1
|
Khan AH, Smith DJ. Cost-Effective Mapping of Genetic Interactions in Mammalian Cells. Front Genet 2021; 12:703738. [PMID: 34434222 PMCID: PMC8381747 DOI: 10.3389/fgene.2021.703738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/13/2021] [Indexed: 11/23/2022] Open
Abstract
Comprehensive maps of genetic interactions in mammalian cells are daunting to construct because of the large number of potential interactions, ~ 2 × 108 for protein coding genes. We previously used co-inheritance of distant genes from published radiation hybrid (RH) datasets to identify genetic interactions. However, it was necessary to combine six legacy datasets from four species to obtain adequate statistical power. Mapping resolution was also limited by the low density PCR genotyping. Here, we employ shallow sequencing of nascent human RH clones as an economical approach to constructing interaction maps. In this initial study, 15 clones were analyzed, enabling construction of a network with 225 genes and 2,359 interactions (FDR < 0.05). Despite its small size, the network showed significant overlap with the previous RH network and with a protein-protein interaction network. Consumables were ≲$50 per clone, showing that affordable, high quality genetic interaction maps are feasible in mammalian cells.
Collapse
Affiliation(s)
- Arshad H Khan
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Desmond J Smith
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
2
|
Khan AH, Lin A, Wang RT, Bloom JS, Lange K, Smith DJ. Pooled analysis of radiation hybrids identifies loci for growth and drug action in mammalian cells. Genome Res 2020; 30:1458-1467. [PMID: 32878976 PMCID: PMC7605260 DOI: 10.1101/gr.262204.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022]
Abstract
Genetic screens in mammalian cells commonly focus on loss-of-function approaches. To evaluate the phenotypic consequences of extra gene copies, we used bulk segregant analysis (BSA) of radiation hybrid (RH) cells. We constructed six pools of RH cells, each consisting of ∼2500 independent clones, and placed the pools under selection in media with or without paclitaxel. Low pass sequencing identified 859 growth loci, 38 paclitaxel loci, 62 interaction loci, and three loci for mitochondrial abundance at genome-wide significance. Resolution was measured as ∼30 kb, close to single-gene. Divergent properties were displayed by the RH-BSA growth genes compared to those from loss-of-function screens, refuting the balance hypothesis. In addition, enhanced retention of human centromeres in the RH pools suggests a new approach to functional dissection of these chromosomal elements. Pooled analysis of RH cells showed high power and resolution and should be a useful addition to the mammalian genetic toolkit.
Collapse
Affiliation(s)
- Arshad H Khan
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California 90095-1735, USA
| | - Andy Lin
- Office of Information Technology, UCLA, Los Angeles, California 90095-1557, USA
| | - Richard T Wang
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California 90095-7088, USA
| | - Joshua S Bloom
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California 90095-7088, USA
- Howard Hughes Medical Institute, David Geffen School of Medicine, UCLA, Los Angeles, California 90095-7088, USA
| | - Kenneth Lange
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California 90095-7088, USA
| | - Desmond J Smith
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California 90095-1735, USA
| |
Collapse
|
3
|
Broadgate S, Yu J, Downes SM, Halford S. Unravelling the genetics of inherited retinal dystrophies: Past, present and future. Prog Retin Eye Res 2017; 59:53-96. [PMID: 28363849 DOI: 10.1016/j.preteyeres.2017.03.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 02/07/2023]
Abstract
The identification of the genes underlying monogenic diseases has been of interest to clinicians and scientists for many years. Using inherited retinal dystrophies as an example of monogenic disease we describe the history of molecular genetic techniques that have been pivotal in the discovery of disease causing genes. The methods that were developed in the 1970's and 80's are still in use today but have been refined and improved. These techniques enabled the concept of the Human Genome Project to be envisaged and ultimately realised. When the successful conclusion of the project was announced in 2003 many new tools and, as importantly, many collaborations had been developed that facilitated a rapid identification of disease genes. In the post-human genome project era advances in computing power and the clever use of the properties of DNA replication has allowed the development of next-generation sequencing technologies. These methods have revolutionised the identification of disease genes because for the first time there is no need to define the position of the gene in the genome. The use of next generation sequencing in a diagnostic setting has allowed many more patients with an inherited retinal dystrophy to obtain a molecular diagnosis for their disease. The identification of novel genes that have a role in the development or maintenance of retinal function is opening up avenues of research which will lead to the development of new pharmacological and gene therapy approaches. Neither of which can be used unless the defective gene and protein is known. The continued development of sequencing technologies also holds great promise for the advent of truly personalised medicine.
Collapse
Affiliation(s)
- Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Jing Yu
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Susan M Downes
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, OX3 9DU, UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK.
| |
Collapse
|
4
|
Li YW, Shen H, Frangou C, Yang N, Guo J, Xu B, Bshara W, Shepherd L, Zhu Q, Wang J, Hu Q, Liu S, Morrison CD, Sun P, Zhang J. Characterization of TAZ domains important for the induction of breast cancer stem cell properties and tumorigenesis. Cell Cycle 2015; 14:146-56. [PMID: 25602524 DOI: 10.4161/15384101.2014.967106] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Hippo pathway is an evolutionarily conserved regulator of tissue growth and cell fate during development and regeneration. Conversely, deregulation of the Hippo pathway has been reported in several malignancies. Here, we used integrative functional genomics approaches to identify TAZ, a transcription co-activator and key downstream effector of the Hippo pathway, as an essential driver for the propagation of TNBC malignant phenotype. We further showed in non-transformed human mammary basal epithelial cells that expression of constitutively active TAZ confers cancer stem cell (CSC) traits that are dependent on the TAZ and TEAD interacting domains. In addition, to gain a better understanding of how TAZ functions, we performed genetic-function analysis of TAZ. Significantly, we identified that both the WW and transcriptional activation domains of TAZ are critical for the induced CSC properties as well as tumorigenic potential as manifested in vitro and in human breast cancer xenograft in vivo. Collectively, our data suggest that pharmacological inhibition of TAZ activity may provide a novel means of targeting and eliminating breast CSCs.
Collapse
Affiliation(s)
- Ying-Wei Li
- a Department of Cancer Genetics; Roswell Park Cancer Institute ; Buffalo , NY USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Esnault C, Cornelis G, Heidmann O, Heidmann T. Differential evolutionary fate of an ancestral primate endogenous retrovirus envelope gene, the EnvV syncytin, captured for a function in placentation. PLoS Genet 2013; 9:e1003400. [PMID: 23555306 PMCID: PMC3610889 DOI: 10.1371/journal.pgen.1003400] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/06/2013] [Indexed: 01/25/2023] Open
Abstract
Syncytins are envelope genes of retroviral origin that have been co-opted for a role in placentation. They promote cell–cell fusion and are involved in the formation of a syncytium layer—the syncytiotrophoblast—at the materno-fetal interface. They were captured independently in eutherian mammals, and knockout mice demonstrated that they are absolutely required for placenta formation and embryo survival. Here we provide evidence that these “necessary” genes acquired “by chance” have a definite lifetime with diverse fates depending on the animal lineage, being both gained and lost in the course of evolution. Analysis of a retroviral envelope gene, the envV gene, present in primate genomes and belonging to the endogenous retrovirus type V (ERV-V) provirus, shows that this captured gene, which entered the primate lineage >45 million years ago, behaves as a syncytin in Old World monkeys, but lost its canonical fusogenic activity in other primate lineages, including humans. In the Old World monkeys, we show—by in situ analyses and ex vivo assays—that envV is both specifically expressed at the level of the placental syncytiotrophoblast and fusogenic, and that it further displays signs of purifying selection based on analysis of non-synonymous to synonymous substitution rates. We further show that purifying selection still operates in the primate lineages where the gene is no longer fusogenic, indicating that degeneracy of this ancestral syncytin is a slow, lineage-dependent, and multi-step process, in which the fusogenic activity would be the first canonical property of this retroviral envelope gene to be lost. Syncytins are “new” genes encoding the envelope protein of captured endogenous retroviral elements. Their unambiguous status of “cellular gene” was recently demonstrated by knocking them out in genetically modified mice, showing their absolute requirement for placenta formation and embryo survival, via formation by cell–cell fusion of the feto-maternal syncytium interface. These genes are remarkable, as they are “necessary” for a basic function in placental mammals and yet they were acquired “by chance” on multiple occasions and independently in diverse mammalian species. We proposed that syncytins have been pivotal for the emergence of animals with a placenta from those laying eggs via the capture of a founding retroviral env gene, then subsequently replaced in the diverse mammalian lineages upon successive and independent germline infections by new retroviruses and co-optation of their env gene, each new gene providing its host with a positive selective advantage. This hypothesis would account for the diversity of the captured syncytins that can be currently found, concomitant with the diversity of placental architectures. A consequence of this paradigm is that evidence for “decaying syncytins” in eutherian mammals should exist, and this is precisely what we sought—and found—in this study.
Collapse
Affiliation(s)
- Cécile Esnault
- Unité des Rétrovirus Endogènes et Éléments Rétroïdes des Eucaryotes Supérieurs, Unité Mixte de Recherche 8122, Centre National de la Recherche Scientifique, Institut Gustave Roussy, Villejuif, France
- Université Paris-Sud, Orsay, France
| | - Guillaume Cornelis
- Unité des Rétrovirus Endogènes et Éléments Rétroïdes des Eucaryotes Supérieurs, Unité Mixte de Recherche 8122, Centre National de la Recherche Scientifique, Institut Gustave Roussy, Villejuif, France
- Université Paris-Sud, Orsay, France
- Université Paris Diderot, Paris Sorbonne Cité, Paris, France
| | - Odile Heidmann
- Unité des Rétrovirus Endogènes et Éléments Rétroïdes des Eucaryotes Supérieurs, Unité Mixte de Recherche 8122, Centre National de la Recherche Scientifique, Institut Gustave Roussy, Villejuif, France
- Université Paris-Sud, Orsay, France
| | - Thierry Heidmann
- Unité des Rétrovirus Endogènes et Éléments Rétroïdes des Eucaryotes Supérieurs, Unité Mixte de Recherche 8122, Centre National de la Recherche Scientifique, Institut Gustave Roussy, Villejuif, France
- Université Paris-Sud, Orsay, France
- * E-mail:
| |
Collapse
|
6
|
Tiwari VK, Riera-Lizarazu O, Gunn HL, Lopez K, Iqbal MJ, Kianian SF, Leonard JM. Endosperm tolerance of paternal aneuploidy allows radiation hybrid mapping of the wheat D-genome and a measure of γ ray-induced chromosome breaks. PLoS One 2012; 7:e48815. [PMID: 23144983 PMCID: PMC3492231 DOI: 10.1371/journal.pone.0048815] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 10/01/2012] [Indexed: 11/21/2022] Open
Abstract
Physical mapping and genome sequencing are underway for the ≈17 Gb wheat genome. Physical mapping methods independent of meiotic recombination, such as radiation hybrid (RH) mapping, will aid precise anchoring of BAC contigs in the large regions of suppressed recombination in Triticeae genomes. Reports of endosperm development following pollination with irradiated pollen at dosages that cause embryo abortion prompted us to investigate endosperm as a potential source of RH mapping germplasm. Here, we report a novel approach to construct RH based physical maps of all seven D-genome chromosomes of the hexaploid wheat ‘Chinese Spring’, simultaneously. An 81-member subset of endosperm samples derived from 20-Gy irradiated pollen was genotyped for deletions, and 737 markers were mapped on seven D-genome chromosomes. Analysis of well-defined regions of six chromosomes suggested a map resolution of ∼830 kb could be achieved; this estimate was validated with assays of markers from a sequenced contig. We estimate that the panel contains ∼6,000 deletion bins for D-genome chromosomes and will require ∼18,000 markers for high resolution mapping. Map-based deletion estimates revealed a majority of 1–20 Mb interstitial deletions suggesting mutagenic repair of double-strand breaks in pollen provides a useful resource for RH mapping and map based cloning studies.
Collapse
Affiliation(s)
- Vijay K. Tiwari
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon, United States of America
| | - Oscar Riera-Lizarazu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, India
| | - Hilary L. Gunn
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon, United States of America
| | - KaSandra Lopez
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon, United States of America
| | - M. Javed Iqbal
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Shahryar F. Kianian
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Jeffrey M. Leonard
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
7
|
Yang N, Morrison CD, Liu P, Miecznikowski J, Bshara W, Han S, Zhu Q, Omilian AR, Li X, Zhang J. TAZ induces growth factor-independent proliferation through activation of EGFR ligand amphiregulin. Cell Cycle 2012; 11:2922-30. [PMID: 22825057 DOI: 10.4161/cc.21386] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Hippo signaling pathway regulates cellular proliferation and survival, thus exerting profound effects on normal cell fate and tumorigenesis. We previously showed that the pivotal effector of this pathway, YAP, is amplified in tumors and promotes epithelial-to-mesenchymal transition (EMT) and malignant transformation. Here, we report that overexpression of TAZ, a paralog of YAP, in human mammary epithelial cells promotes EMT and, in particular, some invasive structures in 3D cultures. TAZ also leads to cell migration and anchorage-independent growth in soft agar. Furthermore, we identified amphiregulin (AREG), an epidermal growth factor receptor (EGFR) ligand, as a target of TAZ. We show that AREG functions in a non-cell-autonomous manner to mediate EGF-independent growth and malignant behavior of mammary epithelial cells. In addition, ablation of TEAD binding completely abolishes the TAZ-induced phenotype. Last, analysis of breast cancer patient samples reveals a positive correlation between TAZ and AREG in vivo. In summary, TAZ-dependent secretion of AREG indicates that activation of the EGFR signaling is an important non-cell-autonomous effector of the Hippo pathway, and TAZ as well as its targets may play significant roles in breast tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Nuo Yang
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Construction of whole genome radiation hybrid panels and map of chromosome 5A of wheat using asymmetric somatic hybridization. PLoS One 2012; 7:e40214. [PMID: 22815731 PMCID: PMC3398029 DOI: 10.1371/journal.pone.0040214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 06/06/2012] [Indexed: 11/23/2022] Open
Abstract
To explore the feasibility of constructing a whole genome radiation hybrid (WGRH) map in plant species with large genomes, asymmetric somatic hybridization between wheat (Triticum aestivum L.) and Bupleurum scorzonerifolium Willd. was performed. The protoplasts of wheat were irradiated with ultraviolet light (UV) and gamma-ray and rescued by protoplast fusion using B. scorzonerifolium as the recipient. Assessment of SSR markers showed that the radiation hybrids have the average marker retention frequency of 15.5%. Two RH panels (RHPWI and RHPWII) that contained 92 and 184 radiation hybrids, respectively, were developed and used for mapping of 68 SSR markers in chromosome 5A of wheat. A total of 1557 and 2034 breaks were detected in each panel. The RH map of chromosome 5A based on RHPWII was constructed. The distance of the comprehensive map was 2103 cR and the approximate resolution was estimated to be ∼501.6 kb/break. The RH panels evaluated in this study enabled us to order the ESTs in a single deletion bin or in the multiple bins cross the chromosome. These results demonstrated that RH mapping via protoplast fusion is feasible at the whole genome level for mapping purposes in wheat and the potential value of this mapping approach for the plant species with large genomes.
Collapse
|
9
|
Bach LH, Gandolfi B, Grahn JC, Millon LV, Kent MS, Narfstrom K, Cole SA, Mullikin JC, Grahn RA, Lyons LA. A high-resolution 15,000(Rad) radiation hybrid panel for the domestic cat. Cytogenet Genome Res 2012; 137:7-14. [PMID: 22777158 DOI: 10.1159/000339416] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2012] [Indexed: 11/19/2022] Open
Abstract
The current genetic and recombination maps of the cat have fewer than 3,000 markers and a resolution limit greater than 1 Mb. To complement the first-generation domestic cat maps, support higher resolution mapping studies, and aid genome assembly in specific areas as well as in the whole genome, a 15,000(Rad) radiation hybrid (RH) panel for the domestic cat was generated. Fibroblasts from the female Abyssinian cat that was used to generate the cat genomic sequence were fused to a Chinese hamster cell line (A23), producing 150 hybrid lines. The clones were initially characterized using 39 short tandem repeats (STRs) and 1,536 SNP markers. The utility of whole-genome amplification in preserving and extending RH panel DNA was also tested using 10 STR markers; no significant difference in retention was observed. The resolution of the 15,000(Rad) RH panel was established by constructing framework maps across 10 different 1-Mb regions on different feline chromosomes. In these regions, 2-point analysis was used to estimate RH distances, which compared favorably with the estimation of physical distances. The study demonstrates that the 15,000(Rad) RH panel constitutes a powerful tool for constructing high-resolution maps, having an average resolution of 40.1 kb per marker across the ten 1-Mb regions. In addition, the RH panel will complement existing genomic resources for the domestic cat, aid in the accurate re-assemblies of the forthcoming cat genomic sequence, and support cross-species genomic comparisons.
Collapse
Affiliation(s)
- L H Bach
- Population Health and Reproduction,, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
CHELALA CLAUDE, DEVIGNES MARIEDOMINIQUE, IMBEAUD SANDRINE, ZOOROB RIMA, AUFFRAY CHARLES, CURIS EMMANUEL, BÉNAZETH SIMONE, COX DAVID. INCONSISTENCIES BETWEEN MAPS OF HUMAN CHROMOSOME 22 CORRELATE WITH INCREASED FREQUENCY OF DISEASE-RELATED LOCI. J BIOL SYST 2012. [DOI: 10.1142/s0218339002000743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The relationships between genetic or radiation hybrid (RH) and sequence maps of chromosome 22 have been reconsidered based on the sequence map. Integrated maps have been constructed by retaining only common markers between genetic or RH maps and the sequence map. Local inversions of markers have been detected. Ratios between either genetic or RH distances and sequence-based distances have been calculated for each map interval. Hot zones for recombination or radiation breakage have been delineated by merging together intervals displaying high distance ratios and located close to each other for sequence-constrained RH maps, and for female and male genetic maps. A statistically significant positive correlation was found between the distribution of disease-related genes and the hot zones for recombination or radiation breakage on both female genetic and Stanford-G3 RH maps. This observation indicates that investigation of chromosomal regions displaying inconsistencies between RH or genetic linkage and sequence-based maps can accelerate the initial phase of identification of disease-associated genes.
Collapse
Affiliation(s)
- CLAUDE CHELALA
- CNRS FRE 2571, Génomique Fonctionnelle et Biologie Systémique en Santé, 19 rue Guy Mocquet, B.P. 8, 94801 Villejuif Cedex, France
| | - MARIE-DOMINIQUE DEVIGNES
- CNRS FRE 2571, Génomique Fonctionnelle et Biologie Systémique en Santé, 19 rue Guy Mocquet, B.P. 8, 94801 Villejuif Cedex, France
| | - SANDRINE IMBEAUD
- CNRS FRE 2571, Génomique Fonctionnelle et Biologie Systémique en Santé, 19 rue Guy Mocquet, B.P. 8, 94801 Villejuif Cedex, France
| | - RIMA ZOOROB
- CNRS FRE 2571, Génomique Fonctionnelle et Biologie Systémique en Santé, 19 rue Guy Mocquet, B.P. 8, 94801 Villejuif Cedex, France
| | - CHARLES AUFFRAY
- CNRS FRE 2571, Génomique Fonctionnelle et Biologie Systémique en Santé, 19 rue Guy Mocquet, B.P. 8, 94801 Villejuif Cedex, France
| | - EMMANUEL CURIS
- Laboratoire de Biomathématique, Faculté de Pharmacie-Paris V, 4 avenue de l'Observatoire, 75006 Paris, France
| | - SIMONE BÉNAZETH
- Laboratoire de Biomathématique, Faculté de Pharmacie-Paris V, 4 avenue de l'Observatoire, 75006 Paris, France
| | - DAVID COX
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Hollox EJ. The challenges of studying complex and dynamic regions of the human genome. Methods Mol Biol 2012; 838:187-207. [PMID: 22228013 DOI: 10.1007/978-1-61779-507-7_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recent work has emphasised that the human genome is not simple and static, but complex and dynamic. This review focuses on the regions that are particularly hard to dissect and analyse, yet hold clues to how the genome changes during evolution and disease. I begin by summarising recent key advances in the understanding of the variable structure of our genome, and then I discuss a medley of methods that may allow us to analyse this structure in fine detail. In the final part, I describe potential future developments in this field, and make an argument that, just as we routinely genotype single-nucleotide polymorphisms now and will routinely re-sequence genomes in the near future, we should be aiming to physically re-map the individual human genome for each individual we study.
Collapse
Affiliation(s)
- Edward J Hollox
- Department of Genetics, University of Leicester, Adrian Building, University Road, Leicester, UK.
| |
Collapse
|
12
|
Gesemann M, Lesslauer A, Maurer CM, Schönthaler HB, Neuhauss SCF. Phylogenetic analysis of the vertebrate excitatory/neutral amino acid transporter (SLC1/EAAT) family reveals lineage specific subfamilies. BMC Evol Biol 2010; 10:117. [PMID: 20429920 PMCID: PMC2873418 DOI: 10.1186/1471-2148-10-117] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 04/29/2010] [Indexed: 12/03/2022] Open
Abstract
Background The composition and expression of vertebrate gene families is shaped by species specific gene loss in combination with a number of gene and genome duplication events (R1, R2 in all vertebrates, R3 in teleosts) and depends on the ecological and evolutionary context. In this study we analyzed the evolutionary history of the solute carrier 1 (SLC1) gene family. These genes are supposed to be under strong selective pressure (purifying selection) due to their important role in the timely removal of glutamate at the synapse. Results In a genomic survey where we manually annotated and analyzing sequences from more than 300 SLC1 genes (from more than 40 vertebrate species), we found evidence for an interesting evolutionary history of this gene family. While human and mouse genomes contain 7 SLC1 genes, in prototheria, sauropsida, and amphibia genomes up to 9 and in actinopterygii up to 13 SLC1 genes are present. While some of the additional slc1 genes in ray-finned fishes originated from R3, the increased number of SLC1 genes in prototheria, sauropsida, and amphibia genomes originates from specific genes retained in these lineages. Phylogenetic comparison and microsynteny analyses of the SLC1 genes indicate, that theria genomes evidently lost several SLC1 genes still present in the other lineage. The genes lost in theria group into two new subfamilies of the slc1 gene family which we named slc1a8/eaat6 and slc1a9/eaat7. Conclusions The phylogeny of the SLC1/EAAT gene family demonstrates how multiple genome reorganization and duplication events can influence the number of active genes. Inactivation and preservation of specific SLC1 genes led to the complete loss of two subfamilies in extant theria, while other vertebrates have retained at least one member of two newly identified SLC1 subfamilies.
Collapse
Affiliation(s)
- Matthias Gesemann
- University of Zurich, Institute of Molecular Life Sciences, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
13
|
Hu X, Gao Y, Feng C, Liu Q, Wang X, Du Z, Wang Q, Li N. Advanced technologies for genomic analysis in farm animals and its application for QTL mapping. Genetica 2008; 136:371-86. [DOI: 10.1007/s10709-008-9338-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 11/19/2008] [Indexed: 12/25/2022]
|
14
|
Kochan KJ, Amaral MEJ, Agarwala R, Schäffer AA, Riggs PK. Application of dissociation curve analysis to radiation hybrid panel marker scoring: generation of a map of river buffalo (B. bubalis) chromosome 20. BMC Genomics 2008; 9:544. [PMID: 19014630 PMCID: PMC2621213 DOI: 10.1186/1471-2164-9-544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 11/17/2008] [Indexed: 11/30/2022] Open
Abstract
Background Fluorescence of dyes bound to double-stranded PCR products has been utilized extensively in various real-time quantitative PCR applications, including post-amplification dissociation curve analysis, or differentiation of amplicon length or sequence composition. Despite the current era of whole-genome sequencing, mapping tools such as radiation hybrid DNA panels remain useful aids for sequence assembly, focused resequencing efforts, and for building physical maps of species that have not yet been sequenced. For placement of specific, individual genes or markers on a map, low-throughput methods remain commonplace. Typically, PCR amplification of DNA from each panel cell line is followed by gel electrophoresis and scoring of each clone for the presence or absence of PCR product. To improve sensitivity and efficiency of radiation hybrid panel analysis in comparison to gel-based methods, we adapted fluorescence-based real-time PCR and dissociation curve analysis for use as a novel scoring method. Results As proof of principle for this dissociation curve method, we generated new maps of river buffalo (Bubalus bubalis) chromosome 20 by both dissociation curve analysis and conventional marker scoring. We also obtained sequence data to augment dissociation curve results. Few genes have been previously mapped to buffalo chromosome 20, and sequence detail is limited, so 65 markers were screened from the orthologous chromosome of domestic cattle. Thirty bovine markers (46%) were suitable as cross-species markers for dissociation curve analysis in the buffalo radiation hybrid panel under a standard protocol, compared to 25 markers suitable for conventional typing. Computational analysis placed 27 markers on a chromosome map generated by the new method, while the gel-based approach produced only 20 mapped markers. Among 19 markers common to both maps, the marker order on the map was maintained perfectly. Conclusion Dissociation curve analysis is reliable and efficient for radiation hybrid panel scoring, and is more sensitive and robust than conventional gel-based typing methods. Several markers could be scored only by the new method, and ambiguous scores were reduced. PCR-based dissociation curve analysis decreases both time and resources needed for construction of radiation hybrid panel marker maps and represents a significant improvement over gel-based methods in any species.
Collapse
Affiliation(s)
- Kelli J Kochan
- Department of Animal Science, Texas A&M University, College Station, Texas, USA.
| | | | | | | | | |
Collapse
|
15
|
A placenta-specific receptor for the fusogenic, endogenous retrovirus-derived, human syncytin-2. Proc Natl Acad Sci U S A 2008; 105:17532-7. [PMID: 18988732 DOI: 10.1073/pnas.0807413105] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Syncytin-2 is an envelope gene from the human endogenous retrovirus FRD (HERV-FRD) co-opted by an ancestral primate host, conserved in evolution over >40 Myr, specifically expressed in the placenta, and with a cell-cell fusogenic activity likely contributing to placenta morphogenesis. Here, using the GeneBridge4 human/Chinese hamster radiation hybrid panel, we mapped and identified the human receptor for syncytin-2. This receptor-namely Major Facilitator Superfamily Domain Containing 2 (MFSD2)-belongs to a large family of presumptive carbohydrate transporters with 10-12 membrane-spanning domains, is located at chromosomal position 1p34.2, and is conserved in evolution. An expression vector for MFSD2 confers fusogenicity to otherwise insusceptible cells upon transfection of syncytin-2. It also confers infectivity to syncytin-2 pseudotypes, consistent with this protein being the receptor for the ancestrally acquired HERV-FRD family of endogenous retroviruses. At variance with the human gene, neither mouse nor rat MFSD2 can mediate membrane fusion, which is consistent with the fact that the envelope-derived syncytin genes co-opted by rodents during evolution are not orthologous to the human syncytin genes. Remarkably, a real-time quantitative RT-PCR analysis of MFSD2 in various human tissues demonstrates specific expression in the placenta, as well as in the human BeWo choriocarcinoma cell line, which discloses enhancement of receptor expression upon induction by forskolin of cell-cell fusion and syncytium formation. In situ hybridization of human placental tissue using an MFSD2-specific probe further unambiguously demonstrates receptor expression at the level of the syncytiotrophoblast, again consistent with a role in placenta morphogenesis.
Collapse
|
16
|
He K, Gu B, Zhang Q, Fu G, Wu J, Han Z, Cao W, Zou J, Mao M, Liu J, Chen Z, Chen S. Application of radiation hybrid in gene mapping. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2008; 41:644-9. [PMID: 18726221 DOI: 10.1007/bf02882907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/1998] [Indexed: 11/27/2022]
Abstract
Radiation hybrid (RH) mapping technique was exploited to determine chromosome locations of 26 human novel full length cDNAs recently cloned. All these cDNA clones were isolated from human cord blood CD (+) (34) cells and may be related to regulation of hematopoiesis. 23 genes were successfully mapped to chromosomal positions, while RH analyses were not possible in the remaining 3 cases. RH technique is indeed a powerful tool for mapping novel cDNA sequences due to its rapidity, precision, convenience and reproducibility.
Collapse
Affiliation(s)
- K He
- Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Second Medical University, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tian Y, Xu M, Fu Y, Yuan A, Wang D, Li G, Liu G, Lu L. Mapping and expression analysis of chicken NDRG1 and NDRG3 genes. Biochem Genet 2008; 46:677-84. [PMID: 18751885 DOI: 10.1007/s10528-008-9183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 05/23/2008] [Indexed: 11/28/2022]
Abstract
N-myc downstream-regulated genes 1 and 3 (NDRG1 and NDRG3) are members of the alpha/beta hydrolase superfamily. Phylogenetic analysis of the family demonstrated that human NDRG1 and 3 belong to a subfamily. The mapping and gene expression patterns of these genes represent one step toward further investigation into their possible roles in the chicken (Gallus gallus). To map these genes in the chicken chromosome, a 6000 rads chicken-hamster radiation hybrid panel (ChickRH6) was used. Primers were designed according to the published human sequences for amplification of those two genes. We compared the corresponding human mRNA sequences with the predicted coding sequences of the chicken NDRG1 and 3 genes and found that the assembled contigs shared a high percentage of similarity with the human genes. PCR of samples from ChickRH6 revealed that the locations of NDRG1 and 3 are linked to the markers MYC (58 cRs away, LOD score 4.52) and SEQ0265 (10 cRs away, LOD score 17.81), respectively. This result adds two new markers to the chicken RH map, and it reinforces that the RH technique is indeed a powerful tool for mapping genes due to its rapidity, precision, convenience, and reproducibility. In addition, we detected the gene expression and distribution of chicken NDRG1 and 3 in seven tissues, including heart, liver, spleen, lung, muscle, brain, and thymus, by RT-PCR, and found that NDRG1 is relatively ubiquitously expressed in all the tested tissues and highly expressed in heart and liver, whereas NDRG3 is high in heart, muscle, and brain.
Collapse
Affiliation(s)
- Yong Tian
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Riera-Lizarazu O, Vales MI, Kianian SF. Radiation hybrid (RH) and HAPPY mapping in plants. Cytogenet Genome Res 2008; 120:233-40. [PMID: 18504352 DOI: 10.1159/000121072] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2007] [Indexed: 11/19/2022] Open
Abstract
Radiation hybrid (RH) and HAPPY mapping are two technologies used in animal systems that have attracted the attention of the plant genetics community because they bridge the resolution gap between meiotic and BAC-based physical mapping that would facilitate the analysis of plant species lacking substantial genomics resources. Research has shown that the essence of these approaches can be applied and that a variety of strategies can be used to produce mapping panels. Mapping panels composed of live plants, protoplast fusion cultures, and sub-genomic DNA samples have been described. The resolution achievable by RH mapping panels involving live-plant derivatives of a monosomic maize (Zea mays) chromosome 9 addition in allohexaploid oat (Avena sativa), a monosomic chromosome 1D addition in allotetraploid durum wheat (Triticum turgidum), and interspecific hybrids between two tetraploid cotton species (G. hirsutum and G. barbadense), has been estimated to range from 0.6 to 6 Mb. On the other hand, a more comprehensive evaluation of one panel from durum wheat suggests that a higher mapping resolution (approximately 200 kb) is possible. In cases involving RH mapping panels based on barley (Hordeum vulgare)-tobacco (Nicotiana tabacum) protoplast fusions or a HAPPY mapping panel based on genomic DNA from Arabidopsis thaliana, the potential mapping resolution appears to be higher (50 to 200 kb). Despite these encouraging results, the application of either RH or HAPPY mapping in plants is still in the experimental phase and additional work is clearly needed before these methods are more routinely utilized.
Collapse
Affiliation(s)
- O Riera-Lizarazu
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331-3002, USA.
| | | | | |
Collapse
|
19
|
Abstract
Whole-genome radiation hybrid (RH) mapping has proven to be a powerful tool for mapping genes and comparing genome architecture. We describe a protocol for constructing RH panels by rescuing irradiated fibroblast donor cells of any mammalian species by polyethylene glycol fusion to a thymidine kinase-deficient hamster cell line. Characterization and expansion of a panel of 90-100 cell lines can be used to map virtually any PCR-based marker that can be distinguished from the recipient hamster genome. The described procedure has been used successfully to create RH panels from diverse mammalian species such as macaques, elephants, alpacas, and armadillos, and may be applicable to nonmammalian vertebrates as well.
Collapse
Affiliation(s)
- John E Page
- Integrated Toxicology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD
| | | |
Collapse
|
20
|
Su F, Osada Y, Ekker M, Chevrette M, Shimizu A, Asakawa S, Shiohama A, Sasaki T, Shimizu N, Yamanaka T, Sasado T, Mitani H, Geisler R, Kondoh H, Furutani-Seiki M. Radiation hybrid maps of Medaka chromosomes LG 12, 17, and 22. DNA Res 2007; 14:135-40. [PMID: 17591665 PMCID: PMC2779899 DOI: 10.1093/dnares/dsm012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The Medaka is an excellent genetic system for studies of vertebrate development and disease and environmental and evolutionary biology studies. To facilitate the mapping of markers or the cloning of affected genes in Medaka mutants identified by forward-genetic screens, we have established a panel of whole-genome radiation hybrids (RHs) and RH maps for three Medaka chromosomes. RH mapping is useful, since markers to be mapped need not be polymorphic and one can establish the order of markers that are difficult to resolve by genetic mapping owing to low genetic recombination rates. RHs were generated by fusing the irradiated donor, OLF-136 Medaka cell line, with the host B78 mouse melanoma cells. Of 290 initial RH clones, we selected 93 on the basis of high retention of fragments of the Medaka genome to establish a panel that allows genotyping in the 96-well format. RH maps for linkage groups 12, 17, and 22 were generated using 159 markers. The average retention for the three chromosomes was 19% and the average break point frequency was ∼33 kb/cR. We estimate the potential resolution of the RH panel to be ∼186 kb, which is high enough for integrating RH data with bacterial artificial chromosome clones. Thus, this first RH panel will be a useful tool for mapping mutated genes in Medaka.
Collapse
Affiliation(s)
- Feng Su
- The Graduate School of Frontier Biosciences, Osaka University, 1–3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yumi Osada
- SORST Kondoh Research Team, Japan Science and Technology Agency (JST), 14 Yoshida-Kawaracho, Sakyo-ku, Kyoto 606-8305, Japan
| | - Marc Ekker
- Department of Biology, Center for Advanced Research in Environmental Genomics, University of Ottawa, 20, Marie Curie, Ottawa, ON, CanadaK1N 6N5
| | - Mario Chevrette
- The Research Institute of the McGill University Health Centre and Department of Surgery, McGill University, Montreal, QC, CanadaH3G 1A4
| | - Atsushi Shimizu
- Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shuichi Asakawa
- Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Aiko Shiohama
- Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takashi Sasaki
- Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Nobuyoshi Shimizu
- Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshiyuki Yamanaka
- SORST Kondoh Research Team, Japan Science and Technology Agency (JST), 14 Yoshida-Kawaracho, Sakyo-ku, Kyoto 606-8305, Japan
| | - Takao Sasado
- SORST Kondoh Research Team, Japan Science and Technology Agency (JST), 14 Yoshida-Kawaracho, Sakyo-ku, Kyoto 606-8305, Japan
| | - Hiroshi Mitani
- Department of Integrated Bioscience, Graduate School of Frontier Science, The University of Tokyo, Bioscience Building, 102, Kashiwa, Chiba 277-8562, Japan
| | - Robert Geisler
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung III–Genetik, Spemannstrasse 35, Tübingen D-72076, Germany
| | - Hisato Kondoh
- The Graduate School of Frontier Biosciences, Osaka University, 1–3 Yamadaoka, Suita, Osaka 565-0871, Japan
- SORST Kondoh Research Team, Japan Science and Technology Agency (JST), 14 Yoshida-Kawaracho, Sakyo-ku, Kyoto 606-8305, Japan
| | - Makoto Furutani-Seiki
- SORST Kondoh Research Team, Japan Science and Technology Agency (JST), 14 Yoshida-Kawaracho, Sakyo-ku, Kyoto 606-8305, Japan
- To whom correspondence should be addressed. Tel. +44 (0) 1225 38 5046. Fax. +44 (0) 1225 38 6779. E-mail:
| |
Collapse
|
21
|
Ramsdell CM, Thames EL, Weston JL, Dewey MJ. Development of a deer mouse whole-genome radiation hybrid panel and comparative mapping of Mus chromosome 11 loci. Mamm Genome 2006; 17:37-48. [PMID: 16416089 DOI: 10.1007/s00335-005-0051-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 09/13/2005] [Indexed: 11/27/2022]
Abstract
A 5000-rad whole-genome radiation hybrid cell panel (BW5000) was developed for mapping the deer mouse (Peromyscus maniculatus bairdii) genome. The panel consists of 103 cell lines and has an estimated marker retention frequency of 63.9% (range, 28%-88%) based on PCR typing of 30 Type I (coding gene) and 25 Type II (microsatellite) markers. Using the composite Mus map, Type I markers were selected from six Mus chromosomes, 22 of which are on Mus Chr 11. Fifteen of the Mus Chr 11 markers were simultaneously mapped on an interspecific (P. maniculatus x P. polionotus) backcross panel to test the utility of the radiation hybrid panel, create a framework map, and help establish gene order. The radiation hybrids have effectively detected linkage in the deer mouse genome between markers as far apart as 6.7 cM and resolved markers that are, in the Mus genome, as close as 0.2 Mb. Combined results from both panels have indicated a high degree of gene order conservation of the telomeric 64 cM of Mus Chr 11 in the deer mouse genome. The remaining centromeric portion also shows gene order conservation with the deer mouse but as a separate linkage group. This indicates a translocation of that portion of Mus Chr 11 in P. maniculatus and is consistent with rearrangement breakpoints observed between Mus and other mammalian genomes, including rat and human. Furthermore, this separate linkage group is likely to reside in a chromosomal region of inversion polymorphism between P. maniculatus and P. polionotus.
Collapse
Affiliation(s)
- Clifton M Ramsdell
- Peromyscus Genetic Stock Center, Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, South Carolina 29208, USA.
| | | | | | | |
Collapse
|
22
|
Nagem RAP, Ferreira Júnior JR, Dumoutier L, Renauld JC, Polikarpov I. Interleukin-22 and its crystal structure. VITAMINS AND HORMONES 2006; 74:77-103. [PMID: 17027512 DOI: 10.1016/s0083-6729(06)74004-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interleukin-22 (IL-22) is a cytokine that regulates the production of acute phase proteins of the immunological response. On binding to its cognate receptor (IL-22R1), which is associated to the interleukin-10 receptor 2 (IL-10R2), IL-22 promotes activation of signal transducer and activator of transcription (STAT) pathway and several other cellular responses. A soluble receptor termed interleukin-22 binding protein (IL-22BP) is also able to bind to IL-22 as a natural protein antagonist, and probably provides systemic regulation of IL-22 activity. This inflammatory response system is analyzed here in terms of its molecular physiology and structural assembly. Three-dimensional (3D) model of IL-22 and structural basis of its interactions with the cognate receptors are discussed.
Collapse
Affiliation(s)
- Ronaldo Alves Pinto Nagem
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627 CEP 31270910, Belo Horizonte, MG, Brazil
| | | | | | | | | |
Collapse
|
23
|
Gao W, Chen ZJ, Yu JZ, Kohel RJ, Womack JE, Stelly DM. Wide-cross whole-genome radiation hybrid mapping of the cotton (Gossypium barbadense L.) genome. Mol Genet Genomics 2005; 275:105-13. [PMID: 16362372 DOI: 10.1007/s00438-005-0069-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 10/21/2005] [Indexed: 11/26/2022]
Abstract
Whole-genome radiation hybrid mapping has been applied extensively to human and certain animal species, but little to plants. We recently demonstrated an alternative mapping approach in cotton (Gossypium hirsutum L.), based on segmentation by 5-krad gamma-irradiation and derivation of wide-cross whole-genome radiation hybrids (WWRHs). However, limitations observed at the 5-krad level suggested that higher doses might be advantageous. Here, we describe the development of an improved second-generation WWRH panel after higher dose irradiation and compare the resulting map to the 5-krad map. The genome of G. hirsutum (n = 26) was used to rescue the radiation-segmented genome of G. barbadense (n = 26) introduced via 8- and 12-krad gamma-irradiated pollen. Viable seedlings were not recovered after 12-krad irradiation, but 8-krad irradiation permitted plant recovery and construction of a 92-member WWRH mapping panel. Assessment of 31 SSR marker loci from four chromosomes revealed that the 8-krad panel has a marker retention frequency of ca. 76%, which is approximately equivalent to the rate of loss in a low-dose animal radiation hybrid panel. Retention frequencies of loci did not depart significantly from independence when compared between the A and D subgenomes, or according to positions along individual chromosomes. WWRH maps of chromosomes 10 and 17 were generated by the maximum likelihood RHMAP program and the general retention model. The resulting maps bolster evidence that WWRH mapping complements traditional linkage mapping and works in cotton, and that the 8-krad panel complements the 5-krad panel by offering higher rates of chromosome breakages, lower marker retention frequency, and more retention patterns.
Collapse
Affiliation(s)
- Wenxiang Gao
- Department of Soil and Crop Sciences, Texas A & M University, College Station, 77843-2474, USA
| | | | | | | | | | | |
Collapse
|
24
|
Roy R, Zaragoza P, Gautier M, Eggen A, Rodellar C. Radiation hybrid and genetic linkage mapping of two genes related to fat metabolism in cattle: fatty acid synthase (FASN) and glycerol-3-phosphate acyltransferase mitochondrial (GPAM). Anim Biotechnol 2005; 16:1-9. [PMID: 15926258 DOI: 10.1081/abio-200044295] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fatness traits, such as fat deposition, carcass composition, fat content, and the percentage of fat in milk, are economically relevant to cattle production. Fatty acid synthase (FASN) and glycerol-3-phosphate acyltransferase mitochondrial (GPAM) are two enzymes that play a central role in de novo lipogenesis. Both could be putative candidate genes for quantitative trait loci (QTL). Several clones containing the fatty acid synthase (FASN) and glycerol-3-phosphate acyltransferase mitochondrial (GPAM) genes were isolated after screening the INRA bovine bacterial artificial chromosome (BAC) library using PCR. Five microsatellite loci were derived from the BAC clones containing the genes of interest with heterozygosity values ranging from 27 to 78%, using DNA samples from the International Bovine Reference Panel (IBRP). The newly developed markers were genotyped on the IBRP animals and on a radiation hybrid panel to compare the obtained linkage and RH maps. Radiation hybrid maps were developed for chromosome BTA19 and BTA26 regions containing FASN and GPAM genes, respectively. The two genes and their associated microsatellite markers were located on the genetic or RH maps or on both. These microsatellite markers could be useful to study the QTL effect on fat synthesis in reference population.
Collapse
Affiliation(s)
- R Roy
- Laboratorio de Genética Bioquímica y Grupos Sanguíneos, Universidad de Zaragoza, Zaragoza, Spain.
| | | | | | | | | |
Collapse
|
25
|
Gao W, Chen ZJ, Yu JZ, Raska D, Kohel RJ, Womack JE, Stelly DM. Wide-cross whole-genome radiation hybrid mapping of cotton (Gossypium hirsutum L.). Genetics 2005; 167:1317-29. [PMID: 15280245 PMCID: PMC1470948 DOI: 10.1534/genetics.103.020479] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report the development and characterization of a "wide-cross whole-genome radiation hybrid" (WWRH) panel from cotton (Gossypium hirsutum L.). Chromosomes were segmented by gamma-irradiation of G. hirsutum (n = 26) pollen, and segmented chromosomes were rescued after in vivo fertilization of G. barbadense egg cells (n = 26). A 5-krad gamma-ray WWRH mapping panel (N = 93) was constructed and genotyped at 102 SSR loci. SSR marker retention frequencies were higher than those for animal systems and marker retention patterns were informative. Using the program RHMAP, 52 of 102 SSR markers were mapped into 16 syntenic groups. Linkage group 9 (LG 9) SSR markers BNL0625 and BNL2805 had been colocalized by linkage analysis, but their order was resolved by differential retention among WWRH plants. Two linkage groups, LG 13 and LG 9, were combined into one syntenic group, and the chromosome 1 linkage group marker BNL4053 was reassigned to chromosome 9. Analyses of cytogenetic stocks supported synteny of LG 9 and LG 13 and localized them to the short arm of chromosome 17. They also supported reassignment of marker BNL4053 to the long arm of chromosome 9. A WWRH map of the syntenic group composed of linkage groups 9 and 13 was constructed by maximum-likelihood analysis under the general retention model. The results demonstrate not only the feasibility of WWRH panel construction and mapping, but also complementarity to traditional linkage mapping and cytogenetic methods.
Collapse
Affiliation(s)
- Wenxiang Gao
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843-2474, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Rabie TSKM, Crooijmans RPMA, Morisson M, Andryszkiewicz J, van der Poel JJ, Vignal A, Groenen MAM. A radiation hybrid map of chicken Chromosome 4. Mamm Genome 2005; 15:560-9. [PMID: 15366376 DOI: 10.1007/s00335-004-2362-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The mapping resolution of the physical map for chicken Chromosome 4 (GGA4) was improved by a combination of radiation hybrid (RH) mapping and bacterial artificial chromosome (BAC) mapping. The ChickRH6 hybrid panel was used to construct an RH map of GGA4. Eleven microsatellites known to be located on GGA4 were included as anchors to the genetic linkage map for this chromosome. Based on the known conserved synteny between GGA4 and human Chromosomes 4 and X, sequences were identified for the orthologous chicken genes from these human chromosomes by BLAST analysis. These sequences were subsequently used for the development of STS markers to be typed on the RH panel. Using a logarithm of the odds (LOD) threshold of 5.0, nine linkage groups could be constructed which were aligned with the genetic linkage map of this chromosome. The resulting RH map consisted of the 11 microsatellite markers and 50 genes. To further increase the number of genes on the map and to provide additional anchor points for the physical BAC map of this chromosome, BAC clones were identified for 22 microsatellites and 99 genes. The combined RH and BAC mapping approach resulted in the mapping of 61 genes on GGA4 increasing the resolution of the chicken-human comparative map for this chromosome. This enhanced comparative mapping resolution enabled the identification of multiple rearrangements between GGA4 and human Chromosomes 4q and Xp.
Collapse
Affiliation(s)
- Tarik S K M Rabie
- Wageningen Institute of Animal Sciences, Animal Breeding and Genetics Group, Wageningen University, Marijkeweg 40, 6709 PG Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
27
|
Gorni C, Williams JL, Heuven HCM, Negrini R, Valentini A, van Eijk MJT, Waddington D, Zevenbergen M, Marsan PA, Peleman JD. Application of AFLP technology to radiation hybrid mapping. Chromosome Res 2004; 12:285-97. [PMID: 15125642 DOI: 10.1023/b:chro.0000021912.22552.ff] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have investigated the use of AFLP technology as a tool for the high throughput enrichment of Radiation Hybrid (RH) maps. The 3000 rad TM112 bovine RH panel was assayed with 37 EcoRI/TaqI AFLP primer combinations. The number of selective nucleotides used during PCR was increased to seven, to reduce the complexity of the AFLP profile and minimise the overlap between hamster and bovine bands co-amplified from hybrid cell clones. Seven-hundred-forty-seven bovine AFLP bands were amplified that could be distinguished following electrophoresis. Repeatability was tested within and between laboratories on independent template preparations and an error rate of 1.3% found. Two-point linkage analysis clustered 428 AFLP fragments in 39 linkage groups of at least 4 markers. Multi-point maps were constructed for 5 sample linkage groups. The study demonstrated that the AFLP approach could be used to rapidly screen for the most informative clones during panel construction and to increase the number of markers on RH maps, which could be useful for joining linkage groups formed by other markers. The use of AFLP markers as anchor points between existing RH maps and other physical maps, such as BAC contigs, is also discussed.
Collapse
Affiliation(s)
- C Gorni
- Institute of Zootechnics, Catholic University of Sacred Heart, via E. Parmense, 84, 29100 Piacenza, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Up to recently, studies on dog genetics were rather scare notwithstanding the enormous potential that the canine model can offer in the study of the genotype/phenotype relationship and the analysis of the causes of many genetic diseases, with simple or complex inheritance, that affect dogs but also the human population. This potentiality is essentially due to the natural history of dogs whose domestication from wolves dated back 15,000 years, at least. All modern dogs originated from a limited number of female wolves from Eastern Asia. By applying a combination of selections and strong inbreeding practices, humans have created over 350 breeds, each of them corresponding to a genetic isolate and altogether offering a unique panel of polymorphism never encountered in any other mammals. In this review we summarized what makes dogs an unavoidable model. Contrary to the classical models like the two yeasts, nematode, fish, fly, mouse, or rat mainly used to understand the function of genes, dog with the creation across the centuries of numerous breeds offers a unique opportunity to study the role of their alleles. We report recent data on the construction of genomic maps and on the sequencing program of the dog genome launched by the National Institute of Health (NIH). To take fully advantage of the canine model, we advocate for the systematic construction of a rich canine single nucleotide polymorphisms (SNP) ressource to perform linkage desiquilibrium studies of normal or pathological traits as well as to get insight into the genetic diversity of the canine species.
Collapse
Affiliation(s)
- Francis Galibert
- UMR 6061 Génétique et développement, CNRS- Université de Rennes 1, Faculté de Médecine, 2, avenue Léon Bernard, 35043 Rennes Cedex, France.
| | | | | |
Collapse
|
29
|
De Donato M, Brenneman R, Stelly D, Womack J, Taylor J. A methodological approach for the construction of a radiation hybrid map of bovine chromosome 5. Genet Mol Biol 2004. [DOI: 10.1590/s1415-47572004000100005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- M. De Donato
- Texas A&M University, USA; Universidad de Oriente, Venezuela
| | - R.A. Brenneman
- Texas A&M University, USA; Omaha's Henry Doorly Zoo, USA
| | | | | | - J.F. Taylor
- Texas A&M University, USA; University of Missouri, USA
| |
Collapse
|
30
|
Wardrop J, Fuller J, Powell W, Machray GC. Exploiting plant somatic radiation hybrids for physical mapping of expressed sequence tags. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 108:343-8. [PMID: 14513221 DOI: 10.1007/s00122-003-1434-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2003] [Accepted: 08/12/2003] [Indexed: 05/24/2023]
Abstract
Methods are described for the optimisation of the generation of radiation hybrids suitable for physical mapping of a plant (barley) genome. A combination of PCR-based technologies, involving the use of whole genome, mixed primer and hemi-nested primer amplifications, can greatly extend their utility for the physical mapping of expressed sequence tags (ESTs). Using panels of hybrids and ESTs, donor DNA retention and individual marker retention frequencies for the expressed portion of the barley genome in the hybrids were estimated.
Collapse
Affiliation(s)
- J Wardrop
- Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | | | | | |
Collapse
|
31
|
Prost S, LeDiscorde M, Haddad R, Gluckman JC, Canque B, Kirszenbaum M. Characterization of a novel hematopoietic marker expressed from early embryonic hematopoietic stem cells to adult mature lineages. Blood Cells Mol Dis 2002; 29:236-48. [PMID: 12490290 DOI: 10.1006/bcmd.2002.0563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel membrane protein has been identified in the course of screening for differentially expressed cDNAs in human embryonic hematopoietic sites. This 37- to 38-kDa molecule, designated KLIP-1 (killer lineage protein), consisting of 350 amino acids and containing five transmembrane domains, is encoded by the 5093-bp KLIP-1 gene, composed of nine exons and located on chromosome 6 (6p21.1-6p21.2). We found the KLIP-1 protein to be expressed by nucleated hematopoietic cells, from early embryonic hematopoietic stem cells through mature adult blood lymphoid lineages, either as membrane or as cytoplasmic molecules. In day-30/32 human embryo sections, KLIP-1 protein expression is restricted to circulating hematopoietic cells at hematopoiesis sites. Membrane KLIP-1 is expressed by fetal and adult GP-A(+) erythroblasts, the fetal liver CD34(+) subset, fetal spleen, and adult bone marrow CD56(+) NK and CD19(+) B cells. Among mature blood cells, surface KLIP-1 expression is restricted to CD56(+) NK cells, indicating KLIP-1 to be a novel marker of this population. Altogether, these results indicate that membrane export of KLIP-1 antigen is developmentally and ontogenetically regulated. The high degree of conservation of the KLIP-1 protein sequence among mammals strongly suggests that it plays an important role during hematopoiesis and may exercise similar functions in human and mouse blood cells. The KLIP-1 molecule may therefore constitute a powerful tool for improving knowledge of both human hematopoiesis and NK cell ontogeny and immune functions.
Collapse
Affiliation(s)
- Stéphane Prost
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Département de Recherche Médicale Service de Neurovirologie, Fontenay aux Roses, France
| | | | | | | | | | | |
Collapse
|
32
|
Drögemüller C, Bader A, Wöhlke A, Kuiper H, Leeb T, Distl O. A high-resolution comparative RH map of the proximal part of bovine chromosome 1. Anim Genet 2002; 33:271-9. [PMID: 12139506 DOI: 10.1046/j.1365-2052.2002.00866.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Current comparative maps between human chromosome 21 and the proximal part of cattle chromosome 1 are insufficient to define chromosomal rearrangements because of the low density of mapped genes in the bovine genome. The recently completed sequence of human chromosome 21 facilitates the detailed comparative analysis of corresponding segments on BTA1. In this study eight bovine bacterial artificial chromosome (BAC) clones containing bovine orthologues of human chromosome 21 genes, i.e. GRIK1, CLDN8, TIAM1, HUNK, SYNJ1, OLIG2, IL10RB, and KCNE2 were physically assigned by fluorescence in situ hybridization (FISH) to BTA1q12.1-q12.2. Sequence tagged site (STS) markers derived from these clones were mapped on the 3000 rad Roslin/Cambridge bovine radiation hybrid (RH) panel. In addition to these eight novel markers, 17 known markers from previously published BTA1 linkage or RH maps were also mapped on the Roslin/Cambridge bovine RH panel resulting in an integrated map with 25 markers of 355.4 cR(3000) length. The human-cattle genome comparison revealed the existence of three chromosomal breakpoints and two probable inversions in this region.
Collapse
Affiliation(s)
- C Drögemüller
- Institute of Animal Breeding and Genetics, School of Veterinary Medicine Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Walden M, Kreutzmann P, Drögemüller K, John H, Forssmann WG, Hans-Jürgen M. Biochemical features, molecular biology and clinical relevance of the human 15-domain serine proteinase inhibitor LEKTI. Biol Chem 2002; 383:1139-41. [PMID: 12437098 DOI: 10.1515/bc.2002.124] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Based on the isolation of a 55 amino acid peptide from human hemofiltrate, we cloned the cDNA for a novel human 15-domain serine proteinase inhibitor termed LEKTI. A trypsin-inhibiting activity was demonstrated for three different domains. High levels of expression of the corresponding gene were detected in oral mucosa, followed by the tonsils, parathyroid glands, thymus, and trachea. Hovnanian and coworkers recently found that certain mutations within the LEKTI gene are linked to the severe congenital disease Netherton syndrome and atopic manifestations (including asthma). Thus, a future therapeutic use of LEKTI is conceivable.
Collapse
|
34
|
Krakow D, Sebald E, King LM, Cohn DH. Identification of human FEM1A, the ortholog of a C. elegans sex-differentiation gene. Gene 2001; 279:213-9. [PMID: 11733146 DOI: 10.1016/s0378-1119(01)00756-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We report the isolation, genomic structure, chromosomal location, and expression pattern of the FEM1A gene, the human ortholog of the Caenorhabditis elegans fem-1 and mouse Fem1a genes. The coding sequence is 1851 bp and encodes a 617 amino acid protein. The human FEM1A protein has 65% identity with the mouse Fem1a protein and 34% identity with the C. elegans fem-1 protein, indicating conservation of this protein. The N-terminal region of the encoded protein contains six ankyrin repeat elements, a motif found in signaling and transcriptional regulatory molecules such as Notch and glp1. The gene was highly expressed in human kidney and cardiac tissue, and was expressed at lower levels in multiple tissues, including cartilage. FEM1A was localized to chromosome 5q23.1, a region of conserved synteny with a portion of mouse chromosome 17 that contains Fem1a. In C. elegans, fem-1 is involved in a pathway necessary for sex determination. The identification of a human homolog of this conserved gene suggests a potential role for this sex-determining molecule in humans.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans Proteins
- Cell Cycle Proteins/genetics
- Chromosome Mapping
- Chromosomes, Human, Pair 5/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Exons
- Female
- Gene Expression
- Genes/genetics
- Humans
- Introns
- Mice
- Molecular Sequence Data
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Radiation Hybrid Mapping
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
Collapse
Affiliation(s)
- D Krakow
- Department of Obstetrics and Gynecology, Burns and Allen Cedars-Sinai Research Institute, Los Angeles, CA, USA.
| | | | | | | |
Collapse
|
35
|
Ahn J, Won TW, Zia A, Reutter H, Kaplan DE, Sparks R, Gruen JR. Peaks of linkage are localized by a BAC/PAC contig of the 6p reading disability locus. Genomics 2001; 78:19-29. [PMID: 11707069 DOI: 10.1006/geno.2001.6645] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A gene for reading disability has been localized by nonparametric linkage to 6p21.3-p22 in several published reports. However, the lack of an uninterrupted genomic clone contig has made it difficult to determine accurate intermarker distances, precise marker order, and genetic boundaries and hinders direct comparisons of linkage. The search and discovery of the hemochromatosis gene (HFE) led to the creation of a bacterial artificial chromosome (BAC) and P-1 derived artificial chromosome (PAC) contig that extended physical maps 4 Mb from the MHC toward pter and localized new markers in that region [10-12]. Using this contig, we localized 124 sequence tagged sites, expressed sequence tags, and short tandem repeats including most of the markers in linkage with reading disability phenotypes, succinic semialdehyde dehydrogenase, GPLD1, prolactin, and 18 uncharacterized genes. This new contig joins and extends previously published physical maps to span the entire chromosome 6 reading disability genetic locus. Physical mapping data from the complete contig show overlap of the published linkage peaks for reading disability, provide accurate intermarker distances and order, and offer resources for generating additional markers and candidate genes for high resolution genetic studies in this region.
Collapse
Affiliation(s)
- J Ahn
- Department of Genome Research, DNA Research Institute, Bioneer Corporation, Cheongwon-Kun, Chungbuk, 363-813, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
36
|
Friedman JS, Walter MA. Use of radiation hybrid panels to map genetic loci. Mol Biotechnol 2001; 19:205-10. [PMID: 11725490 DOI: 10.1385/mb:19:2:205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mapping of genetic loci within organisms has been accelerated by the advent of Radiation Hybrid (RH) panels. These panels are available for humans and non-humans including mice, baboon, rat, and canine. This article contains a general protocol for the use of the Genebridge 4 whole genome RH panel to map a human locus. This protocol may also be adjusted to suit the other RH panels currently available.
Collapse
Affiliation(s)
- J S Friedman
- Department of Ophthalmology, University of Alberta, Rm. 832 Medical Sciences Building, Edmonton Alberta, T6G-2H7, Canada.
| | | |
Collapse
|
37
|
Kaminker PG, Kim SH, Taylor RD, Zebarjadian Y, Funk WD, Morin GB, Yaswen P, Campisi J. TANK2, a new TRF1-associated poly(ADP-ribose) polymerase, causes rapid induction of cell death upon overexpression. J Biol Chem 2001; 276:35891-9. [PMID: 11454873 DOI: 10.1074/jbc.m105968200] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tankyrase (TANK1) is a human telomere-associated poly(ADP-ribose) polymerase (PARP) that binds the telomere-binding protein TRF1 and increases telomere length when overexpressed. Here we report characterization of a second human tankyrase, tankyrase 2 (TANK2), which can also interact with TRF1 but has properties distinct from those of TANK1. TANK2 is encoded by a 66-kilobase pair gene (TNKS2) containing 28 exons, which express a 6.7-kilobase pair mRNA and a 1166-amino acid protein. The protein shares 85% amino acid identity with TANK1 in the ankyrin repeat, sterile alpha-motif, and PARP catalytic domains but has a unique N-terminal domain, which is conserved in the murine TNKS2 gene. TANK2 interacted with TRF1 in yeast and in vitro and localized predominantly to a perinuclear region, similar to the properties of TANK1. In contrast to TANK1, however, TANK2 caused rapid cell death when highly overexpressed. TANK2-induced death featured loss of mitochondrial membrane potential, but not PARP1 cleavage, suggesting that TANK2 kills cells by necrosis. The cell death was prevented by the PARP inhibitor 3-aminobenzamide. In vivo, TANK2 may differ from TANK1 in its intrinsic or regulated PARP activity or its substrate specificity.
Collapse
Affiliation(s)
- P G Kaminker
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Interrogation of the Human Genome data for sequences related to the von Willebrand factor A-domain module identified a previously unreported 4.1 kb full-length cDNA that is predicted to encode a new member of the collagen superfamily of extracellular matrix proteins, collagen XXI. The domain organization of collagen XXI comprised an N-terminal signal sequence, followed by single von Willebrand factor A-domain and thrombospondin domains, and an interrupted collagen triple helix. The organization of these motifs predict that collagen XXI is a new member of the FACIT collagen sub-family. Expression analysis indicated that COL21A1 mRNA is present in many tissues including heart, stomach, kidney, skeletal muscle and placenta, and radiation hybrid mapping localized the COL21A1 gene to 6p11-12.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Base Sequence
- Blotting, Northern
- Chromosomes, Human, Pair 6
- Collagen/chemistry
- Collagen/genetics
- DNA, Complementary/metabolism
- Databases, Factual
- Extracellular Matrix/metabolism
- Genome, Human
- Humans
- Models, Genetic
- Molecular Sequence Data
- Multigene Family
- Phenotype
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Sequence Homology, Amino Acid
- Thrombospondins/metabolism
- Tissue Distribution
- von Willebrand Factor/metabolism
Collapse
Affiliation(s)
- J Fitzgerald
- Cell and Matrix Biology Research Unit, Department of Paediatrics, University of Melbourne, 3052 Parkville, Vic., Australia.
| | | |
Collapse
|
39
|
Pan H, Qin WX, Huo KK, Wan DF, Yu Y, Xu ZG, Hu QD, Gu KT, Zhou XM, Jiang HQ, Zhang PP, Huang Y, Li YY, Gu JR. Cloning, mapping, and characterization of a human homologue of the yeast longevity assurance gene LAG1. Genomics 2001; 77:58-64. [PMID: 11543633 DOI: 10.1006/geno.2001.6614] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have identified LASS2, a previously unknown human homologue of the yeast longevity assurance gene LAG1. The LASS2 transcript is highly expressed in liver and kidney, which is very different from the expression of the previously identified human LAG1 homologue LAG1Hs-1. Radiation hybrid mapping studies indicated that LASS2 is located on chromosome 1q11. Yeast two-hybrid screening and glutathione S-transferase pull-down assays showed that the LASS2 protein interacts with several membrane-associated receptors or transporters. Furthermore, LASS2 protein was able to inhibit the colony formation of human hepatoma cells in vitro, which suggests that this gene may be involved in the regulation of cell growth.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Blotting, Northern
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Chromosome Mapping
- Chromosomes, Human, Pair 1/genetics
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Exons
- Female
- Fungal Proteins/genetics
- Genes/genetics
- Glutathione Transferase/genetics
- Glutathione Transferase/metabolism
- Humans
- Introns
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Molecular Sequence Data
- Protein Binding
- Proteins/genetics
- Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Radiation Hybrid Mapping
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sphingosine N-Acyltransferase
- Tissue Distribution
- Transfection
- Tumor Cells, Cultured
- Tumor Stem Cell Assay
- Tumor Suppressor Proteins
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- H Pan
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- James E. Womack
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
41
|
Bucci C, De Gregorio L, Bruni CB. Expression analysis and chromosomal assignment of PRA1 and RILP genes. Biochem Biophys Res Commun 2001; 286:815-9. [PMID: 11520070 DOI: 10.1006/bbrc.2001.5466] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PRA1 (prenylated Rab acceptor) is a general regulator of Rab proteins, while RILP (Rab interacting lysosomal protein) is a specific effector for Rab7. It has been shown that PRA1 interacts with Rab proteins and with VAMP2. Therefore PRA1 is probably an important factor for membrane traffic, linking together the function of Rab proteins and SNAREs. RILP has a key role in the control of transport to degradative compartments together with Rab7 and probably links Rab7 function to the cytoskeleton. Here we have studied by Northern blot the expression of the two genes in several different human tissues. The 0.8-kb mRNA for human PRA1 is ubiquitously expressed, while the two mRNAs for RILP are differentially expressed. In addition, we have assigned the human PRA1 gene to chromosome 19q13.13-q13.2 and the human RILP gene to chromosome 17p13.3.
Collapse
Affiliation(s)
- C Bucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università degli Studi di Lecce, Via Monteroni, 73100 Lecce, Italy.
| | | | | |
Collapse
|
42
|
|
43
|
Affiliation(s)
- Jeffrey Rogers
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, Texas, USA
| | | |
Collapse
|
44
|
Pallavicini A, Kojić S, Bean C, Vainzof M, Salamon M, Ievolella C, Bortoletto G, Pacchioni B, Zatz M, Lanfranchi G, Faulkner G, Valle G. Characterization of human skeletal muscle Ankrd2. Biochem Biophys Res Commun 2001; 285:378-86. [PMID: 11444853 DOI: 10.1006/bbrc.2001.5131] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human Ankrd2 transcript encodes a 37-kDa protein that is similar to mouse Ankrd2 recently shown to be involved in hypertrophy of skeletal muscle. These novel ankyrin-rich proteins are related to C-193/CARP/MARP, a cardiac protein involved in the control of cardiac hypertrophy. A human genomic region of 14,300 bp was sequenced revealing a gene organization similar to mouse Ankrd2 with nine exons, four of which encode ankyrin repeats. The intracellular localization of Ankrd2 was unknown since no protein studies had been reported. In this paper we studied the intracellular localization of the protein and its expression on differentiation using polyclonal and monoclonal antibodies produced to human Ankrd2. In adult skeletal muscle Ankrd2 is found in slow fibers; however, not all of the slow fibers express Ankrd2 at the same level. This is particularly evident in dystrophic muscles, where the expression of Ankrd2 in slow fibers seems to be severely reduced.
Collapse
Affiliation(s)
- A Pallavicini
- CRIBI Biotechnology Centre, Università degli Studi di Padova, via Ugo Bassi 58b, I-35121 Padua, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Schlapfer J, Stahlberger-Saitbekova N, Womack JE, Gaillard C, Dolf G. Assignment of six genes to bovine chromosome 13. J Anim Breed Genet 2001. [DOI: 10.1046/j.1439-0388.2001.00285.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Sailer AW, Sano H, Zeng Z, McDonald TP, Pan J, Pong SS, Feighner SD, Tan CP, Fukami T, Iwaasa H, Hreniuk DL, Morin NR, Sadowski SJ, Ito M, Ito M, Bansal A, Ky B, Figueroa DJ, Jiang Q, Austin CP, MacNeil DJ, Ishihara A, Ihara M, Kanatani A, Van der Ploeg LH, Howard AD, Liu Q. Identification and characterization of a second melanin-concentrating hormone receptor, MCH-2R. Proc Natl Acad Sci U S A 2001; 98:7564-9. [PMID: 11404457 PMCID: PMC34708 DOI: 10.1073/pnas.121170598] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2001] [Accepted: 04/05/2001] [Indexed: 11/18/2022] Open
Abstract
Melanin-concentrating hormone (MCH) is a 19-aa cyclic neuropeptide originally isolated from chum salmon pituitaries. Besides its effects on the aggregation of melanophores in fish several lines of evidence suggest that in mammals MCH functions as a regulator of energy homeostasis. Recently, several groups reported the identification of an orphan G protein-coupled receptor as a receptor for MCH (MCH-1R). We hereby report the identification of a second human MCH receptor termed MCH-2R, which shares about 38% amino acid identity with MCH-1R. MCH-2R displayed high-affinity MCH binding, resulting in inositol phosphate turnover and release of intracellular calcium in mammalian cells. In contrast to MCH-1R, MCH-2R signaling is not sensitive to pertussis toxin and MCH-2R cannot reduce forskolin-stimulated cAMP production, suggesting an exclusive G(alpha)q coupling of the MCH-2R in cell-based systems. Northern blot and in situ hybridization analysis of human and monkey tissue shows that expression of MCH-2R mRNA is restricted to several regions of the brain, including the arcuate nucleus and the ventral medial hypothalamus, areas implicated in regulation of body weight. In addition, the human MCH-2R gene was mapped to the long arm of chromosome 6 at band 6q16.2-16.3, a region reported to be associated with cytogenetic abnormalities of obese patients. The characterization of a second mammalian G protein-coupled receptor for MCH potentially indicates that the control of energy homeostasis in mammals by the MCH neuropeptide system may be more complex than initially anticipated.
Collapse
Affiliation(s)
- A W Sailer
- Department of Metabolic Disorders, Merck Research Laboratories, P. O. Box 2000, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Xin Y, Yu L, Chen Z, Zheng L, Fu Q, Jiang J, Zhang P, Gong R, Zhao S. Cloning, expression patterns, and chromosome localization of three human and two mouse homologues of GABA(A) receptor-associated protein. Genomics 2001; 74:408-13. [PMID: 11414770 DOI: 10.1006/geno.2001.6555] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Type A receptors of gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter, contain alpha, beta, delta, gamma, and rho subunits. The gamma subunit has four subtypes: gamma1, gamma2, gamma3, andgamma4. GABA(A) receptor-associated protein (GABARAP) was previously demonstrated to act as a linker protein between microtubules and the gamma2 subunit of GABA(A) receptors. However, no other linker proteins have been identified as mediating the linkage of microtubules and the remaining subunits of GABA(A) receptors. In this study we identified three human paralogues (GABARAPL1, GABARAPL2, and GABARAPL3) and two mouse orthologues (Gabarapl1 and Gabarapl2) of human GABARAP, all of which encoded 117 amino acids, as does Gabarapl. The expression patterns of GABARAPL1, GABARAPL2, and GABARAP in 16 adult tissues showed that they were expressed ubiquitously. The expression levels of GABARAPL1 as a 2.3-kb transcript were very high in brain, heart, peripheral blood leukocytes, liver, kidney, placenta, and skeletal muscle, very low in thymus and small intestine, and moderate in other tissues tested. The unique 1.35-kb transcript of GABARAPL2 was expressed at high levels in heart, brain, testis, prostate, ovary, spleen, and skeletal muscle, at very low levels in lung, thymus, and small intestine, and moderately in other tissues tested. For GABARAP, a 1.3-kb transcript was abundantly expressed in all tested tissues with small variation. The expression patterns of Gabarapl1 and Gabarapl2 were similar to those of their counterparts in human. In addition, GABARAPL1 was localized to human chromosome 12p12.3 and GABARAPL2 to 16q22.3-q24.1 by RH mapping, while GABARAP and GABARAPL3 were found to be localized at chromosomes 17p13.2 and 15q25.1, respectively, by searching the related databases. Sequence comparison of the cDNAs and their corresponding genomic sequences shows that GABARAP, GABARAPL1, and GABARAPL2 are composed of four exons each, while GABARAPL3 is distributed only at one exon.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Sequence
- Animals
- Apoptosis Regulatory Proteins
- Base Sequence
- Blotting, Northern
- Chromosome Mapping
- Chromosomes, Human, Pair 12/genetics
- Chromosomes, Human, Pair 15/genetics
- Chromosomes, Human, Pair 16/genetics
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Female
- Gene Expression
- Humans
- Male
- Mice
- Microtubule-Associated Proteins/genetics
- Molecular Sequence Data
- Protein Isoforms/genetics
- RNA/genetics
- RNA/metabolism
- Radiation Hybrid Mapping
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
Collapse
Affiliation(s)
- Y Xin
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200433, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Murphy WJ, Stanyon R, O'Brien SJ. Evolution of mammalian genome organization inferred from comparative gene mapping. Genome Biol 2001; 2:REVIEWS0005. [PMID: 11423011 PMCID: PMC138942 DOI: 10.1186/gb-2001-2-6-reviews0005] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comparative genome analyses, including chromosome painting in over 40 diverse mammalian species, ordered gene maps from several representatives of different mammalian and vertebrate orders, and large-scale sequencing of the human and mouse genomes are beginning to provide insight into the rates and patterns of chromosomal evolution on a whole-genome scale, as well as into the forces that have sculpted the genomes of extant mammalian species.
Collapse
Affiliation(s)
- W J Murphy
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702-1201, USA.
| | | | | |
Collapse
|
49
|
Larose M, Bouchard C, Chagnon YC. A new gene related to human obesity identified by suppression subtractive hybridization. Int J Obes (Lond) 2001; 25:770-6. [PMID: 11439288 DOI: 10.1038/sj.ijo.0801604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2000] [Revised: 12/17/2000] [Accepted: 01/03/2001] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The aim of the research was to identify genes specially expressed in the obese state and potentially involved in the pathogenesis of obesity. DESIGN AND SUBJECTS We used the technique of suppression subtractive hybridization (SSH), which combines subtractive hybridization with PCR, to generate a population of PCR fragments enriched for transcripts of high or low abundance from differentially expressed genes. PolyA+ mRNA was isolated from subcutaneous abdominal adipose tissue of five massively obese (>35 kg/m(2)) and five normal-weight (<25 kg/m(2)) women. cDNA generated from RNA pooled from the obese subjects was contrasted by SSH with an excess of pooled cDNA from the normal-weight women. RESULTS Seventy-nine clones were obtained among which one showed by RT-PCR a higher expression in obese than in normal-weight subjects. This gene was shown to be predominantly expressed in adipose tissue in contrast to brain, liver, kidney, heart and skeletal muscle, and was called "Adipogene". No expression was detected in lung, pancreas and placenta. The cDNA was 1.5 kb long with an open reading frame of 1004 nucleotides encoding a protein of 334 amino acids (37 kDa). No significant sequence similarity was found in databanks, except for weak amino acid homologies with prokaryotic AraC/XylS transcriptional regulator family. Adipogene is encoded on chromosome 8, less than 1 centiMorgan (cM) from the beta3 adrenergic receptor (ADRB3) locus. Weak linkages were observed with body mass index (BMI) and three microsatellite markers located within 10 cM of Adipogene, whereas no linkage was observed with Trp64Arg ADRB3 polymorphism using the Québec Family Study database. CONCLUSION Using the SSH technique, we have identified a new gene, called Adipogene, which is overexpressed in the adipose tissue of the obese individuals and could be involved in obesity.
Collapse
Affiliation(s)
- M Larose
- Kinesiology, Physical Activity Sciences Laboratory, Laval University, Sainte-Foy, Québec, Canada G1K 7P4
| | | | | |
Collapse
|
50
|
Dechairo BM, Carey AH. Use of commercially available radiation hybrid panels. CURRENT PROTOCOLS IN HUMAN GENETICS 2001; Chapter 3:Unit 3.5. [PMID: 18428278 DOI: 10.1002/0471142905.hg0305s25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Several panels are available for puchase, and this unit provides update information on the use of the three commercially available panels and on the interpretation of mapping results using the Internet. Radiation hybrid panels continue to serve as integral biological reagents in physical mapping projects and positional cloning.
Collapse
|