1
|
Pan Y, Iwata T. Exploring the Genetic Landscape of Childhood Glaucoma. CHILDREN (BASEL, SWITZERLAND) 2024; 11:454. [PMID: 38671671 PMCID: PMC11048810 DOI: 10.3390/children11040454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
Childhood glaucoma, a significant cause of global blindness, represents a heterogeneous group of disorders categorized into primary or secondary forms. Primary childhood glaucoma stands as the most prevalent subtype, comprising primary congenital glaucoma (PCG) and juvenile open-angle glaucoma (JOAG). Presently, multiple genes are implicated in inherited forms of primary childhood glaucoma. This comprehensive review delves into genetic investigations into primary childhood glaucoma, with a focus on identifying causative genes, understanding their inheritance patterns, exploring essential biological pathways in disease pathogenesis, and utilizing animal models to study these mechanisms. Specifically, attention is directed towards genes such as CYP1B1 (cytochrome P450 family 1 subfamily B member 1), LTBP2 (latent transforming growth factor beta binding protein 2), TEK (TEK receptor tyrosine kinase), ANGPT1 (angiopoietin 1), and FOXC1 (forkhead box C1), all associated with PCG; and MYOC (myocilin), associated with JOAG. Through exploring these genetic factors, this review aims to deepen our understanding of the intricate pathogenesis of primary childhood glaucoma, thereby facilitating the development of enhanced diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | - Takeshi Iwata
- National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo 152-8902, Japan;
| |
Collapse
|
2
|
Patil SV, Kaipa BR, Ranshing S, Sundaresan Y, Millar JC, Nagarajan B, Kiehlbauch C, Zhang Q, Jain A, Searby CC, Scheetz TE, Clark AF, Sheffield VC, Zode GS. Lentiviral mediated delivery of CRISPR/Cas9 reduces intraocular pressure in a mouse model of myocilin glaucoma. Sci Rep 2024; 14:6958. [PMID: 38521856 PMCID: PMC10960846 DOI: 10.1038/s41598-024-57286-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/16/2024] [Indexed: 03/25/2024] Open
Abstract
Mutations in myocilin (MYOC) are the leading known genetic cause of primary open-angle glaucoma, responsible for about 4% of all cases. Mutations in MYOC cause a gain-of-function phenotype in which mutant myocilin accumulates in the endoplasmic reticulum (ER) leading to ER stress and trabecular meshwork (TM) cell death. Therefore, knocking out myocilin at the genome level is an ideal strategy to permanently cure the disease. We have previously utilized CRISPR/Cas9 genome editing successfully to target MYOC using adenovirus 5 (Ad5). However, Ad5 is not a suitable vector for clinical use. Here, we sought to determine the efficacy of adeno-associated viruses (AAVs) and lentiviruses (LVs) to target the TM. First, we examined the TM tropism of single-stranded (ss) and self-complimentary (sc) AAV serotypes as well as LV expressing GFP via intravitreal (IVT) and intracameral (IC) injections. We observed that LV_GFP expression was more specific to the TM injected via the IVT route. IC injections of Trp-mutant scAAV2 showed a prominent expression of GFP in the TM. However, robust GFP expression was also observed in the ciliary body and retina. We next constructed lentiviral particles expressing Cas9 and guide RNA (gRNA) targeting MYOC (crMYOC) and transduction of TM cells stably expressing mutant myocilin with LV_crMYOC significantly reduced myocilin accumulation and its associated chronic ER stress. A single IVT injection of LV_crMYOC in Tg-MYOCY437H mice decreased myocilin accumulation in TM and reduced elevated IOP significantly. Together, our data indicates, LV_crMYOC targets MYOC gene editing in TM and rescues a mouse model of myocilin-associated glaucoma.
Collapse
Affiliation(s)
- Shruti V Patil
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, USA
| | - Balasankara Reddy Kaipa
- Department of Ophthalmology and Center for Translational Vision Research, University of California, 829 Health Sciences Rd, Irvine, CA, 92617, USA
| | - Sujata Ranshing
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, USA
| | - Yogapriya Sundaresan
- Department of Ophthalmology and Center for Translational Vision Research, University of California, 829 Health Sciences Rd, Irvine, CA, 92617, USA
| | - J Cameron Millar
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, USA
| | - Bhavani Nagarajan
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, USA
| | - Charles Kiehlbauch
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, USA
| | - Qihong Zhang
- Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA
| | - Ankur Jain
- Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA
| | - Charles C Searby
- Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA
| | - Todd E Scheetz
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, 52242, USA
| | - Abbot F Clark
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, USA
| | - Val C Sheffield
- Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, 52242, USA
| | - Gulab S Zode
- Department of Ophthalmology and Center for Translational Vision Research, University of California, 829 Health Sciences Rd, Irvine, CA, 92617, USA.
| |
Collapse
|
3
|
Sazhnyev Y, Venkat A, Zheng JJ. Somatic Mutations within Myocilin due to Aging May Be a Potential Risk Factor for Glaucoma. Genes (Basel) 2024; 15:203. [PMID: 38397193 PMCID: PMC10887703 DOI: 10.3390/genes15020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Glaucoma is a chronic optic neuropathy that leads to irreversible vision loss. Aging and family history are the two most important risk factors of glaucoma. One of the most studied genes involved in the onset of open-angle glaucoma is myocilin (MYOC). About 105 germline mutations within MYOC are known to be associated with glaucoma and result in endoplasmic reticulum (ER) stress, which leads to trabecular meshwork (TM) cell death and subsequent intraocular pressure (IOP) elevation. However, only about 4% of the population carry these mutations. An analysis of MYOC somatic cancer-associated mutations revealed a notable overlap with pathogenic glaucoma variants. Because TM cells have the potential to accumulate somatic mutations at a rapid rate due to ultraviolet (UV) light exposure, we propose that an accumulation of somatic mutations within MYOC is an important contributor to the onset of glaucoma.
Collapse
Affiliation(s)
- Yevgeniy Sazhnyev
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (Y.S.); (A.V.)
- Department of Ophthalmology, California Northstate University College of Medicine, 9700 West Taron Dr., Elk Grove, CA 95757, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Akaash Venkat
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (Y.S.); (A.V.)
- Department of Computer Science, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA 90095, USA
| | - Jie J. Zheng
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (Y.S.); (A.V.)
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Rong S, Yu X, Wiggs JL. Genetic Basis of Pigment Dispersion Syndrome and Pigmentary Glaucoma: An Update and Functional Insights. Genes (Basel) 2024; 15:142. [PMID: 38397132 PMCID: PMC10887877 DOI: 10.3390/genes15020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Pigment Dispersion Syndrome (PDS) and Pigmentary Glaucoma (PG) comprise a spectrum of ocular disorders characterized by iris pigment dispersion and trabecular meshwork changes, resulting in increased intraocular pressure and potential glaucomatous optic neuropathy. This review summarizes recent progress in PDS/PG genetics including rare pathogenic protein coding alterations (PMEL) and susceptibility loci identified from genome-wide association studies (GSAP and GRM5/TYR). Areas for future research are also identified, especially the development of efficient model systems. While substantial strides have been made in understanding the genetics of PDS/PG, our review identifies key gaps and outlines the future directions necessary for further advancing this important field of ocular genetics.
Collapse
Affiliation(s)
- Shisong Rong
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Mass General Brigham, Harvard Medical School, Boston, MA 02114, USA;
| | - Xinting Yu
- Department of Medicine, Brigham and Women’s Hospital, Mass General Brigham, Harvard Medical School, Boston, MA 02115, USA;
| | - Janey L. Wiggs
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Mass General Brigham, Harvard Medical School, Boston, MA 02114, USA;
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
5
|
Patil SV, Kaipa BR, Ranshing S, Sundaresan Y, Millar JC, Nagarajan B, Kiehlbauch C, Zhang Q, Jain A, Searby CC, Scheetz TE, Clark AF, Sheffield VC, Zode GS. Lentiviral mediated delivery of CRISPR/Cas9 reduces intraocular pressure in a mouse model of myocilin glaucoma. RESEARCH SQUARE 2023:rs.3.rs-3740880. [PMID: 38196579 PMCID: PMC10775399 DOI: 10.21203/rs.3.rs-3740880/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Mutations in myocilin (MYOC) are the leading known genetic cause of primary open-angle glaucoma, responsible for about 4% of all cases. Mutations in MYOC cause a gain-of-function phenotype in which mutant myocilin accumulates in the endoplasmic reticulum (ER) leading to ER stress and trabecular meshwork (TM) cell death. Therefore, knocking out myocilin at the genome level is an ideal strategy to permanently cure the disease. We have previously utilized CRISPR/Cas9 genome editing successfully to target MYOC using adenovirus 5 (Ad5). However, Ad5 is not a suitable vector for clinical use. Here, we sought to determine the efficacy of adeno-associated viruses (AAVs) and lentiviruses (LVs) to target the TM. First, we examined the TM tropism of single-stranded (ss) and self-complimentary (sc) AAV serotypes as well as LV expressing GFP via intravitreal (IVT) and intracameral (IC) injections. We observed that LV_GFP expression was more specific to the TM injected via the IVT route. IC injections of Trp-mutant scAAV2 showed a prominent expression of GFP in the TM. However, robust GFP expression was also observed in the ciliary body and retina. We next constructed lentiviral particles expressing Cas9 and guide RNA (gRNA) targeting MYOC (crMYOC) and transduction of TM cells stably expressing mutant myocilin with LV_crMYOC significantly reduced myocilin accumulation and its associated chronic ER stress. A single IVT injection of LV_crMYOC in Tg-MYOCY437H mice decreased myocilin accumulation in TM and reduced elevated IOP significantly. Together, our data indicates, LV_crMYOC targets MYOC gene editing in TM and rescues a mouse model of myocilin-associated glaucoma.
Collapse
Affiliation(s)
- Shruti V Patil
- University of North Texas Health Science Center at Fort Worth
| | | | - Sujata Ranshing
- University of North Texas Health Science Center at Fort Worth
| | | | | | | | | | | | | | | | | | - Abbot F Clark
- University of North Texas Health Science Center at Fort Worth
| | | | | |
Collapse
|
6
|
Dai A, Cheng X, Wang W, Li R, Gao X, Li S, Liu T. A novel heterozygous c.733 T > G MYOC mutation associated with juvenile-onset open-angle glaucoma in a Chinese family. Eye (Lond) 2023; 37:2488-2493. [PMID: 36543942 PMCID: PMC10397252 DOI: 10.1038/s41433-022-02359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 11/14/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
AIMS To detect mutations in juvenile-onset open-angle glaucoma in a Chinese family and to describe the characteristic ophthalmic phenotypes of this pedigree. METHODS There were 14 individuals in this four-generation pedigree. All living members of the family underwent comprehensive ophthalmic examinations. Five patients presented with elevated intraocular pressures. All of them shared early-onset disease, with a mean onset age of 14.4 years and continuing aggressive damage to their optic nerves. Hyperpigmentation in the trabecular meshwork and sometimes-broad iris processes were noted in this family using gonioscopy. All exons of candidate genes (MYOC, OPTN, CYP1B1) were amplified using the polymerase chain reaction, and analysed with an ABI 3700XL Genetic Analyser. RESULTS A heterozygous missense mutation in exon 3 (c.733 T > G) of the MYOC gene was found in the five JOAG patients and one 7-year-old boy with no ophthalmic manifestation of glaucoma, but it was absent in other members of the family and in the controls. This mutation resulted in a transversion of cysteine to glycine (Cys245Gly). CONCLUSIONS We concluded the novel MYOC c.733 T > G mutation found in a Chinese family with JOAG caused a severe type of JOAG exhibiting early onset, high IOP, and severe optic nerve damage. Interestingly, unlike other reported MYOC mutation families, our patients exhibited marked angle pigmentation and iris processes.
Collapse
Affiliation(s)
- Aiai Dai
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xuan Cheng
- Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Weifeng Wang
- Department of Gastroenterology and Hepatology, Guangdong Second Provincial General Hospital, Guangdong, China
| | - Runpu Li
- Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Xuhui Gao
- Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Shuxian Li
- Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Tiecheng Liu
- Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
7
|
Saccuzzo EG, Youngblood HA, Lieberman RL. Myocilin misfolding and glaucoma: A 20-year update. Prog Retin Eye Res 2023; 95:101188. [PMID: 37217093 PMCID: PMC10330797 DOI: 10.1016/j.preteyeres.2023.101188] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Mutations in the gene MYOC account for approximately 5% of cases of primary open angle glaucoma (POAG). MYOC encodes for the protein myocilin, a multimeric secreted glycoprotein composed of N-terminal coiled-coil (CC) and leucine zipper (LZ) domains that are connected via a disordered linker to a 30 kDa olfactomedin (OLF) domain. More than 90% of glaucoma-causing mutations are localized to the OLF domain. While myocilin is expressed in numerous tissues, mutant myocilin is only associated with disease in the anterior segment of the eye, in the trabecular meshwork. The prevailing pathogenic mechanism involves a gain of toxic function whereby mutant myocilin aggregates intracellularly instead of being secreted, which causes cell stress and an early timeline for TM cell death, elevated intraocular pressure, and subsequent glaucoma-associated retinal degeneration. In this review, we focus on the work our lab has conducted over the past ∼15 years to enhance our molecular understanding of myocilin-associated glaucoma, which includes details of the molecular structure and the nature of the aggregates formed by mutant myocilin. We conclude by discussing open questions, such as predicting phenotype from genotype alone, the elusive native function of myocilin, and translational directions enabled by our work.
Collapse
Affiliation(s)
- Emily G Saccuzzo
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA, 30332-0400, USA
| | - Hannah A Youngblood
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA, 30332-0400, USA
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA, 30332-0400, USA.
| |
Collapse
|
8
|
Yang Z, Zhang Z, Zhu Y, Yuan G, Yang J, Yu W. Mendelian Randomization and Transcriptome-Wide Association Analysis Identified Genes That Were Pleiotropically Associated with Intraocular Pressure. Genes (Basel) 2023; 14:genes14051027. [PMID: 37239387 DOI: 10.3390/genes14051027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Intraocular pressure (IOP) is a major modifiable risk factor for glaucoma. However, the mechanisms underlying the controlling of IOP remain to be elucidated. OBJECTIVE To prioritize genes that are pleiotropically associated with IOP. METHODS We adopted a two-sample Mendelian randomization method, named summary-based Mendelian randomization (SMR), to examine the pleiotropic effect of gene expression on IOP. The SMR analyses were based on summarized data from a genome-wide association study (GWAS) on IOP. We conducted separate SMR analyses using Genotype-Tissue Expression (GTEx) and Consortium for the Architecture of Gene Expression (CAGE) expression quantitative trait loci (eQTL) data. Additionally, we performed a transcriptome-wide association study (TWAS) to identify genes whose cis-regulated expression levels were associated with IOP. RESULTS We identified 19 and 25 genes showing pleiotropic association with IOP using the GTEx and CAGE eQTL data, respectively. RP11-259G18.3 (PSMR = 2.66 × 10-6), KANSL1-AS1 (PSMR = 2.78 × 10-6), and RP11-259G18.2 (PSMR = 2.91 × 10-6) were the top three genes using the GTEx eQTL data. LRRC37A4 (PSMR = 1.19 × 10-5), MGC57346 (PSMR = 1.19 × 10-5), and RNF167 (PSMR = 1.53 × 10-5) were the top three genes using the CAGE eQTL data. Most of the identified genes were found in or near the 17q21.31 genomic region. Additionally, our TWAS analysis identified 18 significant genes whose expression was associated with IOP. Of these, 12 and 4 were also identified by the SMR analysis using the GTEx and CAGE eQTL data, respectively. CONCLUSIONS Our findings suggest that the 17q21.31 genomic region may play a critical role in the regulation of IOP.
Collapse
Affiliation(s)
- Zhikun Yang
- Department of Ophthalmology, Peking Union Medical College Hospital, Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zhewei Zhang
- Department of Statistics, The Pennsylvania State University, State College, PA 16802, USA
| | - Yining Zhu
- School of Mathematical Sciences, Fudan University, Shanghai 200433, China
| | - Guangwei Yuan
- College of Professional Studies, Northeastern University, Boston, MA 02115, USA
| | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Weihong Yu
- Department of Ophthalmology, Peking Union Medical College Hospital, Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
9
|
Hu X, Zhang B, Li X, Li M, Wang Y, Dan H, Zhou J, Wei Y, Ge K, Li P, Song Z. The application and progression of CRISPR/Cas9 technology in ophthalmological diseases. Eye (Lond) 2023; 37:607-617. [PMID: 35915232 PMCID: PMC9998618 DOI: 10.1038/s41433-022-02169-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/07/2022] [Accepted: 06/30/2022] [Indexed: 11/08/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas) system is an adaptive immune defence system that has gradually evolved in bacteria and archaea to combat invading viruses and exogenous DNA. Advances in technology have enabled researchers to enhance their understanding of the immune process in vivo and its potential for use in genome editing. Thus far, applications of CRISPR/Cas9 genome editing technology in ophthalmology have included gene therapy for corneal dystrophy, glaucoma, congenital cataract, Leber's congenital amaurosis, retinitis pigmentosa, Usher syndrome, fundus neovascular disease, proliferative vitreoretinopathy, retinoblastoma and other eye diseases. Additionally, the combination of CRISPR/Cas9 genome editing technology with adeno-associated virus vector and inducible pluripotent stem cells provides further therapeutic avenues for the treatment of eye diseases. Nonetheless, many challenges remain in the development of clinically feasible retinal genome editing therapy. This review discusses the development, as well as mechanism of CRISPR/Cas9 and its applications and challenges in gene therapy for eye diseases.
Collapse
Affiliation(s)
- Xumeng Hu
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Beibei Zhang
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Xiaoli Li
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Miao Li
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yange Wang
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Handong Dan
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Jiamu Zhou
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yuanmeng Wei
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Keke Ge
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Pan Li
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Zongming Song
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
10
|
He JN, Ng TK, Lu SY, Tam POS, Chan PP, Tham CC, Pang CP, Chen LJ, Chu WK. Genetic association of ANGPT2 with primary open-angle glaucoma. EYE AND VISION (LONDON, ENGLAND) 2022; 9:37. [PMID: 36199153 PMCID: PMC9535884 DOI: 10.1186/s40662-022-00309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/15/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND To determine the association of the ANGPT2 gene with primary open-angle glaucoma (POAG) in Chinese. METHODS Six single-nucleotide polymorphisms (SNPs) in ANGPT2 (rs2515487, rs2922869, rs13255574, rs4455855, rs13269021, and rs11775442) were genotyped in a total of 2601 study subjects from two cohorts. One is a Hong Kong Chinese cohort of 484 high tension glaucoma (HTG) and 537 normal tension glaucoma (NTG) patients, and 496 non-glaucoma control subjects. Another cohort is a Shantou Chinese cohort of 403 HTG and 135 NTG patients, and 543 non-glaucoma control subjects. Subgroup analysis by sex was conducted. Outcomes from different cohorts were combined for meta-analysis. RESULTS The association of SNP rs11775442 with NTG in the Hong Kong cohort [P = 0.0498, OR = 1.24, 95% confidence interval (CI) 1.00-1.55] after adjusting for age and sex did not reach statistical significance after Bonferroni correction. Other SNPs were not significantly associated with NTG, HTG and POAG in individual cohort or in the combined analyses (P > 0.05). In the subgroup analysis by sex, SNP rs13269021 in the Shantou cohort, but not in the Hong Kong cohort, was significantly associated with NTG in males (P = 0.0081, OR = 1.67, 95% CI: 1.14-2.43) but not in females (P = 0.874). In the combined analyses by sex, no SNPs were significantly associated with NTG, HTG and POAG. CONCLUSIONS In the subgroup analysis by sex, a significant association was shown in SNP rs13269021 with NTG in Shantou males, but not in Hong Kong males. Further studies are needed to verify the association between ANGPT2 locus (rs13269021) and NTG in Chinese males.
Collapse
Affiliation(s)
- Jing Na He
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Tsz Kin Ng
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Shi Yao Lu
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Pancy Oi Sin Tam
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Poemen P Chan
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Lam Kin Chung, Jet King-Shing Ho Glaucoma Treatment and Research Centre, The Chinese University of Hong Kong, Hong Kong, China
- Lim Por-Yen Eye Genetics Research Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Clement C Tham
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Lam Kin Chung, Jet King-Shing Ho Glaucoma Treatment and Research Centre, The Chinese University of Hong Kong, Hong Kong, China
- Lim Por-Yen Eye Genetics Research Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Pui Pang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Lam Kin Chung, Jet King-Shing Ho Glaucoma Treatment and Research Centre, The Chinese University of Hong Kong, Hong Kong, China
- Lim Por-Yen Eye Genetics Research Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Jia Chen
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Lam Kin Chung, Jet King-Shing Ho Glaucoma Treatment and Research Centre, The Chinese University of Hong Kong, Hong Kong, China
- Lim Por-Yen Eye Genetics Research Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Kit Chu
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.
- Lam Kin Chung, Jet King-Shing Ho Glaucoma Treatment and Research Centre, The Chinese University of Hong Kong, Hong Kong, China.
- Lim Por-Yen Eye Genetics Research Centre, The Chinese University of Hong Kong, Hong Kong, China.
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, 147K Argyle Street, Kowloon, Hong Kong, China.
| |
Collapse
|
11
|
Bioinformatic Prioritization and Functional Annotation of GWAS-Based Candidate Genes for Primary Open-Angle Glaucoma. Genes (Basel) 2022; 13:genes13061055. [PMID: 35741817 PMCID: PMC9222386 DOI: 10.3390/genes13061055] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Background: Primary open-angle glaucoma (POAG) is the most prevalent glaucoma subtype, but its exact etiology is still unknown. In this study, we aimed to prioritize the most likely ‘causal’ genes and identify functional characteristics and underlying biological pathways of POAG candidate genes. Methods: We used the results of a large POAG genome-wide association analysis study from GERA and UK Biobank cohorts. First, we performed systematic gene-prioritization analyses based on: (i) nearest genes; (ii) nonsynonymous single-nucleotide polymorphisms; (iii) co-regulation analysis; (iv) transcriptome-wide association studies; and (v) epigenomic data. Next, we performed functional enrichment analyses to find overrepresented functional pathways and tissues. Results: We identified 142 prioritized genes, of which 64 were novel for POAG. BICC1, AFAP1, and ABCA1 were the most highly prioritized genes based on four or more lines of evidence. The most significant pathways were related to extracellular matrix turnover, transforming growth factor-β, blood vessel development, and retinoic acid receptor signaling. Ocular tissues such as sclera and trabecular meshwork showed enrichment in prioritized gene expression (>1.5 fold). We found pleiotropy of POAG with intraocular pressure and optic-disc parameters, as well as genetic correlation with hypertension and diabetes-related eye disease. Conclusions: Our findings contribute to a better understanding of the molecular mechanisms underlying glaucoma pathogenesis and have prioritized many novel candidate genes for functional follow-up studies.
Collapse
|
12
|
Yan X, Wu S, Liu Q, Cheng Y, Zhang J, Wang N. Myocilin Gene Mutation Induced Autophagy Activation Causes Dysfunction of Trabecular Meshwork Cells. Front Cell Dev Biol 2022; 10:900777. [PMID: 35615698 PMCID: PMC9124892 DOI: 10.3389/fcell.2022.900777] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
Trabecular meshwork dysfunction is the main cause of primary open angle glaucoma (POAG) associated with elevated intraocular pressure (IOP). Mutant myocilin causes glaucoma mainly via elevating IOP. Previously we have found that accumulated Asn 450 Tyr (N450Y) mutant myocilin impairs human trabecular meshwork (TM) cells by inducing chronic endoplasmic reticulum (ER) stress response in vitro. However, it is unclear how ER stress leads to TM damage and whether N450Y myocilin mutation is associated with POAG in vivo. Here we found that N450Y mutant myocilin induces autophagy, which worsens cell viability, whereas inhibition of autophagy increases viability and decreases cell death in human TM cells. Furthermore, we construct a transgenic mouse model of N450Y myocilin mutation (Tg-MYOCN450Y) and Tg-MYOCN450Y mice exhibiting glaucoma phenotypes: IOP elevation, retinal ganglion cell loss and visual impairment. Consistent with our published in vitro studies, mutant myocilin fails to secrete into aqueous humor, causes ER stress and actives autophagy in Tg-MYOCN450Y mice, and aqueous humor dynamics are altered in Tg-MYOCN450Y mice. In summary, our studies demonstrate that activation of autophagy is correlated with pathogenesis of POAG.
Collapse
Affiliation(s)
- Xuejing Yan
- Beijing Tongren Eye Center, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
- Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Shen Wu
- Beijing Tongren Eye Center, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
- Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Qian Liu
- Beijing Tongren Eye Center, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
- Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Ying Cheng
- Beijing Tongren Eye Center, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
| | - Jingxue Zhang
- Beijing Tongren Eye Center, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
- Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- *Correspondence: Ningli Wang, ; Jingxue Zhang,
| | - Ningli Wang
- Beijing Tongren Eye Center, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
- Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- *Correspondence: Ningli Wang, ; Jingxue Zhang,
| |
Collapse
|
13
|
Aboobakar IF, Wiggs JL. The genetics of glaucoma: Disease associations, personalised risk assessment and therapeutic opportunities-A review. Clin Exp Ophthalmol 2022; 50:143-162. [PMID: 35037362 DOI: 10.1111/ceo.14035] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/23/2022]
Abstract
Glaucoma refers to a heterogenous group of disorders characterised by progressive loss of retinal ganglion cells and associated visual field loss. Both early-onset and adult-onset forms of the disease have a strong genetic component. Here, we summarise the known genetic associations for various forms of glaucoma and the possible functional roles for these genes in disease pathogenesis. We also discuss efforts to translate genetic knowledge into clinical practice, including gene-based tests for disease diagnosis and risk-stratification as well as gene-based therapies.
Collapse
Affiliation(s)
- Inas F Aboobakar
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Janey L Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Tarasenkov AO. [Classification, diagnosis and treatment of juvenile glaucoma]. Vestn Oftalmol 2021; 137:123-127. [PMID: 34410067 DOI: 10.17116/oftalma2021137041123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Juvenile open-angle glaucoma is a disease with complex pathogenesis affecting young people of working age that can lead to disability. The article describes modern concepts of diagnosis, classification and approaches to the treatment of juvenile glaucoma with special attention paid to the differential diagnostic criteria of juvenile open-angle glaucoma and congenital glaucoma.
Collapse
|
15
|
Abstract
Intraocular pressure (IOP) is the cardinal and only modifiable risk factor for glaucoma, the leading cause of irreparable blindness worldwide. Twin and family studies estimate the heritability of IOP to be 40-70%, and linkage studies for IOP have identified numerous loci. Mutations in MYOC can cause markedly elevated IOP and aggressive glaucoma often requiring surgical intervention. However, the majority of the genetic basis for raised IOP and glaucoma in populations is complex, and recent large genome-wide association studies (GWASs) have identified over 100 common variants that contribute to IOP variation. In combination, these loci are predictive for primary open-angle glaucoma in independent populations, achieving an area under the receiver operating characteristic curve of 76% for high-pressure primary open-angle glaucoma; this suggests the possibility of targeted screening in the future. Additionally, GWAS findings have identified important biological pathways underlying IOP regulation, including lymphangiogenesis and lipid metabolism, providing novel targets for new therapies. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Zihe Xu
- Department of Ophthalmology, King's College London, London SE5 9RS, United Kingdom.,Department of Twin Research & Genetic Epidemiology, King's College London, London SE5 9RS, United Kingdom
| | - Pirro Hysi
- Department of Ophthalmology, King's College London, London SE5 9RS, United Kingdom.,Department of Twin Research & Genetic Epidemiology, King's College London, London SE5 9RS, United Kingdom
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 2PD, UK;
| |
Collapse
|
16
|
Annesley SJ, Fisher PR. Lymphoblastoid Cell Lines as Models to Study Mitochondrial Function in Neurological Disorders. Int J Mol Sci 2021; 22:4536. [PMID: 33926115 PMCID: PMC8123577 DOI: 10.3390/ijms22094536] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
Neurological disorders, including neurodegenerative diseases, are collectively a major cause of death and disability worldwide. Whilst the underlying disease mechanisms remain elusive, altered mitochondrial function has been clearly implicated and is a key area of study in these disorders. Studying mitochondrial function in these disorders is difficult due to the inaccessibility of brain tissue, which is the key tissue affected in these diseases. To overcome this issue, numerous cell models have been used, each providing unique benefits and limitations. Here, we focussed on the use of lymphoblastoid cell lines (LCLs) to study mitochondrial function in neurological disorders. LCLs have long been used as tools for genomic analyses, but here we described their use in functional studies specifically in regard to mitochondrial function. These models have enabled characterisation of the underlying mitochondrial defect, identification of altered signalling pathways and proteins, differences in mitochondrial function between subsets of particular disorders and identification of biomarkers of the disease. The examples provided here suggest that these cells will be useful for development of diagnostic tests (which in most cases do not exist), identification of drug targets and testing of pharmacological agents, and are a worthwhile model for studying mitochondrial function in neurological disorders.
Collapse
Affiliation(s)
- Sarah Jane Annesley
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia;
| | | |
Collapse
|
17
|
Han X, Hewitt AW, MacGregor S. Predicting the Future of Genetic Risk Profiling of Glaucoma: A Narrative Review. JAMA Ophthalmol 2021; 139:224-231. [PMID: 33331888 DOI: 10.1001/jamaophthalmol.2020.5404] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Importance Glaucoma is the world's leading cause of irreversible blindness. Primary open-angle glaucoma (POAG) is typically asymptomatic early in the disease process, and unfortunately, many are diagnosed too late to prevent vision loss. Observations Genome-wide association studies, which evaluate the association between genetic variants and phenotype across the genome, have mapped many genes for POAG. As well as uncovering new biology, genetic information can be combined into a polygenic risk score (PRS), which aggregates an individual's disease risk over many genetic variants. In this nonsystematic review, performed from June 21, 2019, to October 1, 2020, we address a series of questions to explain the challenges and opportunities in translating genetic discoveries in POAG. We summarize what is known about POAG genetics and how its endophenotypes, such as intraocular pressure or cup-disc ratio, can help with prediction. We discuss the sample sizes available and how increases in the future may have an effect on the utility of prediction approaches. We explore particular scenarios, such as the use of PRS in risk stratification, and applications for individuals who are particularly high risk for POAG as a result of them carrying both a high penetrance mutation and an unfavorable PRS. Finally, we discuss the issue of equity in applying these tests and the prospects for prediction for people from various ancestry groups. The cost-effectiveness evaluation of glaucoma PRS in direct-to-consumer genetic testing and across different ancestry groups is warranted in future research. Conclusions and Relevance Advances in glaucoma genetics have opened the door for risk stratification based on genetic risk predictions. The PRS approach has shown good promise in predicting who will be at highest risk of POAG, which could improve outcomes if these predictions can be acted on to result in improved clinical outcomes.
Collapse
Affiliation(s)
- Xikun Han
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Medicine, University of Queensland, St Lucia, Brisbane, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia.,Centre for Eye Research Australia, University of Melbourne, Australia
| | | |
Collapse
|
18
|
Duarte JN. Neuroinflammatory Mechanisms of Mitochondrial Dysfunction and Neurodegeneration in Glaucoma. J Ophthalmol 2021; 2021:4581909. [PMID: 33953963 PMCID: PMC8064803 DOI: 10.1155/2021/4581909] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/29/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
The exact mechanism of retinal ganglion cell loss in the pathogenesis of glaucoma is yet to be understood. Mitochondrial damage-associated molecular patterns (DAMPs) resulting from mitochondrial dysfunction have been linked to Leber's hereditary optic neuropathy and autosomal dominant optic atrophy, as well as to brain neurodegenerative diseases. Recent evidence shows that, in conditions where mitochondria are damaged, a sustained inflammatory response and downstream pathological inflammation may ensue. Mitochondrial damage has been linked to the accumulation of age-related mitochondrial DNA mutations and mitochondrial dysfunction, possibly through aberrant reactive oxygen species production and defective mitophagy. The present review focuses on how mitochondrial dysfunction may overwhelm the ability of neurons and glial cells to adequately maintain homeostasis and how mitochondria-derived DAMPs trigger the immune system and induce neurodegeneration.
Collapse
Affiliation(s)
- Joao N. Duarte
- Neuroinflammation Unit, Biotech Research & Innovation Center, University of Copenhagen, Copenhagen, Denmark
- Department of Ophthalmology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Immunology, Section 7631, Rigshospitalet, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Choudhari JK, Chatterjee T, Gupta S, Garcia-Garcia JG, Vera-González J. Network Biology Approaches in Ophthalmological Diseases: A Case Study of Glaucoma. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11586-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
20
|
Fan W, Li W, Duan C, Zhang W, Guo Y, Chen F. Characterization of a novel mutation in the MYOC gene in a Chinese family with primary open‑angle glaucoma. Mol Med Rep 2020; 22:3263-3270. [PMID: 32945492 PMCID: PMC7453629 DOI: 10.3892/mmr.2020.11441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 07/14/2020] [Indexed: 11/06/2022] Open
Abstract
Although primary open-angle glaucoma (POAG)-related mutations in the myocilin (MYOC) gene have been reported, the underlying associations remain poorly understood. In the present study, the relationship between a MYOC mutation and POAG was investigated using ophthalmic examination and total exon gene sequencing in a Chinese family comprised of 5 individuals with POAG and 15 unaffected individuals. Pathogenic mutations underlying POAG were identified by whole-exome sequencing and subsequently validated by Sanger sequencing. Of the family members, nine (45%) harbored heterozygous p.D208Y mutations; among these, five had POAG and four were unaffected. The mean age at diagnosis was 26.2±4.12 years and the mean intraocular pressure (IOP) was 39.7±16.58 mmHg; all affected members complained of vision loss, headaches and eye swelling. Among the five cases of POAG, two presented with blindness. Among 10 members of the family who underwent comprehensive ophthalmologic examination, 3 individuals exhibited severe visual field defects. The mean age at the time of operation was 27.2±3.54 years. In the present study, a novel MYOC mutation (c.G622T: p.D208Y) was identified that was associated with severe visual impairment, high IOP and the need for frequent surgical interventions. Some carriers of the mutation were young and did not show signs of glaucoma. These individuals should be followed-up to firmly establish whether the mutated gene is pathogenic for POAG.
Collapse
Affiliation(s)
- Wanlin Fan
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wan Li
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Chaoye Duan
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wenbo Zhang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yongwei Guo
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, D‑50937 Cologne, Germany
| | - Fei Chen
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
21
|
Ling C, Zhang D, Zhang J, Sun H, Du Q, Li X. Updates on the molecular genetics of primary congenital glaucoma (Review). Exp Ther Med 2020; 20:968-977. [PMID: 32742340 PMCID: PMC7388405 DOI: 10.3892/etm.2020.8767] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/01/2020] [Indexed: 12/14/2022] Open
Abstract
Primary congenital glaucoma (PCG) is one of the primary causes of blindness in children and is characterized by congenital trabecular meshwork and anterior chamber angle dysplasia. While being a rare condition, PCG severely impairs the quality of life of affected patients. However, the pathogenesis of PCG remains to be fully elucidated. It has previously been indicated that genetic factors serve a critical role in the pathogenesis of PCG, although patients with PCG exhibit significant genetic heterogeneity. Mutations in the cytochrome P450 family 1 subfamily B member 1 gene have been implicated in PCG and further genes that have been reported to be involved in PCG are myocilin, forkhead box C1, collagen type I α1 chain and latent transforming growth factor β binding protein 2. The present review aims to provide an up to date understanding of the genes associated with PCG and the use of molecular technologies in the identification of such genes and mutations. This may pave the way for the development of preventative methods, early diagnosis and improved therapeutic strategies in PCG.
Collapse
Affiliation(s)
- Chen Ling
- Sichuan Provincial Key Laboratory for Genetic Disease, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P.R. China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, P.R. China
| | - Dingding Zhang
- Sichuan Provincial Key Laboratory for Genetic Disease, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P.R. China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, P.R. China
| | - Jing Zhang
- Department of Thoracic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P.R. China
| | - Huanxin Sun
- Department of Immunology, North Sichuan Medical College, Nanchong, Sichuan 637100, P.R. China
| | - Qiu Du
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Xuefei Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
22
|
Trivli A, Zervou MI, Goulielmos GN, Spandidos DA, Detorakis ET. Primary open angle glaucoma genetics: The common variants and their clinical associations (Review). Mol Med Rep 2020; 22:1103-1110. [PMID: 32626970 PMCID: PMC7339808 DOI: 10.3892/mmr.2020.11215] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
Glaucoma is a group of progressive optic neuropathies that have in common characteristic optic nerve head changes, loss of retinal ganglion cells and visual field defects. Among the large family of glaucomas, primary open‑angle glaucoma (POAG) is the most common type, a complex and heterogeneous disorder with environmental and genetic factors contributing to its pathogenesis. Approximately 5% of POAG is currently attributed to single‑gene or Mendelian forms of glaucoma. Genetic linkage analysis and genome‑wide association studies have identified various genomic loci, paving the path to understanding the pathogenesis of this enigmatic, blinding disease. In this review we summarize the most common variants reported thus far and their possible clinical correlations.
Collapse
Affiliation(s)
- Alexandra Trivli
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, 71003 Heraklion, Greece
| | - Maria I Zervou
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, 71003 Heraklion, Greece
| | - George N Goulielmos
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, 71003 Heraklion, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | | |
Collapse
|
23
|
Steroid-induced glaucoma: Epidemiology, pathophysiology, and clinical management. Surv Ophthalmol 2020; 65:458-472. [PMID: 32057761 DOI: 10.1016/j.survophthal.2020.01.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 12/17/2022]
Abstract
Glucocorticoids are a class of anti-inflammatory drugs commonly used to treat various ocular and systemic conditions. Although the role of glucocorticoids in the treatment of numerous serious inflammatory diseases is pivotal, their prolonged use may increase intraocular pressure resulting in steroid-induced glaucoma. We provide a detailed update on steroid-induced glaucoma as a preventable cause of blindness in the adult and pediatric population and describe its epidemiology, social impact, and risk factors. Furthermore, we explore the propensity of different steroids to increase the intraocular pressure, the role of different routes of steroid administration, dosage and duration of treatment, as well as the clinical features, genetics, and management of steroid-induced glaucoma.
Collapse
|
24
|
Han X, Souzeau E, Ong JS, An J, Siggs OM, Burdon KP, Best S, Goldberg I, Healey PR, Graham SL, Ruddle JB, Mills RA, Landers J, Galanopoulos A, White AJR, Casson R, Mackey DA, Hewitt AW, Gharahkhani P, Craig JE, MacGregor S. Myocilin Gene Gln368Ter Variant Penetrance and Association With Glaucoma in Population-Based and Registry-Based Studies. JAMA Ophthalmol 2019; 137:28-35. [PMID: 30267046 DOI: 10.1001/jamaophthalmol.2018.4477] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance The p.Gln368Ter (rs74315329) risk allele in the myocilin gene (MYOC) was initially reported to have high penetrance in glaucoma registry-based studies, but much lower estimates were recently obtained from population-based studies. We investigated this disparity using data from Australia and the United Kingdom. Objectives To examine the penetrance and effect size of the MYOC p.Gln368Ter variant with glaucoma and ocular hypertension (OHT). Design, Setting, and Participants This cross-sectional study within the UK Biobank (UKBB) included participants of white British ancestry. Glaucoma cases were defined by International Classification of Diseases, Ninth Revision (ICD-9) and Tenth Revision (ICD-10) diagnoses and self-reported questionnaires. Carriers of the MYOC p.Gln368Ter variant were identified using genotype imputation from arrays. In contrast, 2 Australian registry-based studies, the Australian and New Zealand Registry of Advanced Glaucoma and the Glaucoma Inheritance Study in Tasmania, ascertained glaucoma cases referred by eye care clinicians, with historic control participants recruited from other Australian studies. Samples were either directly sequenced or had genotypes determined by imputation (for the Australian registry and historic control participants). Recruitment to the UKBB occurred between 2006 and 2010, and data analysis occurred from September 2017 to July 2018. Main Outcomes and Measures The penetrance and odds ratio (OR) were estimated for the MYOC p.Gln368Ter variants in participants with glaucoma and OHT. Results A total of 411 337 UKBB participants of white British ancestry (mean [SD] age, 56.6 [8.0] years) were included, plus 3071 Australian registry and 6750 historic control participants. In the UKBB, the minor allele frequency of the MYOC p.Gln368Ter variant was 1 in 786 individuals (0.13%). The odds ratio of p.Gln368Ter in patients with primary open-angle glaucoma (POAG) was 6.76 (95% CI, 4.05-11.29); glaucoma (POAG, self-reported glaucoma, and unspecified glaucoma), 4.40 (95% CI, 3.38-5.71); OHT, 3.56 (95% CI, 2.53-4.92); and OHT and glaucoma combined, 4.18 (95% CI, 3.05-5.67). The penetrance of the MYOC p.Gln368Ter variant was 7.6% in patients with glaucoma, 24.3% in patients with OHT, and 30.8% in patients with OHT and glaucoma combined. In the Australian registry studies, the odds of MYOC p.Gln368Ter variant were 12.16 (95% CI, 6.34-24.97) in patients with advanced glaucoma and 3.97 (95% CI, 1.55-9.75) in those with nonadvanced glaucoma; the penetrance of glaucoma was 56.1%, and penetrance in those considered to have glaucoma or be glaucoma suspects was 69.5%. Conclusions and Relevance The MYOC p.Gln368Ter variant confers a very high-risk effect size for advanced glaucoma; the risk is lower in nonadvanced glaucoma and OHT. In the general population sample, approximately 50% of MYOC p.Gln368Ter carriers 65 years and older had glaucoma or OHT, with higher prevalence in the Australian registry studies.
Collapse
Affiliation(s)
- Xikun Han
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Medicine, University of Queensland, St Lucia, Brisbane, Australia
| | - Emmanuelle Souzeau
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, Australia
| | - Jue-Sheng Ong
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Medicine, University of Queensland, St Lucia, Brisbane, Australia
| | - Jiyuan An
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Owen M Siggs
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, Australia
| | - Kathryn P Burdon
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Stephen Best
- Eye Department, Greenlane Clinical Centre, Auckland District Health Board, Auckland, New Zealand
| | - Ivan Goldberg
- Discipline of Ophthalmology, Sydney Eye Hospital, University of Sydney, Sydney, Australia
| | - Paul R Healey
- Discipline of Ophthalmology, Sydney Eye Hospital, University of Sydney, Sydney, Australia.,Centre for Vision Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Stuart L Graham
- Discipline of Ophthalmology, Sydney Eye Hospital, University of Sydney, Sydney, Australia.,Ophthalmology and Vision Science, Faculty of Medicine and Human Sciences, Macquarie University, Australia
| | - Jonathan B Ruddle
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Australia.,Ophthalmology, University of Melbourne, Department of Surgery, Melbourne, Australia.,Department of Ophthalmology, Royal Children's Hospital, Melbourne, Australia
| | - Richard A Mills
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, Australia
| | - John Landers
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, Australia
| | - Anna Galanopoulos
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, University of Adelaide, Adelaide, Australia
| | - Andrew J R White
- Centre for Vision Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Robert Casson
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, University of Adelaide, Adelaide, Australia
| | - David A Mackey
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.,Centre for Ophthalmology and Visual Sciences, Lions Eye Institute, University of Western Australia, Perth, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Australia
| | - Puya Gharahkhani
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, Australia
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
25
|
Youngblood H, Hauser MA, Liu Y. Update on the genetics of primary open-angle glaucoma. Exp Eye Res 2019; 188:107795. [PMID: 31525344 PMCID: PMC6901111 DOI: 10.1016/j.exer.2019.107795] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/03/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022]
Abstract
Affecting nearly 80 million individuals, glaucoma is the number one cause of irreversible blindness in the world. This ocular disease describes a set of optic neuropathies of which primary open angle glaucoma (POAG) is the most common. POAG is associated with progressive visual field deterioration resulting from damage to the optic nerve and loss of retinal ganglion cells. Risk factors for POAG include elevated intraocular pressure, aging, African and Hispanic ancestry, and a positive family history of POAG. Multiple genes have been found to contribute to POAG. Much of POAG genetics and pathology has yet to be explained. Recent genome-wide association studies have identified a large number of novel loci associated with POAG and its endophenotypes. Genomic and proteomic profiling of biofluids has contributed to our knowledge of differential gene expression in POAG. Functional studies both in cell culture and animal models have confirmed the effects of variants and differential gene expression on ocular physiology while in silico analyses have increased our understanding of disease risk and progression so that we might better diagnose and treat this complex genetic illness.
Collapse
Affiliation(s)
- Hannah Youngblood
- Department of Cellular Biology and Anatomy, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA, 30912, United States.
| | - Michael A Hauser
- Departments of Medicine and Ophthalmology, Duke University Medical Center, Durham, NC, USA; Duke Molecular Physiology Institute, 300 N Duke Street, Durham, NC, 27701, United States.
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA, 30912, United States; Center for Biotechnology and Genomic Medicine, Augusta University, 1120 15th Street, Augusta, GA, 30912, United States; James and Jean Culver Vision Discovery Institute, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA, 30912, United States.
| |
Collapse
|
26
|
Normal tension glaucoma-like degeneration of the visual system in aged marmosets. Sci Rep 2019; 9:14852. [PMID: 31619716 PMCID: PMC6795850 DOI: 10.1038/s41598-019-51281-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/27/2019] [Indexed: 01/25/2023] Open
Abstract
The common marmoset (Callithrix jacchus) is a non-human primate that provides valuable models for neuroscience and aging research due to its anatomical similarities to humans and relatively short lifespan. This study was carried out to examine whether aged marmosets develop glaucoma, as seen in humans. We found that 11% of the aged marmosets presented with glaucoma-like characteristics; this incident rate is very similar to that in humans. Magnetic resonance imaging showed a significant volume loss in the visual cortex, and histological analyses confirmed the degeneration of the lateral geniculate nuclei and visual cortex in the affected marmosets. These marmosets did not have elevated intraocular pressure, but showed an increased oxidative stress level, low cerebrospinal fluid (CSF) pressure, and low brain-derived neurotrophic factor (BDNF) and TrkB expression in the retina, optic nerve head and CSF. Our findings suggest that marmosets have potential to provide useful information for the research of eye and the visual system.
Collapse
|
27
|
Bua S, Supuran CT. Diagnostic markers for glaucoma: a patent and literature review (2013-2019). Expert Opin Ther Pat 2019; 29:829-839. [PMID: 31510806 DOI: 10.1080/13543776.2019.1667336] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Glaucoma, a leading cause of irreversible blindness worldwide, is commonly diagnosed solely in advanced stages of the disease when important and irreversible losses of visual field have already occurred. The identification of effective biomarkers and methods for diagnostic purposes are main interests of the scientific community. Areas covered: This review presents an overview of the current diagnostic methods used for glaucoma and introduces the areas where new efforts are being done for the identification of more sensitive and specific biomarkers. The review then covers the patent literature of the period 2013-2019 regarding diagnostic approaches and biomarkers of glaucoma and the claimed methods for their qualitative and/or quantitative analysis. Expert opinion: In the absence of treatment, glaucoma can cause blindness in a few years. Early diagnostic tools are urgently needed, as this disease incidence is deemed to rapidly increase in the next decades. The current diagnosis of glaucoma, which is based on specific signs of the disease, such as high intraocular pressure, specific optic nerve head changes and visual field loss, is not enough anymore. Molecular genetics represents the area where most efforts are currently made to improve the early detection and monitoring of the disease progression.
Collapse
Affiliation(s)
- Silvia Bua
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence , Florence , Italy
| | - Claudiu T Supuran
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence , Florence , Italy
| |
Collapse
|
28
|
Wang SL, Piao SY, Xu MY, Zhang W, Ma JQ, Hao J, Chi H, Xue ZQ, Ha SP, Zhuang WJ. Evaluating correlation between the ocular biometry and genetic variants of MYOC and ABCA1 with primary angle-closure glaucoma in a cohort from northern China. Int J Ophthalmol 2019; 12:1317-1322. [PMID: 31456923 DOI: 10.18240/ijo.2019.08.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/03/2019] [Indexed: 12/31/2022] Open
Abstract
AIM To investigate whether the gene variants in MYOC and ABCA1 are associated with primary angle-closure glaucoma (PACG) and anterior chamber depth (ACD) and axial length (AL) in samples from northern China. METHODS The present case-control association study consisted of 500 PACG patients and 720 unrelated controls. Each participant was genotyped for eleven single nucleotide polymorphisms (SNPs) in MYOC and ABCA1 genes (rs12076134, rs183532, rs235875 and rs235913 in MYOC, rs2422493, rs2487042, rs2472496, rs2472493, rs2487032, rs2472459 and rs2472519 near ABCA1) using an improved multiplex ligation detection reaction (iMLDR) technique. The genetic association analyses were performed by PLINK using a logistic regression model. The association between genotypes and ocular biometric parameters was performed by SPSS using generalized estimation equation. Bonferroni corrections were implemented and the statistical power was calculated by the Power and Sample Size Calculation. RESULTS Two SNPs rs183532 and rs235875 as well as a haplotype TTC in MYOC were nominally associated with PACG despite the significance was lost after Bonferroni correction. No association was observed between ABCA1 and PACG, neither did the association between these variants and ACD as well as AL. CONCLUSION The present study suggests MYOC and ABCA1 do not play a part in the pathogenesis of PACG as well as the regulation of ocular biometric parameters in a northern Chinese population. Further investigations with large sample size are needed to verify this consequence.
Collapse
Affiliation(s)
- Shao-Lin Wang
- Clinical Medical College of Ningxia Medical University, Yinchuan 750001, Ningxia Hui Autonomous Region, China.,Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University For Nationalities), Yinchuan 750011, Ningxia Hui Autonomous Region, China
| | - Shun-Yu Piao
- Clinical Medical College of Ningxia Medical University, Yinchuan 750001, Ningxia Hui Autonomous Region, China
| | - Man-Yun Xu
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University For Nationalities), Yinchuan 750011, Ningxia Hui Autonomous Region, China
| | - Wen Zhang
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University For Nationalities), Yinchuan 750011, Ningxia Hui Autonomous Region, China
| | - Jian-Qing Ma
- Department of Ophthalmology, Wuzhong People's Hospital, Wuzhong 751100, Ningxia Hui Autonomous Region, China
| | - Juan Hao
- Department of Ophthalmology, Taiyuan Central Hospital, Taiyuan 030000, Shanxi Province, China
| | - Hao Chi
- Shandong Academy of Medical Sciences, Jinan University, Jinan 250000, Shandong Province, China
| | - Zhong-Qi Xue
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University For Nationalities), Yinchuan 750011, Ningxia Hui Autonomous Region, China
| | - Shao-Ping Ha
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University For Nationalities), Yinchuan 750011, Ningxia Hui Autonomous Region, China
| | - Wen-Juan Zhuang
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University For Nationalities), Yinchuan 750011, Ningxia Hui Autonomous Region, China
| |
Collapse
|
29
|
Passan S, Goyal S, Bhat MA, Singh D, Vanita V. Association of TNF-α gene alterations (c.-238G>A, c.-308G>A, c.-857C>T, c.-863C>A) with primary glaucoma in north Indian cohort. Gene 2019; 709:25-35. [PMID: 31132515 DOI: 10.1016/j.gene.2019.05.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/27/2019] [Accepted: 05/17/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Tumor Necrosis Factor-alpha (TNF-α) a pleuripotent pro-inflammatory cytokine, is involved in retinal ganglion cells apoptosis in glaucoma. Thus present study aimed to analyze the association of TNF-α promoter region alterations (c.-238G>A (rs361525), c.-308G>A (rs1800629), c.-857C>T (rs1799724) and c.-863C>A (rs1800630)) with glaucoma in north Indian cohort. METHODS Present hospital based case control study involved 286 glaucoma patients (Primary Open Angle Glaucoma [POAG], Primary Angle Closure Glaucoma [PACG], Primary Congenital Glaucoma [PCG]) and 300 controls. TNF-α gene alteration (c.-238G>A (also referred as c.-418G>A; NM_000594.3)), c.-308G>A (c.-488G>A; NM_000594.3), c.-857C>T (c.-1037C>T; NM_000594.3) and c.-863C>A (c.-1043C>A; NM_000594.3) harboring regions were PCR amplified and sequenced by Sanger sequencing. Allele frequency and genotype distribution in glaucoma cases and controls were compared using chi-square test and genetic association tested using different genetic models. RESULTS Statistically significant genotype and allelic association was observed between glaucoma cases and controls for c.-308G>A and c.-863C>A alterations (p = 0.001, p = 0.001; p = 0.001, p = 0.001 respectively). AA genotype of c.-308G>A conferred ~7 fold increased risk towards glaucoma (OR = 6.82, 95% CI = 2.82-16.53, p = 0.001). c.-863C>A alteration under dominant, recessive and co-dominant genetic models conferred ~2 fold increased risk for glaucoma. However, no association for c.-238G>A and c.-857C>T variants with glaucoma was observed. Further, three haplotypes (GGCA, GACC and GACA) (OR = 0.48, 95% CI = 0.35-0.67, p = 0.001; OR = 0.58, 95% CI = 0.36-0.91, p = 0.019 and OR = 0.16, 95% CI = 0.05-0.51, p = 0.002, respectively) conferred protective role towards glaucoma. CONCLUSIONS Present study is the first to indicate significant association of c.-308G>A and c.-863C>A alterations with glaucoma in cases from north Indian cohort. Also it is the first study from India to analyze the association and interaction of four promoter region alterations (c.-238G>A, c.-308G>A, c.-857C>T and c.-863C>A) in TNF-α resulting in three protective haplotypes.
Collapse
Affiliation(s)
- Shruti Passan
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shiwali Goyal
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Mohd Akbar Bhat
- Multidisciplinary Research Unit, Government Medical College, Amritsar, Punjab, India
| | - Daljit Singh
- Dr. Daljit Singh Eye Hospital, Amritsar, Punjab, India
| | - Vanita Vanita
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
30
|
Sears NC, Boese EA, Miller MA, Fingert JH. Mendelian genes in primary open angle glaucoma. Exp Eye Res 2019; 186:107702. [PMID: 31238079 DOI: 10.1016/j.exer.2019.107702] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 01/09/2023]
Abstract
Mutations in each of three genes, myocilin (MYOC), optineurin (OPTN), and TANK binding kinase 1 (TBK1), may cause primary open-angle glaucoma (POAG) that is inherited as a Mendelian trait. MYOC mutations cause 3-4% of POAG cases with IOP >21 mmHg, while mutations in OPTN, TBK1, and MYOC each cause ∼1% of POAG with IOP ≤21 mmHg, i.e. normal tension glaucoma. Identification of these disease-causing genes has provided insights into glaucoma pathogenesis. Mutations in MYOC cause a cascade of abnormalities in the trabecular meshwork including intracellular retention of MYOC protein, decreased aqueous outflow, higher intraocular pressure, and glaucoma. Investigation of MYOC mutations demonstrated that abnormal retention of intracellular MYOC and stimulation of endoplasmic reticular (ER) stress may be important steps in the development of MYOC-associated glaucoma. Mutations in OPTN and TBK1 cause a dysregulation of autophagy which may directly cause retinal ganglion cell damage and normal tension glaucoma. Discovery of these Mendelian causes of glaucoma has also provided a new set of potential therapeutic targets that may ultimately lead to novel, gene-directed glaucoma treatments.
Collapse
Affiliation(s)
- Nathan C Sears
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Erin A Boese
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Mathew A Miller
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - John H Fingert
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
31
|
Marques AM, Ananina G, Costa VP, de Vasconcellos JPC, de Melo MB. Estimating the age of the p.Cys433Arg variant in the MYOC gene in patients with primary open-angle glaucoma. PLoS One 2018; 13:e0207409. [PMID: 30444892 PMCID: PMC6239314 DOI: 10.1371/journal.pone.0207409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/30/2018] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to estimate the age of the Cys433Arg (c.1297T>C, p.Cys433Arg) variant by comparing the genotypes of individuals affected and not affected by primary open angle glaucoma juvenile onset (JOAG). Our sample consisted of 35 JOAG-affected individuals from three families, 16 unrelated patients with the MYOC p.Cys433Arg variant and 16 unaffected individuals. Genomic DNA was amplified by PCR; nine short tandem repeats were genotyped through automated electrophoresis and three single nucleotide polymorphisms through Sanger sequencing. The determination of haplotypes was performed using Arlequin software and age estimation was performed using DMLE+ 2.3 and BDMC21 softwares. Four markers constituted the haplotypes associated with the p.Cys433Arg variant. The software DMLE+2.3 predicted an age of 43 generations for this variant with a 95% confidence interval ranging from 28 to 76 generations (560-1520 years) and BDMC21 predicted an age of 59 generations (1180 years) (95% CI: 40 to 100).
Collapse
Affiliation(s)
- Ana Maria Marques
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Galina Ananina
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Vital Paulino Costa
- Department of Ophthalmology and Otorhinolaryngology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - José Paulo Cabral de Vasconcellos
- Department of Ophthalmology and Otorhinolaryngology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Mônica Barbosa de Melo
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
32
|
Guymer C, Wood JPM, Chidlow G, Casson RJ. Neuroprotection in glaucoma: recent advances and clinical translation. Clin Exp Ophthalmol 2018; 47:88-105. [DOI: 10.1111/ceo.13336] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/21/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Chelsea Guymer
- Ophthalmic Research Laboratory, South Australian Institute of Ophthalmology; University of Adelaide; Adelaide South Australia Australia
| | - John PM Wood
- Ophthalmic Research Laboratory, South Australian Institute of Ophthalmology; University of Adelaide; Adelaide South Australia Australia
| | - Glyn Chidlow
- Ophthalmic Research Laboratory, South Australian Institute of Ophthalmology; University of Adelaide; Adelaide South Australia Australia
| | - Robert J Casson
- Ophthalmic Research Laboratory, South Australian Institute of Ophthalmology; University of Adelaide; Adelaide South Australia Australia
| |
Collapse
|
33
|
Current Development in Genome Wide Association Studies of Glaucoma. CURRENT OPHTHALMOLOGY REPORTS 2018. [DOI: 10.1007/s40135-018-0167-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
34
|
Wang HW, Sun P, Chen Y, Jiang LP, Wu HP, Zhang W, Gao F. Research progress on human genes involved in the pathogenesis of glaucoma (Review). Mol Med Rep 2018; 18:656-674. [PMID: 29845210 PMCID: PMC6059695 DOI: 10.3892/mmr.2018.9071] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/12/2018] [Indexed: 12/20/2022] Open
Abstract
Glaucoma is the leading cause of irreversible blindness globally. It is known that the incidence of glaucoma is closely associated with inheritance. A large number of studies have suggested that genetic factors are involved in the occurrence and development of glaucoma, and even affect the drug sensitivity and prognosis of glaucoma. In the present review, 22 loci of glaucoma are presented, including the relevant genes (myocilin, interleukin 20 receptor subunit B, optineurin, ankyrin repeat- and SOCS box-containing protein 10, WD repeat-containing protein 36, EGF-containing fibulin-like extracellular matrix protein 1, neurotrophin 4, TANK-binding kinase 1, cytochrome P450 subfamily I polypeptide 1, latent transforming growth factor β binding protein 2 and TEK tyrosine kinase endothelial) and 74 other genes (including toll-like receptor 4, sine oculis homeobox Drosophila homolog of 1, doublecortin-like kinase 1, RE repeats-encoding gene, retinitis pigmentosa GTPase regulator-interacting protein, lysyl oxidase-like protein 1, heat-shock 70-kDa protein 1A, baculoviral IAP repeat-containing protein 6, 5,10-methylenetetrahydrofolate reductase and nitric oxide synthase 3 and nanophthalmos 1) that are more closely associated with glaucoma. The pathogenesis of these glaucoma-associated genes, glaucomatous genetics and genetic approaches, as well as glaucomatous risk factors, including increasing age, glaucoma family history, high myopia, diabetes, ocular trauma, smoking, intraocular pressure increase and/or fluctuation were also discussed.
Collapse
Affiliation(s)
- Hong-Wei Wang
- Department of Ophthalmology, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Peng Sun
- Department of Ophthalmology, Longgang District People's Hospital, Shenzhen, Guangdong 518172, P.R. China
| | - Yao Chen
- Department of Ophthalmology, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Li-Ping Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161041, P.R. China
| | - Hui-Ping Wu
- Department of The Scientific Research, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Wen Zhang
- Medical School, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Feng Gao
- Department of Hospital Administration, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| |
Collapse
|
35
|
Molecular Genetics of Pigment Dispersion Syndrome and Pigmentary Glaucoma: New Insights into Mechanisms. J Ophthalmol 2018; 2018:5926906. [PMID: 29780638 PMCID: PMC5892222 DOI: 10.1155/2018/5926906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/22/2018] [Indexed: 12/20/2022] Open
Abstract
We explore the ideas and advances surrounding the genetic basis of pigment dispersion syndrome (PDS) and pigmentary glaucoma (PG). As PG is the leading cause of nontraumatic blindness in young adults and current tailored interventions have proven ineffective, a better understanding of the underlying causes of PDS, PG, and their relationship is essential. Despite PDS being a subclinical disease, a large proportion of patients progress to PG with associated vision loss. Decades of research have supported a genetic component both for PDS and conversion to PG. We review the body of evidence supporting a genetic basis in humans and animal models and reevaluate classical mechanisms of PDS/PG considering this new evidence.
Collapse
|
36
|
Yao YH, Wang YQ, Fang WF, Zhang L, Yang JH, Zhu YH. A recurrent G367R mutation in MYOC associated with juvenile open angle glaucoma in a large Chinese family. Int J Ophthalmol 2018; 11:369-374. [PMID: 29600168 DOI: 10.18240/ijo.2018.03.04] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/22/2017] [Indexed: 11/23/2022] Open
Abstract
AIM To identify the mutations of MYOC, OPTN, CYP1B1 and WDR36 in a large Chinese family affected by juvenile open angle glaucoma (JOAG). METHODS Of 114 members of one family were recruited in this study. Blood samples from twelve members of this pedigree were collected for further research. As a control, 100 unrelated subjects were recruited from the same hospital. The exon and flanking intron sequences of candidate genes were amplified using the polymerase chain reaction and direct DNA sequencing. RESULTS The proband (III:10) was a seventy-three years old woman with binocular JOAG at the age of 31. A recurrent heterozygous mutation (c.1099G>A) of MYOC was identified in the three JOAG patients and another suspect. This transition was located in the first base pair of codon 367 (GGA>AGA) in exon 3 of MYOC and was predicted to be a missense substitution of glycine to arginine (p.G367R) in myocilin. Mutations in OPTN, CYP1B1 or WDR36 were not detected in this study. The G367R mutation was not present in unaffected family members or in 100 ethnically matched controls. Other variants of the coding regions of candidate genes were not detected in all participants. To date, this family was the largest to have been identified as carrying a certain MYOC mutation in China, further evidence of a founder effect for the G367R MYOC mutant was provided by our data. CONCLUSION A MYOC c.1099G>A mutation in an autosomal dominant JOAG family is identified and the characteristic phenotypes among the patients are summarized. Genetic testing could be utilized in high-risk populations and be helpful not only for genetic counseling, but also for early diagnosis and treatment of affected patients or carriers of inherited JOAG.
Collapse
Affiliation(s)
- Yi-Hua Yao
- Department of Ophthalmology, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Ya-Qin Wang
- Department of Ophthalmology, Taihe Hospital, Shiyan 442008, Hubei Province, China.,Hubei University of Medicine, Shiyan 442008, Hubei Province, China
| | - Wei-Fang Fang
- Department of Ophthalmology, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Liu Zhang
- Fuzhou Eye Hospital, Fuzhou 350007, Fujian Province, China
| | - Ju-Hua Yang
- Biomedical Engineering Center of Fujian Medical University, Fuzhou 350004, Fujian Province, China
| | - Yi-Hua Zhu
- Department of Ophthalmology, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| |
Collapse
|
37
|
Frezzotti R, Renieri A, Frezzotti P. Adult-Onset Primary Glaucoma and Molecular Genetics: A Review. Eur J Ophthalmol 2018; 14:220-5. [PMID: 15206647 DOI: 10.1177/112067210401400306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose To evaluate recent molecular genetic studies focused on localizing and identifying the genes involved in adult-onset primary glaucoma, characterizing the gene products, and investigating the molecular mechanisms implicated in the pathophysiology of the disease. METHODS Several studies have aimed at understanding gene expression and protein processing and attempting to correlate the mutations identified in the involved genes, particularly the TIGR/MYOC gene, with the overall spectrum of the disease, ranging from juvenile glaucoma to typical late-onset primary open-angle glaucoma. Genetic research lemains essential until highly specific and sensitive tests have been developed (plausible disease-causing sequence variations, polymorphisms). Results The most effective method for detecting glaucoma clinically is the study of optic nerve and visual field damage, as well as intraocular pressure. In subjects at high risk, in members of families with a strong history of inherited glaucoma, and in families with a MYOC-positive test, the result may represent a marker to assess presymptomatic diagnosis and may be useful as a prognostic marker. CONCLUSIONS OPTN seems to have a role confined to the pathogenesis of normotensive glaucoma with a few exceptions. Presently, the introduction of the expensive and time-consuming OPTN gene test in the current diagnosis of familial glaucoma is not justified.
Collapse
Affiliation(s)
- R Frezzotti
- Department of Molecular Biology University of Siena, Siena, Italy.
| | | | | |
Collapse
|
38
|
Nunes HF, Ananina G, Costa VP, Zanchin NIT, de Vasconcellos JPC, de Melo MB. Investigation of CAV1/CAV2 rs4236601 and CDKN2B-AS1 rs2157719 in primary open-angle glaucoma patients from Brazil. Ophthalmic Genet 2017; 39:194-199. [PMID: 29111846 DOI: 10.1080/13816810.2017.1393830] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Large-scale genome-wide association studies have identified several susceptibility variants associated with the risk of primary open-angle glaucoma (POAG), among which rs4236601 (CAV1/CAV2) at chromosome 7q31 and rs2157719 at chromosome 9p21 (CDKN2B-AS1). The purpose of this study was to investigate whether these variants contribute to the incidence of POAG in a sample of the Brazilian Southeastern population and to determine the best-fitted genetic model for these single nucleotide polymorphisms (SNPs). A case-control study with 557 individuals, 310 with POAG, and 247 controls was conducted through PCR and direct sequencing. We observed a significant effect of the heterozygous genotype (G/A) of rs2157719 that occurred more frequently in the control group (p = 0.0004; OR: 0.517, CI 95%: 0.357-0.745). Allele frequencies also differed between cases and controls (p = 0.006; OR: 0.694, CI 95%: 0.522-0.922) with the best-fitted genetic model for rs2157719 being the codominant model. No differences were observed for genotype and allele distributions in relation to rs4236601 in the CAV1/CAV2 region. The association of rs2157719 (CDKN2B-AS1) with the POAG phenotype corroborates previously published results, reinforcing the importance of this variant in POAG etiology.
Collapse
Affiliation(s)
- Hugo Freire Nunes
- a Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering - CBMEG , University of Campinas - UNICAMP , Campinas , SP , Brazil
| | - Galina Ananina
- a Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering - CBMEG , University of Campinas - UNICAMP , Campinas , SP , Brazil
| | - Vital Paulino Costa
- b Department of Ophthalmology, Faculty of Medical Sciences , University of Campinas - UNICAMP , Campinas , SP , Brazil
| | | | | | - Mônica Barbosa de Melo
- a Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering - CBMEG , University of Campinas - UNICAMP , Campinas , SP , Brazil
| |
Collapse
|
39
|
Jain A, Zode G, Kasetti RB, Ran FA, Yan W, Sharma TP, Bugge K, Searby CC, Fingert JH, Zhang F, Clark AF, Sheffield VC. CRISPR-Cas9-based treatment of myocilin-associated glaucoma. Proc Natl Acad Sci U S A 2017; 114:11199-11204. [PMID: 28973933 PMCID: PMC5651749 DOI: 10.1073/pnas.1706193114] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Primary open-angle glaucoma (POAG) is a leading cause of irreversible vision loss worldwide, with elevated intraocular pressure (IOP) a major risk factor. Myocilin (MYOC) dominant gain-of-function mutations have been reported in ∼4% of POAG cases. MYOC mutations result in protein misfolding, leading to endoplasmic reticulum (ER) stress in the trabecular meshwork (TM), the tissue that regulates IOP. We use CRISPR-Cas9-mediated genome editing in cultured human TM cells and in a MYOC mouse model of POAG to knock down expression of mutant MYOC, resulting in relief of ER stress. In vivo genome editing results in lower IOP and prevents further glaucomatous damage. Importantly, using an ex vivo human organ culture system, we demonstrate the feasibility of human genome editing in the eye for this important disease.
Collapse
Affiliation(s)
- Ankur Jain
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Gulab Zode
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107;
| | - Ramesh B Kasetti
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Fei A Ran
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Winston Yan
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Tasneem P Sharma
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Kevin Bugge
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Charles C Searby
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - John H Fingert
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Feng Zhang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Abbot F Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Val C Sheffield
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242;
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
40
|
Micheal S, Hogewind BF, Khan MI, Siddiqui SN, Zafar SN, Akhtar F, Qamar R, Hoyng CB, den Hollander AI. Variants in the PRPF8 Gene are Associated with Glaucoma. Mol Neurobiol 2017; 55:4504-4510. [PMID: 28707069 PMCID: PMC5884903 DOI: 10.1007/s12035-017-0673-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/25/2017] [Indexed: 01/05/2023]
Abstract
Glaucoma is the cause of irreversible blindness worldwide. Mutations in six genes have been associated with juvenile- and adult-onset familial primary open angle glaucoma (POAG) prior to this report but they explain only a small proportion of the genetic load. The aim of the study is to identify the novel genetic cause of the POAG in the families with adult-onset glaucoma. Whole exome sequencing (WES) was performed on DNA of two affected individuals, and predicted pathogenic variants were evaluated for segregation in four affected and three unaffected Dutch family members by Sanger sequencing. We identified a pathogenic variant (p.Val956Gly) in the PRPF8 gene, which segregates with the disease in Dutch family. Targeted Sanger sequencing of PRPF8 in a panel of 40 POAG families (18 Pakistani and 22 Dutch) revealed two additional nonsynonymous variants (p.Pro13Leu and p.Met25Thr), which segregate with the disease in two other Pakistani families. Both variants were then analyzed in a case-control cohort consisting of Pakistani 320 POAG cases and 250 matched controls. The p.Pro13Leu and p.Met25Thr variants were identified in 14 and 20 cases, respectively, while they were not detected in controls (p values 0.0004 and 0.0001, respectively). Previously, PRPF8 mutations have been associated with autosomal dominant retinitis pigmentosa (RP). The PRPF8 variants associated with POAG are located at the N-terminus, while all RP-associated mutations cluster at the C-terminus, dictating a clear genotype-phenotype correlation.
Collapse
Affiliation(s)
- Shazia Micheal
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Department of Clinical Genetics, Academic Medical Centre, Amsterdam, the Netherlands
| | - Barend F Hogewind
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Muhammad Imran Khan
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sorath Noorani Siddiqui
- Department of Pediatric Ophthalmology, Al-Shifa Eye Trust Hospital, Jhelum Road, Rawalpindi, Pakistan
| | - Saemah Nuzhat Zafar
- Department of Pediatric Ophthalmology, Al-Shifa Eye Trust Hospital, Jhelum Road, Rawalpindi, Pakistan
| | - Farah Akhtar
- Department of Pediatric Ophthalmology, Al-Shifa Eye Trust Hospital, Jhelum Road, Rawalpindi, Pakistan
| | - Raheel Qamar
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan.,Department of Biochemistry, Al-Nafees Medical College & Hospital, Isra University, Islamabad, Pakistan
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands. .,Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
41
|
Liu Y, Allingham RR. Major review: Molecular genetics of primary open-angle glaucoma. Exp Eye Res 2017; 160:62-84. [PMID: 28499933 DOI: 10.1016/j.exer.2017.05.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/29/2017] [Accepted: 05/07/2017] [Indexed: 12/13/2022]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. Primary open-angle glaucoma (POAG), the most common type, is a complex inherited disorder that is characterized by progressive retinal ganglion cell death, optic nerve head excavation, and visual field loss. The discovery of a large, and growing, number of genetic and chromosomal loci has been shown to contribute to POAG risk, which carry implications for disease pathogenesis. Differential gene expression analyses in glaucoma-affected tissues as well as animal models of POAG are enhancing our mechanistic understanding in this common, blinding disorder. In this review we summarize recent developments in POAG genetics and molecular genetics research.
Collapse
Affiliation(s)
- Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States; James & Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States; Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, United States
| | - R Rand Allingham
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, United States; Duke - National University of Singapore (Duke-NUS), Singapore.
| |
Collapse
|
42
|
Evaluation of the Myocilin Mutation Gln368Stop Demonstrates Reduced Penetrance for Glaucoma in European Populations. Ophthalmology 2017; 124:547-553. [DOI: 10.1016/j.ophtha.2016.11.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 12/20/2022] Open
|
43
|
Souzeau E, Tram KH, Witney M, Ruddle JB, Graham SL, Healey PR, Goldberg I, Mackey DA, Hewitt AW, Burdon KP, Craig JE. Myocilin Predictive Genetic Testing for Primary Open-Angle Glaucoma Leads to Early Identification of At-Risk Individuals. Ophthalmology 2017; 124:303-309. [DOI: 10.1016/j.ophtha.2016.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/23/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022] Open
|
44
|
Micheal S, Saksens NTM, Hogewind BF, Khan MI, Hoyng CB, den Hollander AI. Identification of TP53BP2 as a Novel Candidate Gene for Primary Open Angle Glaucoma by Whole Exome Sequencing in a Large Multiplex Family. Mol Neurobiol 2017; 55:1387-1395. [PMID: 28150229 PMCID: PMC5820370 DOI: 10.1007/s12035-017-0403-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 01/12/2017] [Indexed: 01/11/2023]
Abstract
Primary open angle glaucoma (POAG) is a major type of glaucoma characterized by progressive loss of retinal ganglion cells with associated visual field loss without an identifiable secondary cause. Genetic factors are considered to be major contributors to the pathogenesis of glaucoma. The aim of the study was to identify the causative gene in a large family with POAG by applying whole exome sequencing (WES). WES was performed on the DNA of four affected family members. Rare pathogenic variants shared among the affected individuals were filtered. Polymerase chain reaction and Sanger sequencing were used to analyze variants segregating with the disease in additional family members. WES analysis identified a variant in TP53BP2 (c.109G>A; p.Val37Met) that segregated heterozygously with the disease. In silico analysis of the substitution predicted it to be pathogenic. The variant was absent in public databases and in 180 population-matched controls. A novel genetic variant in the TP53BP2 gene was identified in a family with POAG. Interestingly, it has previously been demonstrated that the gene regulates apoptosis in retinal ganglion cells. This supports that the TP53BP2 variant may represent the cause of POAG in this family. Additional screening of the gene in patients with POAG from different populations is required to confirm its involvement in the disease.
Collapse
Affiliation(s)
- Shazia Micheal
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Clinical Genetics, Academic Medical Centre, Amsterdam, the Netherlands
| | - Nicole T M Saksens
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Barend F Hogewind
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Muhammad Imran Khan
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands. .,Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
45
|
Prat C, Belville C, Comptour A, Marceau G, Clairefond G, Chiambaretta F, Sapin V, Blanchon L. Myocilin expression is regulated by retinoic acid in the trabecular meshwork-derived cellular environment. Exp Eye Res 2017; 155:91-98. [PMID: 28153738 DOI: 10.1016/j.exer.2017.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 01/17/2017] [Accepted: 01/25/2017] [Indexed: 12/15/2022]
Abstract
Glaucoma is the leading cause of irreversible blindness and is usually classified as angle closure and open angle glaucoma (OAG). Primary open angle glaucoma represents the most frequent clinical presentation leading to ganglion cell death and optic nerve degeneration as a main consequence of an intraocular pressure' (IOP) increase. The mechanisms of this IOP increase in such pathology remain unclear but one protein called Myocilin could be a part of the puzzle in the trabecular meshwork (TM). Previously described to be transcriptionally regulated by glucocorticoids, the comprehension of the trabecular regulation of Myocilin' expression has only weakly progressed since 15 years. Due to the essential molecular and cellular implications of retinoids' pathway in eye development and physiology, we investigate the potential role of the retinoic acid in such regulation and expression. This study demonstrates that the global retinoids signaling machinery is present in immortalized TM cells and that Myocilin (MYOC) expression is upregulated by retinoic acid alone or combined with a glucocorticoid co-treatment. This regulation by retinoic acid acts through the MYOC promoter which contains a critical cluster of four retinoic acid responsive elements (RAREs), with the RARE-DR2 presenting the strongest effect and binding the RARα/RXRα heterodimer. All together, these results open up new perspectives for the molecular understanding glaucoma pathophysiology and provide further actionable clues on Myocilin gene regulation.
Collapse
Affiliation(s)
- Cécile Prat
- EA7281 - Retinoids, Reproduction Developmental Diseases, School of Medicine, Clermont Université, Université d'Auvergne, F-63000 Clermont-Ferrand, France.
| | - Corinne Belville
- EA7281 - Retinoids, Reproduction Developmental Diseases, School of Medicine, Clermont Université, Université d'Auvergne, F-63000 Clermont-Ferrand, France; GReD, CNRS UMR6293-Clermont Université-INSERM U1103, Université d'Auvergne, F-63000 Clermont-Ferrand, France.
| | - Aurélie Comptour
- EA7281 - Retinoids, Reproduction Developmental Diseases, School of Medicine, Clermont Université, Université d'Auvergne, F-63000 Clermont-Ferrand, France.
| | - Geoffroy Marceau
- EA7281 - Retinoids, Reproduction Developmental Diseases, School of Medicine, Clermont Université, Université d'Auvergne, F-63000 Clermont-Ferrand, France; Biochemistry and Molecular Biology Department, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| | - Gael Clairefond
- EA7281 - Retinoids, Reproduction Developmental Diseases, School of Medicine, Clermont Université, Université d'Auvergne, F-63000 Clermont-Ferrand, France.
| | - Frédéric Chiambaretta
- EA7281 - Retinoids, Reproduction Developmental Diseases, School of Medicine, Clermont Université, Université d'Auvergne, F-63000 Clermont-Ferrand, France; Biochemistry and Molecular Biology Department, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; CHU Clermont-Ferrand, Ophthalmology Department, F-63000 Clermont-Ferrand, France.
| | - Vincent Sapin
- EA7281 - Retinoids, Reproduction Developmental Diseases, School of Medicine, Clermont Université, Université d'Auvergne, F-63000 Clermont-Ferrand, France; Biochemistry and Molecular Biology Department, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| | - Loïc Blanchon
- EA7281 - Retinoids, Reproduction Developmental Diseases, School of Medicine, Clermont Université, Université d'Auvergne, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
46
|
Dibas A, Yorio T. Glucocorticoid therapy and ocular hypertension. Eur J Pharmacol 2016; 787:57-71. [PMID: 27388141 PMCID: PMC5014726 DOI: 10.1016/j.ejphar.2016.06.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/06/2016] [Accepted: 06/13/2016] [Indexed: 12/31/2022]
Abstract
The projected number of people who will develop age-related macular degeneration in estimated at 2020 is 196 million and is expected to reach 288 million in 2040. Also, the number of people with Diabetic retinopathy will grow from 126.6 million in 2010 to 191.0 million by 2030. In addition, it is estimated that there are 2.3 million people suffering from uveitis worldwide. Because of the anti-inflammatory properties of glucocorticoids (GCs), they are often used topically and/or intravitreally to treat ocular inflammation conditions or edema associated with macular degeneration and diabetic retinopathy. Unfortunately, ocular GC therapy can lead to severe side effects. Serious and sometimes irreversible eye damage can occur as a result of the development of GC-induced ocular hypertension causing secondary open-angle glaucoma. According to the world health organization, glaucoma is the second leading cause of blindness in the world and it is estimated that 80 million will suffer from glaucoma by 2020. In the current review, mechanisms of GC-induced damage in ocular tissue, GC-resistance, and enhancing GC therapy will be discussed.
Collapse
Affiliation(s)
- Adnan Dibas
- North Texas Eye Research Institute, UNT Health Science Center, Fort Worth, TX, USA.
| | - Thomas Yorio
- North Texas Eye Research Institute, UNT Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
47
|
|
48
|
Kumar S, Malik MA, Goswami S, Sihota R, Kaur J. Candidate genes involved in the susceptibility of primary open angle glaucoma. Gene 2016; 577:119-31. [PMID: 26621382 DOI: 10.1016/j.gene.2015.11.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/05/2015] [Accepted: 11/23/2015] [Indexed: 12/30/2022]
|
49
|
Micheal S, Ayub H, Islam F, Siddiqui SN, Khan WA, Akhtar F, Qamar R, Khan MI, den Hollander AI. Variants in the ASB10 Gene Are Associated with Primary Open Angle Glaucoma. PLoS One 2015; 10:e0145005. [PMID: 26713451 PMCID: PMC4695091 DOI: 10.1371/journal.pone.0145005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/25/2015] [Indexed: 11/19/2022] Open
Abstract
Background Recently nonsynonymous coding variants in the ankyrin repeats and suppressor of cytokine signaling box-containing protein 10 (ASB10) gene were found to be associated with primary open angle glaucoma (POAG) in cohorts from Oregon and Germany, but this finding was not confirmed in an independent cohort from Iowa. The aim of the current study was to assess the role of ASB10 gene variants in Pakistani glaucoma patients. Methods Sanger sequencing of the coding exons and splice junctions of the ASB10 gene was performed in 30 probands of multiplex POAG families, 208 sporadic POAG patients and 151 healthy controls from Pakistan. Genotypic associations of individual variants with POAG were analyzed with the Fisher’s exact or Chi-square test. Results In total 24 variants were identified in POAG probands and sporadic patients, including 11 novel variants and 13 known variants. 13 of the variants were nonsynonymous, 6 were synonymous, and 5 were intronic. Three nonsynonymous variants (p.Arg49Cys, p.Arg237Gly, p.Arg453Cys) identified in the probands were not segregating in the respective families. This is not surprising since glaucoma is a multifactorial disease, and multiple factors are likely to be involved in the disease manifestation in these families. However a nonsynonymous variant, p.Arg453Cys (rs3800791), was found in 6 sporadic POAG patients but not in controls, suggesting that it infers increased risk for the disease. In addition, one synonymous variant was found to be associated with sporadic POAG: p.Ala290Ala and the association of the variant with POAG remained significant after correction for multiple testing (uncorrected p-value 0.002, corrected p-value 0.047). The cumulative burden of rare, nonsynonymous variants was significantly higher in sporadic POAG patients compared to control individuals (p-value 0.000006). Conclusions Variants in ASB10 were found to be significantly associated with sporadic POAG in the Pakistani population. This supports previous findings that sequence variants in the ASB10 gene may act as a risk factor for glaucoma.
Collapse
Affiliation(s)
- Shazia Micheal
- Department of Ophthalmology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Humaira Ayub
- Department of Ophthalmology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Farrah Islam
- Al-Shifa Eye Trust Hospital Jhelum Road, Rawalpindi, 46000, Pakistan
| | | | - Wajid Ali Khan
- Al-Shifa Eye Trust Hospital Jhelum Road, Rawalpindi, 46000, Pakistan
| | - Farah Akhtar
- Al-Shifa Eye Trust Hospital Jhelum Road, Rawalpindi, 46000, Pakistan
| | - Raheel Qamar
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
- Al-Nafees Medical College & Hospital, Isra University, Islamabad, 45600, Pakistan
| | - Muhammad Imran Khan
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Anneke I. den Hollander
- Department of Ophthalmology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
- * E-mail:
| |
Collapse
|
50
|
Measurement of Systemic Mitochondrial Function in Advanced Primary Open-Angle Glaucoma and Leber Hereditary Optic Neuropathy. PLoS One 2015; 10:e0140919. [PMID: 26496696 PMCID: PMC4619697 DOI: 10.1371/journal.pone.0140919] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/01/2015] [Indexed: 11/18/2022] Open
Abstract
Primary Open Angle Glaucoma (POAG) is a common neurodegenerative disease characterized by the selective and gradual loss of retinal ganglion cells (RGCs). Aging and increased intraocular pressure (IOP) are glaucoma risk factors; nevertheless patients deteriorate at all levels of IOP, implying other causative factors. Recent evidence presents mitochondrial oxidative phosphorylation (OXPHOS) complex-I impairments in POAG. Leber Hereditary Optic Neuropathy (LHON) patients suffer specific and rapid loss of RGCs, predominantly in young adult males, due to complex-I mutations in the mitochondrial genome. This study directly compares the degree of OXPHOS impairment in POAG and LHON patients, testing the hypothesis that the milder clinical disease in POAG is due to a milder complex-I impairment. To assess overall mitochondrial capacity, cells can be forced to produce ATP primarily from mitochondrial OXPHOS by switching the media carbon source to galactose. Under these conditions POAG lymphoblasts grew 1.47 times slower than controls, whilst LHON lymphoblasts demonstrated a greater degree of growth impairment (2.35 times slower). Complex-I enzyme specific activity was reduced by 18% in POAG lymphoblasts and by 29% in LHON lymphoblasts. We also assessed complex-I ATP synthesis, which was 19% decreased in POAG patients and 17% decreased in LHON patients. This study demonstrates both POAG and LHON lymphoblasts have impaired complex-I, and in the majority of aspects the functional defects in POAG were milder than LHON, which could reflect the milder disease development of POAG. This new evidence places POAG in the spectrum of mitochondrial optic neuropathies and raises the possibility for new therapeutic targets aimed at improving mitochondrial function.
Collapse
|