectrum of FOXC1, and may lead to a better understanding of the role of FOXC1 in development.
Collapse
Affiliation(s)
- Shazia Micheal
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sorath Noorani Siddiqui
- Department of Pediatric Ophthalmology, Al-Shifa Eye Trust Hospital, Jhelum Road, Rawalpindi, Pakistan
| | - Saemah Nuzhat Zafar
- Department of Pediatric Ophthalmology, Al-Shifa Eye Trust Hospital, Jhelum Road, Rawalpindi, Pakistan
| | | | | | - Muhammad Imran Khan
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anneke I. den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
44
|
Clinical utility gene card for: Aniridia. Eur J Hum Genet 2016; 24:ejhg201673. [PMID: 27381094 DOI: 10.1038/ejhg.2016.73] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/28/2016] [Accepted: 05/26/2016] [Indexed: 11/08/2022] Open
|
45
|
Analysis of compound heterozygotes reveals that the mouse floxed Pax6 (tm1Ued) allele produces abnormal eye phenotypes. Transgenic Res 2016; 25:679-92. [PMID: 27240603 PMCID: PMC5023747 DOI: 10.1007/s11248-016-9962-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/13/2016] [Indexed: 01/27/2023]
Abstract
Analysis of abnormal phenotypes produced by different types of mutations has been crucial for our understanding of gene function. Some floxed alleles that retain a neomycin-resistance selection cassette (neo cassette) are not equivalent to wild-type alleles and provide useful experimental resources. Pax6 is an important developmental gene and the aim of this study was to determine whether the floxed Pax6tm1Ued (Pax6fl) allele, which has a retained neo cassette, produced any abnormal eye phenotypes that would imply that it differs from the wild-type allele. Homozygous Pax6fl/fl and heterozygous Pax6fl/+ mice had no overt qualitative eye abnormalities but morphometric analysis showed that Pax6fl/fl corneas tended be thicker and smaller in diameter. To aid identification of weak effects, we produced compound heterozygotes with the Pax6Sey-Neu (Pax6−) null allele. Pax6fl/− compound heterozygotes had more severe eye abnormalities than Pax6+/− heterozygotes, implying that Pax6fl differs from the wild-type Pax6+ allele. Immunohistochemistry showed that the Pax6fl/− corneal epithelium was positive for keratin 19 and negative for keratin 12, indicating that it was abnormally differentiated. This Pax6fl allele provides a useful addition to the existing Pax6 allelic series and this study demonstrates the utility of using compound heterozygotes with null alleles to unmask cryptic effects of floxed alleles.
Collapse
|
46
|
Doucette LP, Walter MA. Prostaglandins in the eye: Function, expression, and roles in glaucoma. Ophthalmic Genet 2016; 38:108-116. [PMID: 27070211 DOI: 10.3109/13816810.2016.1164193] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Prostaglandins are small pro-inflammatory molecules derived from arachidonic acid that play roles in a multitude of biological processes including, but not limited to, inflammation, pain modulation, allergies, and bone formation. Prostaglandin analogues are the front-line medications for the treatment of glaucoma, a condition resulting in blindness due to the death of retinal ganglion cells. These drugs act by lowering intraocular pressure (IOP), a major risk factor for glaucoma. The currently used prostaglandin analogues (latanoprost, bimatoprost, tafluprost, and travoprost) mimic PGF2 and target one of the prostaglandin receptors (FP), though research into harnessing the other receptors using compounds like Sulprostone (EP3 receptor), or Iloprost (IP receptor) are currently ongoing. In this review, we summarize the research into each of the prostaglandin molecules (PGD2, PGE2, PGF2, PGI2, TXA2) and their respective receptors (DP, EP1, 2, 3, 4, FP, IP). We examine the modes of action of each of these receptors, their expression, their role in aqueous humour production and outflow within the eye, as well as their roles as medications for the treatment of glaucoma.
Collapse
Affiliation(s)
- Lance P Doucette
- a Department of Medical Genetics, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada
| | - Michael A Walter
- a Department of Medical Genetics, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada
| |
Collapse
|
47
|
FOXE3 contributes to Peters anomaly through transcriptional regulation of an autophagy-associated protein termed DNAJB1. Nat Commun 2016; 7:10953. [PMID: 27218149 PMCID: PMC4820811 DOI: 10.1038/ncomms10953] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 02/04/2016] [Indexed: 02/04/2023] Open
Abstract
FOXE3 is a lens-specific transcription factor that has been associated with anterior segment ocular dysgenesis. To determine the transcriptional target(s) of FOXE3 that are indispensable for the anterior segment development, we examined the transcriptome and the proteome of cells expressing truncated FOXE3 responsible for Peters anomaly identified through linkage-coupled next-generation whole-exome sequencing. We found that DNAJB1, an autophagy-associated protein, was the only candidate exhibiting differential expression in both screens. We confirmed the candidacy of DNAJB1 through chromatin immunoprecipitation and luciferase assays while knockdown of DNAJB1 in human lens epithelial cells resulted in a mitotic arrest. Subsequently, we targeted dnajb1a in zebrafish through injection of a splice-blocking morpholino. The dnajb1a morphants exhibited underdeveloped cataractous lenses with persistent apoptotic nuclei. In conclusion, here we report DNAJB1 is a transcriptional target of FOXE3 in a novel pathway that is crucial for the development of the anterior segment of the eye.
Collapse
|
48
|
Genotype-phenotype correlation of PAX6 gene mutations in aniridia. Hum Genome Var 2016; 3:15052. [PMID: 27081561 PMCID: PMC4760117 DOI: 10.1038/hgv.2015.52] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/09/2015] [Accepted: 09/28/2015] [Indexed: 12/27/2022] Open
Abstract
The objective of this study was to investigate the genotype-phenotype correlation of the PAX6 gene in aniridia. We clinically examined 5 families and 16 sporadic patients with aniridia. We performed chromosomal analysis and PCR analysis of the PAX6 gene using patient genomic DNA. Chromosomal analysis demonstrated deletions at 11p13 in one allele in four sporadic patients. Seven nonsense mutations, two frameshifts (two insertions), four splice junction errors and two missense mutations were found, and all were heterozygous. The iris phenotype ranged from total to normal in each patient, and the characteristic phenotypes, including cataract, glaucoma or optic nerve hypoplasia, varied widely even among members of the same family. Foveal hypoplasia was detected in all patients except for one. No obvious genotype-phenotype correlation was identified; however, the aniridia phenotype between the two eyes in each patient was quite similar in all patients. Because PAX6 regulates numerous downstream genes and its expression is regulated by several factors during eye development, the aniridia phenotype may be complex even in family members. However, because PAX6 regulation, resulting from both paternal and maternal alleles associated with PAX6, is considered to be roughly similar in both eyes of each patient, the aniridia phenotype may be similar in both eyes of each patient.
Collapse
|
49
|
Zhang SJ, Li YF, Tan RR, Tsoi B, Huang WS, Huang YH, Tang XL, Hu D, Yao N, Yang X, Kurihara H, Wang Q, He RR. A new gestational diabetes mellitus model: hyperglycemia-induced eye malformation via inhibition of Pax6 in the chick embryo. Dis Model Mech 2016; 9:177-86. [PMID: 26744353 PMCID: PMC4770145 DOI: 10.1242/dmm.022012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/26/2015] [Indexed: 12/23/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the leading causes of fetal malformations. However, few models have been developed to study the underlying mechanisms of GDM-induced fetal eye malformation. In this study, a high concentration of glucose (0.2 mmol per egg) was injected into the air sac of chick embryos on embryo development day (EDD) 1 to develop a hyperglycemia model. Results showed that 47.3% of embryonic eye malformation happened on EDD 5. In this model, the key genes regulating eye development, Pax6, Six3 and Otx2, were downregulated by hyperglycemia. Among these genes, the expression of Pax6 was the most vulnerable to hyperglycemia, being suppressed by 70%. A reduction in Pax6 gene expression induced eye malformation in chick embryos. However, increased expression of Pax6 in chick embryos could rescue hyperglycemia-induced eye malformation. Hyperglycemia stimulated O-linked N-acetylglucosaminylation, which caused oxidative stress in chick embryos. Pax6 was found to be vulnerable to free radicals, but the antioxidant edaravone could restore Pax6 expression and reverse eye malformation. These results illustrated a successful establishment of a new chick embryo model to study the molecular mechanism of hyperglycemia-induced eye malformation. The suppression of the Pax6 gene is probably mediated by oxidative stress and could be a crucial target for the therapy of GDM-induced embryonic eye malformation. Summary: Hyperglycemia inhibited Pax6 via oxidative stress and impaired eye development in the chick embryo, a new gestational diabetes mellitus model.
Collapse
Affiliation(s)
- Shi-Jie Zhang
- Anti-stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yi-Fang Li
- Anti-stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Rui-Rong Tan
- Anti-stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Bun Tsoi
- Anti-stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wen-Shan Huang
- Anti-stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yi-Hua Huang
- Anti-stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiao-Long Tang
- Anti-stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Dan Hu
- Anti-stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Nan Yao
- Guangdong Research Institute of Traditional Chinese Medicine Manufacturing Technology, Guangzhou 510095, China
| | - Xuesong Yang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Hiroshi Kurihara
- Anti-stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Rong-Rong He
- Anti-stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
50
|
Ihnatko R, Eden U, Fagerholm P, Lagali N. Congenital Aniridia and the Ocular Surface. Ocul Surf 2015; 14:196-206. [PMID: 26738798 DOI: 10.1016/j.jtos.2015.10.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/26/2015] [Accepted: 10/15/2015] [Indexed: 12/15/2022]
Abstract
Aniridia is a congenital pan-ocular disorder caused by haplo-insufficiency of Pax6, a crucial gene for proper development of the eye. Aniridia affects a range of eye structures, including the cornea, iris, anterior chamber angle, lens, and fovea. The ocular surface, in particular, can be severely affected by a progressive pathology termed aniridia-associated keratopathy (AAK), markedly contributing to impaired vision. The purpose of this review is to provide an update of the current knowledge of the genetic, clinical, micro-morphological, and molecular aspects of AAK. We draw upon material presented in the literature and from our own observations in large aniridia cohorts. We summarize signs and symptoms of AAK, describe current options for management, and discuss the latest research findings that may lead to better diagnosis and new treatment or prevention strategies for this debilitating ocular surface condition.
Collapse
Affiliation(s)
- Robert Ihnatko
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Ulla Eden
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Per Fagerholm
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Neil Lagali
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|