1
|
Dai R, Wang T, Wu X. Autosomal dominant monilethrix with incomplete penetrance due to a novel KRT86 mutation in a Chinese family. An Bras Dermatol 2024; 99:606-609. [PMID: 38594178 PMCID: PMC11221135 DOI: 10.1016/j.abd.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 04/11/2024] Open
Affiliation(s)
- Ru Dai
- Department of Dermatology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Tingting Wang
- Department of Dermatology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Xianjie Wu
- Department of Dermatology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Hayashi R, Shimomura Y. Update of recent findings in genetic hair disorders. J Dermatol 2021; 49:55-67. [PMID: 34676598 DOI: 10.1111/1346-8138.16204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 11/30/2022]
Abstract
Genetic hair disorders, although unusual, are not very rare, and dermatologists often have opportunities to see patients. Significant advances in molecular genetics have led to identifying many causative genes for genetic hair disorders, including the recently identified causative genes, such as LSS and C3ORF52. Many patients have been detected with autosomal recessive woolly hair/hypotrichosis in the Japanese population caused by founder mutations in the LIPH gene. Additionally, many patients with genetic hair disorders caused by other genes have been reported in East Asia including Japan. Understanding genetic hair disorders is essential for dermatologists, and the findings obtained from analyzing these diseases will contribute to revealing the mechanisms of hair follicle morphogenesis and development in humans.
Collapse
Affiliation(s)
- Ryota Hayashi
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Shimomura
- Department of Dermatology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
3
|
Betz RC. Alopezien und Hypotrichosen im Kindesalter: Wann muss an genetische Diagnostik gedacht werden? Monatsschr Kinderheilkd 2021. [DOI: 10.1007/s00112-020-01104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Li J, Lee YK, Fu W, Whalen AM, Estable MC, Raftery LA, White K, Weiner L, Brissette JL. Modeling by disruption and a selected-for partner for the nude locus. EMBO Rep 2020; 22:e49804. [PMID: 33369874 PMCID: PMC7926259 DOI: 10.15252/embr.201949804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 12/25/2022] Open
Abstract
A long‐standing problem in biology is how to dissect traits for which no tractable model exists. Here, we screen for genes like the nude locus (Foxn1)—genes central to mammalian hair and thymus development—using animals that never evolved hair, thymi, or Foxn1. Fruit flies are morphologically disrupted by the FOXN1 transcription factor and rescued by weak reductions in fly gene function, revealing molecules that potently synergize with FOXN1 to effect dramatic, chaotic change. Strong synergy/effectivity in flies is expected to reflect strong selection/functionality (purpose) in mammals; the more disruptive a molecular interaction is in alien contexts (flies), the more beneficial it will be in its natural, formative contexts (mammals). The approach identifies Aff4 as the first nude‐like locus, as murine AFF4 and FOXN1 cooperatively induce similar cutaneous/thymic phenotypes, similar gene expression programs, and the same step of transcription, pre‐initiation complex formation. These AFF4 functions are unexpected, as AFF4 also serves as a scaffold in common transcriptional‐elongation complexes. Most likely, the approach works because an interaction's power to disrupt is the inevitable consequence of its selected‐for power to benefit.
Collapse
Affiliation(s)
- Jian Li
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA.,Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Yun-Kyoung Lee
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Wenyu Fu
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA.,Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Anne M Whalen
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Mario C Estable
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Laurel A Raftery
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Kristin White
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Lorin Weiner
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA.,Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Janice L Brissette
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA.,Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
5
|
Zhang H, Zhao H, Wang X, Cui X, Jin L. Keratin 86 is up-regulated in the uterus during implantation, induced by oestradiol. BMC DEVELOPMENTAL BIOLOGY 2020; 20:3. [PMID: 32028879 PMCID: PMC7006210 DOI: 10.1186/s12861-020-0208-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/27/2020] [Indexed: 02/08/2023]
Abstract
Background Uterine receptivity is one of the determinants of embryo implantation, which is responsible for pregnancy success. Aberrant embryo implantation due to disrupted uterine receptivity is usually found in ovarian hyperstimulation induced hyperoestrogen patients. Results This study identified keratin 86 (KRT86), a fibrous structural protein, which was upregulated in uterine endometrium during peri-implantation. Using a hyperoestrogen mouse model established in a previous study, we found abnormal oestradiol (E2) levels during pre-implantation could trigger high expression of Krt86 in the uterine epithelium. In an ovariectomised mouse model, combining oestrogen receptors ERα and ERβ knockout mice models, uterine Krt86 was found to be up-regulated after E2 treatment, mediated by nuclear ERα. Furthermore, we found progesterone (P4) could ameliorate Krt86 expression, induced by abnormal E2. Conclusions These results revealed the dynamic expression and regulation of Krt86, especially in hyperoestrogen treated mice, indicating it might act as a marker for non-receptive uterus.
Collapse
Affiliation(s)
- He Zhang
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, Liaoning, China.
| | - Huashan Zhao
- Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xi Wang
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, Liaoning, China
| | - Xiaolin Cui
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, Liaoning, China
| | - Lingling Jin
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, Liaoning, China
| |
Collapse
|
6
|
Chiba R, Okubo M, Yamamoto R, Saito MM, Kobayashi S, Beniash E, Yamakoshi Y. Porcine keratin 75 in developing enamel. J Oral Biosci 2019; 61:163-172. [PMID: 31252053 DOI: 10.1016/j.job.2019.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To provide in vivo biochemical evidence for the isolation, identification, and characterization of porcine keratin 75 (K75) in developing enamel. METHODS Immunolocalization of K75 was observed in mandibles from mice at postnatal days 5 and 11. K75 gene expression was analyzed by quantitative reverse transcription-polymerase chain reaction using enamel organ epithelium (EOE) of incisors from pigs at 5 months of age. Enamel protein was extracted and isolated from both immature and mature enamel of second molars from 5-month-old pigs, and the K75 antibody-positive fraction was analyzed by liquid chromatography-mass spectrometry (LC-MS/MS). In vitro protease digestion of K75-antibody-positive fraction was carried out using porcine kallikrein 4 (pKLK4) or recombinant human enamelysin (rhMMP20) and their degradation patterns were characterized by both SDS-PAGE and western blotting. RESULTS Specific immunostaining for K75 was restricted to the layers of stratum intermedium and the enamel side of ameloblasts in mice at postnatal day 5, and to the papillary layer at postnatal day 11. Porcine K75 was expressed throughout enamel formation, but its transcript levels were significantly higher in the transition EOE than in the secretory- and maturation-stage EOE. Porcine K75 was extracted from the neutral soluble fraction from both immature and mature enamel. It was identified by LC-MS/MS analysis, and was found not to be degraded by either pKLK4 or rhMMP20. CONCLUSION We propose that K75 is present in the developing enamel and undergoes different processing/degradation compared to other enamel proteins.
Collapse
Affiliation(s)
- Risako Chiba
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Miu Okubo
- Department of Periodontology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Ryuji Yamamoto
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Mari M Saito
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Saeko Kobayashi
- Department of Pediatric Dentistry, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Elia Beniash
- Department of Oral Biology, University of Pittsburgh School of Dental Medicine, 3501 Terrace Street, Pittsburgh, PA 15261, USA.
| | - Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| |
Collapse
|
7
|
Deng Y, Xia D, Wang L, Li M, Li W. Identification of a novel missense KRT86 mutation in a Chinese family with monilethrix. J Dermatol 2018; 45:e298-e300. [PMID: 29701253 DOI: 10.1111/1346-8138.14339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ying Deng
- National Office for Maternal and Child Health Surveillance of China, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Laboratory of Molecular Epidemiology for Birth Defect, West China Institute of Women and Children's Health, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Dengmei Xia
- Department of Dermatology, Southwest Medical University Affiliated Hospital, Luzhou, China
| | - Lian Wang
- Department of Dermatology, The West China Hospital, Sichuan University, Chengdu, China
| | - Mengmeng Li
- Department of Dermatology, The West China Hospital, Sichuan University, Chengdu, China
| | - Wei Li
- Department of Dermatology, The West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Journey toward unraveling the molecular basis of hereditary hair disorders. J Dermatol Sci 2016; 84:232-238. [DOI: 10.1016/j.jdermsci.2016.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 12/24/2022]
|
9
|
van Steensel M, Vreeburg M, Urbina MT, López P, Morice-Picard F, van Geel M. Novel KRT83 and KRT86 mutations associated with monilethrix. Exp Dermatol 2015; 24:222-4. [PMID: 25557232 DOI: 10.1111/exd.12624] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2014] [Indexed: 02/01/2023]
Abstract
Monilethrix is an autosomal dominant hair disorder caused by mutations in the hard keratins KRT81, KRT83 and KRT86. The affected hairs are fragile and break easily, leading to scarring alopecia. Follicular hyperkeratosis in the neck and on extensor sides of extremities is a frequently associated finding. The disorder is rare, but probably underreported because its manifestations may be mild. Mutations in KRT81 and KRT86 are the most common. Here, we report new cases from Venezuela, the Netherlands, Belgium and France. The Venezuelan kindred is special for having patients with digenic novel nucleotide changes, a KRT86 mutation associated with monilethrix and a KRT81 variant of unknown clinical significance. In the French and Dutch patients, we found novel KRT86 and KRT83 mutations. Our findings expand the mutational spectrum associated with monilethrix.
Collapse
Affiliation(s)
- Maurice van Steensel
- Department of Dermatology, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands; GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands; Institute of Medical Biology, Immunos, Singapore
| | | | | | | | | | | |
Collapse
|
10
|
Wang JM, Xiao YJ, Liang YH. Novel D323G mutation ofDSG4gene in a girl with localized autosomal recessive hypotrichosis clinically overlapped with monilethrix. Int J Dermatol 2015; 54:1163-8. [PMID: 26173648 DOI: 10.1111/ijd.12889] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 10/20/2014] [Accepted: 10/25/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Jia-Man Wang
- Department of Dermatology; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong China
| | - Yu-Juan Xiao
- Department of Dermatology; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong China
| | - Yan-Hua Liang
- Department of Dermatology; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong China
| |
Collapse
|
11
|
Kato M, Shimizu A, Yokoyama Y, Kaira K, Shimomura Y, Ishida-Yamamoto A, Kamei K, Tokunaga F, Ishikawa O. An Autosomal Recessive Mutation of DSG4 Causes Monilethrix through the ER Stress Response. J Invest Dermatol 2015; 135:1253-1260. [DOI: 10.1038/jid.2015.12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/08/2014] [Accepted: 12/22/2014] [Indexed: 02/03/2023]
|
12
|
Ramot Y, Zlotogorski A. Keratins: the hair shaft's backbone revealed. Exp Dermatol 2015; 24:416-7. [DOI: 10.1111/exd.12654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2015] [Indexed: 02/04/2023]
Affiliation(s)
- Yuval Ramot
- Department of Dermatology; Hadassah - Hebrew University Medical Center; Jerusalem Israel
| | - Abraham Zlotogorski
- Department of Dermatology; Hadassah - Hebrew University Medical Center; Jerusalem Israel
| |
Collapse
|
13
|
Redler S, Pasternack SM, Wolf S, Stienen D, Wenzel J, Nöthen MM, Betz RC. A novel KRT86 mutation in a Turkish family with monilethrix, and identification of maternal mosaicism. Clin Exp Dermatol 2015; 40:781-5. [PMID: 25809918 DOI: 10.1111/ced.12631] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Monilethrix is a rare monogenic dystrophic hair loss disorder with high levels of intrafamilial and interfamilial variability. It is characterized by diffuse occipital or temporal alopecia, hair fragility and follicular hyperkeratosis of the occipital region. Mutations in the keratin genes KRT81, KRT83 and KRT86 lead to autosomal dominant monilethrix, whereas mutations in the desmoglein 4 gene (DSG4) cause an autosomal recessive form. AIM To identify the mutation in a consanguineous Turkish family with three affected children and apparently unaffected parents. METHODS Sequencing analysis of the genes DSG4 and KRT86 was performed. SNaPshot analysis was conducted to quantify the proportion of cells carrying the KRT86 mutation and to confirm maternal mosaicism of KRT86. RESULTS No pathogenic mutation was found by sequencing analysis of DSG4; however, analysis of KRT86 revealed a novel mutation, c.1231G>T;p.Glu411*, in exon 7 in the three affected children and their mother. The mutation signal was weaker in the mother than in the three siblings, and SNaPshot analysis revealed substantial mutation-level variation between the children and their mother. CONCLUSIONS Our results extend the spectrum of KRT86 mutations and indicate KRT86 mosaicism in the family examined. This study is the first, to our knowledge, to describe mosaicism for a monogenic hair loss disorder, and suggests that mosaicism leads to a mild manifestation of monilethrix.
Collapse
Affiliation(s)
- S Redler
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - S M Pasternack
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - S Wolf
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - D Stienen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - J Wenzel
- Department of Dermatology, University of Bonn, Bonn, Germany
| | - M M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - R C Betz
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| |
Collapse
|
14
|
Abstract
Desmosomes serve as intercellular junctions in various tissues including the skin and the heart where they play a crucial role in cell-cell adhesion, signalling and differentiation. The desmosomes connect the cell surface to the keratin cytoskeleton and are composed of a transmembranal part consisting mainly of desmosomal cadherins, armadillo proteins and desmoplakin, which form the intracytoplasmic desmosomal plaque. Desmosomal genodermatoses are caused by mutations in genes encoding the various desmosomal components. They are characterized by skin, hair and cardiac manifestations occurring in diverse combinations. Their classification into a separate and distinct clinical group not only recognizes their common pathogenesis and facilitates their diagnosis but might also in the future form the basis for the design of novel and targeted therapies for these occasionally life-threatening diseases.
Collapse
|
15
|
|
16
|
Duverger O, Morasso MI. To grow or not to grow: hair morphogenesis and human genetic hair disorders. Semin Cell Dev Biol 2013; 25-26:22-33. [PMID: 24361867 DOI: 10.1016/j.semcdb.2013.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/25/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
Abstract
Mouse models have greatly helped in elucidating the molecular mechanisms involved in hair formation and regeneration. Recent publications have reviewed the genes involved in mouse hair development based on the phenotype of transgenic, knockout and mutant animal models. While much of this information has been instrumental in determining molecular aspects of human hair development and cycling, mice exhibit a specific pattern of hair morphogenesis and hair distribution throughout the body that cannot be directly correlated to human hair. In this mini-review, we discuss specific aspects of human hair follicle development and present an up-to-date summary of human genetic disorders associated with abnormalities in hair follicle morphogenesis, structure or regeneration.
Collapse
Affiliation(s)
- Olivier Duverger
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, United States.
| | - Maria I Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, United States.
| |
Collapse
|
17
|
Gandolfi B, Alhaddad H, Affolter VK, Brockman J, Haggstrom J, Joslin SEK, Koehne AL, Mullikin JC, Outerbridge CA, Warren WC, Lyons LA. To the Root of the Curl: A Signature of a Recent Selective Sweep Identifies a Mutation That Defines the Cornish Rex Cat Breed. PLoS One 2013; 8:e67105. [PMID: 23826204 PMCID: PMC3694948 DOI: 10.1371/journal.pone.0067105] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/14/2013] [Indexed: 11/19/2022] Open
Abstract
The cat (Felis silvestris catus) shows significant variation in pelage, morphological, and behavioral phenotypes amongst its over 40 domesticated breeds. The majority of the breed specific phenotypic presentations originated through artificial selection, especially on desired novel phenotypic characteristics that arose only a few hundred years ago. Variations in coat texture and color of hair often delineate breeds amongst domestic animals. Although the genetic basis of several feline coat colors and hair lengths are characterized, less is known about the genes influencing variation in coat growth and texture, especially rexoid – curly coated types. Cornish Rex is a cat breed defined by a fixed recessive curly coat trait. Genome-wide analyses for selection (di, Tajima’s D and nucleotide diversity) were performed in the Cornish Rex breed and in 11 phenotypically diverse breeds and two random bred populations. Approximately 63K SNPs were used in the analysis that aimed to localize the locus controlling the rexoid hair texture. A region with a strong signature of recent selective sweep was identified in the Cornish Rex breed on chromosome A1, as well as a consensus block of homozygosity that spans approximately 3 Mb. Inspection of the region for candidate genes led to the identification of the lysophosphatidic acid receptor 6 (LPAR6). A 4 bp deletion in exon 5, c.250_253_delTTTG, which induces a premature stop codon in the receptor, was identified via Sanger sequencing. The mutation is fixed in Cornish Rex, absent in all straight haired cats analyzed, and is also segregating in the German Rex breed. LPAR6 encodes a G protein-coupled receptor essential for maintaining the structural integrity of the hair shaft; and has mutations resulting in a wooly hair phenotype in humans.
Collapse
Affiliation(s)
- Barbara Gandolfi
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, California, United States of America
- * E-mail:
| | - Hasan Alhaddad
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, California, United States of America
| | - Verena K. Affolter
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California - Davis, Davis, California, United States of America
| | - Jeffrey Brockman
- Hill’s Pet Nutrition Center, Topeka, Kansas, United States of America
| | - Jens Haggstrom
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Shannon E. K. Joslin
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, California, United States of America
| | - Amanda L. Koehne
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California - Davis, Davis, California, United States of America
| | - James C. Mullikin
- Comparative Genomics Unit, Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Catherine A. Outerbridge
- Department of Veterinary Medicine & Epidemiology, School of Veterinary Medicine, University of California - Davis, Davis, California, United States of America
| | - Wesley C. Warren
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Leslie A. Lyons
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, California, United States of America
| |
Collapse
|
18
|
Wu J, Lin Y, Xu W, Li Z, Fan W. A mutation in the type II hair keratin KRT86 gene in a Han family with monilethrix. J Biomed Res 2013; 25:49-55. [PMID: 23554671 PMCID: PMC3596676 DOI: 10.1016/s1674-8301(11)60006-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/12/2010] [Accepted: 01/11/2011] [Indexed: 12/18/2022] Open
Abstract
Monilethrix, a congenital disease of hair, is usually associated with mutations in keratin genes, like KRT81, KRT83 and KRT86. We conducted this study to investigate the mutation of type II human basic hair keratin hHb/KRT gene in a Han family with monilethrix and obtain information for potential pathogenic mechanism study of monilethrix. Peripheral blood samples were drawn for genomic DNA detection. Exon 1 and exon 7 of the KRT81, KRT83 and KRT86 genes were amplified by PCR. All PCR products were sequenced directly using an ABI 310 DNA sequencer. These sequences were aligned with the standard sequences in GenBank using the BLAST software. PCR products were digested with restriction endonuclease and restriction fragment length polymorphism (RFLP) analysis was performed. In this study, we identified one novel mutation, which is a heterozygous transitional mutation of G→A at position 1,289 in exon 7 of the KRT86 gene [R430Q (KRT86)]. RFLP assays for the novel mutation excluded the possibility of polymorphism. The R430Q mutation of the KRT86 gene may be pathogenic for monilethrix. Meanwhile, we did not find any novel mutation or recurrent mutation in exons 1 and 7 of KRT81 and KRT83 and exon 1 of KRT86. There is a potential pathogenic gene in the subjects and our results expand the spectrum of mutations in the hHb6 gene.
Collapse
Affiliation(s)
- Jin Wu
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | | | | | | | | |
Collapse
|
19
|
Abstract
The study of rare genetic disorders of the hair follicle has resulted in the identification of many causative genes, leading to the potential for the development of novel therapeutic approaches for both inherited and acquired hair disorders. In this issue, Fujimoto et al. identify a missense mutation within the keratin 71 (KRT71) gene as the cause for autosomal dominant woolly hair/hypotrichosis in a Japanese family. This represents the first human mutation in KRT71 to be linked to a hair disorder, establishing this gene as an important determinant of mammalian hair texture. Moreover, this finding provides new insight into the relationship between similar phenotypes resulting from mutations in distinct regulatory pathways and underscores the role of the inner root sheath in human hair growth.
Collapse
|
20
|
Abstract
The progress of molecular genetics helps clinicians to prove or exclude a suspected diagnosis for a vast and yet increasing number of genodermatoses. This leads to precise genetic counselling, prenatal diagnosis and preimplantation genetic haplotyping for many inherited skin conditions. It is also helpful in such occasions as phenocopy, late onset and incomplete penetrance, uniparental disomy, mitochondrial inheritance and pigmentary mosaicism. Molecular methods of two genodermatoses are explained in detail, i.e. genodermatoses with skin fragility and neurofibromatosis type 1.
Collapse
Affiliation(s)
- Vesarat Wessagowit
- Molecular Genetics Laboratory, The Institute of Dermatology, Bangkok, Thailand.
| |
Collapse
|
21
|
|
22
|
Ng CS, Wu P, Foley J, Foley A, McDonald ML, Juan WT, Huang CJ, Lai YT, Lo WS, Chen CF, Leal SM, Zhang H, Widelitz RB, Patel PI, Li WH, Chuong CM. The chicken frizzle feather is due to an α-keratin (KRT75) mutation that causes a defective rachis. PLoS Genet 2012; 8:e1002748. [PMID: 22829773 PMCID: PMC3400578 DOI: 10.1371/journal.pgen.1002748] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 04/19/2012] [Indexed: 12/15/2022] Open
Abstract
Feathers have complex forms and are an excellent model to study the development and evolution of morphologies. Existing chicken feather mutants are especially useful for identifying genetic determinants of feather formation. This study focused on the gene F, underlying the frizzle feather trait that has a characteristic curled feather rachis and barbs in domestic chickens. Our developmental biology studies identified defects in feather medulla formation, and physical studies revealed that the frizzle feather curls in a stepwise manner. The frizzle gene is transmitted in an autosomal incomplete dominant mode. A whole-genome linkage scan of five pedigrees with 2678 SNPs revealed association of the frizzle locus with a keratin gene-enriched region within the linkage group E22C19W28_E50C23. Sequence analyses of the keratin gene cluster identified a 69 bp in-frame deletion in a conserved region of KRT75, an α-keratin gene. Retroviral-mediated expression of the mutated F cDNA in the wild-type rectrix qualitatively changed the bending of the rachis with some features of frizzle feathers including irregular kinks, severe bending near their distal ends, and substantially higher variations among samples in comparison to normal feathers. These results confirmed KRT75 as the F gene. This study demonstrates the potential of our approach for identifying genetic determinants of feather forms. With the availability of a sequenced chicken genome, the reservoir of variant plumage genes found in domestic chickens can provide insight into the molecular mechanisms underlying the diversity of feather forms. In this paper, we identify the molecular basis of the distinctive frizzle (F) feather phenotype that is caused by a single autosomal incomplete dominant gene in which heterozygous individuals show less severe phenotypes than homozygous individuals. Feathers in frizzle chickens curve backward. We used computer-assisted analysis to establish that the rachis of the frizzle feather was irregularly kinked and more severely bent than normal. Moreover, microscopic evaluation of regenerating feathers found reduced proliferating cells that give rise to the frizzle rachis. Analysis of a pedigree of frizzle chickens showed that the phenotype is linked to two single-nucleotide polymorphisms in a cluster of keratin genes within the linkage group E22C19W28_E50C23. Sequencing of the gene cluster identified a 69-base pair in-frame deletion of the protein coding sequence of the α-keratin-75 gene. Forced expression of the mutated gene in normal chickens produced a twisted rachis. Although chicken feathers are primarily composed of beta-keratins, our findings indicate that alpha-keratins have an important role in establishing the structure of feathers.
Collapse
Affiliation(s)
- Chen Siang Ng
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - John Foley
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Bloomington, Indiana, United States of America
- Department of Dermatology, Indiana University School of Medicine, Bloomington, Indiana, United States of America
| | - Anne Foley
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Bloomington, Indiana, United States of America
- Department of Dermatology, Indiana University School of Medicine, Bloomington, Indiana, United States of America
| | - Merry-Lynn McDonald
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Wen-Tau Juan
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| | - Chih-Jen Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Ting Lai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Wen-Sui Lo
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Feng Chen
- Department of Animal Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Suzanne M. Leal
- Department of Dermatology, Indiana University School of Medicine, Bloomington, Indiana, United States of America
| | - Huanmin Zhang
- Avian Disease and Oncology Laboratory, Agriculture Research Service, United States Department of Agriculture, East Lansing, Michigan, United States of America
| | - Randall B. Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Pragna I. Patel
- Institute for Genetic Medicine and Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, United States of America
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (W-HL); (C-MC)
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail: (W-HL); (C-MC)
| |
Collapse
|
23
|
De Cruz R, Horev L, Green J, Babay S, Sladden M, Zlotogorski A, Sinclair R. A novel monilethrix mutation in coil 2A of KRT86 causing autosomal dominant monilethrix with incomplete penetrance. Br J Dermatol 2012; 166 Suppl 2:20-6. [DOI: 10.1111/j.1365-2133.2012.10861.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Feng YG, Xiao SX, Xu AL, Feng JY, Wang JM. Congenital monilethrix and hereditary unilateral external auditory canal atresia are co-inherited in a Chinese pedigree with recurrent KRT86 mutation. J Dermatol 2012; 39:817-9. [PMID: 22568869 DOI: 10.1111/j.1346-8138.2012.01565.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Abstract
Desmosomes are intercellular junctions that contribute to cell-cell adhesion, signalling, development and differentiation in various tissues, including the skin. Composed of a network of transmembranous and intracellular plaque proteins, pathogenic autosomal dominant or recessive mutations have been reported in 10 different desmosomal genes, resulting in a spectrum of phenotypes variably affecting skin, hair and heart. This review summarizes the molecular pathology and phenotypes that predominantly affect the skin/hair. Recent desmosomal genodermatoses described include lethal congenital epidermolysis bullosa (plakoglobin), cardiomyopathy with alopecia and palmoplantar keratoderma (plakoglobin), hypotrichosis with scalp vesicles (desmocollin 3), and generalized peeling skin disease (corneodesmosin). Understanding the range of clinical phenotypes in combination with knowledge of the inherent desmosome gene mutation(s) is helpful in managing and counselling patients, as well as providing insight into the biological function of specific components of desmosomes in skin and other tissues.
Collapse
Affiliation(s)
- G Petrof
- St John's Institute of Dermatology, King's College London (Guy's Campus), London SE1 9RT, UK
| | | | | |
Collapse
|
26
|
Unveiling the roots of monogenic genodermatoses: genotrichoses as a paradigm. J Invest Dermatol 2011; 132:906-14. [PMID: 22170492 DOI: 10.1038/jid.2011.408] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The past two decades have seen significant and unprecedented progress in human genetics owing to the advent of novel molecular biological technologies and major developments in computational methods. Dermatology has benefited from and, in some cases, led these advances. In this article, we review major discoveries in the field of inherited hair diseases, which illustrate the changes that genodermatology has undergone in recent years from a mostly descriptive discipline through the elucidation of the molecular basis of numerous disorders, up to the first attempts at translating these new findings into novel preventive and therapeutic tools to the benefit of our patients.
Collapse
|
27
|
|
28
|
Abstract
The term 'keratin' is generally accepted to refer to the epithelial keratins of soft and hard epithelial tissues such as: skin, cornea, hair and nail. Since their initial characterization, the total number of mammalian keratins has increased to 54, including 28 type I and 26 type II keratins. Inherited defects that weaken the keratin load-bearing cytoskeleton produce phenotypes characterized by fragility of specific subsets of epithelial tissues. The vast majority of mutations are either missense or small in-frame in-del mutations and disease severity often relates to the position of the mutation in relation to the rod domain. The most complex epithelial structure in humans, the hair follicle, contains trichocyte ('hard') keratin filaments and approximately half of the 54 functional human keratin genes are trichocyte keratins. So far, only four of these have been linked to human genetic disorders: monilethrix, hair-nail ectodermal dysplasia, pseudofolliculitis barbae and woolly hair, while the majority of the hair keratins remain unlinked to human phenotypes. Keratin disorders are a classical group of dominant-negative genetic disorders, representing a large healthcare burden, especially within dermatology. Recent advances in RNA interference therapeutics, particularly in the form of small-interfering RNAs, represent a potential therapy route for keratin disorders through selectively silencing the mutant allele. To date, mutant-specific siRNAs for epidermolysis bullosa simplex, pachyonychia congenita and Messmann epithelial corneal dystrophy-causing missense mutations have been developed and proven to have unprecedented specificity and potency. This could herald the dawn of a new era in translational medical research applied to genetics.
Collapse
Affiliation(s)
- W H Irwin McLean
- Division of Molecular Medicine, Colleges of Life Sciences and Medicine, Dentistry & Nursing, University of Dundee, Dundee, UK.
| | | |
Collapse
|
29
|
Farooq M, Ito M, Naito M, Shimomura Y. A case of monilethrix caused by novel compound heterozygous mutations in the desmoglein 4 (DSG4) gene. Br J Dermatol 2011; 165:425-31. [DOI: 10.1111/j.1365-2133.2011.10373.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Fischer H, Szabo S, Scherz J, Jaeger K, Rossiter H, Buchberger M, Ghannadan M, Hermann M, Theussl HC, Tobin DJ, Wagner EF, Tschachler E, Eckhart L. Essential role of the keratinocyte-specific endonuclease DNase1L2 in the removal of nuclear DNA from hair and nails. J Invest Dermatol 2011; 131:1208-15. [PMID: 21307874 DOI: 10.1038/jid.2011.13] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Degradation of nuclear DNA is a hallmark of programmed cell death. Epidermal keratinocytes die in the course of cornification to function as the dead building blocks of the cornified layer of the epidermis, nails, and hair. Here, we investigated the mechanism and physiological function of DNA degradation during cornification in vivo. Targeted deletion of the keratinocyte-specific endonuclease DNase1-like 2 (DNase1L2) in the mouse resulted in the aberrant retention of DNA in hair and nails, as well as in epithelia of the tongue and the esophagus. In contrast to our previous studies in human keratinocytes, ablation of DNase1L2 did not compromise the cornified layer of the epidermis. Quantitative PCRs showed that the amount of nuclear DNA was dramatically increased in both hair and nails, and that mitochondrial DNA was increased in the nails of DNase1L2-deficient mice. The presence of nuclear DNA disturbed the normal arrangement of structural proteins in hair corneocytes and caused a significant decrease in the resistance of hair to mechanical stress. These data identify DNase1L2 as an essential and specific regulator of programmed cell death in skin appendages, and demonstrate that the breakdown of nuclear DNA is crucial for establishing the full mechanical stability of hair.
Collapse
Affiliation(s)
- Heinz Fischer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Möhrenschlager M, Weichenmeier I, Lauener R, Worret WI, Ring J, Behrendt H. Acquired nonscarring diffuse hair loss in a 3-year-old girl. Eur J Pediatr 2011; 170:127-8. [PMID: 20669032 DOI: 10.1007/s00431-010-1257-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/01/2010] [Accepted: 07/06/2010] [Indexed: 11/30/2022]
Abstract
A 3-year-old girl showed fine, sparse, and brittle scalp hair without signs of cicatricial cutaneous alterations. Dermoscopy as well as scanning electron microscopy revealed elliptical nodes as well as constricted regions along the hair shaft.
Collapse
Affiliation(s)
- Matthias Möhrenschlager
- Department o f Dermatology and Allergology, Allergieklinik, Hochgebirgsklinik, Herman-Burchard-Street 1, 7265 Davos, Switzerland.
| | | | | | | | | | | |
Collapse
|
32
|
Wasif N, Naqvi SKUH, Basit S, Ali N, Ansar M, Ahmad W. Novel mutations in the keratin-74 (KRT74) gene underlie autosomal dominant woolly hair/hypotrichosis in Pakistani families. Hum Genet 2010; 129:419-24. [PMID: 21188418 DOI: 10.1007/s00439-010-0938-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Accepted: 12/19/2010] [Indexed: 10/18/2022]
Abstract
Autosomal dominant woolly hair (ADWH) is an inherited condition of tightly curled and twisted scalp hair. Recently, a mutation in human keratin-74 (KRT74) gene has been shown to cause this form of hereditary hair disorder. In the present study, we have described two families (A and B) having multiple individuals affected with autosomal dominant form of hair loss disorders. In family A, 10 individuals showed ADWH phenotype while in the family B, 14 individuals showed hypotrichosis of the scalp. Genotyping using polymorphic microsatellite markers showed linkage of both the families to type II keratin gene cluster on the chromosome 12q12-14.1. Mutation analysis of the KRT74 gene identified two novel mutations in the affected individuals of the families. The sequence analysis revealed a splice acceptor site mutation (c.IVS8-1G>A) in family A and a missense variant (c.1444G>A, p.Asp482Asn) in family B. Mutations identified in the present study extend the body of evidence implicating the KRT74 gene in the pathogenesis of autosomal dominant hair loss disorders.
Collapse
Affiliation(s)
- Naveed Wasif
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | | | | | | | | |
Collapse
|
33
|
Keratin gene mutations in disorders of human skin and its appendages. Arch Biochem Biophys 2010; 508:123-37. [PMID: 21176769 DOI: 10.1016/j.abb.2010.12.019] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 12/16/2010] [Indexed: 11/21/2022]
Abstract
Keratins, the major structural protein of all epithelia are a diverse group of cytoskeletal scaffolding proteins that form intermediate filament networks, providing structural support to keratinocytes that maintain the integrity of the skin. Expression of keratin genes is usually regulated by differentiation of the epidermal cells within the stratifying squamous epithelium. Amongst the 54 known functional keratin genes in humans, about 22 different genes including, the cornea, hair and hair follicle-specific keratins have been implicated in a wide range of hereditary diseases. The exact phenotype of each disease usually reflects the spatial expression level and the types of mutated keratin genes, the location of the mutations and their consequences at sub-cellular levels as well as other epigenetic and/or environmental factors. The identification of specific pathogenic mutations in keratin disorders formed the basis of our understanding that led to re-classification, improved diagnosis with prognostic implications, prenatal testing and genetic counseling in severe keratin genodermatoses. Molecular defects in cutaneous keratin genes encoding for keratin intermediate filaments (KIFs) causes keratinocytes and tissue-specific fragility, accounting for a large number of genetic disorders in human skin and its appendages. These diseases are characterized by keratinocytes fragility (cytolysis), intra-epidermal blistering, hyperkeratosis, and keratin filament aggregation in severely affected tissues. Examples include epidermolysis bullosa simplex (EBS; K5, K14), keratinopathic ichthyosis (KPI; K1, K2, K10) i.e. epidermolytic ichthyosis (EI; K1, K10) and ichthyosis bullosa of Siemens (IBS; K2), pachyonychia congenita (PC; K6a, K6b, K16, K17), epidermolytic palmo-plantar keratoderma (EPPK; K9, (K1)), monilethrix (K81, K83, K86), ectodermal dysplasia (ED; K85) and steatocystoma multiplex. These keratins also have been identified to have roles in apoptosis, cell proliferation, wound healing, tissue polarity and remodeling. This review summarizes and discusses the clinical, ultrastructural, molecular genetics and biochemical characteristics of a broad spectrum of keratin-related genodermatoses, with special clinical emphasis on EBS, EI and PC. We also highlight current and emerging model tools for prognostic future therapies. Hopefully, disease modeling and in-depth understanding of the molecular pathogenesis of the diseases may lead to the development of novel therapies for several hereditary cutaneous diseases.
Collapse
|
34
|
Affiliation(s)
- Yutaka Shimomura
- Department of Dermatology, Columbia University, New York, NY 10032
| | - Angela M. Christiano
- Department of Dermatology, Columbia University, New York, NY 10032
- Department of Genetics and Development, Columbia University, New York, NY 10032;
| |
Collapse
|
35
|
Subramanya RD, Coda AB, Sinha AA. Transcriptional profiling in alopecia areata defines immune and cell cycle control related genes within disease-specific signatures. Genomics 2010; 96:146-53. [PMID: 20546884 DOI: 10.1016/j.ygeno.2010.05.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 05/07/2010] [Accepted: 05/08/2010] [Indexed: 11/18/2022]
Abstract
Alopecia areata (AA) is a non-scarring inflammatory hair loss disease with a complex autoimmune etiopathogenesis that is poorly understood. In order to investigate the pathogenesis of AA at the molecular level, we examined the gene expression profiles in skin samples from lesional (n=10) and non-lesional sites (n=10) of AA patients using Affymetrix Hu95A-v2 arrays. 363 genes were found to be differentially expressed in AA skin compared to non-lesional skin; 97 were up-regulated and 266 were down-regulated. Functional classification of the differentially expressed genes (DEGs) provides evidence for T-cell mediated immune response (CCL5, CXCL10, CD27, ICAM2, ICAM3, IL7R, and CX3CL1), and a possible humoral mechanism (IGHG3, IGHM, and CXCR5) in AA. We also find modulation in gene expression favoring cellular proliferation arrest at various levels (FGF5, FGF18, EREG, and FOXC2) with apoptotic dysregulation (LCK, TNF, TRAF2, and SFN) and decreased expression of hair follicle structural proteins. Further analysis of patients with AAT (<1 year duration, n=4) and AAP (>1 year duration, n=6) of disease revealed 262 DEGs distinctly separating the 2 groups, indicating the existence of gene profiles unique to the initial and later stages of disease.
Collapse
Affiliation(s)
- Raghunandan Dudda Subramanya
- Center for Investigative Dermatology, Division of Dermatology and Cutaneous Sciences, College of Human Medicine, East Lansing, MI, USA
| | | | | |
Collapse
|
36
|
Shimomura Y, Wajid M, Petukhova L, Kurban M, Christiano AM. Autosomal-dominant woolly hair resulting from disruption of keratin 74 (KRT74), a potential determinant of human hair texture. Am J Hum Genet 2010; 86:632-8. [PMID: 20346438 DOI: 10.1016/j.ajhg.2010.02.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/21/2010] [Accepted: 02/22/2010] [Indexed: 12/21/2022] Open
Abstract
Autosomal-dominant woolly hair (ADWH) is a rare disorder characterized by tightly curled hair. The molecular basis of ADWH has not previously been reported. In this study, we identified a Pakistani family with ADWH. The family showed linkage to chromosome 12q12-q14.1, containing the type II keratin gene cluster. We discovered a heterozygous mutation, p.Asn148Lys, within the helix initiation motif of the keratin 74 (KRT74) gene in all affected family members. KRT74 encodes the inner root sheath (IRS)-specific epithelial (soft) keratin 74. We demonstrate that the mutant K74 protein results in disruption of keratin intermediate filament formation in cultured cells, most likely in a dominant-negative manner. Furthermore, we sequenced the mouse Krt71-74 genes in the dominant Caracul-like 4 (Cal4) allele, which is characterized by a wavy-coat phenotype and maps to the same region of mouse chromosome 15 as the Caracul (Ca) and Reduced coat (Rco) alleles. We identified a heterozygous mutation, p.Glu440Lys, not in Krt74 but in the neighboring gene, Krt71. Krt71 was previously reported to harbor Ca and Rco mutations, as well as a coding SNP that is associated with curly-coated dogs. In this study, we define the ADWH phenotype resulting from a mutation in a hair-follicle-specific epithelial keratin in humans. Our findings not only further underscore the crucial roles of the IRS-specific epithelial keratin genes Krt71-74 in hair disorders but also open the possibility that these genes might function as genetic determinants of normal variation in hair texture across mammalian species.
Collapse
|
37
|
Omary MB. "IF-pathies": a broad spectrum of intermediate filament-associated diseases. J Clin Invest 2009; 119:1756-62. [PMID: 19587450 DOI: 10.1172/jci39894] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intermediate filaments (IFs) are encoded by the largest gene family among the three major cytoskeletal protein groups. Unique IF compliments are expressed in selective cell types, and this expression is reflected in their involvement, upon mutation, as a cause of or predisposition to more than 80 human tissue-specific diseases. This Review Series covers diseases and functional and structural aspects pertaining to IFs and highlights the molecular and functional consequences of IF-associated diseases (IF-pathies). Exciting challenges and opportunities face the IF field, including developing both a better understanding of the pathogenesis of IF-pathies and targeted therapeutic approaches.
Collapse
Affiliation(s)
- M Bishr Omary
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-5622, USA.
| |
Collapse
|
38
|
Abstract
Hair is a potent cultural signal that when perceived as deficient can invite psychological trauma. Over the past few decades, researchers have successfully dissected several controls for hair follicle development and growth. However, we know relatively little about the genetic controls for hair fiber form and texture, despite wide variability in the expression of hair phenotypes among different, even very closely related, individuals. In this issue, Shimomura et al. present some intriguing insights into the potential role for lipase H in the control of hair form and texture.
Collapse
|
39
|
The molecular basis of human keratin disorders. Hum Genet 2009; 125:355-73. [DOI: 10.1007/s00439-009-0646-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Accepted: 02/18/2009] [Indexed: 01/01/2023]
|
40
|
Identification of reptilian genes encoding hair keratin-like proteins suggests a new scenario for the evolutionary origin of hair. Proc Natl Acad Sci U S A 2008; 105:18419-23. [PMID: 19001262 DOI: 10.1073/pnas.0805154105] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The appearance of hair is one of the main evolutionary innovations in the amniote lineage leading to mammals. The main components of mammalian hair are cysteine-rich type I and type II keratins, also known as hard alpha-keratins or "hair keratins." To determine the evolutionary history of these important structural proteins, we compared the genomic loci of the human hair keratin genes with the homologous loci of the chicken and of the green anole lizard Anolis carolinenis. The genome of the chicken contained one type II hair keratin-like gene, and the lizard genome contained two type I and four type II hair keratin-like genes. Orthology of the latter genes and mammalian hair keratins was supported by gene locus synteny, conserved exon-intron organization, and amino acid sequence similarity of the encoded proteins. The lizard hair keratin-like genes were expressed most strongly in the digits, indicating a role in claw formation. In addition, we identified a novel group of reptilian cysteine-rich type I keratins that lack homologues in mammals. Our data show that cysteine-rich alpha-keratins are not restricted to mammals and suggest that the evolution of mammalian hair involved the co-option of pre-existing structural proteins.
Collapse
|
41
|
|
42
|
Shimomura Y, Wajid M, Petukhova L, Shapiro L, Christiano AM. Mutations in the lipase H gene underlie autosomal recessive woolly hair/hypotrichosis. J Invest Dermatol 2008; 129:622-8. [PMID: 18830268 DOI: 10.1038/jid.2008.290] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Woolly hair (WH) is characterized by the presence of fine and tightly curled hair. WH can appear as a symptom of some systemic diseases, or without associated findings (nonsyndromic WH). Nonsyndromic WH is known to be inherited as either an autosomal-dominant (OMIM 194300) or recessive (ARWH; OMIM 278150) trait. In this study, we identified 11 consanguineous families of Pakistani origin with ARWH, as well as associated features including sparse and hypopigmented hair shafts. We first checked for mutations in the P2RY5 gene, which encodes an orphan G-protein-coupled receptor that we recently identified as a cause of ARWH. However, none of the 11 families had mutations in the P2RY5 gene. To identify the disease locus, we performed linkage studies in one of these families using the Affymetrix 10K array, and identified a region of suggestive linkage on chromosome 3q27. This region contains the lipase H (LIPH) gene which has been recently shown to underlie an autosomal-recessive form of hypotrichosis. Mutation analysis resulted in the identification of a total of 5 pathogenic mutations in the LIPH of all 11 families analyzed. These results show that LIPH is a second causative gene for ARWH/hypotrichosis, giving rise to a phenotype clinically indistinguishable from P2RY5 mutations.
Collapse
Affiliation(s)
- Yutaka Shimomura
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
43
|
The genetics of hair shaft disorders. J Am Acad Dermatol 2008; 59:1-22; quiz 23-6. [DOI: 10.1016/j.jaad.2008.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 04/03/2008] [Accepted: 04/07/2008] [Indexed: 11/23/2022]
|
44
|
Abstract
The keratins are the typical intermediate filament proteins of epithelia, showing an outstanding degree of molecular diversity. Heteropolymeric filaments are formed by pairing of type I and type II molecules. In humans 54 functional keratin genes exist. They are expressed in highly specific patterns related to the epithelial type and stage of cellular differentiation. About half of all keratins—including numerous keratins characterized only recently—are restricted to the various compartments of hair follicles. As part of the epithelial cytoskeleton, keratins are important for the mechanical stability and integrity of epithelial cells and tissues. Moreover, some keratins also have regulatory functions and are involved in intracellular signaling pathways, e.g. protection from stress, wound healing, and apoptosis. Applying the new consensus nomenclature, this article summarizes, for all human keratins, their cell type and tissue distribution and their functional significance in relation to transgenic mouse models and human hereditary keratin diseases. Furthermore, since keratins also exhibit characteristic expression patterns in human tumors, several of them (notably K5, K7, K8/K18, K19, and K20) have great importance in immunohistochemical tumor diagnosis of carcinomas, in particular of unclear metastases and in precise classification and subtyping. Future research might open further fields of clinical application for this remarkable protein family.
Collapse
|
45
|
Schweizer J, Langbein L, Rogers MA, Winter H. Hair follicle-specific keratins and their diseases. Exp Cell Res 2007; 313:2010-20. [PMID: 17428470 DOI: 10.1016/j.yexcr.2007.02.032] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 02/21/2007] [Accepted: 02/22/2007] [Indexed: 11/25/2022]
Abstract
The human keratin family comprises 54 members, 28 type I and 26 type II. Out of the 28 type I keratins, 17 are epithelial and 11 are hair keratins. Similarly, the 26 type II members comprise 20 epithelial and 6 hair keratins. As, however, 9 out of the 37 epithelial keratins are specifically expressed in the hair follicle, the total number of hair follicle-specific keratins (26) almost equals that of those expressed in the various forms of epithelia (28). Up to now, more than half of the latter have been found to be involved in inherited diseases, with mutated type I and type II members being roughly equally causal. In contrast, out of the 26 hair follicle-specific keratins only 5 have, at present, been associated with inherited hair disorders, while one keratin merely acts as a risk factor. In addition, all hair follicle-specific keratins involved in pathologies are type II keratins. Here we provide a detailed description of the respective hair diseases which are either due to mutations in hair keratins (monilethrix, ectodermal dysplasia of hair and nail type) or hair follicle-specific epithelial keratins (two mouse models, RCO3 and Ca(Rin) as well as pseudofolliculitis barbae).
Collapse
Affiliation(s)
- Jürgen Schweizer
- Section of Normal and Neoplastic Epidermal, Differentiation (A145), German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
46
|
Naeem M, John P, Ali G, Ahmad W. Pure hair-nail ectodermal dysplasia maps to chromosome 12p11.1-q21.1 in a consanguineous Pakistani family. Clin Exp Dermatol 2007; 32:502-5. [PMID: 17489990 DOI: 10.1111/j.1365-2230.2007.02413.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ectodermal dysplasias (ED) are developmental disorders affecting tissues of ectodermal origin including hair, nail, teeth and sweat glands. To date, four different types of ectodermal dysplasias involving only hair and nails have been described. In an effort to understand the molecular basis of ED of hair and nails, a Pakistani family with multiple affected individuals was studied. Linkage analysis was carried out by genotyping eight members of the family (five normal and three affected) using microsatellite markers linked to the related phenotype. The diseased phenotype was mapped to chromosome 12p11.1-q21.1 (Zmax=3.1). DNA sequence analysis of the coding exons and splice sites of six hair keratin genes, located in the linkage interval, failed to detect any pathogenic mutation in the affected individuals of the family. Failure to detect a mutation in the epithelial keratin genes suggests that the mutation lies either in the regulatory region of one of the keratin genes or in another unknown gene, located in the linkage interval, with a possible role in the development of ectodermal appendages.
Collapse
Affiliation(s)
- M Naeem
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | | | | |
Collapse
|
47
|
Oshima RG. Intermediate filaments: a historical perspective. Exp Cell Res 2007; 313:1981-94. [PMID: 17493611 PMCID: PMC1950476 DOI: 10.1016/j.yexcr.2007.04.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 04/03/2007] [Accepted: 04/05/2007] [Indexed: 01/08/2023]
Abstract
Intracellular protein filaments intermediate in size between actin microfilaments and microtubules are composed of a surprising variety of tissue specific proteins commonly interconnected with other filamentous systems for mechanical stability and decorated by a variety of proteins that provide specialized functions. The sequence conservation of the coiled-coil, alpha-helical structure responsible for polymerization into individual 10 nm filaments defines the classification of intermediate filament proteins into a large gene family. Individual filaments further assemble into bundles and branched cytoskeletons visible in the light microscope. However, it is the diversity of the variable terminal domains that likely contributes most to different functions. The search for the functions of intermediate filament proteins has led to discoveries of roles in diseases of the skin, heart, muscle, liver, brain, adipose tissues and even premature aging. The diversity of uses of intermediate filaments as structural elements and scaffolds for organizing the distribution of decorating molecules contrasts with other cytoskeletal elements. This review is an attempt to provide some recollection of how such a diverse field emerged and changed over about 30 years.
Collapse
Affiliation(s)
- Robert G Oshima
- Oncodevelopmental Biology Program, Cancer Research Center, The Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
48
|
Schlake T. Determination of hair structure and shape. Semin Cell Dev Biol 2007; 18:267-73. [PMID: 17324597 DOI: 10.1016/j.semcdb.2007.01.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2006] [Revised: 01/11/2007] [Accepted: 01/15/2007] [Indexed: 01/21/2023]
Abstract
The hair follicle attracted significant attention as a model for the investigation of diverse biological problems. Whereas its morphology and the structure of the hair shaft are known in detail, the molecular biology of this miniorgan is significantly less characterised. Many efforts focussed on the development of the hair follicle and its stem cell reservoir; by contrast, the follicular product, the hair, which is interesting not only in terms of cosmetics was neglected. This review highlights our current knowledge of the control of hair structure and shape with emphasis on mouse hair follicle biology and discusses continuing problems.
Collapse
Affiliation(s)
- Thomas Schlake
- Max-Planck Institute of Immunobiology, Stuebeweg 51, 79108 Freiburg, Germany.
| |
Collapse
|
49
|
Runkel F, Klaften M, Koch K, Böhnert V, Büssow H, Fuchs H, Franz T, Hrabé de Angelis M. Morphologic and molecular characterization of two novel Krt71 (Krt2-6g) mutations: Krt71rco12 and Krt71rco13. Mamm Genome 2006; 17:1172-82. [PMID: 17143583 DOI: 10.1007/s00335-006-0084-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 08/30/2006] [Indexed: 12/17/2022]
Abstract
We have analyzed two novel mouse mutant strains, Rco12 and Rco13, displaying a wavy pelage and curly vibrissae that have been identified in an ENU screen for dominant mutations affecting the pelage. The mutations were mapped to mouse Chromosome 15 and identified as missense point mutations in the first exon of the Krt71 (formerly called Krt2-6g) gene causing alterations of amino acid residue 143 from alanine to glycine (Rco12) and residue 146 from isoleucine to phenylalanine. The morphologic analyses demonstrated that both mutations cause identical phenotypes leading to the formation of filamentous aggregates in Henle's and Huxley's layers of the inner root sheath (IRS) of the hair follicle that leads to the bending of the hair shaft. Both novel mutations are located in the immediate vicinity of previously identified mutations in murine Krt71 that cause similar phenotypes and alter the helix initiation motif of the keratin. The characterization of these mutants demonstrates the importance of this Krt71 domain for the formation of linear IRS intermediate filaments.
Collapse
Affiliation(s)
- Fabian Runkel
- Anatomisches Institut, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 10, D-53115 Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Zlotogorski A, Marek D, Horev L, Abu A, Ben-Amitai D, Gerad L, Ingber A, Frydman M, Reznik-Wolf H, Vardy DA, Pras E. An autosomal recessive form of monilethrix is caused by mutations in DSG4: clinical overlap with localized autosomal recessive hypotrichosis. J Invest Dermatol 2006; 126:1292-6. [PMID: 16575393 DOI: 10.1038/sj.jid.5700251] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Monilethrix is a structural defect of the hair shaft usually inherited in an autosomal dominant fashion and caused by mutations in the hHb1, hHb3, and hHb6 keratin genes. Autosomal recessive inheritance in this disease has been sporadically reported. We encountered 12 Jewish families from Iraq, Iran, and Morocco with microscopic findings of monilethrix, but with no evidence of vertical transmission. Since no mutations were found in these three hair keratin genes, we examined nine chromosomal regions containing gene clusters encoding skin and hair genes. On chromosome 18q, a common haplotype in the homozygous state was found among all seven Iraqi patients, but not in 20 controls (P<0.0001). Sequencing of the main candidate gene from this region revealed four different mutations in desmoglein 4 (DSG4). Mutations in DSG4 have been previously reported in localized autosomal recessive hypotrichosis, a disorder that shares the clinical features of monilethrix but lacks the characteristic microscopic appearance of the hair shaft. Our findings have important implications for genetic counseling to monilethrix patients and families, and suggest that DSG4-associated hair disorders may be more common than previously thought.
Collapse
Affiliation(s)
- Abraham Zlotogorski
- Department of Dermatology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|