1
|
Dragoi CM, Kaur E, Barr AR, Tyson JJ, Novák B. The oscillation of mitotic kinase governs cell cycle latches in mammalian cells. J Cell Sci 2024; 137:jcs261364. [PMID: 38206091 PMCID: PMC10911285 DOI: 10.1242/jcs.261364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The mammalian cell cycle alternates between two phases - S-G2-M with high levels of A- and B-type cyclins (CycA and CycB, respectively) bound to cyclin-dependent kinases (CDKs), and G1 with persistent degradation of CycA and CycB by an activated anaphase promoting complex/cyclosome (APC/C) bound to Cdh1 (also known as FZR1 in mammals; denoted APC/C:Cdh1). Because CDKs phosphorylate and inactivate Cdh1, these two phases are mutually exclusive. This 'toggle switch' is flipped from G1 to S by cyclin-E bound to a CDK (CycE:CDK), which is not degraded by APC/C:Cdh1, and from M to G1 by Cdc20-bound APC/C (APC/C:Cdc20), which is not inactivated by CycA:CDK or CycB:CDK. After flipping the switch, cyclin E is degraded and APC/C:Cdc20 is inactivated. Combining mathematical modelling with single-cell timelapse imaging, we show that dysregulation of CycB:CDK disrupts strict alternation of the G1-S and M-G1 switches. Inhibition of CycB:CDK results in Cdc20-independent Cdh1 'endocycles', and sustained activity of CycB:CDK drives Cdh1-independent Cdc20 endocycles. Our model provides a mechanistic explanation for how whole-genome doubling can arise, a common event in tumorigenesis that can drive tumour evolution.
Collapse
Affiliation(s)
- Calin-Mihai Dragoi
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Ekjot Kaur
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Alexis R. Barr
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - John J. Tyson
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Béla Novák
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
2
|
Pluta AJ, Studniarek C, Murphy S, Norbury CJ. Cyclin-dependent kinases: Masters of the eukaryotic universe. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1816. [PMID: 37718413 PMCID: PMC10909489 DOI: 10.1002/wrna.1816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
A family of structurally related cyclin-dependent protein kinases (CDKs) drives many aspects of eukaryotic cell function. Much of the literature in this area has considered individual members of this family to act primarily either as regulators of the cell cycle, the context in which CDKs were first discovered, or as regulators of transcription. Until recently, CDK7 was the only clear example of a CDK that functions in both processes. However, new data points to several "cell-cycle" CDKs having important roles in transcription and some "transcriptional" CDKs having cell cycle-related targets. For example, novel functions in transcription have been demonstrated for the archetypal cell cycle regulator CDK1. The increasing evidence of the overlap between these two CDK types suggests that they might play a critical role in coordinating the two processes. Here we review the canonical functions of cell-cycle and transcriptional CDKs, and provide an update on how these kinases collaborate to perform important cellular functions. We also provide a brief overview of how dysregulation of CDKs contributes to carcinogenesis, and possible treatment avenues. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | | | - Shona Murphy
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Chris J. Norbury
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
3
|
Nie BX, Zhao G, Yuan XF, Yu LX, Zhang J, Yuan Y, Liu Y, Hu J, Song E, Zhou YC, Shu J. Inhibition of CDK1 attenuates neuronal apoptosis and autophagy and confers neuroprotection after chronic spinal cord injury in vivo. J Chem Neuroanat 2021; 119:102053. [PMID: 34839004 DOI: 10.1016/j.jchemneu.2021.102053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 10/19/2022]
Abstract
Chronic spinal cord injury (CSCI) results from progressive compression of the spinal cord over time. A variety of factors cause CSCI, and its exact pathogenesis is unknown. Cyclin-dependent kinase 1 (CDK1) is closely related to the apoptosis pathway, but no CSCI-related studies on CDK1 have been conducted. In this study, the role of CDK1 in CSCI was explored in a rat model. The CSCI model was established by screw compression using the cervical anterior approach for twelve weeks. The neurological function of the rats was evaluated using the neurological severity scores (NSS) and motor evoked potentials (MEPs). Pathological changes in spinal cord tissue were observed by hematoxylin-eosin (HE) staining, and Nissl staining was performed to assess the survival of motor neurons in the anterior horn of the spinal cord. Changes in autophagy and apoptosis in anterior horn of spinal cord tissue were detected using transmission electron microscopy and the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, respectively. The expression levels of glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor (IBA) and choline acetyltransferase (CHAT) in the anterior horn were determined using immunohistochemistry assays to investigate astrocytes, microglia and motor neurons, respectively, in the anterior horn. Western blot assays were used to detect the expression levels of CDK1, Bcl-2, Bax, Caspase 3, LC3 and Beclin1. Changes in the expression of CDK1, LC3 and Beclin1 were also observed using immunohistochemistry. The results indicated that CSCI resulted in neuronal injury and a decrease in the NSS. In the CSCI model group, anterior horn astrocytes and microglia were activated, and motor neurons were decreased. Neuronal apoptosis was promoted, and the number of autophagic vacuoles was elevated. Rats treated with the CDK1 shRNA lentivirus exhibited better NSS, more surviving motor neurons, and fewer apoptotic neurons than the model rats. The occurrence of autophagy and the expression of proapoptotic and autophagy-related proteins were lower in the CDK1 shRNA group than the model group. In conclusion, CDK1 downregulation suppressed the activation of anterior horn astrocytes and microglia, promoted motor neuron repair, and inhibited neurons apoptosis and autophagy to promote the recovery of motor function after spinal cord injury.
Collapse
Affiliation(s)
- Bang-Xu Nie
- Traumatology Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming 650106, Yunnan, China
| | - Gang Zhao
- Traumatology Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming 650106, Yunnan, China
| | - Xiao-Feng Yuan
- Department of Orthopedics, Affiliated Calmette Hospital of Kunming Medical University, Kunming 650224, Yunnan, China
| | - Lin-Xin Yu
- Department of Orthopedics, Affiliated Calmette Hospital of Kunming Medical University, Kunming 650224, Yunnan, China
| | - Jin Zhang
- Department of Orthopedics, Affiliated Calmette Hospital of Kunming Medical University, Kunming 650224, Yunnan, China
| | - Yong Yuan
- Traumatology Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming 650106, Yunnan, China
| | - Yao Liu
- College of Rehabilitation, Kunming Medical University, Kunming 650504, Yunnan, China
| | - Jun Hu
- Department of Orthopedics, Affiliated Calmette Hospital of Kunming Medical University, Kunming 650224, Yunnan, China
| | - En Song
- Department of Sports Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Yu-Cheng Zhou
- Department of Orthopedics, Yunnan Provincial Rehabilitation Center for the Disabled Persons, Kunming 650034, Yunnan, China
| | - Jun Shu
- Traumatology Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming 650106, Yunnan, China.
| |
Collapse
|
4
|
Lau HW, Ma HT, Yeung TK, Tam MY, Zheng D, Chu SK, Poon RYC. Quantitative differences between cyclin-dependent kinases underlie the unique functions of CDK1 in human cells. Cell Rep 2021; 37:109808. [PMID: 34644583 DOI: 10.1016/j.celrep.2021.109808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/19/2021] [Accepted: 09/16/2021] [Indexed: 01/22/2023] Open
Abstract
One of the most intriguing features of cell-cycle control is that, although there are multiple cyclin-dependent kinases (CDKs) in higher eukaryotes, a single CDK is responsible for both G1-S and G2-M in yeasts. By leveraging a rapid conditional silencing system in human cell lines, we confirm that CDK1 assumes the role of G1-S CDK in the absence of CDK2. Unexpectedly, CDK1 deficiency does not prevent mitotic entry. Nonetheless, inadequate phosphorylation of mitotic substrates by noncanonical cyclin B-CDK2 complexes does not allow progression beyond metaphase and underscores deleterious late mitotic events, including the uncoupling of anaphase A and B and cytokinesis. Elevation of CDK2 to a level similar to CDK1 overcomes the mitotic defects caused by CDK1 deficiency, indicating that the relatively low concentration of CDK2 accounts for the defective anaphase. Collectively, these results reveal that the difference between G2-M and G1-S CDKs in human cells is essentially quantitative.
Collapse
Affiliation(s)
- Ho Wai Lau
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Hoi Tang Ma
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Tsz Kwan Yeung
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Man Yee Tam
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Danyi Zheng
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Siu Ki Chu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Randy Yat Choi Poon
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong; Center for Cancer Research and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
| |
Collapse
|
5
|
Ow JR, Cadez MJ, Zafer G, Foo JC, Li HY, Ghosh S, Wollmann H, Cazenave-Gassiot A, Ong CB, Wenk MR, Han W, Choi H, Kaldis P. Remodeling of whole-body lipid metabolism and a diabetic-like phenotype caused by loss of CDK1 and hepatocyte division. eLife 2020; 9:63835. [PMID: 33345777 PMCID: PMC7771968 DOI: 10.7554/elife.63835] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022] Open
Abstract
Cell cycle progression and lipid metabolism are well-coordinated processes required for proper cell proliferation. In liver diseases that arise from dysregulated lipid metabolism, hepatocyte proliferation is diminished. To study the outcome of CDK1 loss and blocked hepatocyte proliferation on lipid metabolism and the consequent impact on whole-body physiology, we performed lipidomics, metabolomics, and RNA-seq analyses on a mouse model. We observed reduced triacylglycerides in liver of young mice, caused by oxidative stress that activated FOXO1 to promote the expression of Pnpla2/ATGL. Additionally, we discovered that hepatocytes displayed malfunctioning β-oxidation, reflected by increased acylcarnitines (ACs) and reduced β-hydroxybutyrate. This led to elevated plasma free fatty acids (FFAs), which were transported to the adipose tissue for storage and triggered greater insulin secretion. Upon aging, chronic hyperinsulinemia resulted in insulin resistance and hepatic steatosis through activation of LXR. Here, we demonstrate that loss of hepatocyte proliferation is not only an outcome but also possibly a causative factor for liver pathology.
Collapse
Affiliation(s)
- Jin Rong Ow
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Matias J Cadez
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Gözde Zafer
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Juat Chin Foo
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Hong Yu Li
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), A*STAR, Singapore, Singapore
| | - Soumita Ghosh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Heike Wollmann
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Chee Bing Ong
- Biological Resource Centre (BRC), A*STAR, Singapore, Singapore
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Weiping Han
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), A*STAR, Singapore, Singapore
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,Department of Clinical Sciences, Lund University, Clinical Research Centre (CRC), Malmö, Sweden
| |
Collapse
|
6
|
Dewhurst MR, Ow JR, Zafer G, van Hul NKM, Wollmann H, Bisteau X, Brough D, Choi H, Kaldis P. Loss of hepatocyte cell division leads to liver inflammation and fibrosis. PLoS Genet 2020; 16:e1009084. [PMID: 33147210 PMCID: PMC7641358 DOI: 10.1371/journal.pgen.1009084] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
The liver possesses a remarkable regenerative capacity based partly on the ability of hepatocytes to re-enter the cell cycle and divide to replace damaged cells. This capability is substantially reduced upon chronic damage, but it is not clear if this is a cause or consequence of liver disease. Here, we investigate whether blocking hepatocyte division using two different mouse models affects physiology as well as clinical liver manifestations like fibrosis and inflammation. We find that in P14 Cdk1Liv-/- mice, where the division of hepatocytes is abolished, polyploidy, DNA damage, and increased p53 signaling are prevalent. Cdk1Liv-/- mice display classical markers of liver damage two weeks after birth, including elevated ALT, ALP, and bilirubin levels, despite the lack of exogenous liver injury. Inflammation was further studied using cytokine arrays, unveiling elevated levels of CCL2, TIMP1, CXCL10, and IL1-Rn in Cdk1Liv-/- liver, which resulted in increased numbers of monocytes. Ablation of CDK2-dependent DNA re-replication and polyploidy in Cdk1Liv-/- mice reversed most of these phenotypes. Overall, our data indicate that blocking hepatocyte division induces biological processes driving the onset of the disease phenotype. It suggests that the decrease in hepatocyte division observed in liver disease may not only be a consequence of fibrosis and inflammation, but also a pathological cue.
Collapse
Affiliation(s)
- Matthew R. Dewhurst
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore
- Lydia Becker Institute of Immunology and Inflammation; and Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Jin Rong Ow
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore
| | - Gözde Zafer
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore
- Department of Biochemistry, National University of Singapore (NUS), Singapore
| | - Noémi K. M. van Hul
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore
| | - Heike Wollmann
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore
| | - Xavier Bisteau
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore
| | - David Brough
- Lydia Becker Institute of Immunology and Inflammation; and Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Hyungwon Choi
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore
- Department of Biochemistry, National University of Singapore (NUS), Singapore
- Department of Clinical Sciences, Lund University, Clinical Research Centre (CRC), Sweden
- * E-mail:
| |
Collapse
|
7
|
Haneke K, Schott J, Lindner D, Hollensen AK, Damgaard CK, Mongis C, Knop M, Palm W, Ruggieri A, Stoecklin G. CDK1 couples proliferation with protein synthesis. J Cell Biol 2020; 219:e201906147. [PMID: 32040547 PMCID: PMC7054999 DOI: 10.1083/jcb.201906147] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/20/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022] Open
Abstract
Cell proliferation exerts a high demand on protein synthesis, yet the mechanisms coupling the two processes are not fully understood. A kinase and phosphatase screen for activators of translation, based on the formation of stress granules in human cells, revealed cell cycle-associated kinases as major candidates. CDK1 was identified as a positive regulator of global translation, and cell synchronization experiments showed that this is an extramitotic function of CDK1. Different pathways including eIF2α, 4EBP, and S6K1 signaling contribute to controlling global translation downstream of CDK1. Moreover, Ribo-Seq analysis uncovered that CDK1 exerts a particularly strong effect on the translation of 5'TOP mRNAs, which includes mRNAs encoding ribosomal proteins and several translation factors. This effect requires the 5'TOP mRNA-binding protein LARP1, concurrent to our finding that LARP1 phosphorylation is strongly dependent on CDK1. Thus, CDK1 provides a direct means to couple cell proliferation with biosynthesis of the translation machinery and the rate of protein synthesis.
Collapse
Affiliation(s)
- Katharina Haneke
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Johanna Schott
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Doris Lindner
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Anne Kruse Hollensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Cyril Mongis
- Center for Molecular Biology of Heidelberg University, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Michael Knop
- Center for Molecular Biology of Heidelberg University, DKFZ-ZMBH Alliance, Heidelberg, Germany
- Cell Morphogenesis and Signal Transduction, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Wilhelm Palm
- Cell Signaling and Metabolism, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, University of Heidelberg, Heidelberg, Germany
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University, DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
8
|
Rotelli MD, Policastro RA, Bolling AM, Killion AW, Weinberg AJ, Dixon MJ, Zentner GE, Walczak CE, Lilly MA, Calvi BR. A Cyclin A-Myb-MuvB-Aurora B network regulates the choice between mitotic cycles and polyploid endoreplication cycles. PLoS Genet 2019; 15:e1008253. [PMID: 31291240 PMCID: PMC6645565 DOI: 10.1371/journal.pgen.1008253] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/22/2019] [Accepted: 06/18/2019] [Indexed: 12/30/2022] Open
Abstract
Endoreplication is a cell cycle variant that entails cell growth and periodic genome duplication without cell division, and results in large, polyploid cells. Cells switch from mitotic cycles to endoreplication cycles during development, and also in response to conditional stimuli during wound healing, regeneration, aging, and cancer. In this study, we use integrated approaches in Drosophila to determine how mitotic cycles are remodeled into endoreplication cycles, and how similar this remodeling is between induced and developmental endoreplicating cells (iECs and devECs). Our evidence suggests that Cyclin A / CDK directly activates the Myb-MuvB (MMB) complex to induce transcription of a battery of genes required for mitosis, and that repression of CDK activity dampens this MMB mitotic transcriptome to promote endoreplication in both iECs and devECs. iECs and devECs differed, however, in that devECs had reduced expression of E2F1-dependent genes that function in S phase, whereas repression of the MMB transcriptome in iECs was sufficient to induce endoreplication without a reduction in S phase gene expression. Among the MMB regulated genes, knockdown of AurB protein and other subunits of the chromosomal passenger complex (CPC) induced endoreplication, as did knockdown of CPC-regulated cytokinetic, but not kinetochore, proteins. Together, our results indicate that the status of a CycA-Myb-MuvB-AurB network determines the decision to commit to mitosis or switch to endoreplication in both iECs and devECs, and suggest that regulation of different steps of this network may explain the known diversity of polyploid cycle types in development and disease.
Collapse
Affiliation(s)
- Michael D. Rotelli
- Department of Biology. Indiana University, Bloomington, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
| | - Robert A. Policastro
- Department of Biology. Indiana University, Bloomington, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
| | - Anna M. Bolling
- Department of Biology. Indiana University, Bloomington, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
| | - Andrew W. Killion
- Department of Biology. Indiana University, Bloomington, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
| | - Abraham J. Weinberg
- Department of Biology. Indiana University, Bloomington, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
| | - Michael J. Dixon
- Department of Biology. Indiana University, Bloomington, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
| | - Gabriel E. Zentner
- Department of Biology. Indiana University, Bloomington, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
| | - Claire E. Walczak
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
- Indiana University School of Medicine, Bloomington, Indiana, United States of America
| | - Mary A. Lilly
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brian R. Calvi
- Department of Biology. Indiana University, Bloomington, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
- Indiana University School of Medicine, Bloomington, Indiana, United States of America
| |
Collapse
|
9
|
García-Gutiérrez L, Delgado MD, León J. MYC Oncogene Contributions to Release of Cell Cycle Brakes. Genes (Basel) 2019; 10:E244. [PMID: 30909496 PMCID: PMC6470592 DOI: 10.3390/genes10030244] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Promotion of the cell cycle is a major oncogenic mechanism of the oncogene c-MYC (MYC). MYC promotes the cell cycle by not only activating or inducing cyclins and CDKs but also through the downregulation or the impairment of the activity of a set of proteins that act as cell-cycle brakes. This review is focused on the role of MYC as a cell-cycle brake releaser i.e., how MYC stimulates the cell cycle mainly through the functional inactivation of cell cycle inhibitors. MYC antagonizes the activities and/or the expression levels of p15, ARF, p21, and p27. The mechanism involved differs for each protein. p15 (encoded by CDKN2B) and p21 (CDKN1A) are repressed by MYC at the transcriptional level. In contrast, MYC activates ARF, which contributes to the apoptosis induced by high MYC levels. At least in some cells types, MYC inhibits the transcription of the p27 gene (CDKN1B) but also enhances p27's degradation through the upregulation of components of ubiquitin ligases complexes. The effect of MYC on cell-cycle brakes also opens the possibility of antitumoral therapies based on synthetic lethal interactions involving MYC and CDKs, for which a series of inhibitors are being developed and tested in clinical trials.
Collapse
Affiliation(s)
- Lucía García-Gutiérrez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) CSIC-Universidad de Cantabria and Department of Biología Molecular, Universidad de Cantabria, 39011 Santander, Spain.
- Current address: Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
| | - María Dolores Delgado
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) CSIC-Universidad de Cantabria and Department of Biología Molecular, Universidad de Cantabria, 39011 Santander, Spain.
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) CSIC-Universidad de Cantabria and Department of Biología Molecular, Universidad de Cantabria, 39011 Santander, Spain.
| |
Collapse
|
10
|
Motea EA, Fattah FJ, Xiao L, Girard L, Rommel A, Morales JC, Patidar P, Zhou Y, Porter A, Xie Y, Minna JD, Boothman DA. Kub5-Hera RPRD1B Deficiency Promotes "BRCAness" and Vulnerability to PARP Inhibition in BRCA-proficient Breast Cancers. Clin Cancer Res 2018; 24:6459-6470. [PMID: 30108102 DOI: 10.1158/1078-0432.ccr-17-1118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 11/05/2017] [Accepted: 08/09/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE Identification of novel strategies to expand the use of PARP inhibitors beyond BRCA deficiency is of great interest in personalized medicine. Here, we investigated the unannotated role of Kub5-HeraRPRD1B (K-H) in homologous recombination (HR) repair and its potential clinical significance in targeted cancer therapy. EXPERIMENTAL DESIGN Functional characterization of K-H alterations on HR repair of double-strand breaks (DSB) were assessed by targeted gene silencing, plasmid reporter assays, immunofluorescence, and Western blots. Cell survival with PARP inhibitors was evaluated through colony-forming assays and statistically analyzed for correlation with K-H expression in various BRCA1/2 nonmutated breast cancers. Gene expression microarray/qPCR analyses, chromatin immunoprecipitation, and rescue experiments were used to investigate molecular mechanisms of action. RESULTS K-H expression loss correlates with rucaparib LD50 values in a panel of BRCA1/2 nonmutated breast cancers. Mechanistically, K-H depletion promotes BRCAness, where extensive upregulation of PARP1 activity was required for the survival of breast cancer cells. PARP inhibition in these cells led to synthetic lethality that was rescued by wild-type K-H reexpression, but not by a mutant K-H (p.R106A) that weakly binds RNAPII. K-H mediates HR by facilitating recruitment of RNAPII to the promoter region of a critical DNA damage response and repair effector, cyclin-dependent kinase 1 (CDK1). CONCLUSIONS Cancer cells with low K-H expression may have exploitable BRCAness properties that greatly expand the use of PARP inhibitors beyond BRCA mutations. Our results suggest that aberrant K-H alterations may have vital translational implications in cellular responses/survival to DNA damage, carcinogenesis, and personalized medicine.
Collapse
Affiliation(s)
- Edward A Motea
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Farjana J Fattah
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ling Xiao
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Amy Rommel
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Julio C Morales
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Praveen Patidar
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, New Mexico
| | - Yunyun Zhou
- Department of Clinical Science, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Andrew Porter
- Center for Hematology, Imperial College, London, United Kingdom
| | - Yang Xie
- Department of Clinical Science, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - David A Boothman
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
11
|
Phizicky DV, Berchowitz LE, Bell SP. Multiple kinases inhibit origin licensing and helicase activation to ensure reductive cell division during meiosis. eLife 2018; 7:33309. [PMID: 29388912 PMCID: PMC5805409 DOI: 10.7554/elife.33309] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/31/2018] [Indexed: 12/26/2022] Open
Abstract
Meiotic cells undergo a single round of DNA replication followed by two rounds of chromosome segregation (the meiotic divisions) to produce haploid gametes. Both DNA replication and chromosome segregation are similarly regulated by CDK oscillations in mitotic cells. Yet how these two events are uncoupled between the meiotic divisions is unclear. Using Saccharomyces cerevisiae, we show that meiotic cells inhibit both helicase loading and helicase activation to prevent DNA replication between the meiotic divisions. CDK and the meiosis–specific kinase Ime2 cooperatively inhibit helicase loading, and their simultaneous inhibition allows inappropriate helicase reloading. Further analysis uncovered two previously unknown mechanisms by which Ime2 inhibits helicase loading. Finally, we show that CDK and the polo–like kinase Cdc5 trigger degradation of Sld2, an essential helicase–activation protein. Together, our data demonstrate that multiple kinases inhibit both helicase loading and activation between the meiotic divisions, thereby ensuring reductive cell division.
Collapse
Affiliation(s)
- David V Phizicky
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Howard Hughes Medical Institute, Maryland, United States
| | - Luke E Berchowitz
- Department of Genetics and Development, Columbia University Medical Center, New York, United States
| | - Stephen P Bell
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Howard Hughes Medical Institute, Maryland, United States
| |
Collapse
|
12
|
Lee KH, Oghamian S, Park JA, Kang L, Laird PW. The REMOTE-control system: a system for reversible and tunable control of endogenous gene expression in mice. Nucleic Acids Res 2017; 45:12256-12269. [PMID: 28981717 PMCID: PMC5716148 DOI: 10.1093/nar/gkx829] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/07/2017] [Indexed: 12/30/2022] Open
Abstract
We report here a robust, tunable, and reversible transcription control system for endogenous genes. The REMOTE-control system (Reversible Manipulation of Transcription at Endogenous loci) employs enhanced lac repression and tet activation systems. With this approach, we show in mouse embryonic stem cells that endogenous Dnmt1 gene transcription could be up- or downregulated in a tunable, inducible, and reversible manner across nearly two orders of magnitude. Transcriptional repression of Dnmt1 by REMOTE-control was potent enough to cause embryonic lethality in mice, reminiscent of a genetic knockout of Dnmt1 and could substantially suppress intestinal polyp formation when applied to an ApcMin model. Binding by the enhanced lac repressor was sufficiently tight to allow strong attenuation of transcriptional elongation, even at operators located many kilobases downstream of the transcription start site and to produce invariably tight repression of all of the strong viral/mammalian promoters tested. Our approach of targeting tet transcriptional activators to the endogenous Dnmt1 promoter resulted in robust upregulation of this highly expressed housekeeping gene. Our system provides exquisite control of the level, timing, and cell-type specificity of endogenous gene expression, and the potency and versatility of the system will enable high resolution in vivo functional analyses.
Collapse
Affiliation(s)
- Kwang-Ho Lee
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | | | - Jin-A Park
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Liang Kang
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Peter W Laird
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
13
|
Design, synthesis and biological evaluation of N -((1-benzyl-1 H -1,2,3-triazol-4-yl)methyl)-1,3-diphenyl-1 H -pyrazole-4-carboxamides as CDK1/Cdc2 inhibitors. Eur J Med Chem 2016; 122:164-177. [DOI: 10.1016/j.ejmech.2016.06.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/05/2016] [Accepted: 06/08/2016] [Indexed: 01/08/2023]
|
14
|
Aspinall CF, Zheleva D, Tighe A, Taylor SS. Mitotic entry: Non-genetic heterogeneity exposes the requirement for Plk1. Oncotarget 2015; 6:36472-88. [PMID: 26472023 PMCID: PMC4742190 DOI: 10.18632/oncotarget.5507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 09/30/2015] [Indexed: 12/02/2022] Open
Abstract
The quest to develop novel antimitotic chemotherapy agents has led to the generation of several small molecule inhibitors targeting Plk1, a protein kinase required for multiple aspects of cell division. Previous studies have shown that upon exposure to Plk1 inhibitors, cells enter mitosis, delay briefly in prophase and then arrest in mitosis due to an inability to undergo centrosome separation. Here, we show that four different classes of Plk1 inhibitor block mitotic entry in several cancer cell lines and non-transformed RPE-1 cells. The proportion of cells that arrest in G2 is cell line and concentration dependent, and is subject to non-genetic heterogeneity. Following inhibitor washout, the G2 block is alleviated and cells enter mitosis but then fail to complete cell division indicating that most Plk1 inhibitors are not fully reversible. An exception is CYC140844; in contrast to five other inhibitors examined here, this novel Plk1 inhibitor is fully reversible. We discuss the implications for developing Plk1 inhibitors as chemotherapy agents and research tools.
Collapse
Affiliation(s)
- Claire F. Aspinall
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | - Anthony Tighe
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Stephen S. Taylor
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
15
|
Voets E, Marsman J, Demmers J, Beijersbergen R, Wolthuis R. The lethal response to Cdk1 inhibition depends on sister chromatid alignment errors generated by KIF4 and isoform 1 of PRC1. Sci Rep 2015; 5:14798. [PMID: 26423135 PMCID: PMC4589785 DOI: 10.1038/srep14798] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/24/2015] [Indexed: 12/18/2022] Open
Abstract
Cyclin-dependent kinase 1 (Cdk1) is absolutely essential for cell division. Complete ablation of Cdk1 precludes the entry of G2 phase cells into mitosis, and is early embryonic lethal in mice. Dampening Cdk1 activation, by reducing gene expression or upon treatment with cell-permeable Cdk1 inhibitors, is also detrimental for proliferating cells, but has been associated with defects in mitotic progression, and the formation of aneuploid daughter cells. Here, we used a large-scale RNAi screen to identify the human genes that critically determine the cellular toxicity of Cdk1 inhibition. We show that Cdk1 inhibition leads to fatal sister chromatid alignment errors and mitotic arrest in the spindle checkpoint. These problems start early in mitosis and are alleviated by depletion of isoform 1 of PRC1 (PRC1-1), by gene ablation of its binding partner KIF4, or by abrogation of KIF4 motor activity. Our results show that, normally, Cdk1 activity must rise above the level required for mitotic entry. This prevents KIF4-dependent PRC1-1 translocation to astral microtubule tips and safeguards proper chromosome congression. We conclude that cell death in response to Cdk1 inhibitors directly relates to chromosome alignment defects generated by insufficient repression of PRC1-1 and KIF4 during prometaphase.
Collapse
Affiliation(s)
- Erik Voets
- Division of Cell Biology I (B5) and Division of Molecular Carcinogenesis (B7), The Netherlands Cancer Insitute (NKI-AvL), Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Judith Marsman
- Division of Cell Biology I (B5) and Division of Molecular Carcinogenesis (B7), The Netherlands Cancer Insitute (NKI-AvL), Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Jeroen Demmers
- Proteomics Center, Erasmus University Medical Center, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Roderick Beijersbergen
- Division of Cell Biology I (B5) and Division of Molecular Carcinogenesis (B7), The Netherlands Cancer Insitute (NKI-AvL), Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Rob Wolthuis
- Division of Cell Biology I (B5) and Division of Molecular Carcinogenesis (B7), The Netherlands Cancer Insitute (NKI-AvL), Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.,Section of Oncogenetics, Department of Clinical Genetics and CCA/V-ICI Research Program Oncogenesis, VUmc Medical Faculty, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| |
Collapse
|
16
|
Xu K, Stewart AF, Porter AC. Stimulation of oligonucleotide-directed gene correction by Redβ expression and MSH2 depletion in human HT1080 cells. Mol Cells 2015; 38:33-9. [PMID: 25431426 PMCID: PMC4314130 DOI: 10.14348/molcells.2015.2163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 01/30/2023] Open
Abstract
The correction of disease-causing mutations by single-strand oligonucleotide-templated DNA repair (ssOR) is an attractive approach to gene therapy, but major improvements in ssOR efficiency and consistency are needed. The mechanism of ssOR is poorly understood but may involve annealing of oligonucleotides to transiently exposed single-stranded regions in the target duplex. In bacteria and yeast it has been shown that ssOR is promoted by expression of Redβ, a single-strand DNA annealing protein from bacteriophage lambda. Here we show that Redβ expression is well tolerated in a human cell line where it consistently promotes ssOR. By use of short interfering RNA, we also show that ssOR is stimulated by the transient depletion of the endogenous DNA mismatch repair protein MSH2. Furthermore, we find that the effects of Redβ expression and MSH2 depletion on ssOR can be combined with a degree of cooperativity. These results suggest that oligonucleotide annealing and mismatch recognition are distinct but interdependent events in ssOR that can be usefully modulated in gene correction strategies.
Collapse
Affiliation(s)
- Ke Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052,
China
- Gene Targeting Group, Department of Hematology, Faculty of Medicine, Imperial College London, London W12 0NN,
UK
| | - A. Francis Stewart
- Genomics, Bio Innovations Zentrum, Technische Universitaet Dresden, 01307 Dresden,
Germany
| | - Andrew C.G. Porter
- Gene Targeting Group, Department of Hematology, Faculty of Medicine, Imperial College London, London W12 0NN,
UK
| |
Collapse
|
17
|
Davaadelger B, Shen H, Maki CG. Novel roles for p53 in the genesis and targeting of tetraploid cancer cells. PLoS One 2014; 9:e110844. [PMID: 25380055 PMCID: PMC4224386 DOI: 10.1371/journal.pone.0110844] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/24/2014] [Indexed: 01/10/2023] Open
Abstract
Tetraploid (4N) cells are considered important in cancer because they can display increased tumorigenicity, resistance to conventional therapies, and are believed to be precursors to whole chromosome aneuploidy. It is therefore important to determine how tetraploid cancer cells arise, and how to target them. P53 is a tumor suppressor protein and key regulator of tetraploidy. As part of the “tetraploidy checkpoint”, p53 inhibits tetraploid cell proliferation by promoting a G1-arrest in incipient tetraploid cells (referred to as a tetraploid G1 arrest). Nutlin-3a is a preclinical drug that stabilizes p53 by blocking the interaction between p53 and MDM2. In the current study, Nutlin-3a promoted a p53-dependent tetraploid G1 arrest in two diploid clones of the HCT116 colon cancer cell line. Both clones underwent endoreduplication after Nutlin removal, giving rise to stable tetraploid clones that showed increased resistance to ionizing radiation (IR) and cisplatin (CP)-induced apoptosis compared to their diploid precursors. These findings demonstrate that transient p53 activation by Nutlin can promote tetraploid cell formation from diploid precursors, and the resulting tetraploid cells are therapy (IR/CP) resistant. Importantly, the tetraploid clones selected after Nutlin treatment expressed approximately twice as much P53 and MDM2 mRNA as diploid precursors, expressed approximately twice as many p53-MDM2 protein complexes (by co-immunoprecipitation), and were more susceptible to p53-dependent apoptosis and growth arrest induced by Nutlin. Based on these findings, we propose that p53 plays novel roles in both the formation and targeting of tetraploid cells. Specifically, we propose that 1) transient p53 activation can promote a tetraploid-G1 arrest and, as a result, may inadvertently promote formation of therapy-resistant tetraploid cells, and 2) therapy-resistant tetraploid cells, by virtue of having higher P53 gene copy number and expressing twice as many p53-MDM2 complexes, are more sensitive to apoptosis and/or growth arrest by anti-cancer MDM2 antagonists (e.g. Nutlin).
Collapse
Affiliation(s)
- Batzaya Davaadelger
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Hong Shen
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Carl G Maki
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois, United States of America
| |
Collapse
|
18
|
Van TNN, Pellerano M, Lykaso S, Morris MC. Fluorescent Protein Biosensor for Probing CDK/Cyclin Activity in vitro and in Living Cells. Chembiochem 2014; 15:2298-305. [DOI: 10.1002/cbic.201402318] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Indexed: 11/10/2022]
|
19
|
Vannocci T, Kurata H, Fuente J, Roberts IA, Porter ACG. Nuclease‐stimulated homologous recombination at the human β‐globin gene. J Gene Med 2014. [DOI: 10.1002/jgm.2751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Tommaso Vannocci
- Centre for Haematology, Imperial College Faculty of Medicine Hammersmith Hospital Campus London UK
| | - Hitoshi Kurata
- Centre for Haematology, Imperial College Faculty of Medicine Hammersmith Hospital Campus London UK
| | - Josu Fuente
- Paediatric Haematology, Imperial College Healthcare Trust St Mary's Hospital London UK
| | - Irene A. Roberts
- Centre for Haematology, Imperial College Faculty of Medicine Hammersmith Hospital Campus London UK
| | - Andrew C. G. Porter
- Centre for Haematology, Imperial College Faculty of Medicine Hammersmith Hospital Campus London UK
| |
Collapse
|
20
|
Moritani M, Ishimi Y. Inhibition of DNA binding of MCM2-7 complex by phosphorylation with cyclin-dependent kinases. J Biochem 2013; 154:363-72. [PMID: 23864661 DOI: 10.1093/jb/mvt062] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cyclin-dependent kinase (CDK) that plays a central role in preventing re-replication of DNA phosphorylates several replication proteins to inactivate them. MCM4 in MCM2-7 and RPA2 in RPA are phosphorylated with CDK in vivo. There are inversed correlations between the phosphorylation of these proteins and their chromatin binding. Here, we examined in vitro phosphorylation of human replication proteins of MCM2-7, RPA, TRESLIN, CDC45 and RECQL4 with CDK2/cyclinE, CDK2/cyclinA, CDK1/cyclinB, CHK1, CHK2 and CDC7/DBF4 kinases. MCM4, RPA2, TRESLIN and RECQL4 were phosphorylated with CDKs. Effect of the phosphorylation by CDK2/cyclinA on DNA-binding abilities of MCM2-7 and RPA was examined by gel-shift analysis. The phosphorylation of RPA did not affect its DNA-binding ability but that of MCM4 inhibited the ability of MCM2-7. Change of six amino acids of serine and threonine to alanines in the amino-terminal region of MCM4 rendered the mutant MCM2-7 insensitive to the inhibition with CDK. These biochemical data suggest that phosphorylation of MCM4 at these sites by CDK plays a direct role in dislodging MCM2-7 from chromatin and/or preventing re-loading of the complex to chromatin.
Collapse
Affiliation(s)
- Mariko Moritani
- College of Science, Ibaraki University, Mito, Ibaraki 351-8511, Japan
| | | |
Collapse
|
21
|
Huang R, Oh H, Arrendale A, Martin VA, Galan J, Workman EJ, Stout JR, Walczak CE, Tao WA, Borch RF, Geahlen RL. Intracellular targets for a phosphotyrosine peptidomimetic include the mitotic kinesin, MCAK. Biochem Pharmacol 2013; 86:597-611. [PMID: 23830822 DOI: 10.1016/j.bcp.2013.06.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 06/05/2013] [Accepted: 06/24/2013] [Indexed: 01/03/2023]
Abstract
SH2 domains are attractive targets for chemotherapeutic agents due to their involvement in the formation of protein-protein interactions critical to many signal transduction cascades. Little is known, however, about how synthetic SH2 domain ligands would influence the growth properties of tumor cells or with which intracellular proteins they would interact due to their highly charged nature and enzymatic lability. In this study, a prodrug delivery strategy was used to introduce an enzymatically stable, phosphotyrosine peptidomimetic into tumor cells. When tested in a human tumor cell panel, the prodrug exhibited a preference for inhibiting the growth of leukemia and lymphoma cells. In these cells, it was largely cytostatic and induced endoreduplication and the appearance of midbodies. Proteomic analyses identified multiple targets that included mitotic centromere-associated kinesin (MCAK). Molecular modeling studies suggested the ATP-binding site on MCAK as the likely site of drug interaction. Consistent with this, ATP inhibited the drug-MCAK interaction and the drug inhibited MCAK ATPase activity. Accordingly, the effects of the prodrug on the assembly of the mitotic spindle and alignment of chromosomes were consistent with the identification of MCAK as an important intracellular target.
Collapse
Affiliation(s)
- Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gravells P, Tomita K, Booth A, Poznansky J, Porter AC. Chemical genetic analyses of quantitative changes in Cdk1 activity during the human cell cycle. Hum Mol Genet 2013; 22:2842-51. [DOI: 10.1093/hmg/ddt133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
23
|
Wang Q, Wu PC, Dong DZ, Ivanova I, Chu E, Zeliadt S, Vesselle H, Wu DY. Polyploidy road to therapy-induced cellular senescence and escape. Int J Cancer 2012; 132:1505-15. [PMID: 22945332 DOI: 10.1002/ijc.27810] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/31/2012] [Indexed: 12/21/2022]
Abstract
Therapy-induced cellular senescence (TCS), characterized by prolonged cell cycle arrest, is an in vivo response of human cancers to chemotherapy and radiation. Unfortunately, TCS is reversible for a subset of senescent cells, leading to cellular reproliferation and ultimately tumor progression. This invariable consequence of TCS recapitulates the clinical treatment experience of patients with advanced cancer. We report the findings of a clinicopathological study in patients with locally advanced non-small cell lung cancer demonstrating that marker of in vivo TCS following neoadjuvant therapy prognosticate adverse clinical outcome. In our efforts to elucidate key molecular pathways underlying TCS and cell cycle escape, we have previously shown that the deregulation of mitotic kinase Cdk1 and its downstream effectors are important mediators of survival and cell cycle reentry. We now report that aberrant expression of Cdk1 interferes with apoptosis and promotes the formation of polyploid senescent cells during TCS. These polyploid senescent cells represent important transition states through which escape preferentially occurs. The Cdk1 pathway is in part modulated differentially by p21 and p27 two members of the KIP cyclin-dependent kinase inhibitor family during TCS. Altogether, these studies underscore the importance of TCS in cancer therapeutics.
Collapse
Affiliation(s)
- Qin Wang
- Seattle Institute for Biomedical and Clinical Research, VA Puget Sound Health Care System, Seattle, WA 98108, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Prosser SL, Samant MD, Baxter JE, Morrison CG, Fry AM. Oscillation of APC/C activity during cell cycle arrest promotes centrosome amplification. J Cell Sci 2012; 125:5353-68. [PMID: 22956538 PMCID: PMC3939426 DOI: 10.1242/jcs.106096] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Centrosome duplication is licensed by the disengagement, or 'uncoupling', of centrioles during late mitosis. However, arrest of cells in G2 can trigger premature centriole disengagement. Here, we show that premature disengagement results from untimely activation of the anaphase-promoting complex (APC/C), leading to securin degradation and release of active separase. Although APC/C activation during G2 arrest is dependent on polo-like kinase 1 (Plk1)-mediated degradation of the APC/C inhibitor, early mitotic inhibitor 1 (Emi1), Plk1 also has a second APC/C-independent role in promoting disengagement. Importantly, APC/C and Plk1 activity also stimulates centriole disengagement in response to hydroxyurea or DNA damage-induced cell-cycle arrest and this leads to centrosome amplification. However, the reduplication of disengaged centrioles is dependent on cyclin-dependent kinase 2 (Cdk2) activity and Cdk2 activation coincides with a subsequent inactivation of the APC/C and re-accumulation of cyclin A. Although release from these arrests leads to mitotic entry, the presence of disengaged and/or amplified centrosomes results in the formation of abnormal mitotic spindles that lead to chromosome mis-segregation. Thus, oscillation of APC/C activity during cell cycle arrest promotes both centrosome amplification and genome instability.
Collapse
Affiliation(s)
- Suzanna L. Prosser
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, U.K
- Center for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| | - Mugdha D. Samant
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, U.K
| | - Joanne E. Baxter
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, U.K
| | - Ciaran G. Morrison
- Center for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| | - Andrew M. Fry
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, U.K
| |
Collapse
|
25
|
Abstract
Human papillomavirus (HPV) infection is necessary but not sufficient for cervical carcinogenesis. Genomic instability caused by HPV allows cells to acquire additional mutations required for malignant transformation. Genomic instability in the form of polyploidy has been demonstrated to play an important role in cervical carcinogenesis. We have recently found that HPV-16 E7 oncogene induces polyploidy in response to DNA damage; however, the mechanism is not known. Here we present evidence demonstrating that HPV-16 E7-expressing cells have an intact G(2) checkpoint. Upon DNA damage, HPV-16 E7-expressing cells arrest at the G(2) checkpoint and then undergo rereplication, a process of successive rounds of host DNA replication without entering mitosis. Interestingly, the DNA replication initiation factor Cdt1, whose uncontrolled expression induces rereplication in human cancer cells, is upregulated in E7-expressing cells. Moreover, downregulation of Cdt1 impairs the ability of E7 to induce rereplication. These results demonstrate an important role for Cdt1 in HPV E7-induced rereplication and shed light on mechanisms by which HPV induces genomic instability.
Collapse
|
26
|
Merrick KA, Fisher RP. Why minimal is not optimal: driving the mammalian cell cycle--and drug discovery--with a physiologic CDK control network. Cell Cycle 2012; 11:2600-5. [PMID: 22732498 DOI: 10.4161/cc.20758] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Progression through the eukaryotic cell division cycle is governed by the activity of cyclin-dependent kinases (CDKs). For a CDK to become active it must (1) bind a positive regulatory subunit (cyclin) and (2) be phosphorylated on its activation (T) loop. In metazoans, multiple CDK catalytic subunits, each with a distinct set of preferred cyclin partners, regulate the cell cycle, but it has been difficult to assign functions to individual CDKs in vivo. Biochemical analyses and experiments with dominant-negative alleles suggested that specific CDK/cyclin complexes regulate different events, but genetic loss of interphase CDKs (Cdk2, -4 and -6), alone or in combination, did not block proliferation of cells in culture. These knockout and knockdown studies suggested redundancy or plasticity built into the CDK network but did not address whether there was true redundancy in normal cells with a full complement of CDKs. Here, we discuss recent work that took a chemical-genetic approach to reveal that the activity of a genetically non-essential CDK, Cdk2, is required for cell proliferation when normal cyclin pairing is maintained. These results have implications for the systems-level organization of the cell cycle, for regulation of the restriction point and G 1/S transition and for efforts to target Cdk2 therapeutically in human cancers.
Collapse
Affiliation(s)
- Karl A Merrick
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|
27
|
Peroxisome proliferator-activated receptor β/δ cross talks with E2F and attenuates mitosis in HRAS-expressing cells. Mol Cell Biol 2012; 32:2065-82. [PMID: 22473992 DOI: 10.1128/mcb.00092-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The role of peroxisome proliferator-activated receptor β/δ (PPARβ/δ) in Harvey sarcoma ras (Hras)-expressing cells was examined. Ligand activation of PPARβ/δ caused a negative selection with respect to cells expressing higher levels of the Hras oncogene by inducing a mitotic block. Mitosis-related genes that are predominantly regulated by E2F were induced to a higher level in HRAS-expressing Pparβ/δ-null keratinocytes compared to HRAS-expressing wild-type keratinocytes. Ligand-activated PPARβ/δ repressed expression of these genes by direct binding with p130/p107, facilitating nuclear translocation and increasing promoter recruitment of p130/p107. These results demonstrate a novel mechanism of PPARβ/δ cross talk with E2F signaling. Since cotreatment with a PPARβ/δ ligand and various mitosis inhibitors increases the efficacy of increasing G₂/M arrest, targeting PPARβ/δ in conjunction with mitosis inhibitors could become a suitable option for development of new multitarget strategies for inhibiting RAS-dependent tumorigenesis.
Collapse
|
28
|
Diffley JFX. Quality control in the initiation of eukaryotic DNA replication. Philos Trans R Soc Lond B Biol Sci 2012; 366:3545-53. [PMID: 22084381 PMCID: PMC3203456 DOI: 10.1098/rstb.2011.0073] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Origins of DNA replication must be regulated to ensure that the entire genome is replicated precisely once in each cell cycle. In human cells, this requires that tens of thousands of replication origins are activated exactly once per cell cycle. Failure to do so can lead to cell death or genome rearrangements such as those associated with cancer. Systems ensuring efficient initiation of replication, while also providing a robust block to re-initiation, play a crucial role in genome stability. In this review, I will discuss some of the strategies used by cells to ensure once per cell cycle replication and provide a quantitative framework to evaluate the relative importance and efficiency of individual pathways involved in this regulation.
Collapse
Affiliation(s)
- John F X Diffley
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK
| |
Collapse
|
29
|
Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proc Natl Acad Sci U S A 2012; 109:3826-31. [PMID: 22355113 DOI: 10.1073/pnas.1115201109] [Citation(s) in RCA: 279] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyclin-dependent kinase 1 (Cdk1) is an archetypical kinase and a central regulator that drives cells through G2 phase and mitosis. Knockouts of Cdk2, Cdk3, Cdk4, or Cdk6 have resulted in viable mice, but the in vivo functions of Cdk1 have not been fully explored in mammals. Here we have generated a conditional-knockout mouse model to study the functions of Cdk1 in vivo. Ablation of Cdk1 leads to arrest of embryonic development around the blastocyst stage. Interestingly, liver-specific deletion of Cdk1 is well tolerated, and liver regeneration after partial hepatectomy is not impaired, indicating that regeneration can be driven by cell growth without cell division. The loss of Cdk1 does not affect S phase progression but results in DNA re-replication because of an increase in Cdk2/cyclin A2 activity. Unlike other Cdks, loss of Cdk1 in the liver confers complete resistance against tumorigenesis induced by activated Ras and silencing of p53.
Collapse
|
30
|
Fluorescent peptide biosensor for probing the relative abundance of cyclin-dependent kinases in living cells. PLoS One 2011; 6:e26555. [PMID: 22028905 PMCID: PMC3196589 DOI: 10.1371/journal.pone.0026555] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 09/28/2011] [Indexed: 12/02/2022] Open
Abstract
Cyclin-dependant kinases play a central role in coordinating cell growth and division, and in sustaining proliferation of cancer cells, thereby constituting attractive pharmacological targets. However, there are no direct means of assessing their relative abundance in living cells, current approaches being limited to antigenic and proteomic analysis of fixed cells. In order to probe the relative abundance of these kinases directly in living cells, we have developed a fluorescent peptide biosensor with biligand affinity for CDKs and cyclins in vitro, that retains endogenous CDK/cyclin complexes from cell extracts, and that bears an environmentally-sensitive probe, whose fluorescence increases in a sensitive fashion upon recognition of its targets. CDKSENS was introduced into living cells, through complexation with the cell-penetrating carrier CADY2 and applied to assess the relative abundance of CDK/Cyclins through fluorescence imaging and ratiometric quantification. This peptide biosensor technology affords direct and sensitive readout of CDK/cyclin complex levels, and reports on differences in complex formation when tampering with a single CDK or cyclin. CDKSENS further allows for detection of differences between different healthy and cancer cell lines, thereby enabling to distinguish cells that express high levels of these heterodimeric kinases, from cells that present decreased or defective assemblies. This fluorescent biosensor technology provides information on the overall status of CDK/Cyclin complexes which cannot be obtained through antigenic detection of individual subunits, in a non-invasive fashion which does not require cell fixation or extraction procedures. As such it provides promising perspectives for monitoring the response to therapeutics that affect CDK/Cyclin abundance, for cell-based drug discovery strategies and fluorescence-based cancer diagnostics.
Collapse
|
31
|
Robson SC, Ward L, Brown H, Turner H, Hunter E, Pelengaris S, Khan M. Deciphering c-MYC-regulated genes in two distinct tissues. BMC Genomics 2011; 12:476. [PMID: 21961992 PMCID: PMC3206520 DOI: 10.1186/1471-2164-12-476] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 09/30/2011] [Indexed: 12/31/2022] Open
Abstract
Background The transcription factor MYC is a critical regulator of diverse cellular processes, including both replication and apoptosis. Differences in MYC-regulated gene expression responsible for such opposing outcomes in vivo remain obscure. To address this we have examined time-dependent changes in global gene expression in two transgenic mouse models in which MYC activation, in either skin suprabasal keratinocytes or pancreatic islet β-cells, promotes tissue expansion or involution, respectively. Results Consistent with observed phenotypes, expression of cell cycle genes is increased in both models (albeit enriched in β-cells), as are those involved in cell growth and metabolism, while expression of genes involved in cell differentiation is down-regulated. However, in β-cells, which unlike suprabasal keratinocytes undergo prominent apoptosis from 24 hours, there is up-regulation of genes associated with DNA-damage response and intrinsic apoptotic pathways, including Atr, Arf, Bax and Cycs. In striking contrast, this is not the case for suprabasal keratinocytes, where pro-apoptotic genes such as Noxa are down-regulated and key anti-apoptotic pathways (such as Igf1-Akt) and those promoting angiogenesis are up-regulated. Moreover, dramatic up-regulation of steroid hormone-regulated Kallikrein serine protease family members in suprabasal keratinocytes alone could further enhance local Igf1 actions, such as through proteolysis of Igf1 binding proteins. Conclusions Activation of MYC causes cell growth, loss of differentiation and cell cycle entry in both β-cells and suprabasal keratinocytes in vivo. Apoptosis, which is confined to β-cells, may involve a combination of a DNA-damage response and downstream activation of pro-apoptotic signalling pathways, including Cdc2a and p19Arf/p53, and downstream targets. Conversely, avoidance of apoptosis in suprabasal keratinocytes may result primarily from the activation of key anti-apoptotic signalling pathways, particularly Igf1-Akt, and induction of an angiogenic response, though intrinsic resistance to induction of p19Arf by MYC in suprabasal keratinocytes may contribute.
Collapse
Affiliation(s)
- Samuel C Robson
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge, CB2 1QN, UK
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
DNA replication is a highly regulated process involving a number of licensing and replication factors that function in a carefully orchestrated manner to faithfully replicate DNA during every cell cycle. Loss of proper licensing control leads to deregulated DNA replication including DNA re-replication, which can cause genome instability and tumorigenesis. Eukaryotic organisms have established several conserved mechanisms to prevent DNA re-replication and to counteract its potentially harmful effects. These mechanisms include tightly controlled regulation of licensing factors and activation of cell cycle and DNA damage checkpoints. Deregulated licensing control and its associated compromised checkpoints have both been observed in tumor cells, indicating that proper functioning of these pathways is essential for maintaining genome stability. In this review, we discuss the regulatory mechanisms of licensing control, the deleterious consequences when both licensing and checkpoints are compromised, and present possible mechanisms to prevent re-replication in order to maintain genome stability.
Collapse
Affiliation(s)
- Lan N Truong
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
33
|
Löffler H, Fechter A, Matuszewska M, Saffrich R, Mistrik M, Marhold J, Hornung C, Westermann F, Bartek J, Krämer A. Cep63 Recruits Cdk1 to the Centrosome: Implications for Regulation of Mitotic Entry, Centrosome Amplification, and Genome Maintenance. Cancer Res 2011; 71:2129-39. [DOI: 10.1158/0008-5472.can-10-2684] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Fant X, Samejima K, Carvalho A, Ogawa H, Xu Z, Yue Z, Earnshaw WC, Ruchaud S. Use of DT40 conditional-knockout cell lines to study chromosomal passenger protein function. Biochem Soc Trans 2010; 38:1655-9. [PMID: 21118143 PMCID: PMC3428912 DOI: 10.1042/bst0381655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The CPC [chromosomal passenger complex; INCENP (inner centromere protein), Aurora B kinase, survivin and borealin] is implicated in many mitotic processes. In the present paper we describe how we generated DT40 conditional-knockout cell lines for incenp1 and survivin1 to better understand the role of these CPC subunits in the control of Aurora B kinase activity. These lines enabled us to reassess current knowledge of survivin function and to show that INCENP acts as a rheostat for Aurora B activity.
Collapse
Affiliation(s)
- Xavier Fant
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3JR, UK
| | - Kumiko Samejima
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3JR, UK
| | - Ana Carvalho
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3JR, UK
- Ludwig Inst. for Cancer Research, Dept of Cellular & Molecular Medicine, 9500 Gilman Dr., La Jolla, CA 92093-0653, USA
| | - Hiromi Ogawa
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3JR, UK
| | - Zhenjie Xu
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3JR, UK
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305-5345, USA
| | - Zuojun Yue
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3JR, UK
- Cell & Developmental Biology, The University of Dundee, Dundee DD1 5EH, United Kingdom
| | - William C. Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3JR, UK
| | - Sandrine Ruchaud
- CNRS USR3151, Station Biologique de Roscoff, place G. Teissier, 29680 Roscoff, FRANCE
| |
Collapse
|
35
|
Persistent telomere damage induces bypass of mitosis and tetraploidy. Cell 2010; 141:81-93. [PMID: 20371347 DOI: 10.1016/j.cell.2010.01.031] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 12/09/2009] [Accepted: 01/15/2010] [Indexed: 12/31/2022]
Abstract
Tetraploidization has been proposed as an intermediate step toward aneuploidy in human cancer but a general mechanism for the induction of tetraploidy during tumorigenesis is lacking. We report that tetraploidization occurs in p53-deficient cells experiencing a prolonged DNA damage signal due to persistent telomere dysfunction. Live-cell imaging revealed that these cells have an extended G2 due to ATM/ATR- and Chk1/Chk2-mediated inhibition of Cdk1/CyclinB and eventually bypass mitosis. Despite their lack of mitosis, the cells showed APC/Cdh1-dependent degradation of the replication inhibitor geminin, followed by accumulation of Cdt1, which is required for origin licensing. Cells then entered a second S phase resulting in whole-genome reduplication and tetraploidy. Upon restoration of telomere protection, these tetraploid cells resumed cell division cycles and proliferated. These observations suggest a general mechanism for the induction of tetraploidization in the early stages of tumorigenesis when telomere dysfunction can result from excessive telomere shortening.
Collapse
|
36
|
Kim JA, Lee J, Margolis RL, Fotedar R. SP600125 suppresses Cdk1 and induces endoreplication directly from G2 phase, independent of JNK inhibition. Oncogene 2010; 29:1702-16. [PMID: 20062077 PMCID: PMC3145494 DOI: 10.1038/onc.2009.464] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 10/14/2009] [Accepted: 10/22/2009] [Indexed: 12/20/2022]
Abstract
Cell cycle controls ensure that DNA replication (S phase) follows mitosis resulting in two precise copies of the genome. A failure of the control mechanisms can result in multiple rounds of DNA replication without cell division. In endoreplication, cells with replicated genomes bypass mitosis, then replicate their DNA again, resulting in polyploidy. Endoreplication from G2 phase lacks all hallmarks of mitosis. Using synchronized cells, we show that the c-Jun N-terminal kinase (JNK) inhibitor, SP600125, prevents the entry of cells into mitosis and leads to endoreplication of DNA from G2 phase. We show that cells proceed from G2 phase to replicate their DNA in the absence of mitosis. This effect of SP600125 is independent of its suppression of JNK activity. Instead, the inhibitory effect of SP600125 on mitotic entry predominantly occurs upstream of Aurora A kinase and Polo-like kinase 1, resulting in a failure to remove the inhibitory phosphorylation of Cdk1. Importantly, our results directly show that the inhibition of Cdk1 activity and the persistence of Cdk2 activity in G2 cells induces endoreplication without mitosis. Furthermore, endoreplication from G2 phase is independent of p53 control.
Collapse
Affiliation(s)
- JA Kim
- Sidney Kimmel Cancer Center, San Diego, CA, USA
| | - J Lee
- Sidney Kimmel Cancer Center, San Diego, CA, USA
| | - RL Margolis
- Sidney Kimmel Cancer Center, San Diego, CA, USA
- Burnham Institute for Medical Research, La Jolla, CA, USA
| | - R Fotedar
- Sidney Kimmel Cancer Center, San Diego, CA, USA
- Burnham Institute for Medical Research, La Jolla, CA, USA
| |
Collapse
|
37
|
Abstract
A growing body of evidence indicates that polyploidization triggers chromosomal instability and contributes to tumorigenesis. DNA damage is increasingly being recognized for its roles in promoting polyploidization. Although elegant mechanisms known as the DNA damage checkpoints are responsible for halting the cell cycle after DNA damage, agents that uncouple the checkpoints can induce unscheduled entry into mitosis. Likewise, defects of the checkpoints in several disorders permit mitotic entry even in the presence of DNA damage. Forcing cells with damaged DNA into mitosis causes severe chromosome segregation defects, including lagging chromosomes, chromosomal fragments and chromosomal bridges. The presence of these lesions in the cleavage plane is believed to abort cytokinesis. It is postulated that if cytokinesis failure is coupled with defects of the p53-dependent postmitotic checkpoint pathway, cells can enter S phase and become polyploids. Progress in the past several years has unraveled some of the underlying principles of these pathways and underscored the important role of DNA damage in polyploidization. Furthermore, polyploidization per se may also be an important determinant of sensitivity to DNA damage, thereby may offer an opportunity for novel therapies.
Collapse
|
38
|
Ma HT, Tsang YH, Marxer M, Poon RYC. Cyclin A2-cyclin-dependent kinase 2 cooperates with the PLK1-SCFbeta-TrCP1-EMI1-anaphase-promoting complex/cyclosome axis to promote genome reduplication in the absence of mitosis. Mol Cell Biol 2009; 29:6500-14. [PMID: 19822658 PMCID: PMC2786869 DOI: 10.1128/mcb.00669-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Revised: 07/13/2009] [Accepted: 10/06/2009] [Indexed: 12/22/2022] Open
Abstract
Limiting genome replication to once per cell cycle is vital for maintaining genome stability. Inhibition of cyclin-dependent kinase 1 (CDK1) with the specific inhibitor RO3306 is sufficient to trigger multiple rounds of genome reduplication. We demonstrated that although anaphase-promoting complex/cyclosome (APC/C) remained inactive during the initial G(2) arrest, it was activated upon prolonged inhibition of CDK1. Using cellular biosensors and live-cell imaging, we provide direct evidence that genome reduplication was associated with oscillation of APC/C activity and nuclear-cytoplasmic shuttling of CDC6 even in the absence of mitosis at the single-cell level. Genome reduplication was abolished by ectopic expression of EMI1 or depletion of CDC20 or CDH1, suggesting the critical role of the EMI1-APC/C axis. In support of this, degradation of EMI1 itself and genome reduplication were delayed after downregulation of PLK1 and beta-TrCP1. In the absence of CDK1 activity, activation of APC/C and genome reduplication was dependent on cyclin A2 and CDK2. Genome reduplication was then promoted by a combination of APC/C-dependent destruction of geminin (thus releasing CDT1), accumulation of cyclin E2-CDK2, and CDC6. Collectively, these results underscore the crucial role of cyclin A2-CDK2 in regulating the PLK1-SCF(beta-TrCP1)-EMI1-APC/C axis and CDC6 to trigger genome reduplication after the activity of CDK1 is suppressed.
Collapse
Affiliation(s)
- Hoi Tang Ma
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
| | | | | | | |
Collapse
|
39
|
Daber R, Lewis M. A novel molecular switch. J Mol Biol 2009; 391:661-70. [PMID: 19540845 PMCID: PMC2778020 DOI: 10.1016/j.jmb.2009.06.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 06/05/2009] [Accepted: 06/16/2009] [Indexed: 10/20/2022]
Abstract
Transcriptional regulation is a fundamental process for regulating the flux of all metabolic pathways. For the last several decades, the lac operon has served as a valuable model for studying transcription. More recently, the switch that controls the operon has also been successfully adapted to function in mammalian cells. Here we describe how, using directed evolution, we have created a novel switch that recognizes an asymmetric operator sequence. The new switch has a repressor with altered headpiece domains for operator recognition and a redesigned dimer interface to create a heterodimeric repressor. Quite unexpectedly, the heterodimeric switch functions better than the natural system. It can repress more tightly than the naturally occurring switch of the lac operon; it is less leaky and can be induced more efficiently. Ultimately, these novel repressors could be evolved to recognize eukaryotic promoters and used to regulate gene expression in mammalian systems.
Collapse
Affiliation(s)
- Robert Daber
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, 37th and Hamilton Walk, Philadelphia, Pennsylvania 19104-6059
| | - Mitchell Lewis
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, 37th and Hamilton Walk, Philadelphia, Pennsylvania 19104-6059
| |
Collapse
|
40
|
Cyclin-dependent kinase inhibits reinitiation of a normal S-phase program during G2 in fission yeast. Mol Cell Biol 2009; 29:4025-32. [PMID: 19487461 DOI: 10.1128/mcb.00185-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To achieve faithful replication of the genome once in each cell cycle, reinitiation of S phase is prevented in G(2) and origins are restricted from refiring within S phase. We have investigated the block to rereplication during G(2) in fission yeast. The DNA synthesis that occurs when G(2)/M cyclin-dependent kinase (CDK) activity is depleted has been assumed to be repeated rounds of S phase without mitosis, but this has not been demonstrated to be the case. We show here that on G(2)/M CDK depletion in G(2), repeated S phases are induced, which are correlated with normal G(1)/S transcription and attainment of doublings in cell size. Mostly normal mitotic S-phase origins are utilized, although at different efficiencies, and replication is essentially equal across the genome. We conclude that CDK inhibits reinitiation of S phase during G(2), and if G(2)/M CDK is depleted, replication results from induction of a largely normal S-phase program with only small differences in origin usage and efficiency.
Collapse
|
41
|
Sugimoto N, Yoshida K, Tatsumi Y, Yugawa T, Narisawa-Saito M, Waga S, Kiyono T, Fujita M. Redundant and differential regulation of multiple licensing factors ensures prevention of re-replication in normal human cells. J Cell Sci 2009; 122:1184-91. [DOI: 10.1242/jcs.041889] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When human cells enter S-phase, overlapping differential inhibitory mechanisms downregulate the replication licensing factors ORC1, CDC6 and Cdt1. Such regulation prevents re-replication so that deregulation of any individual factor alone would not be expected to induce overt re-replication. However, this has been challenged by the fact that overexpression of Cdt1 or Cdt1+CDC6 causes re-replication in some cancer cell lines. We thought it important to analyze licensing regulations in human non-cancerous cells that are resistant to Cdt1-induced re-replication and examined whether simultaneous deregulation of these licensing factors induces re-replication in two such cell lines, including human fibroblasts immortalized by telomerase. Individual overexpression of either Cdt1, ORC1 or CDC6 induced no detectable re-replication. However, with Cdt1+ORC1 or Cdt1+CDC6, some re-replication was detectable and coexpression of Cdt1+ORC1+CDC6 synergistically acted to give strong re-replication with increased mini-chromosome maintenance (MCM) loading. Coexpression of ORC1+CDC6 was without effect. These results suggest that, although Cdt1 regulation is the key step, differential regulation of multiple licensing factors ensures prevention of re-replication in normal human cells. Our findings also show for the first time the importance of ORC1 regulation for prevention of re-replication.
Collapse
Affiliation(s)
- Nozomi Sugimoto
- Virology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuohku, Tokyo 104-0045, Japan
- Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyouku, Tokyo 112-8679, Japan
| | - Kazumasa Yoshida
- Virology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuohku, Tokyo 104-0045, Japan
| | - Yasutoshi Tatsumi
- Virology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuohku, Tokyo 104-0045, Japan
- Division of Biochemistry, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuohku, Chiba 260-8717, Japan
| | - Takashi Yugawa
- Virology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuohku, Tokyo 104-0045, Japan
| | - Mako Narisawa-Saito
- Virology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuohku, Tokyo 104-0045, Japan
| | - Shou Waga
- Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyouku, Tokyo 112-8679, Japan
| | - Tohru Kiyono
- Virology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuohku, Tokyo 104-0045, Japan
| | - Masatoshi Fujita
- Virology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuohku, Tokyo 104-0045, Japan
| |
Collapse
|
42
|
Abstract
In mammals, trophoblast giant (TG) cell differentiation is characterized by a physiological endoreduplication, resulting in genome size augmentation. A recent study by Ullah and colleagues (pp. 3024-3036), published in this issue of Genes & Development, now elucidates the role of the cyclin-dependent kinase inhibitors (CKIs), p21 and p57, in mammalian endocycle regulation.
Collapse
|
43
|
Ullah Z, Kohn MJ, Yagi R, Vassilev LT, DePamphilis ML. Differentiation of trophoblast stem cells into giant cells is triggered by p57/Kip2 inhibition of CDK1 activity. Genes Dev 2009; 22:3024-36. [PMID: 18981479 DOI: 10.1101/gad.1718108] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genome endoreduplication during mammalian development is a rare event for which the mechanism is unknown. It first appears when fibroblast growth factor 4 (FGF4) deprivation induces differentiation of trophoblast stem (TS) cells into the nonproliferating trophoblast giant (TG) cells required for embryo implantation. Here we show that RO3306 inhibition of cyclin-dependent protein kinase 1 (CDK1), the enzyme required to enter mitosis, induced differentiation of TS cells into TG cells. In contrast, RO3306 induced abortive endoreduplication and apoptosis in embryonic stem cells, revealing that inactivation of CDK1 triggers endoreduplication only in cells programmed to differentiate into polyploid cells. Similarly, FGF4 deprivation resulted in CDK1 inhibition by overexpressing two CDK-specific inhibitors, p57/KIP2 and p21/CIP1. TS cell mutants revealed that p57 was required to trigger endoreduplication by inhibiting CDK1, while p21 suppressed expression of the checkpoint protein kinase CHK1, thereby preventing induction of apoptosis. Furthermore, Cdk2(-/-) TS cells revealed that CDK2 is required for endoreduplication when CDK1 is inhibited. Expression of p57 in TG cells was restricted to G-phase nuclei to allow CDK activation of S phase. Thus, endoreduplication in TS cells is triggered by p57 inhibition of CDK1 with concomitant suppression of the DNA damage response by p21.
Collapse
Affiliation(s)
- Zakir Ullah
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
44
|
Shen H, Moran DM, Maki CG. Transient nutlin-3a treatment promotes endoreduplication and the generation of therapy-resistant tetraploid cells. Cancer Res 2008; 68:8260-8. [PMID: 18922897 DOI: 10.1158/0008-5472.can-08-1901] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
p53 Activity is controlled in large part by MDM2, an E3 ubiquitin ligase that binds p53 and promotes its degradation. The MDM2 antagonist Nutlin-3a stabilizes p53 by blocking its interaction with MDM2. Several studies have supported the potential use of Nutlin-3a in cancer therapy. Two different p53 wild-type cancer cell lines (U2OS and HCT116) treated with Nutlin-3a for 24 hours accumulated 2N and 4N DNA content, suggestive of G(1) and G(2) phase cell cycle arrest. This coincided with increased p53 and p21 expression, hypophosphorylation of pRb, and depletion of Cyclin B1, Cyclin A, and CDC2. Upon removal of Nutlin-3a, 4N cells entered S phase and re-replicated their DNA without an intervening mitotic division, a process known as endoreduplication. p53-p21 pathway activation was required for the depletion of Cyclin B1, Cyclin A, and CDC2 in Nutlin-3a-treated cells and for endoreduplication after Nutlin-3a removal. Stable tetraploid clones could be isolated from Nutlin-3a treated cells, and these tetraploid clones were more resistant to ionizing radiation and cisplatin-induced apoptosis than diploid counterparts. These data indicate that transient Nutlin-3a treatment of p53 wild-type cancer cells can promote endoreduplication and the generation of therapy-resistant tetraploid cells. These findings have important implications regarding the use of Nutlin-3a in cancer therapy
Collapse
Affiliation(s)
- Hong Shen
- Department of Radiation Oncology, University of Chicago, Chicago, Illinois60637, USA
| | | | | |
Collapse
|
45
|
Rakotomalala L, Studach L, Wang WH, Gregori G, Hullinger RL, Andrisani O. Hepatitis B virus X protein increases the Cdt1-to-geminin ratio inducing DNA re-replication and polyploidy. J Biol Chem 2008; 283:28729-40. [PMID: 18693245 PMCID: PMC2568909 DOI: 10.1074/jbc.m802751200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 07/24/2008] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus X protein (pX) is implicated in hepatocellular carcinoma pathogenesis by an unknown mechanism. Employing the tetracycline-regulated pX-expressing 4pX-1 cell line, derived from the murine AML12 hepatocyte cell line, we demonstrate that pX induces partial polyploidy (>4N DNA). Depletion of p53 in 4pX-1 cells increases by 5-fold the polyploid cells in response to pX expression, indicating that p53 antagonizes pX-induced polyploidy. Dual-parameter flow cytometric analyses show pX-dependent bromodeoxyuridine (BrdUrd) incorporation in 4pX-1 cells containing 4N and >4N DNA, suggesting pX induces DNA re-replication. Interestingly, pX increases expression of endogenous replication initiation factors Cdc6 and Cdtl while suppressing geminin expression, a negative regulator of rereplication. In comparison to a geminin knockdown 4pX-1 cell line used as DNA re-replication control, the Cdt1/geminin ratio is greater in 4pX-1 cells expressing pX, indicating that pX promotes DNA re-replication. In support of this conclusion, pX-expressing 4pX-1 cells, similar to the geminin knockdown 4pX-1 cells, continue to incorporate BrdUrd in the G2 phase and exhibit nuclear Cdc6 and MCM5 co-localization and the absence of geminin. In addition, pX expression activates the ATR kinase, the sensor of DNA re-replication, which in turn phosphorylates RAD17 and H2AX. Interestingly, phospho-H2AX-positive and BrdUrd -positive cells progress through mitosis, demonstrating a link between pX-induced DNA re-replication and polyploidy. Our studies high-light a novel function of pX that likely contributes to hepatocellular carcinoma pathogenesis.
Collapse
Affiliation(s)
- Lova Rakotomalala
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | |
Collapse
|
46
|
Lambert LA, Qiao N, Hunt KK, Lambert DH, Mills GB, Meijer L, Keyomarsi K. Autophagy: a novel mechanism of synergistic cytotoxicity between doxorubicin and roscovitine in a sarcoma model. Cancer Res 2008; 68:7966-74. [PMID: 18829554 PMCID: PMC2561224 DOI: 10.1158/0008-5472.can-08-1333] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Doxorubicin is a genotoxic chemotherapy agent used in treatment of a wide variety of cancers. Significant clinical side effects, including cardiac toxicity and myelosuppression, severely limit the therapeutic index of this commonly used agent and methods which improve doxorubicin efficacy could benefit many patients. Because doxorubicin cytotoxicity is cell cycle specific, the cell cycle is a rational target to enhance its efficacy. We examined the direct, cyclin-dependent kinase inhibitor roscovitine as a means of enhancing doxorubicin cytotoxicity. This study showed synergistic cytotoxicity between doxorubicin and roscovitine in three sarcoma cell lines: SW-982 (synovial sarcoma), U2OS-LC3-GFP (osteosarcoma), and SK-LMS-1 (uterine leiomyosarcoma), but not the fibroblast cell line WI38. The combined treatment of doxorubicin and roscovitine was associated with a prolonged G(2)-M cell cycle arrest in the three sarcoma cell lines. Using three different methods for detecting apoptosis, our results revealed that apoptotic cell death did not account for the synergistic cytotoxicity between doxorubicin and roscovitine. However, morphologic changes observed by light microscopy and increased cytoplasmic LC3-GFP puncta in U20S-LC3-GFP cells after the combined treatment suggested the induction of autophagy. Induction of autophagy was also shown in SW-982 and SK-LMS-1 cells treated with both doxorubicin and roscovitine by acridine orange staining. These results suggest a novel role of autophagy in the enhanced cytotoxicity by cell cycle inhibition after genotoxic injury in tumor cells. Further investigation of this enhanced cytotoxicity as a treatment strategy for sarcomas is warranted.
Collapse
Affiliation(s)
- Laura A. Lambert
- Department of Surgical Oncology, University of Texas – M.D. Anderson Cancer Center
| | - Na Qiao
- Department of Experimental Radiation Oncology, University of Texas – M.D. Anderson Cancer Center
| | - Kelly K. Hunt
- Department of Surgical Oncology, University of Texas – M.D. Anderson Cancer Center
| | - Donald H. Lambert
- Department of Surgical Oncology, University of Texas – M.D. Anderson Cancer Center
| | - Gordon B. Mills
- Department of Systems Biology, University of Texas – M.D. Anderson Cancer Center
| | - Laurent Meijer
- Protein Phosphorylation and Disease, CNRS, Station Biologique, Roscoff, France
| | - Khandan Keyomarsi
- Department of Surgical Oncology, University of Texas – M.D. Anderson Cancer Center,Department of Experimental Radiation Oncology, University of Texas – M.D. Anderson Cancer Center
| |
Collapse
|
47
|
Cyclin-dependent kinase-associated proteins Cks1 and Cks2 are essential during early embryogenesis and for cell cycle progression in somatic cells. Mol Cell Biol 2008; 28:5698-709. [PMID: 18625720 DOI: 10.1128/mcb.01833-07] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cks proteins associate with cyclin-dependent kinases and have therefore been assumed to play a direct role in cell cycle regulation. Mammals have two paralogs, Cks1 and Cks2, and individually deleting the gene encoding either in the mouse has previously been shown not to impact viability. In this study we show that simultaneously disrupting CKS1 and CKS2 leads to embryonic lethality, with embryos dying at or before the morula stage after only two to four cell division cycles. RNA interference (RNAi)-mediated silencing of CKS genes in mouse embryonic fibroblasts (MEFs) or HeLa cells causes cessation of proliferation. In MEFs CKS silencing leads to cell cycle arrest in G(2), followed by rereplication and polyploidy. This phenotype can be attributed to impaired transcription of the CCNB1, CCNA2, and CDK1 genes, encoding cyclin B1, cyclin A, and Cdk1, respectively. Restoration of cyclin B1 expression rescues the cell cycle arrest phenotype conferred by RNAi-mediated Cks protein depletion. Consistent with a direct role in transcription, Cks2 is recruited to chromatin in general and to the promoter regions and open reading frames of genes requiring Cks function with a cell cycle periodicity that correlates with their transcription.
Collapse
|
48
|
Di Fiore B, Pines J. Defining the role of Emi1 in the DNA replication-segregation cycle. Chromosoma 2008; 117:333-8. [PMID: 18317792 DOI: 10.1007/s00412-008-0152-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 02/06/2008] [Accepted: 02/07/2008] [Indexed: 11/30/2022]
Abstract
Ordered progression through the cell cycle is essential to maintain genomic stability, and fundamental to this is ubiquitin-mediated proteolysis. In particular, the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase destabilises specific regulators at defined times in the cycle to ensure that each round of DNA replication is followed by cell division. Thus, the proper regulation of the APC/C is crucial in each cell cycle. There are several APC/C regulators that restrict its activity to specific cell cycle phases, and amongst these the early mitotic inhibitor 1 (Emi1) protein has recently come to prominence. Emi1 has been proposed to control APC/C in early mitosis; however, recent evidence questions this role. In this review we discuss new evidence that indicates that Emi1 is essential to restrict APC/C activity in interphase and, by doing so, ensure the proper coordination between DNA replication and mitosis.
Collapse
Affiliation(s)
- Barbara Di Fiore
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
49
|
John PCL, Qi R. Cell division and endoreduplication: doubtful engines of vegetative growth. TRENDS IN PLANT SCIENCE 2008; 13:121-127. [PMID: 18291706 DOI: 10.1016/j.tplants.2008.01.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 01/02/2008] [Accepted: 01/07/2008] [Indexed: 05/25/2023]
Abstract
Currently, there is little information to indicate whether plant cell division and development is the collective effect of individual cell programming (cell-based) or is determined by organ-wide growth (organismal). Modulation of cell division does not confirm cell autonomous programming of cell expansion; instead, final cell size seems to be determined by the balance between cells formed and subsequent tissue growth. Control of growth in regions of the plant therefore has great importance in determining cell, organ and plant development. Here, we question the view that formation of new cells and their programmed expansion is the driving force of growth. We believe there is evidence that division does not drive, but requires, cell growth and a similar requirement for growth is detected in the modified cycle termed endoreduplication.
Collapse
Affiliation(s)
- Peter C L John
- Plant Cell Biology Group, Research School of Biological Sciences, Australian National University, PO Box 475, ACT 2600, Australia.
| | | |
Collapse
|
50
|
Sivasubramaniam S, Sun X, Pan YR, Wang S, Lee EYHP. Cep164 is a mediator protein required for the maintenance of genomic stability through modulation of MDC1, RPA, and CHK1. Genes Dev 2008; 22:587-600. [PMID: 18283122 DOI: 10.1101/gad.1627708] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The activation of the ataxia telangiectasia mutated (ATM) and ATM/Rad3-related (ATR) kinases triggers a diverse cellular response including the initiation of DNA damage-induced cell cycle checkpoints. Mediator of DNA Damage Checkpoint protein, MDC1, and H2AX are chromatin remodeling factors required for the recruitment of DNA repair proteins to the DNA damage sites. We identified a novel mediator protein, Cep164 (KIAA1052), that interacts with both ATR and ATM. Cep164 is phosphorylated upon replication stress, ultraviolet radiation (UV), and ionizing radiation (IR). Ser186 of Cep164 is phosphorylated by ATR/ATM in vitro and in vivo. The phosphorylation of Ser186 is not affected by RPA knockdown but is severely hampered by MDC1 knockdown. siRNA-mediated silencing of Cep164 significantly reduces DNA damage-induced phosphorylation of RPA, H2AX, MDC1, CHK2, and CHK1, but not NBS1. Analyses of Cep164 knockdown cells demonstrate a critical role of Cep164 in G2/M checkpoint and nuclear divisions. These findings reveal that Cep164 is a key player in the DNA damage-activated signaling cascade.
Collapse
Affiliation(s)
- Sudhakar Sivasubramaniam
- Department of Biological Chemistry and Department of Developmental and Biology, University of California, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|