1
|
Meisner JK, Renberg A, Smith ED, Tsan YC, Elder B, Bullard A, Merritt O, Zheng SL, Lakdawala N, Owens A, Ryan TD, Miller EM, Rossano J, Lin KY, Claggett B, Ashley E, Michels M, Lampert R, Stendahl JC, Abrams D, Semsarian C, Parikh VN, Wheeler M, Ingles J, Day SM, Saberi S, Russell MW, Previs M, Ho C, Ware JS, Helms AS. Low Penetrance Sarcomere Variants Contribute to Additive Risk in Hypertrophic Cardiomyopathy. Circulation 2025; 151:783-798. [PMID: 39633578 PMCID: PMC11913586 DOI: 10.1161/circulationaha.124.069398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Classically, hypertrophic cardiomyopathy (HCM) has been viewed as a single-gene (monogenic) disease caused by pathogenic variants in sarcomere genes. Pathogenic sarcomere variants are individually rare and convey high risk for developing HCM (highly penetrant). Recently, important polygenic contributions have also been characterized. Low penetrance sarcomere variants (LowSVs) at intermediate frequencies and effect sizes have not been systematically investigated. We hypothesize that LowSVs may be common in HCM with substantial influence on disease risk and severity. METHODS Among all sarcomere variants observed in the Sarcomeric Human Cardiomyopathy Registry (SHaRe), we identified putative LowSVs defined by (1) population frequency greater than expected for highly penetrant (monogenic) HCM (allele frequency >5×10-5 in the Genome Aggregation Database, gnomAD) and (2) moderate enrichment (>2×) in patients with HCM compared with gnomAD. LowSVs were examined for their association with disease severity and clinical outcomes. Functional effects of selected LowSVs were assessed using induced pluripotent stem cell-derived cardiomyocytes. Association of LowSVs with HCM-adjacent traits in the general population was tested using UK Biobank cardiac magnetic resonance imaging data. RESULTS Among 6045 patients and 1159 unique variants in sarcomere genes, 12 LowSVs were identified. LowSVs were collectively common in the general population (1:350) and moderately enriched in HCM (aggregate odds ratio, 14.9 [95% CI, 12.5-17.9]). Isolated LowSVs were associated with an older age of HCM diagnosis and fewer adverse events. However, LowSVs in combination with a pathogenic sarcomere variant conferred higher morbidity (eg, composite adverse event hazard ratio, 5.4 [95% CI, 3.0-9.8] versus single pathogenic sarcomere variant, 2.0 [95% CI, 1.8-2.2]; P<0.001). An intermediate functional impact was validated for 2 specific LowSVs-MYBPC3 c.442G>A (partial splice gain) and TNNT2 c.832C>T (intermediate effect on contractile mechanics). Cardiac magnetic resonance imaging analysis of the general population revealed 5 of 12 LowSVs were significantly associated with HCM-adjacent traits without overt HCM. CONCLUSIONS This study establishes a new class of low penetrance sarcomere variants that are relatively common in the population. When penetrant, isolated LowSVs cause mild HCM. In combination with pathogenic sarcomere variants, LowSVs markedly increase disease severity, supporting a clinically significant additive effect. Last, LowSVs also contribute to age-related remodeling even in the absence of overt HCM.
Collapse
Affiliation(s)
- Joshua K Meisner
- Department of Pediatrics, Division of Pediatric Cardiology, University of Michigan, Ann Arbor
| | - Aaron Renberg
- Cellular and Molecular Biology Program, Medical School, University of Michigan, Ann Arbor
| | - Eric D Smith
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor
| | - Yao-Chang Tsan
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor
| | - Brynn Elder
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor
| | - Abbey Bullard
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor
| | - Owen Merritt
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor
| | - Sean L Zheng
- National Heart and Lung Institute and MRC Laboratory of Medical Sciences, Imperial College London, United Kingdom
| | - Neal Lakdawala
- Cardiovascular Division, Brigham and Women’s Hospital, Boston, MA
| | - Anjali Owens
- Penn Center for Inherited Cardiovascular Disease, Hospital of the University of Pennsylvania & Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.O., S.M.D.)
| | - Thomas D Ryan
- Department of Pediatrics, University of Cincinnati College of Medicine, Heart Institute, Cincinnati Children’s Hospital Medical Center, OH
| | - Erin M Miller
- Department of Pediatrics, University of Cincinnati College of Medicine, Heart Institute, Cincinnati Children’s Hospital Medical Center, OH
| | - Joseph Rossano
- Department of Pediatrics, Children’s Hospital of Philadelphia, PA
| | - Kimberly Y Lin
- Department of Pediatrics, Children’s Hospital of Philadelphia, PA
| | - Brian Claggett
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Euan Ashley
- Center for Inherited Cardiovascular Disease, Stanford Medicine, CA
| | - Michelle Michels
- Department of Cardiology, Thoraxcenter, Erasmus Medical Center Rotterdam, The Netherlands
| | - Rachel Lampert
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT
| | - John C Stendahl
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT
| | - Dominic Abrams
- Center for Cardiovascular Genetics, Boston Children’s Hospital, MA
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, Sydney Medical School Faculty of Medicine and Health, University of Sydney, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | | | - Matthew Wheeler
- Center for Inherited Cardiovascular Disease, Stanford Medicine, CA
| | - Jodie Ingles
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research and University of New South Wales, Sydney, Australia
| | - Sharlene M Day
- Penn Center for Inherited Cardiovascular Disease, Hospital of the University of Pennsylvania & Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.O., S.M.D.)
| | - Sara Saberi
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor
| | - Mark W Russell
- Department of Pediatrics, Division of Pediatric Cardiology, University of Michigan, Ann Arbor
| | - Michael Previs
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research and University of New South Wales, Sydney, Australia
| | - Carolyn Ho
- Cardiovascular Division, Brigham and Women’s Hospital, Boston, MA
| | - James S Ware
- National Heart and Lung Institute and MRC Laboratory of Medical Sciences, Imperial College London, United Kingdom
| | - Adam S Helms
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor
| |
Collapse
|
2
|
Dong J, Liu M, Chen Q, Zha L. A Case Study Identified a New Mutation in the TTN Gene for Inherited Hypertrophic Cardiomyopathy. Int J Gen Med 2025; 18:447-458. [PMID: 39895828 PMCID: PMC11787788 DOI: 10.2147/ijgm.s505865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025] Open
Abstract
Background Hypertrophic cardiomyopathy (HCM) is the most common hereditary cardiomyopathy, with variable pathogenesis, clinical presentation, and prognosis. Although mutations in genes encoding sarcomere proteins have been reported to explain the genetic etiology of 40%-60% of HCM patients, the etiology of approximately 1/3 of HCM patients remains unknown. Whole-exome sequencing (WES) is an effective method for identifying the genes that cause genetic diseases. In the present study, WES and systematic genetic screening were performed to determine the genetic causes of HCM in Chinese HCM family. Materials and Methods Peripheral blood genomic DNA was collected from 9 family members of a Chinese Han HCM pedigree, including an HCM proband. Candidate variants obtained by WES were verified using Sanger sequencing, pathogenic mutation screening was conducted among family members, and the mutations were systematically analyzed using bioinformatics. Results WES revealed a novel heterozygous missense mutation, c.20233 C>T (p.R6745C), located in exon 80 of the HCM-related gene TTN, which may be a pathogenic mutation in the family. In addition, this mutation was predicted to damage protein function. WES combined with Sanger sequencing results showed that the other two HCM patients in this family carried this TTN mutation, while none of the healthy family members carried the mutation except for a 3 years old girl. Conclusion In this study, a new pathogenic mutation of TTN was found in a Chinese family with HCM, and disease-causing gene carriers in the family members were identified through pedigree screening. These findings have theoretical and application value for understanding the genetic basis of HCM, as well as for early risk stratification and early prevention and intervention of patients, and highlight the important role of genetic testing in the diagnosis and treatment of genetic diseases.
Collapse
Affiliation(s)
- Jiangtao Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Meilin Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Qianwen Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Department of Pediatric Cardiology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, People’s Republic of China
| | - Lingfeng Zha
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
3
|
Newman NA, Burke MA. Dilated Cardiomyopathy: A Genetic Journey from Past to Future. Int J Mol Sci 2024; 25:11460. [PMID: 39519012 PMCID: PMC11546582 DOI: 10.3390/ijms252111460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is characterized by reduced systolic function and cardiac dilation. Cases without an identified secondary cause are classified as idiopathic dilated cardiomyopathy (IDC). Over the last 35 years, many cases of IDC have increasingly been recognized to be genetic in etiology with a core set of definitively causal genes in up to 40% of cases. While over 200 genes have been associated with DCM, the evidence supporting pathogenicity for most remains limited. Further, rapid advances in sequencing and bioinformatics have recently revealed a complex genetic spectrum ranging from monogenic to polygenic in DCM. These advances have also led to the discovery of causal and modifier genetic variants in secondary forms of DCM (e.g., alcohol-induced cardiomyopathy). Current guidelines recommend genetic counseling and screening, as well as endorsing a handful of genotype-specific therapies (e.g., device placement in LMNA cardiomyopathy). The future of genetics in DCM will likely involve polygenic risk scores, direct-to-consumer testing, and pharmacogenetics, requiring providers to have a thorough understanding of this rapidly developing field. Herein we outline three decades of genetics in DCM, summarize recent advances, and project possible future avenues for the field.
Collapse
Affiliation(s)
- Noah A. Newman
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael A. Burke
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Chia SPS, Pang JKS, Soh BS. Current RNA strategies in treating cardiovascular diseases. Mol Ther 2024; 32:580-608. [PMID: 38291757 PMCID: PMC10928165 DOI: 10.1016/j.ymthe.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/22/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Cardiovascular disease (CVD) continues to impose a significant global health burden, necessitating the exploration of innovative treatment strategies. Ribonucleic acid (RNA)-based therapeutics have emerged as a promising avenue to address the complex molecular mechanisms underlying CVD pathogenesis. We present a comprehensive review of the current state of RNA therapeutics in the context of CVD, focusing on the diverse modalities that bring about transient or permanent modifications by targeting the different stages of the molecular biology central dogma. Considering the immense potential of RNA therapeutics, we have identified common gene targets that could serve as potential interventions for prevalent Mendelian CVD caused by single gene mutations, as well as acquired CVDs developed over time due to various factors. These gene targets offer opportunities to develop RNA-based treatments tailored to specific genetic and molecular pathways, presenting a novel and precise approach to address the complex pathogenesis of both types of cardiovascular conditions. Additionally, we discuss the challenges and opportunities associated with delivery strategies to achieve targeted delivery of RNA therapeutics to the cardiovascular system. This review highlights the immense potential of RNA-based interventions as a novel and precise approach to combat CVD, paving the way for future advancements in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Shirley Pei Shan Chia
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Jeremy Kah Sheng Pang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Boon-Seng Soh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore.
| |
Collapse
|
5
|
Marghany F, Ayobahan SU, Salinas G, Schäfers C, Hollert H, Eilebrecht S. Transcriptomic and proteomic fingerprints induced by the fungicides difenoconazole and metalaxyl in zebrafish embryos. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104348. [PMID: 38135202 DOI: 10.1016/j.etap.2023.104348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
In this study, we applied OMICs analysis to identify substance-specific biomarker candidates, which may act as early indicators for specific ecotoxic modes of actions (MoA). Zebrafish embryos were exposed to two sublethal concentrations of difenoconazole and metalaxyl according to a modified protocol of the OECD test guideline No. 236. At the end of exposure, total RNA and protein were extracted, followed by transcriptomics and proteomics analysis. The analysis of significantly differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) revealed a positive exposure-response correlation in all test concentrations for both fungicides. Similarly, also a positive correlation between the obtained transcriptome and proteome data was observed, highlighting the robustness of our approach. From the detected DEGs, candidate biomarkers specific for difenoconazole (apoa1b, gatm, mylpfb and acta1b) and metalaxyl (lgals2b, abat, fabp1b.1 and myh9a) were selected, and their biological functions were discussed to assess the predictive potential.
Collapse
Affiliation(s)
- Fatma Marghany
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany; Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Steve U Ayobahan
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Gabriela Salinas
- NGS-Services for Integrative Genomics, University of Göttingen, Göttingen, Germany
| | - Christoph Schäfers
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Henner Hollert
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany.
| |
Collapse
|
6
|
Barefield DY, Alvarez-Arce A, Araujo KN. Mechanisms of Sarcomere Protein Mutation-Induced Cardiomyopathies. Curr Cardiol Rep 2023; 25:473-484. [PMID: 37060436 PMCID: PMC11141690 DOI: 10.1007/s11886-023-01876-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 04/16/2023]
Abstract
PURPOSE OF REVIEW The pace of identifying cardiomyopathy-associated mutations and advances in our understanding of sarcomere function that underlies many cardiomyopathies has been remarkable. Here, we aim to synthesize how these advances have led to the promising new treatments that are being developed to treat cardiomyopathies. RECENT FINDINGS The genomics era has identified and validated many genetic causes of hypertrophic and dilated cardiomyopathies. Recent advances in our mechanistic understanding of sarcomere pathophysiology include high-resolution molecular models of sarcomere components and the identification of the myosin super-relaxed state. The advances in our understanding of sarcomere function have yielded several therapeutic agents that are now in development and clinical use to correct contractile dysfunction-mediated cardiomyopathy. New genes linked to cardiomyopathy include targets with limited clinical evidence and require additional investigation. Large portions of cardiomyopathy with family history remain genetically undiagnosed and may be due to polygenic disease.
Collapse
Affiliation(s)
- David Y Barefield
- Department of Cell and Molecular Physiology, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL, 60153, USA.
| | - Alejandro Alvarez-Arce
- Department of Cell and Molecular Physiology, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL, 60153, USA
| | - Kelly N Araujo
- Department of Cell and Molecular Physiology, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL, 60153, USA
| |
Collapse
|
7
|
Yampolskaya DS, Kopylova GV, Shchepkin DV, Bershitsky SY, Matyushenko AM, Levitsky DI. Properties of Cardiac Myosin with Cardiomyopathic Mutations in Essential Light Chains. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1260-1267. [PMID: 36509720 DOI: 10.1134/s0006297922110050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effects of cardiomyopathic mutations E56G, M149V, and E177G in the MYL3 gene encoding essential light chain of human ventricular myosin (ELCv), on the functional properties of cardiac myosin and its isolated head (myosin subfragment 1, S1) were investigated. Only the M149V mutation upregulated the actin-activated ATPase activity of S1. All mutations significantly increased the Ca2+-sensitivity of the sliding velocity of thin filaments on the surface with immobilized myosin in the in vitro motility assay, while mutations E56G and M149V (but not E177G) reduced the sliding velocity of regulated thin filaments and F-actin filaments almost twice. Therefore, despite the fact that all studied mutations in ELCv are involved in the development of hypertrophic cardiomyopathy, the mechanisms of their influence on the actin-myosin interaction are different.
Collapse
Affiliation(s)
- Daria S Yampolskaya
- Bach Institute of Biochemistry, Biotechnology Research Center, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Galina V Kopylova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | - Daniil V Shchepkin
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | - Sergey Y Bershitsky
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | - Alexander M Matyushenko
- Bach Institute of Biochemistry, Biotechnology Research Center, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Dmitrii I Levitsky
- Bach Institute of Biochemistry, Biotechnology Research Center, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
8
|
Li J, Feng X, Wei X. Modeling hypertrophic cardiomyopathy with human cardiomyocytes derived from induced pluripotent stem cells. Stem Cell Res Ther 2022; 13:232. [PMID: 35659761 PMCID: PMC9166443 DOI: 10.1186/s13287-022-02905-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/18/2022] [Indexed: 12/16/2022] Open
Abstract
One of the obstacles in studying the pathogenesis of hypertrophic cardiomyopathy (HCM) is the poor availability of myocardial tissue samples at the early stages of disease development. This has been addressed by the advent of induced pluripotent stem cells (iPSCs), which allow us to differentiate patient-derived iPSCs into cardiomyocytes (iPSC-CMs) in vitro. In this review, we summarize different approaches to establishing iPSC models and the application of genome editing techniques in iPSC. Because iPSC-CMs cultured at the present stage are immature in structure and function, researchers have attempted several methods to mature iPSC-CMs, such as prolonged culture duration, and mechanical and electrical stimulation. Currently, many researchers have established iPSC-CM models of HCM and employed diverse methods for performing measurements of cellular morphology, contractility, electrophysiological property, calcium handling, mitochondrial function, and metabolism. Here, we review published results in humans to date within the growing field of iPSC-CM models of HCM. Although there is no unified consensus, preliminary results suggest that this approach to modeling disease would provide important insights into our understanding of HCM pathogenesis and facilitate drug development and safety testing.
Collapse
Affiliation(s)
- Jiangtao Li
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xin Feng
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
9
|
Kim Y, Seidman JG, Seidman CE. Genetics of cancer therapy-associated cardiotoxicity. J Mol Cell Cardiol 2022; 167:85-91. [PMID: 35358500 PMCID: PMC9107514 DOI: 10.1016/j.yjmcc.2022.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/12/2022] [Accepted: 03/25/2022] [Indexed: 01/03/2023]
Abstract
As the number of cancer survivors has increased significantly over the last decades due to aging of population and development of effective cancer therapies, side effects from cancer therapies have been increasingly recognized. High-dose anthracyclines, immunotherapies, and concurrent radiation, as well as traditional cardiovascular risk factors such as smoking, hypertension, diabetes, hyperlipidemia, and obesity increase risks for unintended cardiovascular toxicity. However, these factors do not fully explain why only a subset of patients develop adverse cardiovascular sequelae from cancer therapies. Recent studies demonstrate that genetics play a substantial role in susceptibility to development of cardiovascular toxicities from cancer therapies. Common single nucleotide polymorphisms in multiple genes involved in various cellular pathways including membrane transport, stress response, and sarcomeres are recognized to increase risks for these toxicities. Pathogenic variants in the genes encoding proteins that comprise sarcomeres also contribute to cardiomyopathy following cancer therapies. Furthermore, genetic manipulations of model systems indicate mechanisms by which cardiotoxicities emerge following cancer immunomodulatory therapies. Continued efforts are needed to enable insights into cardiovascular responsiveness to these multi-targeted therapies, improve risk stratification of patients, and enable therapeutic interventions that limit these unintended adverse consequences from life-saving cancer treatments.
Collapse
Affiliation(s)
- Yuri Kim
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, United States of America; Department of Genetics, Harvard Medical School, Boston, MA, United States of America.
| | - Jonathan G Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, United States of America
| | - Christine E Seidman
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, United States of America; Department of Genetics, Harvard Medical School, Boston, MA, United States of America; Howard Hughes Medical Institute, Chevy Chase, MD, United States of America
| |
Collapse
|
10
|
Sepp R, Hategan L, Csányi B, Borbás J, Tringer A, Pálinkás ED, Nagy V, Takács H, Latinovics D, Nyolczas N, Pálinkás A, Faludi R, Rábai M, Szabó GT, Czuriga D, Balogh L, Halmosi R, Borbély A, Habon T, Hegedűs Z, Nagy I. The Genetic Architecture of Hypertrophic Cardiomyopathy in Hungary: Analysis of 242 Patients with a Panel of 98 Genes. Diagnostics (Basel) 2022; 12:diagnostics12051132. [PMID: 35626289 PMCID: PMC9139509 DOI: 10.3390/diagnostics12051132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 12/03/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a primary disease of the myocardium most commonly caused by mutations in sarcomeric genes. We aimed to perform a nationwide large-scale genetic analysis of a previously unreported, representative HCM cohort in Hungary. A total of 242 consecutive HCM index patients (127 men, 44 ± 11 years) were studied with next generation sequencing using a custom-designed gene-panel comprising 98 cardiomyopathy-related genes. A total of 90 patients (37%) carried pathogenic/likely pathogenic (P/LP) variants. The percentage of patients with P/LP variants in genes with definitive evidence for HCM association was 93%. Most of the patients with P/LP variants had mutations in MYBPC3 (55 pts, 61%) and in MYH7 (21 pts, 23%). Double P/LP variants were present in four patients (1.7%). P/LP variants in other genes could be detected in ≤3% of patients. Of the patients without P/LP variants, 46 patients (19%) carried a variant of unknown significance. Non-HCM P/LP variants were identified in six patients (2.5%), with two in RAF1 (p.Leu633Val, p.Ser257Leu) and one in DES (p.Arg406Trp), FHL1 (p.Glu96Ter), TTN (p.Lys23480fs), and in the mitochondrial genome (m.3243A>G). Frameshift, nonsense, and splice-variants made up 82% of all P/LP MYBPC3 variants. In all the other genes, missense mutations were the dominant form of variants. The MYBPC3 p.Gln1233Ter, the MYBPC3 p.Pro955ArgfsTer95, and the MYBPC3 p.Ser593ProfsTer11 variants were identified in 12, 7, and 13 patients, respectively. These three variants made up 36% of all patients with identified P/LP variants, raising the possibility of a possible founder effect for these mutations. Similar to other HCM populations, the MYBPC3 and the MYH7 genes seemed to be the most frequently affected genes in Hungarian HCM patients. The high prevalence of three MYBPC3 mutations raises the possibility of a founder effect in our HCM cohort.
Collapse
Affiliation(s)
- Róbert Sepp
- Division of Non-Invasive Cardiology, Department of Internal Medicine, Faculty of Medicine, University of Szeged, Semmelweis u. 8, H-6725 Szeged, Hungary; (L.H.); (B.C.); (J.B.); (A.T.); (E.D.P.); (V.N.); (H.T.)
- Correspondence: ; Tel.: +36-30-267-5845; Fax: +36-62-545-820
| | - Lidia Hategan
- Division of Non-Invasive Cardiology, Department of Internal Medicine, Faculty of Medicine, University of Szeged, Semmelweis u. 8, H-6725 Szeged, Hungary; (L.H.); (B.C.); (J.B.); (A.T.); (E.D.P.); (V.N.); (H.T.)
| | - Beáta Csányi
- Division of Non-Invasive Cardiology, Department of Internal Medicine, Faculty of Medicine, University of Szeged, Semmelweis u. 8, H-6725 Szeged, Hungary; (L.H.); (B.C.); (J.B.); (A.T.); (E.D.P.); (V.N.); (H.T.)
| | - János Borbás
- Division of Non-Invasive Cardiology, Department of Internal Medicine, Faculty of Medicine, University of Szeged, Semmelweis u. 8, H-6725 Szeged, Hungary; (L.H.); (B.C.); (J.B.); (A.T.); (E.D.P.); (V.N.); (H.T.)
| | - Annamária Tringer
- Division of Non-Invasive Cardiology, Department of Internal Medicine, Faculty of Medicine, University of Szeged, Semmelweis u. 8, H-6725 Szeged, Hungary; (L.H.); (B.C.); (J.B.); (A.T.); (E.D.P.); (V.N.); (H.T.)
| | - Eszter Dalma Pálinkás
- Division of Non-Invasive Cardiology, Department of Internal Medicine, Faculty of Medicine, University of Szeged, Semmelweis u. 8, H-6725 Szeged, Hungary; (L.H.); (B.C.); (J.B.); (A.T.); (E.D.P.); (V.N.); (H.T.)
| | - Viktória Nagy
- Division of Non-Invasive Cardiology, Department of Internal Medicine, Faculty of Medicine, University of Szeged, Semmelweis u. 8, H-6725 Szeged, Hungary; (L.H.); (B.C.); (J.B.); (A.T.); (E.D.P.); (V.N.); (H.T.)
| | - Hedvig Takács
- Division of Non-Invasive Cardiology, Department of Internal Medicine, Faculty of Medicine, University of Szeged, Semmelweis u. 8, H-6725 Szeged, Hungary; (L.H.); (B.C.); (J.B.); (A.T.); (E.D.P.); (V.N.); (H.T.)
| | - Dóra Latinovics
- SeqOmics Biotechnology Ltd., Vállalkozók útja 7, H-6782 Mórahalom, Hungary; (D.L.); (I.N.)
| | - Noémi Nyolczas
- Gottsegen National Cardiovascular Center, Haller u. 29, H-1096 Budapest, Hungary;
- Military Hospital-State Health Center, Róbert Károly körút 44, H-1134 Budapest, Hungary
| | - Attila Pálinkás
- Elisabeth Hospital, Dr. Imre József u. 9, H-6800 Hódmezővásárhely, Hungary;
| | - Réka Faludi
- Heart Institute, Medical School, University of Pécs, Ifjúság útja 13, H-7624 Pécs, Hungary;
| | - Miklós Rábai
- Division of Cardiology, First Department of Medicine, Medical School, University of Pécs, Ifjúság útja 13, H-7624 Pécs, Hungary; (M.R.); (R.H.); (T.H.)
| | - Gábor Tamás Szabó
- Division of Cardiology and Division of Clinical Physiology, Department of Cardiology, University of Debrecen, Móricz Zsigmond körút 22, H-4032 Debrecen, Hungary; (G.T.S.); (D.C.); (L.B.); (A.B.)
| | - Dániel Czuriga
- Division of Cardiology and Division of Clinical Physiology, Department of Cardiology, University of Debrecen, Móricz Zsigmond körút 22, H-4032 Debrecen, Hungary; (G.T.S.); (D.C.); (L.B.); (A.B.)
| | - László Balogh
- Division of Cardiology and Division of Clinical Physiology, Department of Cardiology, University of Debrecen, Móricz Zsigmond körút 22, H-4032 Debrecen, Hungary; (G.T.S.); (D.C.); (L.B.); (A.B.)
| | - Róbert Halmosi
- Division of Cardiology, First Department of Medicine, Medical School, University of Pécs, Ifjúság útja 13, H-7624 Pécs, Hungary; (M.R.); (R.H.); (T.H.)
- Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Attila Borbély
- Division of Cardiology and Division of Clinical Physiology, Department of Cardiology, University of Debrecen, Móricz Zsigmond körút 22, H-4032 Debrecen, Hungary; (G.T.S.); (D.C.); (L.B.); (A.B.)
| | - Tamás Habon
- Division of Cardiology, First Department of Medicine, Medical School, University of Pécs, Ifjúság útja 13, H-7624 Pécs, Hungary; (M.R.); (R.H.); (T.H.)
| | - Zoltán Hegedűs
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary;
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - István Nagy
- SeqOmics Biotechnology Ltd., Vállalkozók útja 7, H-6782 Mórahalom, Hungary; (D.L.); (I.N.)
- Institute of Biochemistry, Biological Research Center, Eötvös Loránd Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary
| |
Collapse
|
11
|
Genetic Insights into Primary Restrictive Cardiomyopathy. J Clin Med 2022; 11:jcm11082094. [PMID: 35456187 PMCID: PMC9027761 DOI: 10.3390/jcm11082094] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
Restrictive cardiomyopathy is a rare cardiac disease causing severe diastolic dysfunction, ventricular stiffness and dilated atria. In consequence, it induces heart failure often with preserved ejection fraction and is associated with a high mortality. Since it is a poor clinical prognosis, patients with restrictive cardiomyopathy frequently require heart transplantation. Genetic as well as non-genetic factors contribute to restrictive cardiomyopathy and a significant portion of cases are of unknown etiology. However, the genetic forms of restrictive cardiomyopathy and the involved molecular pathomechanisms are only partially understood. In this review, we summarize the current knowledge about primary genetic restrictive cardiomyopathy and describe its genetic landscape, which might be of interest for geneticists as well as for cardiologists.
Collapse
|
12
|
Liu Z, Chen X. Whole-exome sequencing establishes a diagnosis of Alstrom syndrome: a case report. Transl Pediatr 2022; 11:589-594. [PMID: 35558979 PMCID: PMC9085958 DOI: 10.21037/tp-21-623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/14/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Alstrom syndrome (ALMS) is a rare genetic disorder. ALMS is characterized by progressive bilateral sensorineural hearing impairment, cone-rod dystrophy, infantile-onset cardiomyopathy, hypertriglyceridemia, accelerated non-alcoholic fatty liver disease, renal dysfunction and insulin-resistant diabetes mellitus (DM). DM typically develop in childhood or adolescence. Dilated cardiomyopathy may arise in infancy. Clinical symptoms appear with great variability and severity. Several cases have been reported worldwide; however, diagnosis remains challenging. CASE DESCRIPTION We report an 8-year-and-11-month-old female diagnosed with ALMS who had a long history of obesity and amblyopia from infancy. We found high levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in this patient. She showed no hearing disfunction. Recently, she presented with sudden-onset insulin-resistant DM. Genetic analysis revealed the heterozygous mutations c.8366delT, p.L2789* and c.6829C>T, p.R2277*. c.8366delT, which results in premature protein termination, has not been reported previously in ALMS1. Although the patient's two sisters died of acute heart failure following infection at 4 and 14 months respectively, she showed no signs of cardiomyopathy until now. CONCLUSIONS This case provides an unusual cause of genetic syndrome associated with diabetes. A detailed medical history, physical examination and appropriate gene analysis are critical for diagnosis. Our case identifies a novel ALMS1 mutation and reaffirms the great clinical variation of this disease even within families.
Collapse
Affiliation(s)
- Ziqin Liu
- Department of Endocrinology, Children's Hospital Capital Institute of Pediatrics, Beijing, China
| | - Xiaobo Chen
- Department of Endocrinology, Children's Hospital Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
13
|
Mavilakandy A, Ahamed H. Mutation of the MYL3 gene in a patient with mid-ventricular obstructive hypertrophic cardiomyopathy. BMJ Case Rep 2022; 15:e244573. [PMID: 35288424 PMCID: PMC8921845 DOI: 10.1136/bcr-2021-244573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 11/04/2022] Open
Abstract
In this study, we discuss a female patient referred to cardiology with left ventricular hypertrophy at mid-ventricular segments resulting in a mid-cavitary obstruction and a left ventricular apical aneurysm. The patient had normal epicardial coronary arteries, but presented with recurrent cerebrovascular events. The patient had a positive family history for sudden cardiac death. Cardiac MRI detected positive features of left ventricular mid-cavity obstruction, left ventricular apical aneurysm and delayed gadolinium enhancement, with Holter monitoring assessment displaying segments of non-sustained ventricular tachycardia. Genetic analysis detected an myosin light chain 3 (MYL3) gene mutation. The patient will be referred to receive an implantable cardioverter defibrillator.The MYL3 gene mutation is a rare variant in patients with familial hypertrophic cardiomyopathy. To our knowledge, the presence of a left ventricular apical aneurysm has not been previously reported in literature concerning the MYL3 gene mutation. The presence of this abnormality further increases the risk of sudden cardiac death.
Collapse
Affiliation(s)
- Akash Mavilakandy
- Department of General Medicine, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Hisham Ahamed
- Department of Cardiology, Amrita Institute of Medical Sciences, Cochin, Kerala, India
| |
Collapse
|
14
|
Suay-Corredera C, Alegre-Cebollada J. The mechanics of the heart: zooming in on hypertrophic cardiomyopathy and cMyBP-C. FEBS Lett 2022; 596:703-746. [PMID: 35224729 DOI: 10.1002/1873-3468.14301] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/10/2022]
Abstract
Hypertrophic cardiomyopathy (HCM), a disease characterized by cardiac muscle hypertrophy and hypercontractility, is the most frequently inherited disorder of the heart. HCM is mainly caused by variants in genes encoding proteins of the sarcomere, the basic contractile unit of cardiomyocytes. The most frequently mutated among them is MYBPC3, which encodes cardiac myosin-binding protein C (cMyBP-C), a key regulator of sarcomere contraction. In this review, we summarize clinical and genetic aspects of HCM and provide updated information on the function of the healthy and HCM sarcomere, as well as on emerging therapeutic options targeting sarcomere mechanical activity. Building on what is known about cMyBP-C activity, we examine different pathogenicity drivers by which MYBPC3 variants can cause disease, focussing on protein haploinsufficiency as a common pathomechanism also in nontruncating variants. Finally, we discuss recent evidence correlating altered cMyBP-C mechanical properties with HCM development.
Collapse
|
15
|
Wang H, Lin Y, Zhang R, Chen Y, Ji W, Li S, Wang L, Tan R, Yuan J. Programmed Exercise Attenuates Familial Hypertrophic Cardiomyopathy in Transgenic E22K Mice via Inhibition of PKC-α/NFAT Pathway. Front Cardiovasc Med 2022; 9:808163. [PMID: 35265680 PMCID: PMC8899095 DOI: 10.3389/fcvm.2022.808163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Familial hypertrophic cardiomyopathy (FHCM), an autosomal dominant disease, is caused by mutations in genes encoding cardiac sarcomeric proteins. E22K, a mutation in the myosin regulatory light chain sarcomere gene, is associated with the development of FHCM. However, the molecular mechanisms by which E22K mutation promotes septal hypertrophy are still elusive. The hypertrophic markers, including beta-myosin heavy chain, atrial natriuretic peptide and B-type natriuretic peptide, were upregulated, as detected by fluorescence quantitative PCR. The gene expression profiles were greatly altered in the left ventricle of E22K mutant mice. Among these genes, nuclear factor of activated T cells (NFAT) and protein kinase C-alpha (PKC-α) were upregulated, and their protein expression levels were also verified to be elevated. The fibrosis markers, such as phosphorylated Smad and transforming growth factor beta receptor, were also elevated in transgenic E22K mice. After receiving 6 weeks of procedural exercise training, the expression levels of PKC-α and NFAT were reversed in E22K mouse hearts. In addition, the expression levels of several fibrosis-related genes such as transforming growth factor beta receptor 1, Smad4, and alpha smooth muscle actin in E22K mouse hearts were also reversed. Genes that associated with cardiac remodeling such as myocyte enhancer factor 2C, extracellular matrix protein 2 and fibroblast growth factor 12 were reduced after exercising. Taken together, our results indicate that exercise can improve hypertrophy and fibrosis-related indices in transgenic E22K mice via PKC-α/NFAT pathway, which provide new insight into the prevention and treatment of familial hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Haiying Wang
- Department of Physiology, Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yuedong Lin
- Cardiac Emergency Department, Affiliated Hospital of Jining Medical University, Jining, China
| | - Ran Zhang
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yafen Chen
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Wei Ji
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Shenwei Li
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Li Wang
- School of Nursing, Medical College, Soochow University, Suzhou, China
- *Correspondence: Li Wang
| | - Rubin Tan
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, China
- Rubin Tan
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, China
- Jinxiang Yuan
| |
Collapse
|
16
|
Fan L, Yin P, Xu Z. The genetic basis of sudden death in young people - Cardiac and non-cardiac. Gene 2022; 810:146067. [PMID: 34843881 DOI: 10.1016/j.gene.2021.146067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/25/2021] [Accepted: 11/16/2021] [Indexed: 11/04/2022]
Abstract
Sudden death is one of the major causes of death in young adults. Sudden death could be a result from both genetic and environmental or acquired factors. Understanding the genetic etiology is crucial to prevent preventable sudden death for those who are not aware of their genetic condition. In fact, the spectrum of causes of sudden death is complex and varied. In this study, we reviewed the genes that are associated with multiple causes of sudden death in terms of both sudden cardiac death and sudden noncardiac death. A summary of genetic risk factors of the major causes of genetic relevant sudden death is also provided. We believe this review could benefit the researchers who are interested in sudden death genetic studies or the young people who are concerning about their own risk on sudden death.
Collapse
Affiliation(s)
- Li Fan
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Ping Yin
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Zuojun Xu
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
17
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
18
|
Maekura K, Yamano R, Matsuura K, Kadoyama K, Matsuyama S, Hamada M, Takano M. Proteomic analysis of the heart in normal aging mice. THE JOURNAL OF MEDICAL INVESTIGATION 2022; 69:217-223. [PMID: 36244772 DOI: 10.2152/jmi.69.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aging induces pathological cardiovascular changes such as cardiac dysfunction and arteriosclerosis. With aging, heart cells, especially, become more susceptible to lethal damage. In this report, we tried to understand the precise mechanism of myocardial change resulting from aging by examining the heart proteome in aging mice using two-dimensional gel electrophoresis (2DE). The proteins were stained with fluorescence dyes (SYPRO Ruby and Pro-Q Diamond) and identified by subsequent MALDI-TOF-MS / MS. As a result, markedly altered levels of 14 proteins and 7 phosphoproteins were detected in the hearts of 3-, 7-, 11-, and 20-month-old mice. The functions of these identified proteins and phosphoproteins were energy metabolism, muscle contraction, glycolysis, and cytoskeletal support. Additionally, the results of Western blotting confirmed changes in the expression of FTH, CPNE5, and SUCLA2. These findings showed that aging modified the expression of proteins and phosphoproteins in the heart. We suggest that changes in the expression of these proteins are critical to the development of cardiac dysfunction resulting from aging. J. Med. Invest. 69 : 217-223, August, 2022.
Collapse
Affiliation(s)
- Koji Maekura
- Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Ryo Yamano
- Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Kenji Matsuura
- Laboratory of Toxicology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikigorikita, Tondabayashi, Osaka 584-8540, Japan
| | - Keiichi Kadoyama
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan
| | - Shogo Matsuyama
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Michiko Hamada
- Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Masaoki Takano
- Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| |
Collapse
|
19
|
Regulation of myosin light-chain phosphorylation and its roles in cardiovascular physiology and pathophysiology. Hypertens Res 2022; 45:40-52. [PMID: 34616031 DOI: 10.1038/s41440-021-00733-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/19/2021] [Accepted: 07/08/2021] [Indexed: 01/22/2023]
Abstract
The regulation of muscle contraction is a critical function in the cardiovascular system, and abnormalities may be life-threatening or cause illness. The common basic mechanism in muscle contraction is the interaction between the protein filaments myosin and actin. Although this interaction is primarily regulated by intracellular Ca2+, the primary targets and intracellular signaling pathways differ in vascular smooth muscle and cardiac muscle. Phosphorylation of the myosin regulatory light chain (RLC) is a primary molecular switch for smooth muscle contraction. The equilibrium between phosphorylated and unphosphorylated RLC is dynamically achieved through two enzymes, myosin light chain kinase, a Ca2+-dependent enzyme, and myosin phosphatase, which modifies the Ca2+ sensitivity of contractions. In cardiac muscle, the primary target protein for Ca2+ is troponin C on thin filaments; however, RLC phosphorylation also plays a modulatory role in contraction. This review summarizes recent advances in our understanding of the regulation, physiological function, and pathophysiological involvement of RLC phosphorylation in smooth and cardiac muscles.
Collapse
|
20
|
Kim KH, Pereira NL. Genetics of Cardiomyopathy: Clinical and Mechanistic Implications for Heart Failure. Korean Circ J 2021; 51:797-836. [PMID: 34327881 PMCID: PMC8484993 DOI: 10.4070/kcj.2021.0154] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 11/11/2022] Open
Abstract
Genetic cardiomyopathies are an important cause of sudden cardiac death across all age groups. Genetic testing in heart failure clinics is useful for family screening and providing individual prognostic insight. Obtaining a family history of at least three generations, including the creation of a pedigree, is recommended for all patients with primary cardiomyopathy. Additionally, when appropriate, consultation with a genetic counsellor can aid in the success of a genetic evaluation. Clinical screening should be performed on all first-degree relatives of patients with genetic cardiomyopathy. Genetics has played an important role in the understanding of different cardiomyopathies, and the field of heart failure (HF) genetics is progressing rapidly. Much research has also focused on distinguishing markers of risk in patients with cardiomyopathy using genetic testing. While these efforts currently remain incomplete, new genomic technologies and analytical strategies provide promising opportunities to further explore the genetic architecture of cardiomyopathies, afford insight into the early manifestations of cardiomyopathy, and help define the molecular pathophysiological basis for cardiac remodeling. Cardiovascular physicians should be fully aware of the utility and potential pitfalls of incorporating genetic test results into pre-emptive treatment strategies for patients in the preliminary stages of HF. Future work will need to be directed towards elucidating the biological mechanisms of both rare and common gene variants and environmental determinants of plasticity in the genotype-phenotype relationship. This future research should aim to further our ability to identify, diagnose, and treat disorders that cause HF and sudden cardiac death in young patients, as well as prioritize improving our ability to stratify the risk for these patients prior to the onset of the more severe consequences of their disease.
Collapse
Affiliation(s)
- Kyung Hee Kim
- Division of Cardiology, Incheon Sejong General Hospital, Incheon, Korea.
| | - Naveen L Pereira
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
21
|
Cardiomyopathies: An Overview. Int J Mol Sci 2021; 22:ijms22147722. [PMID: 34299342 PMCID: PMC8303989 DOI: 10.3390/ijms22147722] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Cardiomyopathies are a heterogeneous group of pathologies characterized by structural and functional alterations of the heart. Aims: The purpose of this narrative review is to focus on the most important cardiomyopathies and their epidemiology, diagnosis, and management. Methods: Clinical trials were identified by Pubmed until 30 March 2021. The search keywords were “cardiomyopathies, sudden cardiac arrest, dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), restrictive cardiomyopathy, arrhythmogenic cardiomyopathy (ARCV), takotsubo syndrome”. Results: Hypertrophic cardiomyopathy (HCM) is the most common primary cardiomyopathy, with a prevalence of 1:500 persons. Dilated cardiomyopathy (DCM) has a prevalence of 1:2500 and is the leading indication for heart transplantation. Restrictive cardiomyopathy (RCM) is the least common of the major cardiomyopathies, representing 2% to 5% of cases. Arrhythmogenic cardiomyopathy (ARCV) is a pathology characterized by the substitution of the myocardium by fibrofatty tissue. Takotsubo cardiomyopathy is defined as an abrupt onset of left ventricular dysfunction in response to severe emotional or physiologic stress. Conclusion: In particular, it has been reported that HCM is the most important cause of sudden death on the athletic field in the United States. It is needless to say how important it is to know which changes in the heart due to physical activity are normal, and when they are pathological.
Collapse
|
22
|
Pathogenic Intronic Splice-Affecting Variants in MYBPC3 in Three Patients with Hypertrophic Cardiomyopathy. CARDIOGENETICS 2021. [DOI: 10.3390/cardiogenetics11020009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Genetic variants in MYBPC3 are one of the most common causes of hypertrophic cardiomyopathy (HCM). While variants in MYBPC3 affecting canonical splice site dinucleotides are a well-characterised cause of HCM, only recently has work begun to investigate the pathogenicity of more deeply intronic variants. Here, we present three patients with HCM and intronic splice-affecting MYBPC3 variants and analyse the impact of variants on splicing using in vitro minigene assays. We show that the three variants, a novel c.927-8G>A variant and the previously reported c.1624+4A>T and c.3815-10T>G variants, result in MYBPC3 splicing errors. Analysis of blood-derived patient RNA for the c.3815-10T>G variant revealed only wild type spliced product, indicating that mis-spliced transcripts from the mutant allele are degraded. These data indicate that the c.927-8G>A variant of uncertain significance and likely benign c.3815-10T>G should be reclassified as likely pathogenic. Furthermore, we find shortcomings in commonly applied bioinformatics strategies to prioritise variants impacting MYBPC3 splicing and re-emphasise the need for functional assessment of variants of uncertain significance in diagnostic testing.
Collapse
|
23
|
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic disease of the myocardium characterized by a hypertrophic left ventricle with a preserved or increased ejection fraction. Cardiac hypertrophy is often asymmetrical, which is associated with left ventricular outflow tract obstruction. Myocyte hypertrophy, disarray, and myocardial fibrosis constitute the histological features of HCM. HCM is a relatively benign disease but an important cause of sudden cardiac death in the young and heart failure in the elderly. Pathogenic variants (PVs) in genes encoding protein constituents of the sarcomeres are the main causes of HCM. PVs exhibit a gradient of effect sizes, as reflected in their penetrance and variable phenotypic expression of HCM. MYH7 and MYBPC3, encoding β-myosin heavy chain and myosin binding protein C, respectively, are the two most common causal genes and responsible for ≈40% of all HCM cases but a higher percentage of HCM in large families. PVs in genes encoding protein components of the thin filaments are responsible for ≈5% of the HCM cases. Whereas pathogenicity of the genetic variants in large families has been firmly established, ascertainment causality of the PVs in small families and sporadic cases is challenging. In the latter category, PVs are best considered as probabilistic determinants of HCM. Deciphering the genetic basis of HCM has enabled routine genetic testing and has partially elucidated the underpinning mechanism of HCM as increased number of the myosin molecules that are strongly bound to actin. The discoveries have led to the development of mavacamten that targets binding of the myosin molecule to actin filaments and imparts beneficial clinical effects. In the coming years, the yield of the genetic testing is expected to be improved and the so-called missing causal gene be identified. The advances are also expected to enable development of additional specific therapies and editing of the mutations in HCM.
Collapse
Affiliation(s)
- A J Marian
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston
| |
Collapse
|
24
|
Hornyik T, Rieder M, Castiglione A, Major P, Baczko I, Brunner M, Koren G, Odening KE. Transgenic rabbit models for cardiac disease research. Br J Pharmacol 2021; 179:938-957. [PMID: 33822374 DOI: 10.1111/bph.15484] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
To study the pathophysiology of human cardiac diseases and to develop novel treatment strategies, complex interactions of cardiac cells on cellular, tissue and on level of the whole heart need to be considered. As in vitro cell-based models do not depict the complexity of the human heart, animal models are used to obtain insights that can be translated to human diseases. Mice are the most commonly used animals in cardiac research. However, differences in electrophysiological and mechanical cardiac function and a different composition of electrical and contractile proteins limit the transferability of the knowledge gained. Moreover, the small heart size and fast heart rate are major disadvantages. In contrast to rodents, electrophysiological, mechanical and structural cardiac characteristics of rabbits resemble the human heart more closely, making them particularly suitable as an animal model for cardiac disease research. In this review, various methodological approaches for the generation of transgenic rabbits for cardiac disease research, such as pronuclear microinjection, the sleeping beauty transposon system and novel genome-editing methods (ZFN and CRISPR/Cas9)will be discussed. In the second section, we will introduce the different currently available transgenic rabbit models for monogenic cardiac diseases (such as long QT syndrome, short-QT syndrome and hypertrophic cardiomyopathy) in detail, especially in regard to their utility to increase the understanding of pathophysiological disease mechanisms and novel treatment options.
Collapse
Affiliation(s)
- Tibor Hornyik
- Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, and Institute of Physiology, University of Bern, Bern, Switzerland.,Department of Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marina Rieder
- Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, and Institute of Physiology, University of Bern, Bern, Switzerland
| | - Alessandro Castiglione
- Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, and Institute of Physiology, University of Bern, Bern, Switzerland
| | - Peter Major
- Institute for Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Istvan Baczko
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Michael Brunner
- Department of Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Cardiology and Medical Intensive Care, St. Josefskrankenhaus, Freiburg, Germany
| | - Gideon Koren
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Katja E Odening
- Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, and Institute of Physiology, University of Bern, Bern, Switzerland.,Department of Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
25
|
Stege NM, de Boer RA, van den Berg MP, Silljé HHW. The Time Has Come to Explore Plasma Biomarkers in Genetic Cardiomyopathies. Int J Mol Sci 2021; 22:2955. [PMID: 33799487 PMCID: PMC7998409 DOI: 10.3390/ijms22062955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
For patients with hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM) or arrhythmogenic cardiomyopathy (ACM), screening for pathogenic variants has become standard clinical practice. Genetic cascade screening also allows the identification of relatives that carry the same mutation as the proband, but disease onset and severity in mutation carriers often remains uncertain. Early detection of disease onset may allow timely treatment before irreversible changes are present. Although plasma biomarkers may aid in the prediction of disease onset, monitoring relies predominantly on identifying early clinical symptoms, on imaging techniques like echocardiography (Echo) and cardiac magnetic resonance imaging (CMR), and on (ambulatory) electrocardiography (electrocardiograms (ECGs)). In contrast to most other cardiac diseases, which are explained by a combination of risk factors and comorbidities, genetic cardiomyopathies have a clear primary genetically defined cardiac background. Cardiomyopathy cohorts could therefore have excellent value in biomarker studies and in distinguishing biomarkers related to the primary cardiac disease from those related to extracardiac, secondary organ dysfunction. Despite this advantage, biomarker investigations in cardiomyopathies are still limited, most likely due to the limited number of carriers in the past. Here, we discuss not only the potential use of established plasma biomarkers, including natriuretic peptides and troponins, but also the use of novel biomarkers, such as cardiac autoantibodies in genetic cardiomyopathy, and discuss how we can gauge biomarker studies in cardiomyopathy cohorts for heart failure at large.
Collapse
Affiliation(s)
| | | | | | - Herman H. W. Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, AB43, 9713 GZ Groningen, The Netherlands; (N.M.S.); (R.A.d.B.); (M.P.v.d.B.)
| |
Collapse
|
26
|
Zhang J, Wang L, Kazmierczak K, Yun H, Szczesna-Cordary D, Kawai M. Hypertrophic cardiomyopathy associated E22K mutation in myosin regulatory light chain decreases calcium-activated tension and stiffness and reduces myofilament Ca 2+ sensitivity. FEBS J 2021; 288:4596-4613. [PMID: 33548158 DOI: 10.1111/febs.15753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/11/2020] [Accepted: 02/04/2021] [Indexed: 11/30/2022]
Abstract
We investigated the mechanisms associated with E22K mutation in myosin regulatory light chain (RLC), found to cause hypertrophic cardiomyopathy (HCM) in humans and mice. Specifically, we characterized the mechanical profiles of papillary muscle fibers from transgenic mice expressing human ventricular RLC wild-type (Tg-WT) or E22K mutation (Tg-E22K). Because the two mouse models expressed different amounts of transgene, the B6SJL mouse line (NTg) was used as an additional control. Mechanical experiments were carried out on Ca2+ - and ATP-activated fibers and in rigor. Sinusoidal analysis was performed to elucidate the effect of E22K on tension and stiffness during activation/rigor, tension-pCa, and myosin cross-bridge (CB) kinetics. We found significant reductions in active tension (by 54%) and stiffness (active by 40% and rigor by 54%). A decrease in the Ca2+ sensitivity of tension (by ∆pCa ~ 0.1) was observed in Tg-E22K compared with Tg-WT fibers. The apparent (=measured) rate constant of exponential process B (2πb: force generation step) was not affected by E22K, but the apparent rate constant of exponential process C (2πc: CB detachment step) was faster in Tg-E22K compared with Tg-WT fibers. Both 2πb and 2πc were smaller in NTg than in Tg-WT fibers, suggesting a kinetic difference between the human and mouse RLC. Our results of E22K-induced reduction in myofilament stiffness and tension suggest that the main effect of this mutation was to disturb the interaction of RLC with the myosin heavy chain and impose structural abnormalities in the lever arm of myosin CB. When placed in vivo, the E22K mutation is expected to result in reduced contractility and decreased cardiac output whereby leading to HCM. SUB-DISCIPLINE Bioenergetics. DATABASE The data that support the findings of this study are available from the corresponding authors upon reasonable request. ANIMAL PROTOCOL BK20150353 (Soochow University). RESEARCH GOVERNANCE School of Nursing: Hua-Gang Hu: seuboyh@163.com; Soochow University: Chen Ge chge@suda.edu.cn.
Collapse
Affiliation(s)
- Jiajia Zhang
- School of Nursing, Medical College, Soochow University, Suzhou, China
| | - Li Wang
- School of Nursing, Medical College, Soochow University, Suzhou, China
| | | | - Hang Yun
- School of Nursing, Medical College, Soochow University, Suzhou, China
| | | | - Masataka Kawai
- Department of Anatomy and Cell Biology, University of Iowa, IA, USA
| |
Collapse
|
27
|
Wu S, Li H, Wang L, Mak N, Wu X, Ge R, Sun F, Cheng CY. Motor Proteins and Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:131-159. [PMID: 34453735 DOI: 10.1007/978-3-030-77779-1_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Unlike the intermediate filament- and septin-based cytoskeletons which are apolar structures, the microtubule (MT) and actin cytoskeletons are polarized structures in mammalian cells and tissues including the testis, most notable in Sertoli cells. In the testis, these cytoskeletons that stretch across the epithelium of seminiferous tubules and lay perpendicular to the basement membrane of tunica propria serve as tracks for corresponding motor proteins to support cellular cargo transport. These cargoes include residual bodies, phagosomes, endocytic vesicles and most notably developing spermatocytes and haploid spermatids which lack the ultrastructures of motile cells (e.g., lamellipodia, filopodia). As such, these developing germ cells require the corresponding motor proteins to facilitate their transport across the seminiferous epithelium during the epithelial cycle of spermatogenesis. Due to the polarized natures of these cytoskeletons with distinctive plus (+) and minus (-) end, directional cargo transport can take place based on the use of corresponding actin- or MT-based motor proteins. These include the MT-based minus (-) end directed motor proteins: dyneins, and the plus (+) end directed motor proteins: kinesins, as well as the actin-based motor proteins: myosins, many of which are plus (+) end directed but a few are also minus (-) end directed motor proteins. Recent studies have shown that these motor proteins are essential to support spermatogenesis. In this review, we briefly summarize and evaluate these recent findings so that this information will serve as a helpful guide for future studies and for planning functional experiments to better understand their role mechanistically in supporting spermatogenesis.
Collapse
Affiliation(s)
- Siwen Wu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA.,Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Nathan Mak
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Xiaolong Wu
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China
| | - Fei Sun
- Sir Run Run Shaw Hospital (SRRSH), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - C Yan Cheng
- Sir Run Run Shaw Hospital (SRRSH), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
28
|
Hypertrophic Cardiomyopathy: Diverse Pathophysiology Revealed by Genetic Research, Toward Future Therapy. Keio J Med 2020; 69:77-87. [PMID: 32224552 DOI: 10.2302/kjm.2019-0012-oa] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is an intractable disease that causes heart failure mainly due to unexplained severe cardiac hypertrophy and diastolic dysfunction. HCM, which occurs in 0.2% of the general population, is the most common cause of sudden cardiac death in young people. HCM has been studied extensively using molecular genetic approaches. Genes encoding cardiac β-myosin heavy chain, cardiac myosin-binding protein C, and troponin complex, which were originally identified as causative genes, were subsequently reported to be frequently implicated in HCM. Indeed, HCM has been considered a disease of sarcomere gene mutations. However, fewer than half of patients with HCM have mutations in sarcomere genes. The others have been documented to have mutations in cardiac proteins in various other locations, including the Z disc, sarcoplasmic reticulum, plasma membrane, nucleus, and mitochondria. Next-generation sequencing makes it possible to detect mutations at high throughput, and it has become increasingly common to identify multiple cardiomyopathy-causing gene mutations in a single HCM patient. Elucidating how mutations in different genes contribute to the disease pathophysiology will be a challenge. In studies using animal models, sarcomere mutations generally tend to increase myocardial Ca2+ sensitivity, and some mutations increase the activity of myosin ATPase. Clinical trials of drugs to treat HCM are ongoing, and further new therapies based on pathophysiological analyses of the causative genes are eagerly anticipated.
Collapse
|
29
|
Autosomal recessive cardiomyopathy and sudden cardiac death associated with variants in MYL3. Genet Med 2020; 23:787-792. [PMID: 33288880 PMCID: PMC8026398 DOI: 10.1038/s41436-020-01028-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose Variants in genes encoding sarcomeric proteins are the most common cause of inherited cardiomyopathies. However, the underlying genetic cause remains unknown in many cases. We used exome sequencing to reveal the genetic etiology in patients with recessive familial cardiomyopathy. Methods Exome sequencing was carried out in three consanguineous families. Functional assessment of the variants was performed. Results Affected individuals presented with hypertrophic or dilated cardiomyopathy of variable severity from infantile- to early adulthood–onset and sudden cardiac death. We identified a homozygous missense substitution (c.170C>A, p.[Ala57Asp]), a homozygous translation stop codon variant (c.106G>T, p.[Glu36Ter]), and a presumable homozygous essential splice acceptor variant (c.482-1G>A, predicted to result in skipping of exon 5). Morpholino knockdown of the MYL3 orthologue in zebrafish, cmlc1, resulted in compromised cardiac function, which could not be rescued by reintroduction of MYL3 carrying either the nonsense c.106G>T or the missense c.170C>A variants. Minigene assay of the c.482-1G>A variant indicated a splicing defect likely resulting in disruption of the EF-hand Ca2+ binding domains. Conclusions Our data demonstrate that homozygous MYL3 loss-of-function variants can cause of recessive cardiomyopathy and occurrence of sudden cardiac death, most likely due to impaired or loss of myosin essential light chain function.
Collapse
|
30
|
Sitbon YH, Yadav S, Kazmierczak K, Szczesna-Cordary D. Insights into myosin regulatory and essential light chains: a focus on their roles in cardiac and skeletal muscle function, development and disease. J Muscle Res Cell Motil 2020; 41:313-327. [PMID: 31131433 PMCID: PMC6879809 DOI: 10.1007/s10974-019-09517-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/21/2019] [Indexed: 12/15/2022]
Abstract
The activity of cardiac and skeletal muscles depends upon the ATP-coupled actin-myosin interactions to execute the power stroke and muscle contraction. The goal of this review article is to provide insight into the function of myosin II, the molecular motor of the heart and skeletal muscles, with a special focus on the role of myosin II light chain (MLC) components. Specifically, we focus on the involvement of myosin regulatory (RLC) and essential (ELC) light chains in striated muscle development, isoform appearance and their function in normal and diseased muscle. We review the consequences of isoform switching and knockout of specific MLC isoforms on cardiac and skeletal muscle function in various animal models. Finally, we discuss how dysregulation of specific RLC/ELC isoforms can lead to cardiac and skeletal muscle diseases and summarize the effects of most studied mutations leading to cardiac or skeletal myopathies.
Collapse
Affiliation(s)
- Yoel H Sitbon
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Sunil Yadav
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA.
| |
Collapse
|
31
|
Bloemink MJ, Hsu KH, Geeves MA, Bernstein SI. Alternative N-terminal regions of Drosophila myosin heavy chain II regulate communication of the purine binding loop with the essential light chain. J Biol Chem 2020; 295:14522-14535. [PMID: 32817166 DOI: 10.1074/jbc.ra120.014684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/05/2020] [Indexed: 02/01/2023] Open
Abstract
We investigated the biochemical and biophysical properties of one of the four alternative exon-encoded regions within the Drosophila myosin catalytic domain. This region is encoded by alternative exons 3a and 3b and includes part of the N-terminal β-barrel. Chimeric myosin constructs (IFI-3a and EMB-3b) were generated by exchanging the exon 3-encoded areas between native slow embryonic body wall (EMB) and fast indirect flight muscle myosin isoforms (IFI). We found that this exchange alters the kinetic properties of the myosin S1 head. The ADP release rate (k-D ) in the absence of actin is completely reversed for each chimera compared with the native isoforms. Steady-state data also suggest a reciprocal shift, with basal and actin-activated ATPase activity of IFI-3a showing reduced values compared with wild-type (WT) IFI, whereas for EMB-3b these values are increased compared with wild-type (WT) EMB. In the presence of actin, ADP affinity (KAD ) is unchanged for IFI-3a, compared with IFI, but ADP affinity for EMB-3b is increased, compared with EMB, and shifted toward IFI values. ATP-induced dissociation of acto-S1 (K1k +2 ) is reduced for both exon 3 chimeras. Homology modeling, combined with a recently reported crystal structure for Drosophila EMB, indicates that the exon 3-encoded region in the myosin head is part of the communication pathway between the nucleotide binding pocket (purine binding loop) and the essential light chain, emphasizing an important role for this variable N-terminal domain in regulating actomyosin crossbridge kinetics, in particular with respect to the force-sensing properties of myosin isoforms.
Collapse
Affiliation(s)
- Marieke J Bloemink
- Department of Biosciences, University of Kent, Canterbury, Kent, United Kingdom.,Biomolecular Research Group, School of Natural and Applied Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Karen H Hsu
- Department of Biology, Molecular Biology Institute, and SDSU Heart Institute, San Diego State University, San Diego, California, USA
| | - Michael A Geeves
- Department of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Sanford I Bernstein
- Department of Biology, Molecular Biology Institute, and SDSU Heart Institute, San Diego State University, San Diego, California, USA
| |
Collapse
|
32
|
Reza N, Musunuru K, Owens AT. From Hypertrophy to Heart Failure: What Is New in Genetic Cardiomyopathies. Curr Heart Fail Rep 2020; 16:157-167. [PMID: 31243690 DOI: 10.1007/s11897-019-00435-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE The purpose of this review is to provide an update on the recent advances in the research and clinical care of patients with the major phenotypes of inherited cardiomyopathies-hypertrophic, dilated, and arrhythmogenic. Developments in genetics, risk stratification, therapies, and disease modeling will be discussed. RECENT Diagnostic, prognostic, and therapeutic tools which incorporate genetic and genomic data are being steadily incorporated into the routine clinical care of patients with genetic cardiomyopathies. Human pluripotent stem cells are a breakthrough model system for the study of genetic variation associated with inherited cardiovascular disease. Next-generation sequencing technology and molecular-based diagnostics and therapeutics have emerged as valuable tools to improve the recognition and care of patients with hypertrophic, dilated, and arrhythmogenic cardiomyopathies. Improved adjudication of variant pathogenicity and management of genotype-positive/phenotype-negative individuals are imminent challenges in this realm of precision medicine.
Collapse
Affiliation(s)
- Nosheen Reza
- Division of Cardiovascular Medicine, Department of Medicine, and Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Cardiovascular Institute, Philadelphia, PA, 19104, USA.
| | - Kiran Musunuru
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, 11 South Pavilion, Room 11-134, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Anjali Tiku Owens
- Division of Cardiovascular Medicine, Department of Medicine, and Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Cardiovascular Institute, Philadelphia, PA, 19104, USA
| |
Collapse
|
33
|
Bos JM, Hebl VB, Oberg AL, Sun Z, Herman DS, Teekakirikul P, Seidman JG, Seidman CE, Dos Remedios CG, Maleszewski JJ, Schaff HV, Dearani JA, Noseworthy PA, Friedman PA, Ommen SR, Brozovich FV, Ackerman MJ. Marked Up-Regulation of ACE2 in Hearts of Patients With Obstructive Hypertrophic Cardiomyopathy: Implications for SARS-CoV-2-Mediated COVID-19. Mayo Clin Proc 2020; 95:1354-1368. [PMID: 32448590 PMCID: PMC7186205 DOI: 10.1016/j.mayocp.2020.04.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To explore the transcriptomic differences between patients with hypertrophic cardiomyopathy (HCM) and controls. PATIENTS AND METHODS RNA was extracted from cardiac tissue flash frozen at therapeutic surgical septal myectomy for 106 patients with HCM and 39 healthy donor hearts. Expression profiling of 37,846 genes was performed using the Illumina Human HT-12v3 Expression BeadChip. All patients with HCM were genotyped for pathogenic variants causing HCM. Technical validation was performed using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. This study was started on January 1, 1999, and final analysis was completed on April 20, 2020. RESULTS Overall, 22% of the transcriptome (8443 of 37,846 genes) was expressed differentially between HCM and control tissues. Analysis by genotype revealed that gene expression changes were similar among genotypic subgroups of HCM, with only 4% (1502 of 37,846) to 6% (2336 of 37,846) of the transcriptome exhibiting differential expression between genotypic subgroups. The qRT-PCR confirmed differential expression in 92% (11 of 12 genes) of tested transcripts. Notably, in the context of coronavirus disease 2019 (COVID-19), the transcript for angiotensin I converting enzyme 2 (ACE2), a negative regulator of the angiotensin system, was the single most up-regulated gene in HCM (fold-change, 3.53; q-value =1.30×10-23), which was confirmed by qRT-PCR in triplicate (fold change, 3.78; P=5.22×10-4), and Western blot confirmed greater than 5-fold overexpression of ACE2 protein (fold change, 5.34; P=1.66×10-6). CONCLUSION More than 20% of the transcriptome is expressed differentially between HCM and control tissues. Importantly, ACE2 was the most up-regulated gene in HCM, indicating perhaps the heart's compensatory effort to mount an antihypertrophic, antifibrotic response. However, given that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses ACE2 for viral entry, this 5-fold increase in ACE2 protein may confer increased risk for COVID-19 manifestations and outcomes in patients with increased ACE2 transcript expression and protein levels in the heart.
Collapse
Key Words
- δct, transcript of interest minus gapdh control
- ace2, angiotensin i converting enzyme 2
- acei, angiotensin-converting enzyme inhibitor
- arb, angiotensin receptor blocker
- at1r, angiotensin type 1 receptor
- bp, blood pressure
- cdna, complementary dna
- chf, congestive heart failure
- covid-19, coronavirus disease 2019
- ecg, electrocardiogram
- gtp, guanosine triphosphate
- hcm, hypertrophic cardiomyopathy
- hrsace2, human recombinant soluble angiotensin i converting enzyme 2
- htn, hypertension
- icu, intensive care unit
- iqr, interquartile range
- lv, left ventricular
- mig, maximum instantaneous gradient
- mrna, messenger rna
- mybpc3, myosin binding protein c
- myh7, beta myosin heavy chain
- na, not available
- ns, not significant
- nyha, new york heart association
- qrt-pcr, quantitative real-time polymerase chain reaction
- raas, renin-angiotensin-aldosterone system
- sars-cov-2, severe acute respiratory syndrome coronavirus 2
- scd, sudden cardiac death
- utr, untranslated region
Collapse
Affiliation(s)
- J Martijn Bos
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN
| | - Virginia B Hebl
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Ann L Oberg
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Zhifu Sun
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | | | | | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA; Cardiovascular Division, Brigham and Women's Hospital, Boston, MA; Howard Hughes Medical Institute, Chevy Chase, MD
| | | | | | | | - Joseph A Dearani
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MN
| | | | - Paul A Friedman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Steve R Ommen
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | | | - Michael J Ackerman
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN; Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN.
| |
Collapse
|
34
|
Manivannan SN, Darouich S, Masmoudi A, Gordon D, Zender G, Han Z, Fitzgerald-Butt S, White P, McBride KL, Kharrat M, Garg V. Novel frameshift variant in MYL2 reveals molecular differences between dominant and recessive forms of hypertrophic cardiomyopathy. PLoS Genet 2020; 16:e1008639. [PMID: 32453731 PMCID: PMC7274480 DOI: 10.1371/journal.pgen.1008639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 06/05/2020] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by thickening of the ventricular muscle without dilation and is often associated with dominant pathogenic variants in cardiac sarcomeric protein genes. Here, we report a family with two infants diagnosed with infantile-onset HCM and mitral valve dysplasia that led to death before one year of age. Using exome sequencing, we discovered that one of the affected children had a homozygous frameshift variant in Myosin light chain 2 (MYL2:NM_000432.3:c.431_432delCT: p.Pro144Argfs*57;MYL2-fs), which alters the last 20 amino acids of the protein and is predicted to impact the most C-terminal of the three EF-hand domains in MYL2. The parents are unaffected heterozygous carriers of the variant and the variant is absent in control cohorts from gnomAD. The absence of the phenotype in carriers and the infantile presentation of severe HCM is in contrast to HCM associated with dominant MYL2 variants. Immunohistochemical analysis of the ventricular muscle of the deceased patient with the MYL2-fs variant showed a marked reduction of MYL2 expression compared to an unaffected control. In vitro overexpression studies further indicate that the MYL2-fs variant is actively degraded. In contrast, an HCM-associated missense variant (MYL2:p.Gly162Arg) and three other MYL2 stop-gain variants (p.E22*, p.K62*, p.E97*) that result in loss of the EF domains are stably expressed but show impaired localization. The degradation of the MYL2-fs can be rescued by inhibiting the cell’s proteasome function supporting a post-translational effect of the variant. In vivo rescue experiments with a Drosophila MYL2-homolog (Mlc2) knockdown model indicate that neither the MYL2-fs nor the MYL2:p.Gly162Arg variant supports normal cardiac function. The tools that we have generated provide a rapid screening platform for functional assessment of variants of unknown significance in MYL2. Our study supports an autosomal recessive model of inheritance for MYL2 loss-of-function variants in infantile HCM and highlights the variant-specific molecular differences found in MYL2-associated cardiomyopathy. We report a novel frameshift variant in MYL2 that is associated with a severe form of infantile-onset hypertrophic cardiomyopathy. The impact of the variant is only observed in the recessive form of the disease found in the proband and not in the parents who are carriers of the variant. This contrasts with other dominant variants in MYL2 that are associated with cardiomyopathies. We compared the stability of this variant to that of other cardiomyopathy associated MYL2 variants and found molecular differences that correlated with disease pathology. We also show different protein domain requirements for stability and localization of MYL2 in cardiomyocytes. Furthermore, we used a fly model to demonstrate functional deficits due to the variant in the developing heart. Overall, our study shows a molecular mechanism by which loss-of-function variants in MYL2 are recessive while missense variants are dominant. We highlight the use of exome sequencing and functional testing to assist in the diagnosis of rare forms of disease where pathogenicity of the variant is not obvious. The new tools we developed for in vitro functional study and the fly fluorescent reporter analysis will permit rapid analysis of MYL2 variants of unknown significance.
Collapse
Affiliation(s)
- Sathiya N. Manivannan
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Sihem Darouich
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES10 Laboratory of Human Genetics, Tunis, Tunisia
- * E-mail: (SD); (VG)
| | - Aida Masmoudi
- University of Tunis El Manar, Faculty of Medicine of Tunis, Department of Embryo-Fetopathology, Maternity and Neonatology Center, Tunis, Tunisia
| | - David Gordon
- Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Gloria Zender
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Zhe Han
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sara Fitzgerald-Butt
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Peter White
- Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Kim L. McBride
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Maher Kharrat
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES10 Laboratory of Human Genetics, Tunis, Tunisia
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (SD); (VG)
| |
Collapse
|
35
|
Bechmann RK, Arnberg M, Bamber S, Lyng E, Westerlund S, Rundberget JT, Kringstad A, Seear PJ, Burridge L. Effects of exposing shrimp larvae (Pandalus borealis) to aquaculture pesticides at field relevant concentrations, with and without food limitation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 222:105453. [PMID: 32112997 DOI: 10.1016/j.aquatox.2020.105453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Anti-parasitic drugs used in the aquaculture industry are discharged to the sea after treatment of salmon. In this study, the effects of azamethiphos (AZA) in the Salmosan® formulation and deltamethrin (DEL) in the Alpha Max® formulation, have been assessed in Northern shrimp larvae (Pandalus borealis) when administered both separately and in combination. The exposure concentrations were 100 ng/L for AZA and 2 ng/L for DEL, each representing a 1000-fold dilution of the prescribed concentrations for salmon. These two chemicals were combined at these concentrations to give a third treatment (AZA + DEL). When larvae were exposed for two hours on the first, second and third days post hatch (dph), significantly increased mortality and reduced swimming activity were observed for larvae from the DEL and combined AZA + DEL treatments 4 dph, though not in larvae from the AZA treatment. A single pulse exposure, delivered on the first day post hatch, caused similar effects on mortality and swimming activity 4 dph as the three-pulse exposure. Mortality was driven by the presence of DEL in both experiments, with no amplification or reduction of effects observed when DEL and AZA were combined. Larvae were observed for 13 days following the single pulse exposure, with food limitation introduced as an additional stressor on day 4. In the DEL and AZA + DEL treatments mortality continued to increase regardless of food level, with no larvae completing development to stage II. The overriding toxicity of DEL masked any potential effects the reduced food ration may have exerted. Swimming activity was lower for AZA treated larvae than Control larvae 13 dph, when both groups were fed daily, though no other significant changes to mortality, development to stage II, feeding rate or gene expression were observed. Food limited Control and AZA larvae had lower swimming activity and feeding rate than daily fed Control larvae, with expression of pyruvate kinase and myosin genes also downregulated. However, there was no negative effect on survival or successful development to stage II in these treatments. In addition, mesencephalic astrocyte-derived neurotropic factor was downregulated in food limited Control larvae when compared with the daily fed Controls. Results from this study together with reported estimates of dispersion plume concentrations of discharged pesticides indicate that toxic concentrations of deltamethrin could reach shrimp larvae several kilometers from a treated salmon farm.
Collapse
Affiliation(s)
| | - Maj Arnberg
- NORCE Norwegian Research Centre, Mekjarvik 12, 4072, Randaberg, Norway.
| | - Shaw Bamber
- NORCE Norwegian Research Centre, Mekjarvik 12, 4072, Randaberg, Norway.
| | - Emily Lyng
- NORCE Norwegian Research Centre, Mekjarvik 12, 4072, Randaberg, Norway.
| | - Stig Westerlund
- NORCE Norwegian Research Centre, Mekjarvik 12, 4072, Randaberg, Norway.
| | - Jan Thomas Rundberget
- The Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway.
| | - Alfhild Kringstad
- The Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway.
| | - Paul J Seear
- Department of Genetics and Genome Biology, Adrian Building, University Road, University of Leicester, LE1 7RH, Leicester, UK.
| | - Les Burridge
- Burridge Consulting Inc., 61 Emmalee Dr Stratford PE, Canada C1B 0B5, Canada.
| |
Collapse
|
36
|
Mazzarotto F, Olivotto I, Boschi B, Girolami F, Poggesi C, Barton PJR, Walsh R. Contemporary Insights Into the Genetics of Hypertrophic Cardiomyopathy: Toward a New Era in Clinical Testing? J Am Heart Assoc 2020; 9:e015473. [PMID: 32306808 PMCID: PMC7428545 DOI: 10.1161/jaha.119.015473] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Genetic testing for hypertrophic cardiomyopathy (HCM) is an established clinical technique, supported by 30 years of research into its genetic etiology. Although pathogenic variants are often detected in patients and used to identify at-risk relatives, the effectiveness of genetic testing has been hampered by ambiguous genetic associations (yielding uncertain and potentially false-positive results), difficulties in classifying variants, and uncertainty about genotype-negative patients. Recent case-control studies on rare variation, improved data sharing, and meta-analysis of case cohorts contributed to new insights into the genetic basis of HCM. In particular, although research into new genes and mechanisms remains essential, reassessment of Mendelian genetic associations in HCM argues that current clinical genetic testing should be limited to a small number of validated disease genes that yield informative and interpretable results. Accurate and consistent variant interpretation has benefited from new standardized variant interpretation guidelines and innovative approaches to improve classification. Most cases lacking a pathogenic variant are now believed to indicate non-Mendelian HCM, with more benign prognosis and minimal risk to relatives. Here, we discuss recent advances in the genetics of HCM and their application to clinical genetic testing together with practical issues regarding implementation. Although this review focuses on HCM, many of the issues discussed are also relevant to other inherited cardiac diseases.
Collapse
Affiliation(s)
- Francesco Mazzarotto
- Cardiomyopathy UnitCareggi University HospitalFlorenceItaly
- Cardiovascular Research CenterRoyal Brompton and Harefield NHS Foundation TrustLondonUnited Kingdom
- National Heart and Lung InstituteImperial College LondonUnited Kingdom
- Department of Clinical and Experimental MedicineUniversity of FlorenceItaly
| | - Iacopo Olivotto
- Cardiomyopathy UnitCareggi University HospitalFlorenceItaly
- Department of Clinical and Experimental MedicineUniversity of FlorenceItaly
| | - Beatrice Boschi
- Cardiomyopathy UnitCareggi University HospitalFlorenceItaly
- Genetic UnitCareggi University HospitalFlorenceItaly
| | - Francesca Girolami
- Cardiomyopathy UnitCareggi University HospitalFlorenceItaly
- Department of Paediatric CardiologyMeyer Children's HospitalFlorenceItaly
| | - Corrado Poggesi
- Department of Clinical and Experimental MedicineUniversity of FlorenceItaly
| | - Paul J. R. Barton
- Cardiovascular Research CenterRoyal Brompton and Harefield NHS Foundation TrustLondonUnited Kingdom
- National Heart and Lung InstituteImperial College LondonUnited Kingdom
| | - Roddy Walsh
- Department of Clinical and Experimental CardiologyHeart CenterAcademic Medical CenterAmsterdamthe Netherlands
| |
Collapse
|
37
|
Sitbon YH, Kazmierczak K, Liang J, Yadav S, Veerasammy M, Kanashiro-Takeuchi RM, Szczesna-Cordary D. Ablation of the N terminus of cardiac essential light chain promotes the super-relaxed state of myosin and counteracts hypercontractility in hypertrophic cardiomyopathy mutant mice. FEBS J 2020; 287:3989-4004. [PMID: 32034976 DOI: 10.1111/febs.15243] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/27/2019] [Accepted: 02/06/2020] [Indexed: 12/25/2022]
Abstract
In this study, we focus on the molecular mechanisms associated with the A57G (Ala57-to-Gly57) mutation in myosin essential light chains (ELCs), found to cause hypertrophic cardiomyopathy (HCM) in humans and in mice. Specifically, we studied the effects of A57G on the super-relaxed (SRX) state of myosin that may contribute to the hypercontractile cross-bridge behavior and ultimately lead to pathological cardiac remodeling in transgenic Tg-A57G mice. The disease model was compared to Tg-WT mice, expressing the wild-type human ventricular ELC, and analyzed against Tg-Δ43 mice, expressing the N-terminally truncated ELC, whose hearts hypertrophy with time but do not show any abnormalities in cardiac morphology or function. Our data suggest a new role for the N terminus of cardiac ELC (N-ELC) in modulation of myosin cross-bridge function in the healthy as well as in HCM myocardium. The lack of N-ELC in Tg-Δ43 mice was found to significantly stabilize the SRX state of myosin and increase the number of myosin heads occupying a low-energy state. In agreement, Δ43 hearts showed significantly decreased ATP utilization and low actin-activated myosin ATPase compared with A57G and WT hearts. The hypercontractile activity of A57G-ELC cross-bridges was manifested by the inhibition of the SRX state, increased number of myosin heads available for interaction with actin, and higher ATPase activity. Fiber mechanics studies, echocardiography examination, and assessment of fibrosis confirmed the development of two distinct forms of cardiac remodeling in these two ELC mouse models, with pathological cardiac hypertrophy in Tg-A57G, and near physiologic cardiac growth in Tg-Δ43 animals.
Collapse
Affiliation(s)
- Yoel H Sitbon
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Sunil Yadav
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | | | | | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| |
Collapse
|
38
|
Mazzarotto F, Olivotto I, Walsh R. Advantages and Perils of Clinical Whole-Exome and Whole-Genome Sequencing in Cardiomyopathy. Cardiovasc Drugs Ther 2020; 34:241-253. [DOI: 10.1007/s10557-020-06948-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Pott A, Rottbauer W, Just S. Streamlining drug discovery assays for cardiovascular disease using zebrafish. Expert Opin Drug Discov 2019; 15:27-37. [PMID: 31570020 DOI: 10.1080/17460441.2020.1671351] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: In the last decade, our armamentarium of cardiovascular drug therapy has expanded significantly. Using innovative functional genomics strategies such as genome editing by CRISPR/Cas9 as well as high-throughput assays to identify bioactive small chemical compounds has significantly facilitated elaboration of the underlying pathomechanism in various cardiovascular diseases. However, despite scientific progress approvals for cardiovascular drugs has stagnated significantly compared to other fields of drug discovery and therapy during the past years.Areas covered: In this review, the authors discuss the aspects and pitfalls during the early phase of cardiovascular drug discovery and describe the advantages of zebrafish as an in vivo organism to model human cardiovascular diseases (CVD) as well as an in vivo platform for high-throughput chemical compound screening. They also highlight the emerging, promising techniques of automated read-out systems during high-throughput screening (HTS) for the evaluation of important cardiac functional parameters in zebrafish with the potential to streamline CVD drug discovery.Expert opinion: The successful identification of novel drugs to treat CVD is a major challenge in modern biomedical and clinical research. In this context, the definition of the etiologic fundamentals of human cardiovascular diseases is the prerequisite for an efficient and straightforward drug discovery.
Collapse
Affiliation(s)
- Alexander Pott
- Internal Medicine II, Ulm University Medical Center, Ulm, Germany.,Molecular Cardiology, Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | | | - Steffen Just
- Molecular Cardiology, Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
40
|
Marttila M, Win W, Al-Ghamdi F, Abdel-Hamid HZ, Lacomis D, Beggs AH. MYL2-associated congenital fiber-type disproportion and cardiomyopathy with variants in additional neuromuscular disease genes; the dilemma of panel testing. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a004184. [PMID: 31127036 PMCID: PMC6672024 DOI: 10.1101/mcs.a004184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/16/2019] [Indexed: 12/13/2022] Open
Abstract
Next-generation sequencing has led to transformative advances in our ability to diagnose rare diseases by simultaneously sequencing dozens, hundreds, or even entire genomes worth of genes to efficiently identify pathogenic mutations. These studies amount to multiple hypothesis testing on a massive scale and not infrequently lead to discovery of multiple genetic variants whose relative contributions to a patient's disease are unclear. Panel testing, in particular, can be problematic because each of the many genes being sequenced might represent a plausible explanation for a given case. We performed targeted gene panel analysis of 43 established neuromuscular disease genes in a patient with congenital fiber-type disproportion (CFTD) and fatal infantile cardiomyopathy. Initial review of variants identified changes in four genes that could be considered relevant candidates to cause this child's disease. Further analysis revealed that two of these are likely benign, but a homozygous frameshift variant in the myosin light chain 2 gene, MYL2, and a heterozygous nonsense mutation in the nebulin gene, NEB, met criteria to be classified as likely pathogenic or pathogenic. Recessive MYL2 mutations are a rare cause of CFTD associated with both skeletal and cardiomyopathy, whereas recessive NEB mutations cause nemaline myopathy. Although the proband's phenotype is likely largely explained by the MYL2 variant, the heterozygous pathogenic NEB variant cannot be ruled out as a contributing factor. This case illustrates the complexity when analyzing large numbers of variants from targeted gene panels in which each of the genes might plausibly contribute to the patient's clinical presentation.
Collapse
Affiliation(s)
- Minttu Marttila
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Wathone Win
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Fouad Al-Ghamdi
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.,King Fahad Specialist Hospital, Dammam 32253, Saudi Arabia
| | - Hoda Z Abdel-Hamid
- Department of Pediatrics, Child Neurology Division, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.,Pediatric MDA Clinic, Division of Child Neurology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224, USA
| | - David Lacomis
- Neuromuscular Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
41
|
Ravenscroft G, Zaharieva IT, Bortolotti CA, Lambrughi M, Pignataro M, Borsari M, Sewry CA, Phadke R, Haliloglu G, Ong R, Goullée H, Whyte T, Consortium UK, Manzur A, Talim B, Kaya U, Osborn DPS, Forrest ARR, Laing NG, Muntoni F. Bi-allelic mutations in MYL1 cause a severe congenital myopathy. Hum Mol Genet 2019; 27:4263-4272. [PMID: 30215711 DOI: 10.1093/hmg/ddy320] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/07/2018] [Indexed: 01/26/2023] Open
Abstract
Congenital myopathies are typically characterised by early onset hypotonia, weakness and hallmark features on biopsy. Despite the rapid pace of gene discovery, ∼50% of patients with a congenital myopathy remain without a genetic diagnosis following screening of known disease genes. We performed exome sequencing on two consanguineous probands diagnosed with a congenital myopathy and muscle biopsy showing selective atrophy/hypotrophy or absence of type II myofibres. We identified variants in the gene (MYL1) encoding the skeletal muscle fast-twitch specific myosin essential light chain (ELC) in both probands. A homozygous essential splice acceptor variant (c.479-2A > G, predicted to result in skipping of exon 5 was identified in Proband 1, and a homozygous missense substitution (c.488T>G, p.(Met163Arg)) was identified in Proband 2. Protein modelling of the p.(Met163Arg) substitution predicted it might impede intermolecular interactions that facilitate binding to the IQ domain of myosin heavy chain, thus likely impacting on the structure and functioning of the myosin motor. MYL1 was markedly reduced in skeletal muscle from both probands, suggesting that the missense substitution likely results in an unstable protein. Knock down of myl1 in zebrafish resulted in abnormal morphology, disrupted muscle structure and impaired touch-evoked escape responses, thus confirming that skeletal muscle fast-twitch specific myosin ELC is critical for myofibre development and function. Our data implicate MYL1 as a crucial protein for adequate skeletal muscle function and that MYL1 deficiency is associated with severe congenital myopathy.
Collapse
Affiliation(s)
- Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia
| | - Irina T Zaharieva
- The Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Carlo A Bortolotti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Matteo Lambrughi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marcello Pignataro
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Borsari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Caroline A Sewry
- The Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Rahul Phadke
- The Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Goknur Haliloglu
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Royston Ong
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia
| | - Hayley Goullée
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia
| | - Tamieka Whyte
- The Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | | | - Adnan Manzur
- The Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Beril Talim
- Pediatric Pathology Unit, Hacettepe University Children's Hospital, Ankara, Turkey
| | - Ulkuhan Kaya
- Department of Pediatric Neurology, Dr. Sami Ulus Maternity and Children's Research and Training Hospital, Ministry of Health, Ankara, Turkey
| | - Daniel P S Osborn
- Cardiovascular and Cell Sciences Institute, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Alistair R R Forrest
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia
| | - Nigel G Laing
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
42
|
Kazmierczak K, Liang J, Yuan CC, Yadav S, Sitbon YH, Walz K, Ma W, Irving TC, Cheah JX, Gomes AV, Szczesna-Cordary D. Slow-twitch skeletal muscle defects accompany cardiac dysfunction in transgenic mice with a mutation in the myosin regulatory light chain. FASEB J 2019; 33:3152-3166. [PMID: 30365366 PMCID: PMC6404564 DOI: 10.1096/fj.201801402r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/01/2018] [Indexed: 01/06/2023]
Abstract
Myosin light chain 2 ( MYL2) gene encodes the myosin regulatory light chain (RLC) simultaneously in heart ventricles and in slow-twitch skeletal muscle. Using transgenic mice with cardiac-specific expression of the human R58Q-RLC mutant, we sought to determine whether the hypertrophic cardiomyopathy phenotype observed in papillary muscles (PMs) of R58Q mice is also manifested in slow-twitch soleus (SOL) muscles. Skinned SOL muscles and ventricular PMs of R58Q animals exhibited lower contractile force that was not observed in the fast-twitch extensor digitorum longus muscles of R58Q vs. wild-type-RLC mice, but mutant animals did not display gross muscle weakness in vivo. Consistent with SOL muscle abnormalities in R58Q vs. wild-type mice, myosin ATPase staining revealed a decreased proportion of fiber type I/type II only in SOL muscles but not in the extensor digitorum longus muscles. The similarities between SOL muscles and PMs of R58Q mice were further supported by quantitative proteomics. Differential regulation of proteins involved in energy metabolism, cell-cell interactions, and protein-protein signaling was concurrently observed in the hearts and SOL muscles of R58Q mice. In summary, even though R58Q expression was restricted to the heart of mice, functional similarities were clearly observed between the hearts and slow-twitch skeletal muscle, suggesting that MYL2 mutated models of hypertrophic cardiomyopathy may be useful research tools to study the molecular, structural, and energetic mechanisms of cardioskeletal myopathy associated with myosin RLC.-Kazmierczak, K., Liang, J., Yuan, C.-C., Yadav, S., Sitbon, Y. H., Walz, K., Ma, W., Irving, T. C., Cheah, J. X., Gomes, A. V., Szczesna-Cordary, D. Slow-twitch skeletal muscle defects accompany cardiac dysfunction in transgenic mice with a mutation in the myosin regulatory light chain.
Collapse
Affiliation(s)
- Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Chen-Ching Yuan
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sunil Yadav
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Yoel H. Sitbon
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Katherina Walz
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Weikang Ma
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Thomas C. Irving
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Jenice X. Cheah
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, California, USA
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, California, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
43
|
Yadav S, Sitbon YH, Kazmierczak K, Szczesna-Cordary D. Hereditary heart disease: pathophysiology, clinical presentation, and animal models of HCM, RCM, and DCM associated with mutations in cardiac myosin light chains. Pflugers Arch 2019; 471:683-699. [PMID: 30706179 DOI: 10.1007/s00424-019-02257-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/26/2018] [Accepted: 01/13/2019] [Indexed: 02/07/2023]
Abstract
Genetic cardiomyopathies, a group of cardiovascular disorders based on ventricular morphology and function, are among the leading causes of morbidity and mortality worldwide. Such genetically driven forms of hypertrophic (HCM), dilated (DCM), and restrictive (RCM) cardiomyopathies are chronic, debilitating diseases that result from biomechanical defects in cardiac muscle contraction and frequently progress to heart failure (HF). Locus and allelic heterogeneity, as well as clinical variability combined with genetic and phenotypic overlap between different cardiomyopathies, have challenged proper clinical prognosis and provided an incentive for identification of pathogenic variants. This review attempts to provide an overview of inherited cardiomyopathies with a focus on their genetic etiology in myosin regulatory (RLC) and essential (ELC) light chains, which are EF-hand protein family members with important structural and regulatory roles. From the clinical discovery of cardiomyopathy-linked light chain mutations in patients to an array of exploratory studies in animals, and reconstituted and recombinant systems, we have summarized the current state of knowledge on light chain mutations and how they induce physiological disease states via biochemical and biomechanical alterations at the molecular, tissue, and organ levels. Cardiac myosin RLC phosphorylation and the N-terminus ELC have been discussed as two important emerging modalities with important implications in the regulation of myosin motor function, and thus cardiac performance. A comprehensive understanding of such triggers is absolutely necessary for the development of target-specific rescue strategies to ameliorate or reverse the effects of myosin light chain-related inherited cardiomyopathies.
Collapse
MESH Headings
- Animals
- Cardiomyopathy, Dilated/etiology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Hypertrophic/etiology
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/pathology
- Cardiomyopathy, Restrictive/etiology
- Cardiomyopathy, Restrictive/genetics
- Cardiomyopathy, Restrictive/pathology
- Disease Models, Animal
- Humans
- Mutation
- Myosin Light Chains/genetics
Collapse
Affiliation(s)
- Sunil Yadav
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA
| | - Yoel H Sitbon
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA.
| |
Collapse
|
44
|
Rani DS, Nallari P, Rani J, Nizamuddin S, Seelamneni T, Narasimhan C, Thangaraj K. A Complete Absence of Missense Mutation in Myosin Regulatory and Essential Light Chain Genes of South Indian Hypertrophic and Dilated Cardiomyopathies. Cardiology 2019; 141:156-166. [PMID: 30605904 DOI: 10.1159/000495027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/25/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Myosin is a hexameric contractile protein composed of 2 heavy chains associated with 4 light chains of 2 distinct classes - 2 regulatory light chains (MYL2) and 2 essential light chains (MYL3). The myosin light chains stabilize the long alpha helical neck of the myosin head and regulate the myosin ATPase activities. OBJECTIVES Mutations in MYL2 and MYL3 are reported to be associated with cardiomyopathies. However, there is no study available on these genes in Indian cardiomyopathies, and therefore we planned to study them. METHOD For the first time we sequenced MYL2 and MYL3 genes in a total of 248 clinically well-characterized cardiomyopathies consisting of 101 hypertrophic and 147 dilated cases along with 207 healthy controls from south India. RESULTS Our study revealed a total of 10 variations - 7 in MYL2 and 3 in MYL3, of which 3 are novel variations observed exclusively in cases. However, the 15 causative missense mutations previously reported are totally absent in our study, which showed that the sequences of MYL2 and MYL3 are highly conserved in Indian cases/controls. CONCLUSIONS MYL2 and MYL3 mutations are rare and the least cause of cardiomyopathies in Indians.
Collapse
Affiliation(s)
- Deepa Selvi Rani
- CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | | | - Jhansi Rani
- CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Sheikh Nizamuddin
- CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | | | | | | |
Collapse
|
45
|
Yadav S, Kazmierczak K, Liang J, Sitbon YH, Szczesna-Cordary D. Phosphomimetic-mediated in vitro rescue of hypertrophic cardiomyopathy linked to R58Q mutation in myosin regulatory light chain. FEBS J 2018; 286:151-168. [PMID: 30430732 DOI: 10.1111/febs.14702] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/03/2018] [Accepted: 11/13/2018] [Indexed: 12/16/2022]
Abstract
Myosin regulatory light chain (RLC) phosphorylation is important for cardiac muscle mechanics/function as well as for the Ca2+ -troponin/tropomyosin regulation of muscle contraction. This study focuses on the arginine to glutamine (R58Q) substitution in the human ventricular RLC (MYL2 gene), linked to malignant hypertrophic cardiomyopathy in humans and causing severe functional abnormalities in transgenic (Tg) R58Q mice, including inhibition of cardiac RLC phosphorylation. Using a phosphomimic recombinant RLC variant where Ser-15 at the phosphorylation site was substituted with aspartic acid (S15D) and placed in the background of R58Q, we aimed to assess whether we could rescue/mitigate R58Q-induced structural/functional abnormalities in vitro. We show rescue of several R58Q-exerted adverse phenotypes in S15D-R58Q-reconstituted porcine cardiac muscle preparations. A low level of maximal isometric force observed for R58Q- versus WT-reconstituted fibers was restored by S15D-R58Q. Significant beneficial effects were also observed on the Vmax of actin-activated myosin ATPase activity in S15D-R58Q versus R58Q-reconstituted myosin, along with its binding to fluorescently labeled actin. We also report that R58Q promotes the OFF state of myosin, both in reconstituted porcine fibers and in Tg mouse papillary muscles, thereby stabilizing the super-relaxed state (SRX) of myosin, characterized by a very low ATP turnover rate. Experiments in S15D-R58Q-reconstituted porcine fibers showed a mild destabilization of the SRX state, suggesting an S15D-mediated shift in disordered-relaxed (DRX)↔SRX equilibrium toward the DRX state of myosin. Our study shows that S15D-phosphomimic can be used as a potential rescue strategy to abrogate/alleviate the RLC mutation-induced phenotypes and is a likely candidate for therapeutic intervention in HCM patients.
Collapse
Affiliation(s)
- Sunil Yadav
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Yoel H Sitbon
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| |
Collapse
|
46
|
Translating emerging molecular genetic insights into clinical practice in inherited cardiomyopathies. J Mol Med (Berl) 2018; 96:993-1024. [PMID: 30128729 DOI: 10.1007/s00109-018-1685-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/22/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022]
Abstract
Cardiomyopathies are primarily genetic disorders of the myocardium associated with higher risk of life-threatening cardiac arrhythmias, heart failure, and sudden cardiac death. The evolving knowledge in genomic medicine during the last decade has reshaped our understanding of cardiomyopathies as diseases of multifactorial nature and complex pathophysiology. Genetic testing in cardiomyopathies has subsequently grown from primarily a research tool into an essential clinical evaluation piece with important clinical implications for patients and their families. The purpose of this review is to provide with a contemporary insight into the implications of genetic testing in diagnosis, therapy, and prognosis of patients with inherited cardiomyopathies. Here, we summarize the contemporary knowledge on genotype-phenotype correlations in inherited cardiomyopathies and highlight the recent significant achievements in the field of translational cardiovascular genetics.
Collapse
|
47
|
Logvinova DS, Levitsky DI. Essential Light Chains of Myosin and Their Role in Functioning of the Myosin Motor. BIOCHEMISTRY (MOSCOW) 2018; 83:944-960. [DOI: 10.1134/s0006297918080060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Marian AJ, Braunwald E. Hypertrophic Cardiomyopathy: Genetics, Pathogenesis, Clinical Manifestations, Diagnosis, and Therapy. Circ Res 2017; 121:749-770. [PMID: 28912181 DOI: 10.1161/circresaha.117.311059] [Citation(s) in RCA: 890] [Impact Index Per Article: 111.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic disorder that is characterized by left ventricular hypertrophy unexplained by secondary causes and a nondilated left ventricle with preserved or increased ejection fraction. It is commonly asymmetrical with the most severe hypertrophy involving the basal interventricular septum. Left ventricular outflow tract obstruction is present at rest in about one third of the patients and can be provoked in another third. The histological features of HCM include myocyte hypertrophy and disarray, as well as interstitial fibrosis. The hypertrophy is also frequently associated with left ventricular diastolic dysfunction. In the majority of patients, HCM has a relatively benign course. However, HCM is also an important cause of sudden cardiac death, particularly in adolescents and young adults. Nonsustained ventricular tachycardia, syncope, a family history of sudden cardiac death, and severe cardiac hypertrophy are major risk factors for sudden cardiac death. This complication can usually be averted by implantation of a cardioverter-defibrillator in appropriate high-risk patients. Atrial fibrillation is also a common complication and is not well tolerated. Mutations in over a dozen genes encoding sarcomere-associated proteins cause HCM. MYH7 and MYBPC3, encoding β-myosin heavy chain and myosin-binding protein C, respectively, are the 2 most common genes involved, together accounting for ≈50% of the HCM families. In ≈40% of HCM patients, the causal genes remain to be identified. Mutations in genes responsible for storage diseases also cause a phenotype resembling HCM (genocopy or phenocopy). The routine applications of genetic testing and preclinical identification of family members represents an important advance. The genetic discoveries have enhanced understanding of the molecular pathogenesis of HCM and have stimulated efforts designed to identify new therapeutic agents.
Collapse
Affiliation(s)
- Ali J Marian
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, Department of Medicine, University of Texas Health Sciences Center at Houston (A.J.M.); Texas Heart Institute, Houston (A.J.M.); and TIMI Study Group, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (E.B.).
| | - Eugene Braunwald
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, Department of Medicine, University of Texas Health Sciences Center at Houston (A.J.M.); Texas Heart Institute, Houston (A.J.M.); and TIMI Study Group, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (E.B.)
| |
Collapse
|
49
|
Yuan CC, Kazmierczak K, Liang J, Kanashiro-Takeuchi R, Irving TC, Gomes AV, Wang Y, Burghardt TP, Szczesna-Cordary D. Hypercontractile mutant of ventricular myosin essential light chain leads to disruption of sarcomeric structure and function and results in restrictive cardiomyopathy in mice. Cardiovasc Res 2017; 113:1124-1136. [PMID: 28371863 PMCID: PMC5852631 DOI: 10.1093/cvr/cvx060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/02/2017] [Accepted: 03/22/2017] [Indexed: 01/13/2023] Open
Abstract
AIMS The E143K (Glu → Lys) mutation in the myosin essential light chain has been associated with restrictive cardiomyopathy (RCM) in humans, but the mechanisms that underlie the development of defective cardiac function are unknown. Using transgenic E143K-RCM mice, we sought to determine the molecular and cellular triggers of E143K-induced heart remodelling. METHODS AND RESULTS The E143K-induced abnormalities in cardiac function and morphology observed by echocardiography and invasive haemodynamics were paralleled by augmented active and passive tension measured in skinned papillary muscle fibres compared with wild-type (WT)-generated force. In vitro, E143K-myosin had increased duty ratio and binding affinity to actin compared with WT-myosin, increased actin-activated ATPase activity and slower rates of ATP-dependent dissociation of the acto-myosin complex, indicating an E143K-induced myosin hypercontractility. E143K was also observed to reduce the level of myosin regulatory light chain phosphorylation while that of troponin-I remained unchanged. Small-angle X-ray diffraction data showed a decrease in the filament lattice spacing (d1,0) with no changes in the equatorial reflections intensity ratios (I1,1/I1,0) in E143K vs. WT skinned papillary muscles. The hearts of mutant-mice demonstrated ultrastructural defects and fibrosis that progressively worsened in senescent animals and these changes were hypothesized to contribute to diastolic disturbance and to mild systolic dysfunction. Gene expression profiles of E143K-hearts supported the histopathology results and showed an upregulation of stress-response and collagen genes. Finally, proteomic analysis evidenced RCM-dependent metabolic adaptations and higher energy demands in E143K vs. WT hearts. CONCLUSIONS As a result of the E143K-induced myosin hypercontractility, the hearts of RCM mice model exhibited cardiac dysfunction, stiff ventricles and physiological, morphologic, and metabolic remodelling consistent with the development of RCM. Future efforts should be directed toward normalization of myosin motor function and the use of myosin-specific therapeutics to avert the hypercontractile state of E143K-myosin and prevent pathological cardiac remodelling.
Collapse
MESH Headings
- Actins/metabolism
- Adenosine Triphosphate/metabolism
- Animals
- Cardiomyopathy, Restrictive/genetics
- Cardiomyopathy, Restrictive/metabolism
- Cardiomyopathy, Restrictive/pathology
- Cardiomyopathy, Restrictive/physiopathology
- Collagen/metabolism
- Disease Models, Animal
- Energy Metabolism
- Female
- Fibrosis
- Genetic Predisposition to Disease
- Humans
- Male
- Mice, Transgenic
- Mutation
- Myocardial Contraction/genetics
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/ultrastructure
- Myosin Light Chains/genetics
- Myosin Light Chains/metabolism
- Phenotype
- Phosphorylation
- Sarcomeres/metabolism
- Sarcomeres/pathology
- Sarcomeres/ultrastructure
- Ventricular Function, Left/genetics
- Ventricular Myosins/genetics
- Ventricular Myosins/metabolism
- Ventricular Remodeling/genetics
Collapse
Affiliation(s)
- Chen-Ching Yuan
- Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Katarzyna Kazmierczak
- Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jingsheng Liang
- Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | - Aldrin V. Gomes
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA
| | - Yihua Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, Rochester, MN 55905, USA
| | - Thomas P. Burghardt
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, Rochester, MN 55905, USA
| | - Danuta Szczesna-Cordary
- Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
50
|
Burke MA, Cook SA, Seidman JG, Seidman CE. Clinical and Mechanistic Insights Into the Genetics of Cardiomyopathy. J Am Coll Cardiol 2017; 68:2871-2886. [PMID: 28007147 DOI: 10.1016/j.jacc.2016.08.079] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 12/19/2022]
Abstract
Over the last quarter-century, there has been tremendous progress in genetics research that has defined molecular causes for cardiomyopathies. More than a thousand mutations have been identified in many genes with varying ontologies, therein indicating the diverse molecules and pathways that cause hypertrophic, dilated, restrictive, and arrhythmogenic cardiomyopathies. Translation of this research to the clinic via genetic testing can precisely group affected patients according to molecular etiology, and identify individuals without evidence of disease who are at high risk for developing cardiomyopathy. These advances provide insights into the earliest manifestations of cardiomyopathy and help to define the molecular pathophysiological basis for cardiac remodeling. Although these efforts remain incomplete, new genomic technologies and analytic strategies provide unparalleled opportunities to fully explore the genetic architecture of cardiomyopathies. Such data hold the promise that mutation-specific pathophysiology will uncover novel therapeutic targets, and herald the beginning of precision therapy for cardiomyopathy patients.
Collapse
Affiliation(s)
- Michael A Burke
- Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia; Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Stuart A Cook
- National Heart & Lung Institute, Imperial College London, London, United Kingdom; National Heart Centre Singapore, Singapore; Duke-National University of Singapore, Singapore
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts; Howard Hughes Medical Institute, Chevy Chase, Maryland.
| |
Collapse
|