1
|
Huang Y, Che X, Wang PW, Qu X. p53/MDM2 signaling pathway in aging, senescence and tumorigenesis. Semin Cancer Biol 2024; 101:44-57. [PMID: 38762096 DOI: 10.1016/j.semcancer.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
A wealth of evidence has emerged that there is an association between aging, senescence and tumorigenesis. Senescence, a biological process by which cells cease to divide and enter a status of permanent cell cycle arrest, contributes to aging and aging-related diseases, including cancer. Aging populations have the higher incidence of cancer due to a lifetime of exposure to cancer-causing agents, reduction of repairing DNA damage, accumulated genetic mutations, and decreased immune system efficiency. Cancer patients undergoing cytotoxic therapies, such as chemotherapy and radiotherapy, accelerate aging. There is growing evidence that p53/MDM2 (murine double minute 2) axis is critically involved in regulation of aging, senescence and oncogenesis. Therefore, in this review, we describe the functions and mechanisms of p53/MDM2-mediated senescence, aging and carcinogenesis. Moreover, we highlight the small molecular inhibitors, natural compounds and PROTACs (proteolysis targeting chimeras) that target p53/MDM2 pathway to influence aging and cancer. Modification of p53/MDM2 could be a potential strategy for treatment of aging, senescence and tumorigenesis.
Collapse
Affiliation(s)
- Youyi Huang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Provincial key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Xiaofang Che
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Provincial key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Peter W Wang
- Department of Medicine, Oasis Medical Research Center, Watertown, MA 02472, USA.
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Provincial key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China.
| |
Collapse
|
2
|
Pal A, Gonzalez-Malerva L, Eaton S, Xu C, Zhang Y, Grief D, Sakala L, Nwekwo L, Zeng J, Christensen G, Gupta C, Streitwieser E, Singharoy A, Park JG, LaBaer J. Multidimensional quantitative phenotypic and molecular analysis reveals neomorphic behaviors of p53 missense mutants. NPJ Breast Cancer 2023; 9:78. [PMID: 37773066 PMCID: PMC10541912 DOI: 10.1038/s41523-023-00582-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
Mutations in the TP53 tumor suppressor gene occur in >80% of the triple-negative or basal-like breast cancer. To test whether neomorphic functions of specific TP53 missense mutations contribute to phenotypic heterogeneity, we characterized phenotypes of non-transformed MCF10A-derived cell lines expressing the ten most common missense mutant p53 proteins and observed a wide spectrum of phenotypic changes in cell survival, resistance to apoptosis and anoikis, cell migration, invasion and 3D mammosphere architecture. The p53 mutants R248W, R273C, R248Q, and Y220C are the most aggressive while G245S and Y234C are the least, which correlates with survival rates of basal-like breast cancer patients. Interestingly, a crucial amino acid difference at one position-R273C vs. R273H-has drastic changes on cellular phenotype. RNA-Seq and ChIP-Seq analyses show distinct DNA binding properties of different p53 mutants, yielding heterogeneous transcriptomics profiles, and MD simulation provided structural basis of differential DNA binding of different p53 mutants. Integrative statistical and machine-learning-based pathway analysis on gene expression profiles with phenotype vectors across the mutant cell lines identifies quantitative association of multiple pathways including the Hippo/YAP/TAZ pathway with phenotypic aggressiveness. Further, comparative analyses of large transcriptomics datasets on breast cancer cell lines and tumors suggest that dysregulation of the Hippo/YAP/TAZ pathway plays a key role in driving the cellular phenotypes towards basal-like in the presence of more aggressive p53 mutants. Overall, our study describes distinct gain-of-function impacts on protein functions, transcriptional profiles, and cellular behaviors of different p53 missense mutants, which contribute to clinical phenotypic heterogeneity of triple-negative breast tumors.
Collapse
Affiliation(s)
- Anasuya Pal
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Laura Gonzalez-Malerva
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Seron Eaton
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Chenxi Xu
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Yining Zhang
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Dustin Grief
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Lydia Sakala
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Lilian Nwekwo
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Jia Zeng
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Grant Christensen
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Chitrak Gupta
- The Biodesign Center for Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Ellen Streitwieser
- The Biodesign Center for Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Abhishek Singharoy
- The Biodesign Center for Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Jin G Park
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
| | - Joshua LaBaer
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
3
|
Dominant-negative p53-overexpression in skeletal muscle induces cell death and fiber atrophy in rats. Cell Death Dis 2022; 13:716. [PMID: 35977948 PMCID: PMC9385859 DOI: 10.1038/s41419-022-05160-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 01/21/2023]
Abstract
The tumor suppressor p53 is thought to play a key role in the maintenance of cell size and homeostasis, but relatively little is known about its role in skeletal muscle. Based on its ability to suppress cell growth, we hypothesized that inhibiting the function of wild-type p53 through the overexpression of a dominant-negative p53 mutant (DDp53) could result in muscle fiber hypertrophy. To test this hypothesis, we electroporated adult rat tibialis anterior muscles with DDp53 and collected the tissue three weeks later. We confirmed successful overexpression of DDp53 on a histological and biochemical level and found pronounced changes to muscle architecture, metabolism, and molecular signaling. Muscle mass, fiber cross-sectional area, and fiber diameter significantly decreased with DDp53 overexpression. We found histopathological changes in DDp53 transfected muscle which were accompanied by increased levels of proteins that are associated with membrane damage and repair. In addition, DDp53 decreased oxidative phosphorylation complex I and V protein levels, and despite its negative effects on muscle mass and fiber size, caused an increase in muscle protein synthesis as assessed via the SUnSET technique. Interestingly, the increase in muscle protein synthesis was concomitant with a decrease in phospho-S6K1 (Thr389). Furthermore, the muscle wasting in the DDp53 electroporated leg was accompanied by a decrease in global protein ubiquitination and an increase in proteasome activity. In conclusion, overexpression of a dominant-negative p53 mutant in skeletal muscle results in decreased muscle mass, myofiber size, histological muscle damage, a metabolic phenotype, and perturbed homeostasis between muscle protein synthesis and degradation.
Collapse
|
4
|
Kasugai Y, Kohmoto T, Taniyama Y, Koyanagi YN, Usui Y, Iwase M, Oze I, Yamaguchi R, Ito H, Imoto I, Matsuo K. Association between germline pathogenic variants and breast cancer risk in Japanese women: the HERPACC study. Cancer Sci 2022; 113:1451-1462. [PMID: 35218119 PMCID: PMC8990868 DOI: 10.1111/cas.15312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 12/24/2022] Open
Abstract
Approximately 5-10% of breast cancers are hereditary, caused by germline pathogenic variants (GPVs) in breast cancer predisposition genes. To date, most studies of the prevalence of GPVs and risk of breast cancer for each gene based on cases and non-cancer controls have been conducted in Europe and the United States, and little information from Japanese populations is available. Furthermore, no studies considered confounding by established environmental factors and single nucleotide polymorphisms (SNPs) identified in genome-wide association studies (GWAS) together in GPV evaluation. To evaluate the association between GPVs in nine established breast cancer predisposition genes including BRCA1/2 and breast cancer risk in Japanese women comprehensively, we conducted a case-control study within the Hospital-based Epidemiologic Research Program at Aichi Cancer Center (629 cases and 1153 controls). The associations between GPVs and the risk of breast cancer were assessed by odds ratios (OR) and 95% confidence intervals (CI) using logistic regression models adjusted for potential confounders. A total of 25 GPVs were detected among all cases (4.0%: 95%CI:2.6-5.9), whereas four individuals carried GPVs in all controls (0.4%). OR for breast cancer by all GPVs and by GPVs in BRCA1/2 was 12.2 (4.4-34.0, P = 1.74E-06) and 16.0 (4.2-60.9, P = 5.03E-0.5), respectively. A potential confounding with GPVs was observed for the GWAS-identified SNPs, whereas not for established environmental risk factors. In conclusion, GPVs increase the risk of breast cancer in Japanese women regardless of environmental factors and GWAS-identified SNPs. Future studies investigating interactions with environment and SNPs are warranted.
Collapse
Affiliation(s)
- Yumiko Kasugai
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomohiro Kohmoto
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Human Genetics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yukari Taniyama
- Division of Cancer Information and Control, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yuriko N Koyanagi
- Division of Cancer Information and Control, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yoshiaki Usui
- Division of Cancer Information and Control, Aichi Cancer Center Research Institute, Nagoya, Japan.,Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Madoka Iwase
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Isao Oze
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Rui Yamaguchi
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hidemi Ito
- Division of Cancer Information and Control, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Issei Imoto
- Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
5
|
TP53 Combined Phenotype Score Is Associated with the Clinical Outcome of TP53-Mutated Myelodysplastic Syndromes. Cancers (Basel) 2021; 13:cancers13215502. [PMID: 34771665 PMCID: PMC8582962 DOI: 10.3390/cancers13215502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 01/31/2023] Open
Abstract
Simple Summary TP53 is the most frequently mutated genes in cancer, and mutations of TP53 are observed in 5–10% of patients in myelodysplastic syndrome (MDS). In patients with MDS, TP53 mutations are associated with adverse outcomes; however, there is still significant heterogeneity in these disease courses. We performed retrospective review of 107 patients with untreated TP53-mutated MDS, and identified that the functional impact of TP53 mutations, represented by phenotypic annotation of TP53 mutations (PHANTM) combined phenotype score is associated with prognosis. In patients with TP53-mutated MDS, we found that a higher PHANTM combined phenotype score is associated with poorer clinical outcome, and this has independent influence on prognosis accounting for IPSS-R and other risk variables. Our findings suggest that TP53-mutated MDS is heterogeneous and not all TP53 mutations harbor the same impact on prognosis. The PHANTM combined score adds to prognostic precision in MDS beyond previously reported TP53 allelic state. Abstract Mutations of TP53 are observed in 5–10% of patients in myelodysplastic syndrome (MDS) and are associated with adverse outcomes. Previous studies indicate that the TP53 allelic state and variant allele frequency of TP53 mutation impact patient outcomes, but there is significant heterogeneity within this MDS subgroup. We performed retrospective review of clinicopathologic and genomic information of 107 patients with TP53-mutated MDS. We assessed each mutation according to the phenotypic annotation of TP53 mutations (PHANTM) and analyzed the associations between predicted TP53 mutant function, represented by the PHANTM combined phenotype score, and overall survival (OS) using the log rank test and Cox regression. Our results indicated that patients with PHANTM combined phenotype score above the median (>1) had significantly shorter OS compared to those with scores below the median (median OS: 10.59 and 16.51 months, respectively, p = 0.025). This relationship remained significant in multivariable analysis (HR (95%CI): 1.62 (1.01–2.58), p = 0.044) and identified to have an independent prognostic influence, accounting for known risk such as IPSS-R and other standard risk variables. Our results suggest that the functional information of TP53 mutations, represented by PHANTM combined phenotype score, are associated with the clinical outcome of patients with TP53-mutated MDS.
Collapse
|
6
|
Gencel-Augusto J, Lozano G. p53 tetramerization: at the center of the dominant-negative effect of mutant p53. Genes Dev 2021; 34:1128-1146. [PMID: 32873579 PMCID: PMC7462067 DOI: 10.1101/gad.340976.120] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, Gencel-Augusto and Lozano summarize the data on p53 mutants with a functional tetramerization domain that form mixed tetramers and in some cases have dominant-negative effects (DNE) that inactivate wild-type p53. They conclude that the DNE is mostly observed after DNA damage but fails in other contexts. The p53 tumor suppressor functions as a tetrameric transcription factor to regulate hundreds of genes—many in a tissue-specific manner. Missense mutations in cancers in the p53 DNA-binding and tetramerization domains cement the importance of these domains in tumor suppression. p53 mutants with a functional tetramerization domain form mixed tetramers, which in some cases have dominant-negative effects (DNE) that inactivate wild-type p53. DNA damage appears necessary but not sufficient for DNE, indicating that upstream signals impact DNE. Posttranslational modifications and protein–protein interactions alter p53 tetramerization affecting transcription, stability, and localization. These regulatory components limit the dominant-negative effects of mutant p53 on wild-type p53 activity. A deeper understanding of the molecular basis for DNE may drive development of drugs that release WT p53 and allow tumor suppression.
Collapse
Affiliation(s)
- Jovanka Gencel-Augusto
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA.,Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Guillermina Lozano
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA.,Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
7
|
Singhal SS, Horne D, Singhal J, Awasthi S, Salgia R. Activating p53 function by targeting RLIP. Biochim Biophys Acta Rev Cancer 2021; 1875:188512. [PMID: 33460725 DOI: 10.1016/j.bbcan.2021.188512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 01/08/2023]
Abstract
Aberrations in RLIP, p53, and PKCα represent essentially the entire spectrum of all human neoplasms. Elevated PKCα expression, failure of the cell cycle checkpoint (p53 dysfunction), and abnormal glutathione (GSH) metabolism are fundamental hallmarks of carcinogenesis and drug/radiation resistance. However, a lack of investigations into the interactions between these important regulatory nodes has fundamentally limited our understanding of carcinogenesis and the development of effective interventions for cancer prevention and therapy. Loss of p53, perhaps the most powerful tumor suppressor gene, predisposes rodents to spontaneous cancer and humans to familial, as well as acquired, cancers. Until recently, no genetic manipulation of any oncogene had been reported to abrogate spontaneous carcinogenesis in p53-/- rodent models. However, the overexpression of RLIP, a GSH-electrophile conjugate (GS-E) transporter, has been found to enhance cancer cell proliferation and confer drug/radiation resistance, whereas its depletion causes tumor regression, suggesting its importance in cancer and drug/radiation resistance. Indeed, RLIP is an essential effector of p53 that is necessary for broad cancer-promoting epigenetic remodeling. Interestingly, through a haploinsufficiency mechanism, the partial depletion of RLIP in p53-/- mice provides complete protection from neoplasia. Furthermore, RLIP-/- mice exhibit altered p53 and PKCα function, marked deficiency in clathrin-dependent endocytosis (CDE), and almost total resistance to chemical carcinogenesis. Based on these findings, in this review, we present a novel and radical hypothesis that expands our understanding of the highly significant cross-talk between p53, PKCα, and GSH signaling by RLIP in multiple tumor models.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Jyotsana Singhal
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ravi Salgia
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
8
|
Tong X, Xu D, Mishra RK, Jones RD, Sun L, Schiltz GE, Liao J, Yang GY. Identification of a druggable protein-protein interaction site between mutant p53 and its stabilizing chaperone DNAJA1. J Biol Chem 2021; 296:100098. [PMID: 33208462 PMCID: PMC7948449 DOI: 10.1074/jbc.ra120.014749] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/26/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
The TP53 gene is the most frequently mutated gene in human cancers, and the majority of TP53 mutations are missense mutations. As a result, these mutant p53 (mutp53) either directly lose wildtype p53 (wtp53) tumor suppressor function or exhibit a dominant negative effect over wtp53. In addition, some mutp53 have acquired new oncogenic function (gain of function). Therefore, targeting mutp53 for its degradation may serve as a promising strategy for cancer prevention and therapy. Based on our previous finding that farnesylated DNAJA1 is a crucial chaperone in maintaining mutp53 stabilization, and by using an in silico approach, we built 3D homology models of human DNAJA1 and mutp53R175H proteins, identified the interacting pocket in the DNAJA1-mutp53R175H complex, and found one critical druggable small molecule binding site in the DNAJA1 glycine/phenylalanine-rich region. We confirmed that the interacting pocket in the DNAJA1-mutp53R175H complex was crucial for stabilizing mutp53R175H using a site-directed mutagenesis approach. We further screened a drug-like library to identify a promising small molecule hit (GY1-22) against the interacting pocket in the DNAJA1-mutp53R175H complex. The GY1-22 compound displayed an effective activity against the DNAJA1-mutp53R175H complex. Treatment with GY1-22 significantly reduced mutp53 protein levels, enhanced Waf1p21 expression, suppressed cyclin D1 expression, and inhibited mutp53-driven pancreatic cancer growth both in vitro and in vivo. Together, our results indicate that the interacting pocket in the DNAJA1-mutp53R175H complex is critical for mutp53's stability and oncogenic function, and DNAJA1 is a robust therapeutic target for developing the efficient small molecule inhibitors against oncogenic mutp53.
Collapse
Affiliation(s)
- Xin Tong
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Dandan Xu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rama K Mishra
- Center for Molecular Innovation and Drug Discovery (CMIDD), Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ryan D Jones
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Leyu Sun
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Gary E Schiltz
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Center for Molecular Innovation and Drug Discovery (CMIDD), Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jie Liao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Guang-Yu Yang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
9
|
Fedorova O, Daks A, Shuvalov O, Kizenko A, Petukhov A, Gnennaya Y, Barlev N. Attenuation of p53 mutant as an approach for treatment Her2-positive cancer. Cell Death Discov 2020; 6:100. [PMID: 33083021 PMCID: PMC7548004 DOI: 10.1038/s41420-020-00337-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is one of the world's leading causes of oncological disease-related death. It is characterized by a high degree of heterogeneity on the clinical, morphological, and molecular levels. Based on molecular profiling breast carcinomas are divided into several subtypes depending on the expression of a number of cell surface receptors, e.g., ER, PR, and HER2. The Her2-positive subtype occurs in ~10-15% of all cases of breast cancer, and is characterized by a worse prognosis of patient survival. This is due to a high and early relapse rate, as well as an increased level of metastases. Several FDA-approved drugs for the treatment of Her2-positive tumors have been developed, although eventually cancer cells develop drug resistance. These drugs target either the homo- or heterodimerization of Her2 receptors or the receptors' RTK activity, both of them being critical for the proliferation of cancer cells. Notably, Her2-positive cancers also frequently harbor mutations in the TP53 tumor suppressor gene, which exacerbates the unfavorable prognosis. In this review, we describe the molecular mechanisms of RTK-specific drugs and discuss new perspectives of combinatorial treatment of Her2-positive cancers through inhibition of the mutant form of p53.
Collapse
Affiliation(s)
| | | | | | | | - Alexey Petukhov
- Institute of cytology RAS, St-Petersburg, Russia
- Almazov Federal North-West Medical Research Centre, St-Petersburg, Russia
| | | | - Nikolai Barlev
- Institute of cytology RAS, St-Petersburg, Russia
- MIPT, Doloprudnuy, Moscow region, Russia
- Orekhovich Institute of Biomedical Chemistry, Moscow, Russia
- Chumakov FSC R&D IBP RAS, Moscow, 108819 Russia
| |
Collapse
|
10
|
Hoogeboom R, Natkanski EM, Nowosad CR, Malinova D, Menon RP, Casal A, Tolar P. Myosin IIa Promotes Antibody Responses by Regulating B Cell Activation, Acquisition of Antigen, and Proliferation. Cell Rep 2019; 23:2342-2353. [PMID: 29791846 PMCID: PMC5986709 DOI: 10.1016/j.celrep.2018.04.087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 03/23/2018] [Accepted: 04/19/2018] [Indexed: 12/24/2022] Open
Abstract
B cell responses are regulated by antigen acquisition, processing, and presentation to helper T cells. These functions are thought to depend on contractile activity of non-muscle myosin IIa. Here, we show that B cell-specific deletion of the myosin IIa heavy chain reduced the numbers of bone marrow B cell precursors and splenic marginal zone, peritoneal B1b, and germinal center B cells. In addition, myosin IIa-deficient follicular B cells acquired an activated phenotype and were less efficient in chemokinesis and extraction of membrane-presented antigens. Moreover, myosin IIa was indispensable for cytokinesis. Consequently, mice with myosin IIa-deficient B cells harbored reduced serum immunoglobulin levels and did not mount robust antibody responses when immunized. Altogether, these data indicate that myosin IIa is a negative regulator of B cell activation but a positive regulator of antigen acquisition from antigen-presenting cells and that myosin IIa is essential for B cell development, proliferation, and antibody responses. Myosin IIa is important for B cell antigen acquisition from antigen-presenting cells Myosin IIa is a negative regulator of B cell activation Myosin IIa is essential for B cell cytokinesis Myosin IIa is required for efficient B cell responses
Collapse
Affiliation(s)
- Robbert Hoogeboom
- Immune Receptor Activation Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Haemato-Oncology, Faculty of Life Sciences and Medicine, King's College London, London SE5 9NU, UK
| | - Elizabeth M Natkanski
- Immune Receptor Activation Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Carla R Nowosad
- Immune Receptor Activation Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Dessislava Malinova
- Immune Receptor Activation Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Division of Immunology & Inflammation, Department of Medicine, Imperial College London, London SW7 2A2, UK
| | - Rajesh P Menon
- Immune Receptor Activation Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Antonio Casal
- Immune Receptor Activation Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Pavel Tolar
- Immune Receptor Activation Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Division of Immunology & Inflammation, Department of Medicine, Imperial College London, London SW7 2A2, UK.
| |
Collapse
|
11
|
Schieffer KM, Varga E, Miller KE, Agarwal V, Koboldt DC, Brennan P, Kelly B, Dave-Wala A, Pierson CR, Finlay JL, AbdelBaki MS, White P, Magrini V, Wilson RK, Mardis ER, Cottrell CE. Expanding the clinical history associated with syndromic Klippel-Feil: A unique case of comorbidity with medulloblastoma. Eur J Med Genet 2019; 62:103701. [PMID: 31195167 DOI: 10.1016/j.ejmg.2019.103701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/29/2019] [Accepted: 06/09/2019] [Indexed: 11/28/2022]
Abstract
Klippel-Feil syndrome (KFS) is an exceedingly rare constitutional disorder in which a paucity of knowledge exists about the disease and its associated morbidity and mortality. We present a 4-year-old male with KFS, who notably was also diagnosed with large-cell anaplastic medulloblastoma. We evaluated the genetic basis of co-occurring KFS and medulloblastoma and the role of MYO18B as related to medulloblastoma. Constitutional and somatic variant and copy number analyses were performed from DNA-based exome studies, along with RNA-sequencing of tumor tissue, to elucidate the genetic etiology of the co-existing disease states. We identified novel constitutional compound heterozygous frameshift variants (NM_032608.5: p.Leu2257SerfsTer16 and p.Arg2220SerfsTer74) each encoding a premature stop of translation in MYO18B, consistent with a diagnosis of KFS. We did not identify any somatic variants of known relevance or disease-relevant therapeutic targets in the tumor. The somatic copy number profile was suggestive of Group 3γ medulloblastoma. Relative to pediatric brain tumors, medulloblastoma, particularly, Group 3, had increased gene expression of MYO18B. In summary, coexisting constitutional and somatic diagnoses in this patient enabled the elucidation of the genetic etiology of KFS and provided support for the role of MYO18B in tumor suppression.
Collapse
Affiliation(s)
- Kathleen M Schieffer
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.
| | - Elizabeth Varga
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Division of Hematology, Oncology and Bone Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, USA
| | - Katherine E Miller
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Vibhuti Agarwal
- Division of Hematology, Oncology and Bone Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, USA
| | - Daniel C Koboldt
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Patrick Brennan
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Benjamin Kelly
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Ashita Dave-Wala
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Christopher R Pierson
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Biomedical Education and Anatomy, The Ohio State University, Columbus, OH, USA
| | - Jonathan L Finlay
- Division of Hematology, Oncology and Bone Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mohamed S AbdelBaki
- Division of Hematology, Oncology and Bone Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, USA
| | - Peter White
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Vincent Magrini
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Richard K Wilson
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Elaine R Mardis
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Catherine E Cottrell
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
12
|
Fan HH, Yu IS, Lin YH, Wang SY, Liaw YH, Chen PL, Yang TL, Lin SW, Chen YT. P53 ICE CRIM mouse: a tool to generate mutant allelic series in somatic cells and germ lines for cancer studies. FASEB J 2019; 33:5571-5584. [PMID: 30640520 DOI: 10.1096/fj.201802027r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 technology facilitates somatic genome editing to reveal cooperative genetic interactions at the cellular level without extensive breeding between different mutant animals. Here we propose a transgenic inducible Cas9 effector-CRISPR mutagen ( ICE CRIM) mouse model in which CRISPR/Cas9-mediated somatic mutagenesis events can occur in response to Cre expression. The well-known tumor suppressor gene, Trp53, and 2 important DNA mismatch repair genes, Mlh1 and Msh2, were selected to be our somatic mutagenesis targets. Amplicon-based sequencing was performed to validate the editing efficiency and to identify the mutant allelic series. Crossed with various Cre lines, the Trp53 ICE CRIM alleles were activated to generate targeted cancer gene somatic or germ line mutant variants. We provide experimental evidence to show that an activated ICE CRIM can mutate both targeted alleles within a cell. Simultaneous disruption of multiple genes was also achieved when there were multiple single-guide RNA expression cassettes embedded within an activated ICE CRIM. Our mouse model can be used to generate mutant pools in vivo, which enables a functional screen to be performed in situ. Our results also provide evidence to support a monoclonal origin of hematopoietic neoplasms and to indicate that DNA mismatch repair deficiency accelerates tumorigenesis in Trp53 mutant genetic background.-Fan, H.-H., Yu, I.-S., Lin, Y.-H., Wang, S.-Y., Liaw, Y.-H., Chen, P.-L., Yang, T.-L., Lin, S.-W., Chen, Y.-T. P53 ICE CRIM mouse: a tool to generate mutant allelic series in somatic cells and germ lines for cancer studies.
Collapse
Affiliation(s)
- Hsiang-Hsuan Fan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yin-Hung Lin
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shin-Yu Wang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ying-Hsuan Liaw
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Tsung-Lin Yang
- Department of Otolaryngology, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; and
- Center of Genomic Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - You-Tzung Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Center of Genomic Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Kurtz P, Jones AE, Tiwari B, Link N, Wylie A, Tracy C, Krämer H, Abrams JM. Drosophila p53 directs nonapoptotic programs in postmitotic tissue. Mol Biol Cell 2019; 30:1339-1351. [PMID: 30892991 PMCID: PMC6724604 DOI: 10.1091/mbc.e18-12-0791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
TP53 is the most frequently mutated gene in human cancers, and despite intensive research efforts, genome-scale studies of p53 function in whole animal models are rare. The need for such in vivo studies is underscored by recent challenges to established paradigms, indicating that unappreciated p53 functions contribute to cancer prevention. Here we leveraged the Drosophila system to interrogate p53 function in a postmitotic context. In the developing embryo, p53 robustly activates important apoptotic genes in response to radiation-induced DNA damage. We recently showed that a p53 enhancer (p53RErpr) near the cell death gene reaper forms chromatin contacts and enables p53 target activation across long genomic distances. Interestingly, we found that this canonical p53 apoptotic program fails to activate in adult heads. Moreover, this failure to exhibit apoptotic responses was not associated with altered chromatin contacts. Instead, we determined that p53 does not occupy the p53RErpr enhancer in this postmitotic tissue as it does in embryos. Through comparative RNA-seq and chromatin immunoprecipitation-seq studies of developing and postmitotic tissues, we further determined that p53 regulates distinct transcriptional programs in adult heads, including DNA repair, metabolism, and proteolysis genes. Strikingly, in the postmitotic context, p53-binding landscapes were poorly correlated with nearby transcriptional effects, raising the possibility that p53 enhancers could be generally acting through long distances.
Collapse
Affiliation(s)
- Paula Kurtz
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Amanda E Jones
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Bhavana Tiwari
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Nichole Link
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030.,Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030
| | - Annika Wylie
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Charles Tracy
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Helmut Krämer
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
14
|
Shahbandi A, Jackson JG. Analysis across multiple tumor types provides no evidence that mutant p53 exerts dominant negative activity. NPJ Precis Oncol 2019; 3:1. [PMID: 30623031 PMCID: PMC6323121 DOI: 10.1038/s41698-018-0074-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/06/2018] [Indexed: 01/01/2023] Open
Abstract
Missense mutations in the TP53-binding domain predominate, and >30% of these occur in just eight codons. Dominant negative properties of mutant p53, taken together with the mutation susceptibility of the nucleotides in the codon, are believed to explain the prevalence of specific mutations, including hot spots. We analyzed multiple tumor types and found no difference in clinical characteristics or survival between patients with dominant negative p53 mutant tumors and those with TP53 mutations that are predicted to be non-dominant negative. The rate tumors underwent loss of heterozygosity in these respective mutation classes was nearly identical, suggesting that presence of stable, mutant protein with predicted dominant negative activity does not reduce selective pressure to inactivate the wild-type allele. Our data suggest all inactivating mutations of TP53 are equal, and the frequency of dominant negative, hot spot mutations is likely driven more by the relative mutability of the DNA at specific codons.
Collapse
Affiliation(s)
- Ashkan Shahbandi
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, 1430 Tulane Avenue, New Orleans, LA 70112 USA
| | - James G Jackson
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, 1430 Tulane Avenue, New Orleans, LA 70112 USA
| |
Collapse
|
15
|
Giacomelli AO, Yang X, Lintner RE, McFarland JM, Duby M, Kim J, Howard TP, Takeda DY, Ly SH, Kim E, Gannon HS, Hurhula B, Sharpe T, Goodale A, Fritchman B, Steelman S, Vazquez F, Tsherniak A, Aguirre AJ, Doench JG, Piccioni F, Roberts CWM, Meyerson M, Getz G, Johannessen CM, Root DE, Hahn WC. Mutational processes shape the landscape of TP53 mutations in human cancer. Nat Genet 2018; 50:1381-1387. [PMID: 30224644 PMCID: PMC6168352 DOI: 10.1038/s41588-018-0204-y] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 07/26/2018] [Indexed: 12/11/2022]
Abstract
Unlike most tumor suppressor genes, the most common genetic alterations in TP53 are missense mutations1,2. Mutant p53 protein is often abundantly expressed in cancers, and specific allelic variants exhibit dominant-negative or gain-of-function activities in experimental models3–8. To gain a systematic view of p53 function, we interrogated loss-of-function screens conducted in hundreds of human cancer cell lines and performed TP53 saturation mutagenesis screens in an isogenic pair of TP53-wild-type and -null cell lines. We found that loss or dominant-negative inhibition of p53 function reliably enhanced cellular fitness. By integrating these data with the COSMIC mutational signatures database9,10, we developed a statistical model that describes the TP53 mutational spectrum as a function of the baseline probability of acquiring each mutation and the fitness advantage conferred by attenuation of p53 activity. Collectively, these observations show that widely-acting and tissue-specific mutational processes combine with phenotypic selection to dictate the frequencies of recurrent TP53 mutations.
Collapse
Affiliation(s)
- Andrew O Giacomelli
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xiaoping Yang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Marc Duby
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jaegil Kim
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Thomas P Howard
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - David Y Takeda
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Seav Huong Ly
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eejung Kim
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hugh S Gannon
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Brian Hurhula
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ted Sharpe
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amy Goodale
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Francisca Vazquez
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Andrew J Aguirre
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Charles W M Roberts
- Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Matthew Meyerson
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Harvard Medical School, Boston, MA, USA.,Massachusetts General Hospital Center for Cancer Research, Boston, MA, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | | | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - William C Hahn
- Dana-Farber Cancer Institute, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Harvard Medical School, Boston, MA, USA. .,Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
16
|
Furuta S, Ren G, Mao JH, Bissell MJ. Laminin signals initiate the reciprocal loop that informs breast-specific gene expression and homeostasis by activating NO, p53 and microRNAs. eLife 2018; 7:26148. [PMID: 29560860 PMCID: PMC5862529 DOI: 10.7554/elife.26148] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 11/21/2017] [Indexed: 01/19/2023] Open
Abstract
How mammalian tissues maintain their architecture and tissue-specificity is poorly understood. Previously, we documented both the indispensable role of the extracellular matrix (ECM) protein, laminin-111 (LN1), in the formation of normal breast acini, and the phenotypic reversion of cancer cells to acini-like structures in 3-dimensional (3D) gels with inhibitors of oncogenic pathways. Here, we asked how laminin (LN) proteins integrate the signaling pathways necessary for morphogenesis. We report a surprising reciprocal circuitry comprising positive players: laminin-5 (LN5), nitric oxide (NO), p53, HOXD10 and three microRNAs (miRNAs) — that are involved in the formation of mammary acini in 3D. Significantly, cancer cells on either 2-dimensional (2D) or 3D and non-malignant cells on 2D plastic do not produce NO and upregulate negative players: NFκB, EIF5A2, SCA1 and MMP-9 — that disrupt the network. Introducing exogenous NO, LN5 or individual miRNAs to cancer cells reintegrates these pathways and induces phenotypic reversion in 3D. These findings uncover the essential elements of breast epithelial architecture, where the balance between positive- and negative-players leads to homeostasis. Most animal cells can secrete molecules into their surroundings to form a supportive meshwork of large proteins, called the extracellular matrix. This matrix is connected to the cell membrane through receptors that can transmit signals to the cell nucleus to change the levels of small RNA molecules called microRNAs. These, in turn, can switch genes on and off in the nucleus. In the laboratory, cells that build breast tissue and glands can be grown in gels containing extracellular matrix proteins called laminins. Under these conditions, ‘normal’ cells form organized clusters that resemble breast glands. However, if the communication between healthy cells and the extracellular matrix is interrupted, the cells can become disorganized and start to form clumps that resemble tumors, and if injected into mice, can form tumors. Conversely, if the interaction between the extracellular matrix and the cells is restored, each single cancer cell can – despite mutations – be turned into a healthy-looking cell. These cells form a normal-looking tissue through a process called reversion. Until now, it was not known which signals help normal breast tissue to form, and how cancerous cells revert into a ‘normal’ shape. To investigate this, Furuta et al. used a unique series of breast cells from a woman who underwent breast reduction. The cells taken from the discarded tissue had been previously grown by a different group of researchers in a specific way to ensure that both normal and eventual cancer cells were from the same individual. Furuta et al. then put these cells in the type of laminin found in extracellular matrix. The other set of cells used consisted of the same cancerous cells that had been reverted to normal-looking cells. Analysis of the three cell sets identified 60 genes that were turned down in reverted cancer cells to a level found in healthy cells, as well as 10 microRNAs that potentially target these 60 genes. A database search suggested that three of these microRNAs, which are absent in cancer cells, are necessary for healthy breast cells to form organized structures. Using this as a starting point, Furuta et al. discovered a signaling loop that was previously unknown and that organizes breast cells into healthy looking tissue. This showed that laminins help to produce nitric oxide, an important signaling molecule that activates several specific proteins inside the breast cells and restores the levels of the three microRNAs. These, in turn, switch off two genes that are responsible for activating an enzyme that can chop the laminins. Since the two genes are deactivated in the reverted cancer cells, the laminins remain intact and the cells can form organized structures. These findings suggest that if any of the components of the loop were missing, the cells would start to form cancerous clumps again. Reverting the cancer cells in the presence of laminins, however, could help cancer cells to form ‘normal’ structures again. These findings shed new light on how the extracellular matrix communicates with proteins in the nucleus to influence how single cells form breast tissues. It also shows that laminins are crucial for generating signals that regulate both form and function of specific tissues. A better understanding of how healthy and cancerous tissues form and re-form may in the future help to develop new cancer treatments.
Collapse
Affiliation(s)
- Saori Furuta
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States.,Department of Cancer Biology, College of Medicine & Life Sciences, University of Toledo Health Science Campus, Toledo, United States
| | - Gang Ren
- Department of Cancer Biology, College of Medicine & Life Sciences, University of Toledo Health Science Campus, Toledo, United States
| | - Jian-Hua Mao
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Mina J Bissell
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
17
|
Sun F, Yang X, Jin Y, Chen L, Wang L, Shi M, Zhan C, Shi Y, Wang Q. Bioinformatics analyses of the differences between lung adenocarcinoma and squamous cell carcinoma using The Cancer Genome Atlas expression data. Mol Med Rep 2017; 16:609-616. [PMID: 28560415 PMCID: PMC5482124 DOI: 10.3892/mmr.2017.6629] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 03/20/2017] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to explore gene and microRNA (miRNA) expression differences between lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). Differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) were identified by analyzing mRNA and miRNA expression data in normal and cancerous lung tissues that were obtained from The Cancer Genome Atlas database. A total of 778 DEGs and 7 DEMs were identified. Altered gene functions and signaling pathways were investigated using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, which revealed that DEGs were significantly enriched in extracellular matrix organization, cell differentiation, negative regulation of toll signaling pathway, and several other terms and pathways. Transcription factor (TF)-miRNA-gene networks in LUAD and LUSC were predicted using the TargetScan, Miranda, and TRANSFAC databases, which revealed the regulatory links among the TFs, DEMs, and DEGs. The central TFs, i.e., the TFs in the middle of the TF-miRNA-gene network, of LUAD and LUSC were similar. Although LUAD and LUSC shared similar miRNAs in the predicted networks, miR-29b-3p was demonstrated to be upregulated only in LUAD, whereas miR-1, miR-105-5p, and miR-193b-5p were altered in LUSC. These findings may improve our understanding of the different molecular mechanisms in non-small cell lung cancers and may promote new and accurate strategies for prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Fenghao Sun
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| | - Xiaodong Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| | - Yulin Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| | - Li Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| | - Lin Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| | - Mengkun Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| | - Yu Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| |
Collapse
|
18
|
Novel Implications of DNA Damage Response in Drug Resistance of Malignant Cancers Obtained from the Functional Interaction between p53 Family and RUNX2. Biomolecules 2015; 5:2854-76. [PMID: 26512706 PMCID: PMC4693260 DOI: 10.3390/biom5042854] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/17/2015] [Accepted: 10/16/2015] [Indexed: 12/31/2022] Open
Abstract
During the lifespan of cells, their genomic DNA is continuously exposed to the endogenous and exogenous DNA insults. Thus, the appropriate cellular response to DNA damage plays a pivotal role in maintaining genomic integrity and also acts as a molecular barrier towards DNA legion-mediated carcinogenesis. The tumor suppressor p53 participates in an integral part of proper regulation of DNA damage response (DDR). p53 is frequently mutated in a variety of human cancers. Since mutant p53 displays a dominant-negative behavior against wild-type p53, cancers expressing mutant p53 sometimes acquire drug-resistant phenotype, suggesting that mutant p53 prohibits the p53-dependent cell death pathway following DNA damage, and thereby contributing to the acquisition and/or maintenance of drug resistance of malignant cancers. Intriguingly, we have recently found that silencing of pro-oncogenic RUNX2 enhances drug sensitivity of aggressive cancer cells regardless of p53 status. Meanwhile, cancer stem cells (CSCs) have stem cell properties such as drug resistance. Therefore, the precise understanding of the biology of CSCs is quite important to overcome their drug resistance. In this review, we focus on molecular mechanisms behind DDR as well as the serious drug resistance of malignant cancers and discuss some attractive approaches to improving the outcomes of patients bearing drug-resistant cancers.
Collapse
|
19
|
Freije A, Molinuevo R, Ceballos L, Cagigas M, Alonso-Lecue P, Rodriguez R, Menendez P, Aberdam D, De Diego E, Gandarillas A. Inactivation of p53 in Human Keratinocytes Leads to Squamous Differentiation and Shedding via Replication Stress and Mitotic Slippage. Cell Rep 2014; 9:1349-60. [PMID: 25453755 DOI: 10.1016/j.celrep.2014.10.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/14/2014] [Accepted: 10/03/2014] [Indexed: 11/28/2022] Open
Abstract
Tumor suppressor p53 is a major cellular guardian of genome integrity, and its inactivation is the most frequent genetic alteration in cancer, rising up to 80% in squamous cell carcinoma (SCC). By adapting the small hairpin RNA (shRNA) technology, we inactivated endogenous p53 in primary epithelial cells from the epidermis of human skin. We show that either loss of endogenous p53 or overexpression of a temperature-sensitive dominant-negative conformation triggers a self-protective differentiation response, resulting in cell stratification and expulsion. These effects follow DNA damage and exit from mitosis without cell division. p53 preserves the proliferative potential of the stem cell compartment and limits the power of proto-oncogene MYC to drive cell cycle stress and differentiation. The results provide insight into the role of p53 in self-renewal homeostasis and help explain why p53 mutations do not initiate skin cancer but increase the likelihood that cancer cells will appear.
Collapse
Affiliation(s)
- Ana Freije
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander 39011, Spain
| | - Rut Molinuevo
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander 39011, Spain
| | - Laura Ceballos
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander 39011, Spain
| | - Marta Cagigas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander 39011, Spain
| | - Pilar Alonso-Lecue
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander 39011, Spain
| | - René Rodriguez
- Lab 2-ORL, Instituto Universitario de Oncología de Asturias (IUOPA) Hospital Universitario Central de Asturias (HUCA), Oviedo 33006, Spain
| | - Pablo Menendez
- Josep Carreras Leukaemia Research Institute, School of Medicine, University of Barcelona, Barcelona 08036, Spain; Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Avenida Lluis Companys, Barcelona 08010, Spain
| | - Daniel Aberdam
- INSERM UMR-S976, University Paris Didero, Hôpital Saint-Louis, Equerre Bazin, Paris 75475, France
| | - Ernesto De Diego
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander 39011, Spain; Paediatric Surgery, Hospital Universitario Marqués de Valdecilla (HUMV), Santander 39011, Spain
| | - Alberto Gandarillas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander 39011, Spain; INSERM, Languedoc-Roussillon, Montpellier 34394, France.
| |
Collapse
|
20
|
Garcia PB, Attardi LD. Illuminating p53 function in cancer with genetically engineered mouse models. Semin Cell Dev Biol 2014; 27:74-85. [PMID: 24394915 DOI: 10.1016/j.semcdb.2013.12.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/06/2013] [Accepted: 12/23/2013] [Indexed: 01/23/2023]
Abstract
The key role of the p53 protein in tumor suppression is highlighted by its frequent mutation in human cancers and by the completely penetrant cancer predisposition of p53 null mice. Beyond providing definitive evidence for the critical function of p53 in tumor suppression, genetically engineered mouse models have offered numerous additional insights into p53 function. p53 knock-in mice expressing tumor-derived p53 mutants have revealed that these mutants display gain-of-function activities that actively promote carcinogenesis. The generation of p53 knock-in mutants with alterations in different domains of p53 has helped further elucidate the cellular and biochemical activities of p53 that are most fundamental for tumor suppression. In addition, modulation of p53 post-translational modification (PTM) status by generating p53 knock-in mouse strains with mutations in p53 PTM sites has revealed a subtlety and complexity to p53 regulation. Analyses of mouse models perturbing upstream regulators of p53 have solidified the notion that the p53 pathway can be compromised by means other than direct p53 mutation. Finally, switchable p53 models that allow p53 reactivation in tumors have helped evaluate the potential of p53 restoration therapy for cancer treatment. Collectively, mouse models have greatly enhanced our understanding of physiological p53 function and will continue to provide new biological and clinical insights in future investigations.
Collapse
Affiliation(s)
- Patty B Garcia
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura D Attardi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
21
|
Abstract
This issue marks the 50th anniversary of the release of the U.S. Surgeon General's Report on Smoking and Health. Perhaps no other singular event has done more to highlight the effects of smoking on the development of cancer. Tobacco exposure is the leading cause of cancers involving the oral cavity, conductive airways, and the lung. Owing to the many carcinogens in tobacco smoke, smoking-related malignancies have a high genome-wide burden of mutations, including in the gene encoding for p53. The p53 protein is the most frequently mutated tumor suppressor in cancer, responsible for a range of critical cellular functions that are compromised by the presence of a mutation. Herein, we review the epidemiologic connection between tobacco exposure and cancer, the molecular basis of p53 mutation in lung cancer, and the normal molecular and cellular roles of p53 that are abrogated during lung tumor development and progression as defined by in vitro and in vivo studies. We also consider the therapeutic potential of targeting mutant p53 in a clinical setting based upon the cellular role of mutant p53 and data from genetic murine models.
Collapse
Affiliation(s)
- Don L Gibbons
- University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Box 0432, Houston, Texas 77030.
| | | | | |
Collapse
|
22
|
p53 regulates mesenchymal stem cell-mediated tumor suppression in a tumor microenvironment through immune modulation. Oncogene 2013; 33:3830-8. [PMID: 23975435 DOI: 10.1038/onc.2013.355] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/13/2013] [Accepted: 07/24/2013] [Indexed: 01/14/2023]
Abstract
p53 is one of the most studied genes in cancer biology, and mutations in this gene may be predictive for the development of many types of cancer in humans and in animals. However, whether p53 mutations in non-tumor stromal cells can affect tumor development has received very little attention. In this study, we show that B16F0 melanoma cells form much larger tumors in p53-deficient mice than in wild-type mice, indicating a potential role of p53 deficiency in non-tumor cells of the microenvironment. As mesenchymal stem cells (MSCs) are attracted to tumors and form a major component of the tumor microenvironment, we examined the potential role of p53 status in MSCs in tumor development. We found that larger tumors resulted when B16F0 melanoma cells were co-injected with bone marrow MSCs derived from p53-deficient mice rather than MSCs from wild-type mice. Interestingly, this tumor-promoting effect by p53-deficient MSCs was not observed in non-obese diabetic/severe combined immunodeficiency mice, indicating the immune response has a critical role. Indeed, in the presence of inflammatory cytokines, p53-deficient MSCs expressed more inducible nitric oxide synthase (iNOS) and exhibited greater immunosuppressive capacity. Importantly, tumor promotion by p53-deficient MSCs was abolished by administration of S-methylisothiourea, an iNOS inhibitor. Therefore, our data demonstrate that p53 status in tumor stromal cells has a key role in tumor development by modulating immune responses.
Collapse
|
23
|
Gopalakrishnan R, Sundaram J, Sattu K, Pandi A, Thiruvengadam D. Dietary supplementation of silymarin is associated with decreased cell proliferation, increased apoptosis, and activation of detoxification system in hepatocellular carcinoma. Mol Cell Biochem 2013; 377:163-76. [PMID: 23397134 DOI: 10.1007/s11010-013-1582-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 01/30/2013] [Indexed: 11/29/2022]
Abstract
Hepatocellular carcinoma (HCC) incidence rates are increasing in many parts of the world. HCC's limited treatment remedies and the poor prognosis emphasize the importance in developing an effective chemoprevention for this disease. Here, we investigated the molecular mechanisms involved in the chemoprevention of silymarin in N-nitrosodiethylamine (NDEA)-induced rat model of HCC. Liver of the rats treated with NDEA showed higher proliferation index and glycoconjugates. NDEA treatment also increased the level of anti-apoptotic proteins with simultaneous decrease in the level of pro-apoptotic proteins along with increased accumulation of Cytochrome c in mitochondria. The carcinogenic insult also increased microsomal phase I metabolizing enzymes with a simultaneous decrease in the Phase II detoxifying enzyme glutathione-S-transferase (GST). Whereas dietary silymarin administration along with NDEA treatment significantly decreased the proliferation and down regulated the expression of anti-apoptotic proteins with simultaneously increased expression of pro-apoptotic proteins along with the release of Cytochrome c to cytosol there by activating the intrinsic apoptotic pathway. Silymarin administration also decreased the level of glycoproteins and activated the phase II detoxifying enzyme GST. These results demonstrate that suppression of HCC by silymarin in vivo involves inhibition of proliferation, activation of apoptosis, and efficient detoxification.
Collapse
|
24
|
Rodriguez OC, Choudhury S, Kolukula V, Vietsch EE, Catania J, Preet A, Reynoso K, Bargonetti J, Wellstein A, Albanese C, Avantaggiati ML. Dietary downregulation of mutant p53 levels via glucose restriction: mechanisms and implications for tumor therapy. Cell Cycle 2012; 11:4436-46. [PMID: 23151455 DOI: 10.4161/cc.22778] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The majority of human tumors express mutant forms of p53 at high levels, promoting gain of oncogenic functions and correlating with disease progression, resistance to therapy and unfavorable prognosis. p53 mutant accumulation in tumors is attributed to the ability to evade degradation by the proteasome, the only currently recognized machinery for p53 disruption. We report here that glucose restriction (GR) induces p53 mutant deacetylation, routing it for degradation via autophagy. Depletion of p53 leads, in turn, to robust autophagic activation and to cell death, while expression of degradation-defective mutant p53 blocks autophagy and enables survival to GR. Furthermore, we found that a carbohydrate-free dietetic regimen that lowers the fasting glucose levels blunts p53 mutant expression and oncogenic activity relative to a normal diet in several animal model systems. These findings indicate that the stability of mutant forms of p53 is influenced by the levels of glucose and by dietetic habits. They also unravel the existence of an inhibitory loop between autophagy and mutant p53 that can be exploited therapeutically.
Collapse
Affiliation(s)
- Olga Catalina Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lin K, Lane B, Carter A, Johnson GG, Onwuazor O, Oates M, Zenz T, Stilgenbauer S, Atherton M, Douglas A, Ebrahimi B, Sherrington PD, Pettitt AR. The gene expression signature associated withTP53mutation/deletion in chronic lymphocytic leukaemia is dominated by the under-expression ofTP53and other genes on chromosome 17p. Br J Haematol 2012; 160:53-62. [DOI: 10.1111/bjh.12092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/05/2012] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Anthony Carter
- Department of Haematology; Royal Liverpool and Broadgreen University Hospitals NHS Trust; Liverpool; UK
| | | | - Obiageli Onwuazor
- Department of Molecular and Clinical Cancer Medicine; University of Liverpool; Liverpool; UK
| | - Melanie Oates
- Department of Molecular and Clinical Cancer Medicine; University of Liverpool; Liverpool; UK
| | | | | | - Mark Atherton
- Cheshire and Merseyside Genetics Laboratories; Liverpool Women's Hospital NHS Trust; Liverpool; UK
| | - Angela Douglas
- Cheshire and Merseyside Genetics Laboratories; Liverpool Women's Hospital NHS Trust; Liverpool; UK
| | - Bahram Ebrahimi
- Centre for Genome Research; University of Liverpool; Liverpool; UK
| | | | | |
Collapse
|
26
|
Abstract
TP53 mutations are the most frequent genetic alterations found in human cancer. For more than 20 years, TP53 mutation databases have collected over 30,000 somatic mutations from various types of cancer. Analyses of these mutations have led to many types of studies and have improved our knowledge about the TP53 protein and its function. The recent advances in sequencing methodologies and the various cancer genome sequencing projects will lead to a profound shift in database curation and data management. In this paper, we will review the current status of the TP53 mutation database, its application to various fields of research, and how data quality and curation can be improved. We will also discuss how the genetic data will be stored and handled in the future and the consequences for database management.
Collapse
|
27
|
York D, Higgins RJ, LeCouteur RA, Wolfe AN, Grahn R, Olby N, Campbell M, Dickinson PJ. TP53 mutations in canine brain tumors. Vet Pathol 2011; 49:796-801. [PMID: 22002975 DOI: 10.1177/0300985811424734] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The p53 tumor suppressor gene (TP53) is the most frequently altered gene in human cancer. Mutation of the gene has been shown to be an important mechanism of p53 pathway inactivation in a variety of human brain tumors, particularly those of astrocytic origin. Genomic DNA from a series of 37 glial and 51 nonglial canine brain tumors was sequenced to determine the frequency of TP53 gene mutations involving exons 3-9. Exonic mutations were found in 3 of 88 tumors (3.4%) and specifically in 1 of 18 astrocytic tumors (5.5%). This is markedly lower than that reported in comparable human tumors, suggesting that alternative mechanisms of p53 inactivation are likely to be present if p53 function contributes significantly to oncogenesis in canine brain tumors.
Collapse
Affiliation(s)
- D York
- Department of Surgical and Radiological Sciences, Tupper Hall, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Aramayo R, Sherman MB, Brownless K, Lurz R, Okorokov AL, Orlova EV. Quaternary structure of the specific p53-DNA complex reveals the mechanism of p53 mutant dominance. Nucleic Acids Res 2011; 39:8960-71. [PMID: 21764777 PMCID: PMC3203597 DOI: 10.1093/nar/gkr386] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The p53 tumour suppressor is a transcriptional activator that controls cell fate in response to various stresses. p53 can initiate cell cycle arrest, senescence and/or apoptosis via transactivation of p53 target genes, thus preventing cancer onset. Mutations that impair p53 usually occur in the core domain and negate the p53 sequence-specific DNA binding. Moreover, these mutations exhibit a dominant negative effect on the remaining wild-type p53. Here, we report the cryo electron microscopy structure of the full-length p53 tetramer bound to a DNA-encoding transcription factor response element (RE) at a resolution of 21 A. While two core domains from both dimers of the p53 tetramer interact with DNA within the complex, the other two core domains remain available for binding another DNA site. This finding helps to explain the dominant negative effect of p53 mutants based on the fact that p53 dimers are formed co-translationally before the whole tetramer assembles; therefore, a single mutant dimer would prevent the p53 tetramer from binding DNA. The structure indicates that the Achilles' heel of p53 is in its dimer-of-dimers organization, thus the tetramer activity can be negated by mutation in only one allele followed by tumourigenesis.
Collapse
Affiliation(s)
- Ricardo Aramayo
- Crystallography, Institute for Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, UK
| | | | | | | | | | | |
Collapse
|
29
|
Mandal CC, Ghosh-Choudhury N, Yoneda T, Choudhury GG, Ghosh-Choudhury N. Simvastatin prevents skeletal metastasis of breast cancer by an antagonistic interplay between p53 and CD44. J Biol Chem 2011; 286:11314-27. [PMID: 21199873 DOI: 10.1074/jbc.m110.193714] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Substantial data from clinical trials and epidemiological studies show promising results for use of statins in many cancers, including mammary carcinoma. Breast tumor primarily metastasizes to bone to form osteolytic lesions, causing severe pain and pathological fracture. Here, we report that simvastatin acts as an inhibitor of osteolysis in a mouse model of breast cancer skeletal metastasis of human mammary cancer cell MDA-MB-231, which expresses the mutant p53R280K. Simvastatin and lovastatin attenuated migration and invasion of MDA-MB-231 and BT-20 breast tumor cells in culture. Acquisition of phenotype to express the cancer stem cell marker, CD44, leads to invasive potential of the tumor cells. Interestingly, statins significantly decreased the expression of CD44 protein via a transcriptional mechanism. shRNA-mediated down-regulation of CD44 markedly reduced the migration and invasion of breast cancer cells in culture. We identified that in the MDA-MB-231 cells, simvastatin elevated the levels of mutated p53R280K, which was remarkably active as a transcription factor. shRNA-derived inhibition of mutant p53R280K augmented the expression of CD44, leading to increased migration and invasion. Finally, we demonstrate an inverse correlation between expression of p53 and CD44 in the tumors of mice that received simvastatin. Our results reveal a unique function of statins, which foster enhanced expression of mutant p53R280K to prevent breast cancer cell metastasis to bone.
Collapse
Affiliation(s)
- Chandi Charan Mandal
- Department of Pathology, University of Texas Health Science Center, San Antonio, San Antonio, Texas 78229, USA
| | | | | | | | | |
Collapse
|
30
|
Goh AM, Coffill CR, Lane DP. The role of mutant p53 in human cancer. J Pathol 2010; 223:116-26. [PMID: 21125670 DOI: 10.1002/path.2784] [Citation(s) in RCA: 276] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 08/31/2010] [Accepted: 09/15/2010] [Indexed: 12/20/2022]
Abstract
Mutations in the TP53 (p53) gene are present in a large fraction of human tumours, which frequently express mutant p53 proteins at high but heterogeneous levels. The clinical significance of this protein accumulation remains clouded. Mouse models bearing knock-in mutations of p53 have established that the mutant p53 proteins can drive tumour formation, invasion and metastasis through dominant negative inhibition of wild-type p53 as well as through gain of function or 'neomorphic' activities that can inhibit or activate the function of other proteins. These models have also shown that mutation alone does not confer stability, so the variable staining of mutant proteins seen in human cancers reflects tumour-specific activation of p53-stabilizing pathways. Blocking the accumulation and activity of mutant p53 proteins may thus provide novel cancer therapeutic and diagnostic targets, but their induction by chemotherapy may paradoxically limit the effectiveness of these treatments.
Collapse
|
31
|
Kenzelmann Broz D, Attardi LD. In vivo analysis of p53 tumor suppressor function using genetically engineered mouse models. Carcinogenesis 2010; 31:1311-8. [PMID: 20097732 DOI: 10.1093/carcin/bgp331] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
p53 is a crucial tumor suppressor, as evidenced by the high propensity for p53 mutation during human cancer development. Already more than a decade ago, p53 knockout mice confirmed that p53 is critical for preventing tumorigenesis. More recently, a host of p53 knock-in mouse strains has been generated, with the aim of either more precisely modeling p53 mutations in human cancer or better understanding p53's regulation and downstream activities. In the first category, several mouse strains expressing mutant p53 proteins corresponding to human-tumor-derived mutants have demonstrated that mutant p53 is not equivalent to loss of p53 but additionally exhibits gain-of-function properties, promoting invasive and metastatic phenotypes. The second class of p53 knock-in mouse models expressing engineered p53 mutants has also provided new insight into p53 function. For example, mice expressing p53 mutants lacking specific posttranslational modification sites have revealed that these modifications serve to modulate p53 responses in vivo in a cell-type- and stress-specific manner rather than being absolutely required for p53 stabilization and activation as suggested by in vitro experiments. Additionally, studies of p53 mouse models have established that both p53-driven cell-cycle arrest and apoptosis responses contribute to tumor suppression and that activation of p53 by oncogenic stress imposes an important barrier to tumorigenesis. Finally, the use of mouse strains expressing temporally regulatable p53 has demonstrated that p53 loss is not only required for tumor development but also required for tumor maintenance, suggesting that p53 restoration in human cancer patients may be a promising therapeutic strategy. These sophisticated p53 mouse models have taught us important lessons, and new mouse models will certainly continue to reveal interesting and perhaps surprising aspects of p53's complex biology.
Collapse
|
32
|
|
33
|
Ponnamperuma RM, King KE, Elsir T, Glick AB, Wahl GM, Nister M, Weinberg WC. The transcriptional regulatory function of p53 is essential for suppression of mouse skin carcinogenesis and can be dissociated from effects on TGF-beta-mediated growth regulation. J Pathol 2009; 219:263-74. [PMID: 19718706 DOI: 10.1002/path.2600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Transcriptional regulation by p53 is critical for p53-mediated tumour suppression; however, p53-mediated transactivation has been dissociated from p53-mediated biological processes including apoptosis, DNA repair, and differentiation. We compared the effects of a mutant allele, p53(QS - val135), containing a double mutation in the amino-terminus abrogating transactivation activity and a modification at amino acid 135 partially affecting DNA binding, to complete loss of p53. We applied in vitro endpoints correlated with epithelial tumourigenesis and an in vivo assay of tumour phenotype to assess whether loss of p53-mediated transcriptional regulation underlies the malignant phenotype of p53(-/-)/v-ras(Ha)-overexpressing keratinocytes. Transactivation deficiency of p53QS-val135 was confirmed by reporter gene assays in fibroblasts and differentiating keratinocytes. Ras oncogene-induced senescence was lost in both p53(QS - val135/QS - val135) and p53(-/-) keratinocytes. Similarly, p53(QS - val135/QS - val135), like p53(-/-), cooperated with v-ras(Ha) to enhance malignant conversion. The tumours arising in p53(QS - val135/QS - val135) keratinocytes displayed strong nuclear p53 expression; thus, the p53(QS - val135) allele was maintained and the deficient transactivation function of the expressed p53QS mutant protein was supported by absence of p21(waf1) in these tumours. The p53(QS - val135) allele did not confer a dominant-negative phenotype, as p53(+/QS - val135) keratinocytes senesced normally in response to v-ras(Ha) expression and formed benign tumours. While p53(-/-) keratinocytes displayed diminished response to TGF-beta, p53(QS - val135/QS - val135) and p53(+/+) keratinocytes responded equivalently, indicating that the requirement for p53 in maximizing TGF-beta-mediated growth regulation is independent of its transactivation domain and that the ability of keratinocytes to respond to TGF-beta is insufficient to suppress the malignant phenotype in this model. Furthermore, TGF-beta enhances p53QS-induced activation of a dual p53-TGF-beta responsive reporter in a keratinocyte cell line. These findings support an essential role for p53-mediated transcriptional regulation in suppressing malignancies arising from ras-induced skin tumours, consistent with previous findings in spontaneous carcinogenesis in other organs, and highlight the potential importance of senescence for tumour suppression in vivo.
Collapse
|
34
|
Storer RD, Sistare FD, Vijayaraj Reddy M, Degeorge JJ. An Industry Perspective on the Utility of Short-Term Carcinogenicity Testing in Transgenic Mice in Pharmaceutical Development. Toxicol Pathol 2009; 38:51-61. [PMID: 19893055 DOI: 10.1177/0192623309351718] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
International guidelines allow for use of a short-term cancer bioassay (twenty-six weeks) in transgenic mice as a substitute for one of the two required long-term rodent bioassays in the preclinical safety evaluation of pharmaceuticals. The two models that have gained the widest acceptance by sponsors and regulatory authorities are the CB6F1-RasH2 mouse hemizygous for a human H-ras transgene and the B6.129N5-Trp53 mouse heterozygous for a p53 null allele. The p53+/- model is of particular value for compounds with residual concern that genotoxic activity may contribute to tumorigenesis. The rasH2 model is an appropriate alternative without regard to evidence of genotoxic potential. Since results from a short-term bioassay can be obtained relatively early in drug development, there is the potential for more timely assessment of cancer risk for individuals in long-term clinical trials. Use of these models in preclinical safety evaluation also significantly reduces animal use, time, and manpower. Preliminary findings indicate that prediction of two-year rat bioassay outcomes based on data from chronic rat toxicity studies, together with early assessment of carcinogenic potential in short-term transgenic models, may have the potential to increase the timeliness and efficiency of strategies for the identification of human carcinogenic hazards.
Collapse
Affiliation(s)
- Richard D. Storer
- Dept. of Safety Assessment, Merck Research Laboratories,
West Point, Pennsylvania, USA,
| | - Frank D. Sistare
- Dept. of Safety Assessment, Merck Research Laboratories,
West Point, Pennsylvania, USA
| | - M. Vijayaraj Reddy
- Dept. of Safety Assessment, Merck Research Laboratories,
West Point, Pennsylvania, USA
| | - Joseph J. Degeorge
- Dept. of Safety Assessment, Merck Research Laboratories,
West Point, Pennsylvania, USA
| |
Collapse
|
35
|
Abstract
Loss of p53 function occurs during the development of most, if not all, tumour types. This paves the way for genomic instability, tumour-associated changes in metabolism, insensitivity to apoptotic signals, invasiveness and motility. However, the nature of the causal link between early tumorigenic events and the induction of the p53-mediated checkpoints that constitute a barrier to tumour progression remains uncertain. This Review considers the role of the DNA damage response, which is activated during the early stages of tumour development, in mobilizing the tumour suppression function of p53. The relationship between these events and oncogene-induced p53 activation through the ARF pathway is also discussed.
Collapse
Affiliation(s)
- David W Meek
- Biomedical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK.
| |
Collapse
|
36
|
Lim LY, Vidnovic N, Ellisen LW, Leong CO. Mutant p53 mediates survival of breast cancer cells. Br J Cancer 2009; 101:1606-12. [PMID: 19773755 PMCID: PMC2778523 DOI: 10.1038/sj.bjc.6605335] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background: p53 is the most commonly mutated tumour-suppressor gene in human cancers. Unlike other tumour-suppressor genes, most p53 cancer mutations are missense mutations within the core domain, leading to the expression of a full-length mutant p53 protein. Accumulating evidence has indicated that p53 cancer mutants not only lose tumour suppression activity but also gain new oncogenic activities to promote tumourigenesis. Methods: The endogenous mutant p53 function in human breast cancer cells was studied using RNA interference (RNAi). Gene knockdown was confirmed by quantitative PCR and western blotting. Apoptosis was evaluated by morphological changes of cells, their PARP cleavage and annexin V staining. Results: We show that cancer-associated p53 missense mutants are required for the survival of breast cancer cells. Inhibition of endogenous mutant p53 by RNAi led to massive apoptosis in two mutant p53-expressing cell lines, T47D and MDA-MB-468, but not in the wild-type p53-expressing cells, MCF-7 and MCF-10A. Reconstitution of an RNAi-insensitive mutant p53 in MDA-MB-468 cells completely abolished the apoptotic effects after silencing of endogenous mutant p53, suggesting the specific survival effects of mutant p53. The apoptotic effect induced by mutant p53 ablation, however, is independent of p63 or p73 function. Conclusion: These findings provide clear evidence of a pro-survival ‘gain-of-function’ property of a subset of p53 cancer mutants in breast cancer cells.
Collapse
Affiliation(s)
- L Y Lim
- International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|
37
|
Hao J, Liu B, Yang CS, Chen X. Gastroesophageal reflux leads to esophageal cancer in a surgical model with mice. BMC Gastroenterol 2009; 9:59. [PMID: 19627616 PMCID: PMC2723127 DOI: 10.1186/1471-230x-9-59] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 07/23/2009] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Esophago-gastroduodenal anastomosis with rats mimics the development of human Barrett's esophagus and esophageal adenocarcinoma by introducing mixed reflux of gastric and duodenal contents into the esophagus. However, use of this rat model for mechanistic and chemopreventive studies is limited due to lack of genetically modified rat strains. Therefore, a mouse model of esophageal adenocarcinoma is needed. METHODS We performed reflux surgery on wild-type, p53A135V transgenic, and INK4a/Arf+/- mice of A/J strain. Some mice were also treated with omeprazole (1,400 ppm in diet), iron (50 mg/kg/m, i.p.), or gastrectomy plus iron. Mouse esophagi were harvested at 20, 40 or 80 weeks after surgery for histopathological analysis. RESULTS At week 20, we observed metaplasia in wild-type mice (5%, 1/20) and p53A135V mice (5.3%, 1/19). At week 40, metaplasia was found in wild-type mice (16.2%, 6/37), p53A135V mice (4.8%, 2/42), and wild-type mice also receiving gastrectomy and iron (6.7%, 1/15). Esophageal squamous cell carcinoma developed in INK4a/Arf+/- mice (7.1%, 1/14), and wild-type mice receiving gastrectomy and iron (21.4%, 3/14). Among 13 wild-type mice which were given iron from week 40 to 80, twelve (92.3%) developed squamous cell carcinoma at week 80. None of these mice developed esophageal adenocarcinoma. CONCLUSION Surgically induced gastroesophageal reflux produced esophageal squamous cell carcinoma, but not esophageal adenocarcinoma, in mice. Dominant negative p53 mutation, heterozygous loss of INK4a/Arf, antacid treatment, iron supplementation, or gastrectomy failed to promote esophageal adenocarcinoma in these mice. Further studies are needed in order to develop a mouse model of esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Jing Hao
- Department of Chemical Biology, Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | | | | | | |
Collapse
|
38
|
Tanooka H, Tatsumi K, Tsuji H, Noda Y, Katsube T, Ishii H, Ootsuyama A, Takeshita F, Ochiya T. Mutant mouse p53 transgene elevates the chemical induction of tumors that respond to gene silencing with siRNA. Cancer Gene Ther 2009; 17:1-10. [PMID: 19557034 DOI: 10.1038/cgt.2009.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To study the role of mutant p53 in the induction and cure of tumors, we generated transgenic mice carrying mutant p53 (mp53) containing a 9 bp deletion in exon 6 in addition to wild-type p53, expressing both p53 and mp53. The mp53 cDNA was cloned from a radiation-induced mouse tumor and ligated to the chicken beta-actin promoter/CMV-IE enhancer in the expression vector. The presence of mp53 suppressed p21 expression in primary fibroblasts after ionizing irradiation, indicating the dominant-negative activity of mp53 in the mice. These mice developed fibrosarcomas after the subcutaneous injection of 3-methylcholanthrene with an incidence 1.7-fold higher than that of wild-type mice (42% excess). The tumors were then treated via a potent atelocollagen delivery system with small interfering RNA (siRNA), that targeted the promoter/enhancer of the expression vector, resulting in the suppression of tumor growth in 30% of 44 autochthonous tumors, including four cures, and their transplants, the total fraction corresponding to the tumor excess. This suppressive effect involved the induction of apoptosis. These results indicate that mp53 activity causes tumors that can be suppressed by subsequent silencing of mp53 in the presence of wild-type p53 alleles.
Collapse
Affiliation(s)
- H Tanooka
- Biological Effects Research Group, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lee MK, Sabapathy K. The R246S hot-spot p53 mutant exerts dominant-negative effects in embryonic stem cells in vitro and in vivo. J Cell Sci 2008; 121:1899-906. [DOI: 10.1242/jcs.022822] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
p53 is the most frequently mutated tumour-suppressor gene in human cancers. Mutant p53 is thought to contribute to carcinogenesis by the acquisition of gain-of-function properties or through the exertion of dominant-negative (DN) effects over the remaining wild-type protein. However, the context in which the DN effects are observed is not well understood. We have therefore generated `knock-in' mouse embryonic stem (ES) cells to investigate the effects of expressing a commonly found hot-spot p53 mutant, R246S – the mouse equivalent of human R249S, which is associated with hepatocellular carcinomas. We demonstrate here that R246S mutant p53 exhibits DN effects with respect to target gene expression, cell survival and cell cycle arrest both in cells that are in the undifferentiated state and upon differentiation. The knock-in cells contain higher levels of p53 that localizes to the nucleus even in the absence of genotoxic stress and yet remains non-functional, reminiscent of mutant p53 found in human tumours. In a model based on carbon-tetrachloride-induced liver injury, these cells were consistently highly tumorigenic in vivo, similar to p53–/– cells and in contrast to both p53+/+ and p53+/– ES cells. These data therefore indicate that the DN effects of mutant p53 are evident in the stem-cell context, in which its expression is relatively high compared with terminally differentiated cells.
Collapse
Affiliation(s)
- Ming Kei Lee
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11 Hospital Drive, Singapore 169610, Singapore
| | - Kanaga Sabapathy
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11 Hospital Drive, Singapore 169610, Singapore
- Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| |
Collapse
|
40
|
Hsp90 inhibition has opposing effects on wild-type and mutant p53 and induces p21 expression and cytotoxicity irrespective of p53/ATM status in chronic lymphocytic leukaemia cells. Oncogene 2007; 27:2445-55. [PMID: 17982489 DOI: 10.1038/sj.onc.1210893] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In chronic lymphocytic leukaemia (CLL), mutation/deletion of TP53 is strongly associated with early disease progression, resistance to chemotherapy and short patient survival. Consequently, there is a pressing need to develop novel treatment protocols for this high-risk patient group. The present study was performed to evaluate Hsp90 inhibition as a possible therapeutic approach for such patients. Primary CLL cells of defined ataxia telangiectasia mutated (ATM)/p53 status were incubated with the Hsp90 inhibitor geldanamycin (GA) and analysed by western blotting for the expression of p53, p21, MDM2 and Akt. GA downregulated overexpressed mutant p53 protein (an oncogene) and upregulated wild-type (wt) p53 (a tumour suppressor). The upregulation of wt p53 by GA was independent of ATM and was accompanied by downregulation of Akt and the active form of MDM2, indicating a possible mechanism. GA also produced a p53/ATM-independent increase in the levels of p21-a potent inducer of cell-cycle arrest. In-vitro cytotoxicity studies showed that GA killed cultured CLL cells in a dose- and time-dependent fashion irrespective of their p53/ATM status and more effectively than normal blood mononuclear cells. In summary, our findings reveal important consequences of inhibiting Hsp90 in CLL cells and strongly support the therapeutic evaluation of Hsp90 inhibitors in poor-prognosis patients with p53 defects.
Collapse
|
41
|
Nagase H, Bryson S, Fee F, Balmain A. Multigenic control of skin tumour development in mice. CIBA FOUNDATION SYMPOSIUM 2007; 197:156-68; discussion 168-80. [PMID: 8827373 DOI: 10.1002/9780470514887.ch9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Different inbred mouse strains vary greatly in their susceptibility to tumour development in a variety of tissues. Intraspecific and interspecific crosses can, therefore, be used to map the loci that control this predisposition. Crosses of Mus musculus with Mus spretus are highly resistant to tumour development in the skin, liver, lung and lymphoid system. M. spretus, therefore, has dominantly acting resistance loci, which we have attempted to map. More than 350 interspecific backcross mice were followed for 18 months to assess susceptibility to development of chemically induced papillomas and carcinomas. The results were analysed using a combination of MAPMAKER/QTL analysis and multiple regression analysis for the determination of linkage in multigenic quantitative traits. The results showed clearly that at least three genes on chromosomes 5 and 7 control resistance to tumour development. Importantly, some genes confer resistance to benign tumours but they have relatively little effect on malignant progression. This suggests the existence of different classes of benign tumours: those that are capable of tumour progression and those that have only a very low probability of becoming malignant. Identification of these genes will improve our understanding of mechanisms of carcinogenesis and may provide a novel route to the identification of "low-penetrance' human tumour susceptibility genes.
Collapse
Affiliation(s)
- H Nagase
- CRC Beatson Laboratories, Department of Medical Oncology, University of Glasgow, UK
| | | | | | | |
Collapse
|
42
|
Wijnhoven SWP, Speksnijder EN, Liu X, Zwart E, vanOostrom CTM, Beems RB, Hoogervorst EM, Schaap MM, Attardi LD, Jacks T, van Steeg H, Jonkers J, de Vries A. Dominant-negative but not gain-of-function effects of a p53.R270H mutation in mouse epithelium tissue after DNA damage. Cancer Res 2007; 67:4648-56. [PMID: 17510390 DOI: 10.1158/0008-5472.can-06-4681] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
p53 alterations in human tumors often involve missense mutations that may confer dominant-negative or gain-of-function properties. Dominant-negative effects result in inactivation of wild-type p53 protein in heterozygous mutant cells and as such in a p53 null phenotype. Gain-of-function effects can directly promote tumor development or metastasis through antiapoptotic mechanisms or transcriptional activation of (onco)genes. Here, we show, using conditional mouse technology, that epithelium-specific heterozygous expression of mutant p53 (i.e., the p53.R270H mutation that is equivalent to the human hotspot R273H) results in an increased incidence of spontaneous and UVB-induced skin tumors. Expression of p53.R270H exerted dominant-negative effects on latency, multiplicity, and progression status of UVB-induced but not spontaneous tumors. Surprisingly, gain-of-function properties of p53.R270H were not detected in skin epithelium. Apparently, dominant-negative and gain-of-function effects of mutant p53 are highly tissue specific and become most manifest upon stabilization of p53 after DNA damage.
Collapse
Affiliation(s)
- Susan W P Wijnhoven
- Laboratory of Toxicology, Pathology and Genetics, National Institute of Public Health and the Environment, Bilthoven, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Renema WKJ, Kan HE, Wieringa B, Heerschap A. In vivo magnetic resonance spectroscopy of transgenic mouse models with altered high-energy phosphoryl transfer metabolism. NMR IN BIOMEDICINE 2007; 20:448-67. [PMID: 17274105 DOI: 10.1002/nbm.1117] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Studies of transgenic mice provide powerful means to investigate the in vivo biological significance of gene products. Mice with an under- or overexpression of enzymes involved in high-energy phosphoryl transfer (approximately P) are particulary attractive for in vivo MR spectroscopy studies as the substrates of these enzymes are metabolites that are visible in MR spectra. This review provides a brief overview of the strategies used for generation and study of genetically altered mice and introduces the reader to some practical aspects of in vivo MRS studies on mice. The major part of the paper reviews results of in vivo MRS studies on transgenic mice with alterations in the expression of enzymes involved in approximately P metabolism, such as creatine kinase, adenylate kinase and guanidinoacetate methyl transferase. The particular metabolic consequences of these enzyme deficiencies in skeletal muscle, brain, heart and liver are addressed. Additionally, the use of approximately P systems as markers of gene expression by MRS, such as after viral transduction of genes, is described. Finally, a compilation of tissue levels of metabolites in skeletal muscle, heart and brain of wild-type and transgenic mice, as determined by in vivo MRS, is given. During the last decade, transgenic MRS studies have contributed significantly to our understanding of the physiological role of phosphotransfer enzymes, and to the view that these enzymes together build a much larger metabolic energy network that is highly versatile and can dynamically adapt to intrinsic genotoxic and extrinsic physiological challenges.
Collapse
Affiliation(s)
- W Klaas Jan Renema
- Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
44
|
Del Re DP, Miyamoto S, Brown JH. RhoA/Rho kinase up-regulate Bax to activate a mitochondrial death pathway and induce cardiomyocyte apoptosis. J Biol Chem 2007; 282:8069-78. [PMID: 17234627 DOI: 10.1074/jbc.m604298200] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small G-protein RhoA regulates the actin cytoskeleton, and its involvement in cell proliferation has also been established. In contrast, little is known about whether RhoA participates in cell survival or apoptosis. In cardiomyocytes in vitro, RhoA induces hypertrophic cell growth and gene expression. In vivo, however, RhoA expression leads to development of heart failure (Sah, V. P., Minamisawa, S., Tam, S. P., Wu, T. H., Dorn, G. W., Ross, J. Jr., Chien, K. R., and Brown, J. H. (1999) J. Clin. Investig. 103, 1627-1634), a condition widely associated with cardiomyocyte apoptosis. We demonstrate here that adenoviral overexpression of activated RhoA in cardiomyocytes induces hypertrophy, which transitions over time to apoptosis, as evidenced by caspase activation and nucleosomal DNA fragmentation. The Rho kinase inhibitors Y-27632 and HA-1077 and expression of a dominant negative Rho kinase block these responses. Caspase-9, but not caspase-8, is activated, and its inhibition prevents DNA fragmentation, consistent with involvement of a mitochondrial death pathway. Interestingly, RhoA expression induces a 3-4-fold up-regulation of the proapoptotic Bcl-2 family protein Bax. RhoA also increases levels of activated Bax and the amount of Bax protein localized at mitochondria. Bax mRNA is increased by RhoA, indicating transcriptional regulation, and the ability of a dominant negative p53 mutant to block Bax up-regulation implicates p53 in this response. The involvement of Bax in RhoA-induced apoptosis was examined by treatment with a Bax-inhibitory peptide, which was found to significantly attenuate DNA fragmentation and caspase-9 and -3 activation. The dominant negative p53 also prevents RhoA-induced apoptosis. We conclude that RhoA/Rho kinase activation up-regulates Bax through p53 to induce a mitochondrial death pathway and cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Dominic P Del Re
- Department of Pharmacology and Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
45
|
Lai KC, Lee TC. Genetic damage in cultured human keratinocytes stressed by long-term exposure to areca nut extracts. Mutat Res 2006; 599:66-75. [PMID: 16488451 DOI: 10.1016/j.mrfmmm.2006.01.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 01/07/2006] [Accepted: 01/12/2006] [Indexed: 05/06/2023]
Abstract
Chewing betel quid (BQ) is a popular habit worldwide. A causal association between BQ chewing and oral cancer has been well documented. Emerging evidence indicates that sustained exposure to stress induces epigenetic reprogramming of some mammalian cells and increases the mutation rate to accelerate adaptation to stressful environments. In this study, we first confirmed that 24-h treatment with areca nut extracts (ANE; a major component of BQ) at doses over 40 microg/ml induced mutations at the hypoxanthine phosphoribisyltransferase (HPRT) locus in human keratinocytes (HaCaT cells). We then investigated whether the stress of long-term exposure to sublethal doses of ANE (0, 5 and 20 microg/ml for 35 passages) could enhance genetic damage to HaCaT cells. Compared to cells exposed to 0 or 5 microg/ml ANE, cells exposed to 20 microg/ml ANE were slightly but significantly more resistant to a 72-h treatment with ANE and its major ingredients, arecoline and arecaidine, but did not develop cross-resistance to other BQ ingredients or alcohol. The cells that received 20 microg/ml ANE for 35 passages also had a significantly increased mutation frequency at the HPRT locus and an increased frequency in the appearance of micronuclei compared to lower doses. Moreover, increased intracellular levels of reactive oxygen species and 8-hydroxyguanosine in cells exposed to 20 microg/ml ANE suggested that long-term ANE exposure results in the accumulation of oxidative damage. However, cells subjected to long-term treatment of 20 microg/ml ANE contained higher levels of glutathione than unexposed cells. Therefore, after long-term exposure to sublethal doses of ANE, intracellular antioxidative activity may also be enhanced in response to increased oxidative stress. These results suggest that stress caused by long-term ANE exposure enhances oxidative stress and genetic damage in human keratinocytes.
Collapse
Affiliation(s)
- Kuo-Chu Lai
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan, ROC
| | | |
Collapse
|
46
|
Mizuarai S, Yamanaka K, Kotani H. Mutant p53 Induces the GEF-H1 Oncogene, a Guanine Nucleotide Exchange Factor-H1 for RhoA, Resulting in Accelerated Cell Proliferation in Tumor Cells. Cancer Res 2006; 66:6319-26. [PMID: 16778209 DOI: 10.1158/0008-5472.can-05-4629] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The tumor suppressor gene p53 is known to induce G1-S and G2-M cell cycle arrest and apoptosis by transactivating various wild-type (WT) p53 regulatory genes. Mutational inactivation of p53 is detected in more than half of human cancers, depriving the p53 protein of its tumor-suppressive functions. Recent studies have shown that mutant p53 provides tumor cells with gain-of-function properties, such as accelerated cell proliferation, increased metastasis, and apoptosis resistance. However, the mechanism underlying the elevated tumorigenicity by p53 mutation remains to be elucidated. In the present study, we showed that GEF-H1, a guanine exchange factor-H1 for RhoA, is transcriptionally activated by the induction of mutant p53 proteins, thereby accelerating tumor cell proliferation. Osteosarcoma U2OS cell lines, which express inducible p53 mutants (V157F, R175H, and R248Q), were established, and the expression profiles of each cell line were then analyzed to detect genes specifically induced by mutant p53. We identified GEF-H1 as one of the consensus genes whose expression was significantly induced by the three mutants. The GEF-H1 expression level strongly correlated with p53 status in a panel of 32 cancer cell lines, and GEF-H1 induction caused activation of RhoA. Furthermore, growth of mutant p53 cells was dependent on GEF-H1 expression, whereas that of WT p53 cells was not. These results suggest that increased GEF-H1 expression contributes to the tumor progression phenotype associated with the p53 mutation.
Collapse
Affiliation(s)
- Shinji Mizuarai
- Functional Genomics, Banyu Tsukuba Research Institute, Merck Research Laboratory, Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|
47
|
Abstract
The p53 tumor suppressor gene (TP53) is the most frequently altered gene in human cancer and is also found mutated in several types of brain tumors. Loss of p53 function plays a central role in the development of cancer. The characterization of the biochemical pathways by which p53 alteration triggers tumorigenesis is the foundation for the design of novel therapeutic approaches. Investigations of the intracellular mechanisms at the origin of p53 tumor suppressive functions have shown that p53 is a transcription factor able to sense a variety of cellular insults and induce a dual response: cell growth arrest/senescence or apoptosis. Less well studied are p53's influences on extracellular events such as tumor angiogenesis, immunology and invasion. Here, we review these findings and specifically discuss their implications for brain tumor genesis, molecular diagnosis and prognosis. Of clinical importance are the findings that brain tumors with wild type (wt) or mutant p53 status may respond differently to radiation therapy and that novel therapeutic strategies using TP53 gene transfer or specifically targeting tumor cells with mutated p53 are being evaluated in clinical trials.
Collapse
Affiliation(s)
- Giulia Fulci
- Laboratory of Tumor Biology and Genetics, Neurosurgery Dept., University Hospital (CHUV), 1011 Lausanne, Switzerland
- Laboratory of Molecular Neuro‐Oncology, Department of Neurological Surgery and Winship Cancer Center, Emory University, Atlanta, Georgia 30322, USA
| | - Nobuaki Ishii
- Laboratory of Tumor Biology and Genetics, Neurosurgery Dept., University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Erwin G. Van Meir
- Laboratory of Tumor Biology and Genetics, Neurosurgery Dept., University Hospital (CHUV), 1011 Lausanne, Switzerland
- Laboratory of Molecular Neuro‐Oncology, Department of Neurological Surgery and Winship Cancer Center, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
48
|
|
49
|
Wang Y, Zhang Z, Lubet RA, You M. A mouse model for tumor progression of lung cancer in ras and p53 transgenic mice. Oncogene 2006; 25:1277-80. [PMID: 16247444 DOI: 10.1038/sj.onc.1209182] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although ras and p53 are the most commonly found oncogene and tumor suppressor gene, respectively, in human cancers, their collective roles in tumor progression have yet to be defined in animal models. Here, we demonstrated the synergistic effect between ras and p53 in promoting tumor progression during lung tumorigenesis using bitransgenic mice. Mice with a heterozygous knockout of K-ras (K-ras(wt/ko)) were mated to p53 transgenic mice (p53(val135/wt)) in lung tumorigenesis (K-ras(wt/ko) x p53(val135/wt)). F(1) mice exhibited a significant increase in lung tumor load (tumor multiplicity x tumor volume) when compared to those seen in either K-ras(wt/ko) mice or p53(val135/wt) mice alone. Furthermore, over 50% of the lung tumors were lung adenocarcinomas in bitransgenic mice compared to only 3% in wild-type mice. Alterations of ras and p53 appear to promote the development of lung adenocarcinomas. These results provide the in vivo experimental evidence of synergistic interactions of ras and p53 in lung tumor progression.
Collapse
Affiliation(s)
- Y Wang
- Department of Surgery and The Alvin J Siteman Cancer Center, Washington University School of Medicine, St Louis, MI 63110, USA
| | | | | | | |
Collapse
|
50
|
Amikura T, Sekine M, Hirai Y, Fujimoto S, Hatae M, Kobayashi I, Fujii T, Nagata I, Ushijima K, Obata K, Suzuki M, Yoshinaga M, Umesaki N, Satoh S, Enomoto T, Motoyama S, Nishino K, Haino K, Tanaka K. Mutational analysis of TP53 and p21 in familial and sporadic ovarian cancer in Japan. Gynecol Oncol 2006; 100:365-71. [PMID: 16337994 DOI: 10.1016/j.ygyno.2005.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Revised: 08/27/2005] [Accepted: 09/06/2005] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To investigate whether somatic mutations in cell cycle checkpoint genes, TP53 and p21, are involved in the development of ovarian cancer with or without BRCA1 germline mutation. METHODS We analyzed somatic genetic alterations of TP53 and p21 in 46 ovarian cancer patients with BRCA1 germline mutations and 93 sporadic patients, using direct sequencing for the entire coding sequences in TP53 and p21. RESULTS TP53 somatic mutations were detected in 25 of the 46 BRCA1 cases and 40 of the 93 sporadic cases (54.3% vs. 43.0%). In contrast, p21 somatic mutations were detected in 1 of the 46 BRCA1 cases and 2 of the 93 sporadic cases (2.2% vs. 2.2%). TP53 mutations in sporadic cases more frequently occurred in exons 6-11 than those in cases with germline BRCA1 mutations (84.4% vs. 56.3%: P = 0.013). The proportion of sporadic cases with TP53 mutations in non-serous tumors (e.g. endometrioid, clear cell, or mucinous) was significantly lower than that in serous tumors (18.5% vs. 53.0%: P = 0.0038). However, there was no significant difference between the proportion of BRCA1 cases with TP53 mutation in non-serous and in serous tumors (37.5% vs. 57.9%). CONCLUSIONS Our results suggest that somatic mutation of TP53 plays less of a role in the carcinogenesis of sporadic non-serous tumors than in that of sporadic serous tumors or BRCA1-related tumors. Furthermore, p21 somatic mutation appears to be less involved in the development of ovarian cancer than TP53 somatic mutation.
Collapse
Affiliation(s)
- Takayuki Amikura
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Science, 1-757 Asahimachi-dori, 951-8510 Niigata City, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|