1
|
Hubert JN, Perret M, Riquet J, Demars J. Livestock species as emerging models for genomic imprinting. Front Cell Dev Biol 2024; 12:1348036. [PMID: 38500688 PMCID: PMC10945557 DOI: 10.3389/fcell.2024.1348036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/19/2024] [Indexed: 03/20/2024] Open
Abstract
Genomic imprinting is an epigenetically-regulated process of central importance in mammalian development and evolution. It involves multiple levels of regulation, with spatio-temporal heterogeneity, leading to the context-dependent and parent-of-origin specific expression of a small fraction of the genome. Genomic imprinting studies have therefore been essential to increase basic knowledge in functional genomics, evolution biology and developmental biology, as well as with regard to potential clinical and agrigenomic perspectives. Here we offer an overview on the contribution of livestock research, which features attractive resources in several respects, for better understanding genomic imprinting and its functional impacts. Given the related broad implications and complexity, we promote the use of such resources for studying genomic imprinting in a holistic and integrative view. We hope this mini-review will draw attention to the relevance of livestock genomic imprinting studies and stimulate research in this area.
Collapse
Affiliation(s)
| | | | | | - Julie Demars
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| |
Collapse
|
2
|
Abstract
Nutrient intake is obligatory for animal growth and development, but nutrients alone are not sufficient. Indeed, insulin and homologous hormones are required for normal growth even in the presence of nutrients. These hormones communicate nutrient status between organs, allowing animals to coordinate growth and metabolism with nutrient supply. Insulin and related hormones, such as insulin-like growth factors and insulin-like peptides, play important roles in development and metabolism, with defects in insulin production and signaling leading to hyperglycemia and diabetes. Here, we describe the insulin hormone family and the signal transduction pathways activated by these hormones. We highlight the roles of insulin signaling in coordinating maternal and fetal metabolism and growth during pregnancy, and we describe how secretion of insulin is regulated at different life stages. Additionally, we discuss the roles of insulin signaling in cell growth, stem cell proliferation and cell differentiation. We provide examples of the role of insulin in development across multiple model organisms: Caenorhabditis elegans, Drosophila, zebrafish, mouse and human.
Collapse
Affiliation(s)
- Miyuki Suzawa
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Michelle L. Bland
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
3
|
Murugan E, Poongan A. Synchronous electrochemical detection of nanomolar Acetaminophen, Cytosine and Phenylephrine hydrochloride in drugs using Zn3V2O8/ZrO2@f-MWCNTs nanocomposite GC electrode. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
4
|
Ahn J, Hwang IS, Park MR, Hwang S, Cho IC, Lee K. The AIRN lncRNA is imprinted and paternally expressed in pigs. J Anim Sci 2023; 101:skad367. [PMID: 37925372 PMCID: PMC10638104 DOI: 10.1093/jas/skad367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023] Open
Abstract
Genomic imprinting plays critical roles during the development of mammalian species and underlying epigenetic mechanisms frequently involve long non-coding RNAs (lncRNAs). The paternal transcription of the antisense Igf2r RNA noncoding (Airn) is responsible for paternal silencing of the mouse insulin-like growth factor 2 receptor (Igf2r) gene and maternal Igf2r expression. Although the corresponding maternal DNA methylation imprint is conserved in humans and pigs, the orthologous AIRN lncRNA has been identified in humans but not in pigs. Here, we aimed to examine imprinted allelic expression of the porcine AIRN lncRNA along with a corresponding differentially methylated region (DMR) and to analyze allelic expression of AIRN and IGF2R in pigs. By comparing parthenogenetic and control porcine embryos, we identified a maternally methylated DMR and a significantly higher expression of AIRN lncRNA in control embryos (P < 0.05) indicating its paternal expression. Further analyses revealed that the expression of AIRN lncRNA was enriched in the pig brain and its subregions, and it was monoallelically expressed; whereas, IGF2R was expressed biallelically suggesting an absence of allele-specific transcriptional regulation. Our findings will lead to further investigations into the role of the imprinted porcine AIRN lncRNA during pig development.
Collapse
Affiliation(s)
- Jinsoo Ahn
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210
| | - In-Sul Hwang
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Jeonbuk 55365, Republic of Korea
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032
| | - Mi-Ryung Park
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Jeonbuk 55365, Republic of Korea
| | - Seongsoo Hwang
- Animal Welfare Research Team, National Institute of Animal Science, RDA, Jeonbuk 55365, Republic of Korea
| | - In-Cheol Cho
- Subtropical Livestock Research Institute, National Institute of Animal Science, RDA, Jeju 63242, Republic of Korea
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
5
|
Wang X, Asgenbaatar N, Shen Y, Yi M, Zhao B, Ren H, Davshilt T, Ulaangerel T, Wang M, Burenbaatar A, Tian S, Li B, Dugarjav M, Bou G. Lower expression of the equine maternally imprinted gene IGF2R is related to the slow proliferation of hinny embryonic fibroblast in vitro. Mol Biol Rep 2023; 50:185-192. [PMID: 36319787 DOI: 10.1007/s11033-022-07937-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 09/08/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Proliferation of embryonic fibroblasts under the same cell culture conditions, hinny embryonic fibroblasts (HiEFs) was slower than horse embryonic fibroblast (HEFs), donkey embryonic fibroblasts (DEFs) and mule embryonic fibroblasts (MuEFs). The imprinted genes IGF2 and IGF2R are important for cell proliferation. Therefore, we investigated whether the slower proliferation of HiEFs is related to an aberrant gene expression of IGF2 or its receptors or genes influencing the expression of the IGF2 system. METHODS AND RESULTS Real-time polymerase chain reaction, immunofluorescence and cell starving experiment in HEFs, DEFs, MuEFs and HiEFs revealed that the slower proliferation of HiEF in vitro was related to its lower expression of IGF2R (P < 0.001). Moreover, quantification of allele-specific expression and bisulfate assay confirmed that in both MuEFs and HiEFs, IGF2R had normal maternal imprinting, implying that the imprint aberrant was not involved in the lower IGF2R expression in HiEFs. CONCLUSIONS The reduction of IGF2R expression in HiEFs is associated with its slower proliferation in vitro.
Collapse
Affiliation(s)
- Xisheng Wang
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Nairag Asgenbaatar
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Yingchao Shen
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Minna Yi
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Bilig Zhao
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Hong Ren
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Toli Davshilt
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Tseweendolmaa Ulaangerel
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Min Wang
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Als Burenbaatar
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Shuyue Tian
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Bei Li
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Manglai Dugarjav
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, 010018, Hohhot, China.
| | - Gerelchimeg Bou
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, 010018, Hohhot, China.
| |
Collapse
|
6
|
Ahn J, Lee J, Kim DH, Hwang IS, Park MR, Cho IC, Hwang S, Lee K. Loss of Monoallelic Expression of IGF2 in the Adult Liver Via Alternative Promoter Usage and Chromatin Reorganization. Front Genet 2022; 13:920641. [PMID: 35938007 PMCID: PMC9355166 DOI: 10.3389/fgene.2022.920641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
In mammals, genomic imprinting operates via gene silencing mechanisms. Although conservation of the imprinting mechanism at the H19/IGF2 locus has been generally described in pigs, tissue-specific imprinting at the transcript level, monoallelic-to-biallelic conversion, and spatio-temporal chromatin reorganization remain largely uninvestigated. Here, we delineate spatially regulated imprinting of IGF2 transcripts, age-dependent hepatic mono- to biallelic conversion, and reorganization of topologically associating domains at the porcine H19/IGF2 locus for better translation to human and animal research. Whole-genome bisulfite sequencing (WGBS) and RNA sequencing (RNA-seq) of normal and parthenogenetic porcine embryos revealed the paternally hypermethylated H19 differentially methylated region and paternal expression of IGF2. Using a polymorphism-based approach and omics datasets from chromatin immunoprecipitation sequencing (ChIP–seq), whole-genome sequencing (WGS), RNA-seq, and Hi-C, regulation of IGF2 during development was analyzed. Regulatory elements in the liver were distinguished from those in the muscle where the porcine IGF2 transcript was monoallelically expressed. The IGF2 transcript from the liver was biallelically expressed at later developmental stages in both pigs and humans. Chromatin interaction was less frequent in the adult liver compared to the fetal liver and skeletal muscle. The duration of genomic imprinting effects within the H19/IGF2 locus might be reduced in the liver with biallelic conversion through alternative promoter usage and chromatin remodeling. Our integrative omics analyses of genome, epigenome, and transcriptome provided a comprehensive view of imprinting status at the H19/IGF2 cluster.
Collapse
Affiliation(s)
- Jinsoo Ahn
- Functional Genomics Laboratory, Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Joonbum Lee
- Functional Genomics Laboratory, Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
- The Ohio State University Interdisciplinary Human Nutrition Program, The Ohio State University, Columbus, OH, United States
| | - Dong-Hwan Kim
- Functional Genomics Laboratory, Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - In-Sul Hwang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeonbuk, South Korea
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, Columbia University, New York, NY, United States
| | - Mi-Ryung Park
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeonbuk, South Korea
| | - In-Cheol Cho
- National Institute of Animal Science, Rural Development Administration, Jeju, South Korea
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeonbuk, South Korea
| | - Kichoon Lee
- Functional Genomics Laboratory, Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
- The Ohio State University Interdisciplinary Human Nutrition Program, The Ohio State University, Columbus, OH, United States
- *Correspondence: Kichoon Lee,
| |
Collapse
|
7
|
Conflict and the evolution of viviparity in vertebrates. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Genomic imprinting of the IGF2R/AIR locus is conserved between bovines and mice. Theriogenology 2021; 180:121-129. [PMID: 34971973 DOI: 10.1016/j.theriogenology.2021.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/17/2021] [Accepted: 12/15/2021] [Indexed: 11/21/2022]
Abstract
Genomic imprinting is an epigenetic phenomenon that leads to genes monoallelically expressed in a parent-of-origin-specific manner and plays an important role in the embryonic development and postnatal growth of mammals. Imprinted genes usually occur in clusters in a chromosomal region and are regulated by a cis-acting imprinting control region that involves differential DNA methylation modification. Igf2r, Slc22a2 and Slc22a3 are three maternally expressed genes on mouse chromosome 17. The paternally expressed long noncoding RNA (lncRNA) Air and the nonimprinted gene Slc22a1 are also located in the imprinted region. Comparative characterization of imprinted clusters between species is useful for us to understand the biological significance and epigenetic regulating mechanism of genomic imprinting. The aim of this study was to analyze the allelic expression pattern of AIR and SLC22A1-3 genes in cattle and to determine the role of DNA methylation in regulating gene expression. Allelic expression analysis was performed in bovine adult tissues and term placenta using an SNP-based approach. We found that IGF2R, AIR and SLC22A3 were monoallelically expressed in all detected bovine somatic tissues, including heart, liver, spleen, lung, kidney, muscle, fat and brain. In bovine placenta, IGF2R and SLC22A3 are maternally expressed; however, the AIR gene is paternally expressed. Tissue-specific monoallelic expression of SLC22A2 is detected in bovines, with monoallelic expression in the spleen and brain but biallelic expression in kidney tissues. SLC22A1 is only detected in bovine liver and kidney tissues and is biallelicly expressed, which is consistent with the imprint expression in mice. To determine the possible role of DNA methylation in regulating the monoallelic/imprinted expression of bovine IGF2R, AIR, SLC22A2, and SLC22A3 genes, we analyzed the DNA methylation status of CpG islands in the first exon of SLC22A2, the promoter region of SLC22A3 and region 2 in the second intron of the IGF2R gene by bisulfite sequencing. Two differentially methylated regions (DMRs) were detected in the first exon of bovine SLC22A3 and the common regions of IGF2R and AIR. This suggests that DNA methylation is involved in the regulation of monoallelic/imprinted expression of IGF2R, AIR and SLC22A3 genes in cattle.
Collapse
|
9
|
Wu YQ, Zhao H, Li YJ, Khederzadeh S, Wei HJ, Zhou ZY, Zhang YP. Genome-wide identification of imprinted genes in pigs and their different imprinting status compared with other mammals. Zool Res 2020; 41:721-725. [PMID: 32808516 PMCID: PMC7671905 DOI: 10.24272/j.issn.2095-8137.2020.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Genomic imprinting often results in parent-of-origin specific differential expression of maternally and paternally inherited alleles and plays an essential role in mammalian development and growth. Mammalian genomic imprinting has primarily been studied in mice and humans, with only limited information available for pigs. To systematically characterize this phenomenon and evaluate imprinting status between different species, we investigated imprinted genes on a genome-wide scale in pig brain tissues. Specifically, we performed bioinformatics analysis of high-throughput sequencing results from parental genomes and offspring transcriptomes of hybrid crosses between Duroc and Diannan small-ear pigs. We identified 11 paternally and five maternally expressed imprinted genes in pigs with highly stringent selection criteria. Additionally, we found that the KCNQ1 and IGF2R genes, which are related to development, displayed a different imprinting status in pigs compared with that in mice and humans. This comprehensive research should help improve our knowledge on genomic imprinting in pigs and highlight the potential use of imprinted genes in the pig breeding field.
Collapse
Affiliation(s)
- Yin-Qiao Wu
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Heng Zhao
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Ying-Ju Li
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Saber Khederzadeh
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Hong-Jiang Wei
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Zhong-Yin Zhou
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| |
Collapse
|
10
|
van Doorn J. Insulin-like growth factor-II and bioactive proteins containing a part of the E-domain of pro-insulin-like growth factor-II. Biofactors 2020; 46:563-578. [PMID: 32026557 PMCID: PMC7497164 DOI: 10.1002/biof.1623] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022]
Abstract
Insulin-like growth factor (IGF)-II is considered to function as an important fetal growth factor, which is structurally and functionally related to IGF-I and proinsulin. At least in vitro, IGF-II actions are mediated through the IGF-I receptor and to a lesser extent the insulin receptor. After birth, the function of IGF-II is less clear although in adults the serum level of IGF-II exceeds that of IGF-I several fold. The IGF-II gene is maternally imprinted, with exception of the liver and several parts of the brain, where it is expressed from both alleles. The regulation, organization, and translation of the IGF-II gene is complex, with five different putative promotors leading to a range of noncoding and coding mRNAs. The 180-amino acid pre-pro-IGF-II translation product can be divided into five domains and include a N-terminal signal peptide of 24 amino acid residues, the 67 amino acid long mature protein, and an 89 residues extension at the COOH terminus, designated as the E-domain. After removal of the signal peptide, the processing of pro-IGF-II into mature IGF-II requires various steps including glycosylation of the E-domain followed by the action of endo-proteases. Several of these processing intermediates can be found in the human circulation. There is increasing evidence that, besides IGF-II, several incompletely processed precursor forms of the protein, and even a 34-amino acid peptide (preptin) derived from the E-domain of pro-IGF-II, exhibit distinct biological activities. This review will focus on the current insights regarding the specific roles of the latter proteins in cancer, glucose homeostasis, and bone physiology. To address this topic clearly in the right context, a concise overview of the biological and biochemical properties of IGF-II and several relevant aspects of the IGF system will be provided.
Collapse
Affiliation(s)
- Jaap van Doorn
- Department of Genetics, Section Metabolic DiagnosticsUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
11
|
Torrente Y, Bella P, Tripodi L, Villa C, Farini A. Role of Insulin-Like Growth Factor Receptor 2 across Muscle Homeostasis: Implications for Treating Muscular Dystrophy. Cells 2020; 9:cells9020441. [PMID: 32075092 PMCID: PMC7072799 DOI: 10.3390/cells9020441] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
The insulin-like growth factor 2 receptor (IGF2R) plays a major role in binding and regulating the circulating and tissue levels of the mitogenic peptide insulin-like growth factor 2 (IGF2). IGF2/IGF2R interaction influences cell growth, survival, and migration in normal tissue development, and the deregulation of IGF2R expression has been associated with growth-related disease and cancer. IGF2R overexpression has been implicated in heart and muscle disease progression. Recent research findings suggest novel approaches to target IGF2R action. This review highlights recent advances in the understanding of the IGF2R structure and pathways related to muscle homeostasis.
Collapse
Affiliation(s)
- Yvan Torrente
- Correspondence: (Y.T.); (A.F.); Tel.: +39-0255033874 (Y.T.); +39-0255033852 (A.F.)
| | | | | | | | - Andrea Farini
- Correspondence: (Y.T.); (A.F.); Tel.: +39-0255033874 (Y.T.); +39-0255033852 (A.F.)
| |
Collapse
|
12
|
Suzuki S, Shaw G, Renfree MB. Identification of a novel antisense noncoding RNA, ALID, transcribed from the putative imprinting control region of marsupial IGF2R. Epigenetics Chromatin 2018; 11:55. [PMID: 30268152 PMCID: PMC6162910 DOI: 10.1186/s13072-018-0227-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/25/2018] [Indexed: 12/20/2022] Open
Abstract
Background Genomic imprinting leads to maternal expression of IGF2R in both mouse and opossum. In mouse, the antisense long noncoding (lnc) RNA Airn, which is paternally expressed from the differentially methylated region (DMR) in the second intron of Igf2r, is required to silence the paternal Igf2r. In opossum, however, intriguingly, the DMR was reported to be in a different downstream intron (intron 11) and there was no antisense lncRNA detected in previous analyses. Therefore, clarifying the imprinting mechanism of marsupial IGF2R is of great relevance for understanding the origin and evolution of genomic imprinting in the IGF2R locus. Thus, the antisense lncRNA associated with the marsupial DMR can be considered as the ‘missing link’. In this study, we identified a novel antisense lncRNA, ALID, after detailed analysis of the IGF2R locus in an Australian marsupial, the tammar wallaby, Macropus eugenii, and compared it to that of the grey short-tailed opossum, Monodelphis domestica. Results Tammar IGF2R showed maternal expression and had a maternally methylated CpG island (CGI) in intron 12 as well as a promoter CGI without differential methylation, but none in the second intron. Re-analysis of the IGF2R of opossum detected the CGI in intron 12, not intron 11, as previously reported, confirming that the DMR in intron 12 is conserved between these marsupials and so is the putative imprinting control region of marsupial IGF2R. ALID is paternally expressed from the middle of the DMR and is approximately 650 bp long with a single exon structure that is extremely short compared to Airn. Hence, the lncRNA transcriptional overlap of the IGF2R promoter, which is essential for the Igf2r silencing in the mouse, is likely absent in tammar. This suggests that fundamental differences in the lncRNA-based silencing mechanisms evolved in eutherian and marsupial IGF2R and may reflect the lack of differential methylation in the promoter CGI of marsupial IGF2R. Conclusions Our study thus provides the best candidate factor for establishing paternal silencing of marsupial IGF2R without transcriptional overlap, which is distinct from the Igf2r silencing mechanism of Airn, but which may be analogous to the mode of action for the flanking Slc22a2 and Slc22a3 gene silencing in the mouse placenta. Electronic supplementary material The online version of this article (10.1186/s13072-018-0227-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shunsuke Suzuki
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan.,Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, ICCER, Shinshu University, Nagano, 399-4598, Japan
| | - Geoffrey Shaw
- School of BioSciences, The University of Melbourne, Victoria, 3010, Australia
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
13
|
Mozaffari SV, Stein MM, Magnaye KM, Nicolae DL, Ober C. Parent of origin gene expression in a founder population identifies two new candidate imprinted genes at known imprinted regions. PLoS One 2018; 13:e0203906. [PMID: 30204804 PMCID: PMC6133383 DOI: 10.1371/journal.pone.0203906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 08/29/2018] [Indexed: 11/18/2022] Open
Abstract
Genomic imprinting is the phenomena that leads to silencing of one copy of a gene inherited from a specific parent. Mutations in imprinted regions have been involved in diseases showing parent of origin effects. Identifying genes with evidence of parent of origin expression patterns in family studies allows the detection of more subtle imprinting. Here, we use allele specific expression in lymphoblastoid cell lines from 306 Hutterites related in a single pedigree to provide formal evidence for parent of origin effects. We take advantage of phased genotype data to assign parent of origin to RNA-seq reads in individuals with gene expression data. Our approach identified known imprinted genes, two putative novel imprinted genes, PXDC1 and PWAR6, and 14 genes with asymmetrical parent of origin gene expression. We used gene expression in peripheral blood leukocytes (PBL) to validate our findings, and then confirmed imprinting control regions (ICRs) using DNA methylation levels in the PBLs.
Collapse
Affiliation(s)
- Sahar V. Mozaffari
- Committee on Genetics, Genomics & Systems Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Michelle M. Stein
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Kevin M. Magnaye
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Dan L. Nicolae
- Committee on Genetics, Genomics & Systems Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Department of Statistics, University of Chicago, Chicago, Illinois, United States of America
| | - Carole Ober
- Committee on Genetics, Genomics & Systems Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
14
|
Hu P, Li Y, Nikolaishvili-Feinberg N, Scesa G, Bi Y, Pan D, Moore D, Bongarzone ER, Sands MS, Miller R, Kafri T. Hematopoietic Stem cell transplantation and lentiviral vector-based gene therapy for Krabbe's disease: Present convictions and future prospects. J Neurosci Res 2017; 94:1152-68. [PMID: 27638600 PMCID: PMC5027985 DOI: 10.1002/jnr.23847] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/11/2016] [Accepted: 07/04/2016] [Indexed: 01/21/2023]
Abstract
Currently, presymtomatic hematopoietic stem and progenitor cell transplantation (HSPCT) is the only therapeutic modality that alleviates Krabbe's disease (KD)‐induced central nervous system damage. However, all HSPCT‐treated patients exhibit severe deterioration in peripheral nervous system function characterized by major motor and expressive language pathologies. We hypothesize that a combination of several mechanisms contribute to this phenomenon, including 1) nonoptimal conditioning protocols with consequent inefficient engraftment and biodistribution of donor‐derived cells and 2) insufficient uptake of donor cell‐secreted galactocerebrosidease (GALC) secondary to a naturally low expression level of the cation‐independent mannose 6‐phosphate‐receptor (CI‐MPR). We have characterized the effects of a busulfan (Bu) based conditioning regimen on the efficacy of HSPCT in prolonging twi mouse average life span. There was no correlation between the efficiency of bone marrow engraftment of donor cells and twi mouse average life span. HSPCT prolonged the average life span of twi mice, which directly correlated with the aggressiveness of the Bu‐mediated conditioning protocols. HSPC transduced with lentiviral vectors carrying the GALC cDNA under control of cell‐specific promoters were efficiently engrafted in twi mouse bone marrow. To facilitate HSPCT‐mediated correction of GALC deficiency in target cells expressing low levels of CI‐MPR, a novel GALC fusion protein including the ApoE1 receptor was developed. Efficient cellular uptake of the novel fusion protein was mediated by a mannose‐6‐phosphate‐independent mechanism. The novel findings described here elucidate some of the cellular mechanisms that impede the cure of KD patients by HSPCT and concomitantly open new directions to enhance the therapeutic efficacy of HSPCT protocols for KD. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peirong Hu
- Gene Therapy Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yedda Li
- Department of Internal Medicine, Washington University in St. Louis, School of Medicine, St Louis, Missouri
| | - Nana Nikolaishvili-Feinberg
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Giuseppe Scesa
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, Illinois
| | - Yanmin Bi
- Gene Therapy Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Dao Pan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Dominic Moore
- Biostatistics Core Facility, UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, Illinois
| | - Mark S Sands
- Department of Internal Medicine, Washington University in St. Louis, School of Medicine, St Louis, Missouri
| | - Ryan Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Departments of Pathology and Laboratory Medicine and of Neurology, Neurosciences Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Tal Kafri
- Gene Therapy Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
15
|
Leksa V, Ilková A, Vičíková K, Stockinger H. Unravelling novel functions of the endosomal transporter mannose 6-phosphate/insulin-like growth factor receptor (CD222) in health and disease: An emerging regulator of the immune system. Immunol Lett 2017; 190:194-200. [PMID: 28823520 DOI: 10.1016/j.imlet.2017.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/04/2017] [Accepted: 08/10/2017] [Indexed: 02/02/2023]
Abstract
Properly balanced cellular responses require both the mutual interactions of soluble factors with cell surface receptors and the crosstalk of intracellular molecules. In particular, immune cells exposed unceasingly to an array of positive and negative stimuli must distinguish between what has to be tolerated and attacked. Protein trafficking is one of crucial pathways involved in this labour. The approximately >270-kDa protein transporter called mannose 6- phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R, CD222) is a type I transmembrane glycoprotein present largely intracellularly in the Golgi apparatus and endosomal compartments, but also at the cell surface. It is expressed ubiquitously in a vast majority of higher eukaryotic cell types. Through binding and trafficking multiple unrelated extracellular and intracellular ligands, CD222 is involved in the regulation of a plethora of functions, and thus implicated in many physiological but also pathophysiological conditions. This review describes, first, general features of CD222, such as its evolution, genomic structure and regulation, protein structure and ligands; and second, its specific functions with a special focus on the immune system.
Collapse
Affiliation(s)
- Vladimir Leksa
- Centre for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Lazarettgasse 19, A-1090 Vienna, Austria; Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | - Antónia Ilková
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Kristína Vičíková
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Hannes Stockinger
- Centre for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Lazarettgasse 19, A-1090 Vienna, Austria
| |
Collapse
|
16
|
Wang Y, MacDonald RG, Thinakaran G, Kar S. Insulin-Like Growth Factor-II/Cation-Independent Mannose 6-Phosphate Receptor in Neurodegenerative Diseases. Mol Neurobiol 2017; 54:2636-2658. [PMID: 26993302 PMCID: PMC5901910 DOI: 10.1007/s12035-016-9849-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/09/2016] [Indexed: 12/11/2022]
Abstract
The insulin-like growth factor II/mannose 6-phosphate (IGF-II/M6P) receptor is a multifunctional single transmembrane glycoprotein. Recent studies have advanced our understanding of the structure, ligand-binding properties, and trafficking of the IGF-II/M6P receptor. This receptor has been implicated in a variety of important cellular processes including growth and development, clearance of IGF-II, proteolytic activation of enzymes, and growth factor precursors, in addition to its well-known role in the delivery of lysosomal enzymes. The IGF-II/M6P receptor, distributed widely in the central nervous system, has additional roles in mediating neurotransmitter release and memory enhancement/consolidation, possibly through activating IGF-II-related intracellular signaling pathways. Recent studies suggest that overexpression of the IGF-II/M6P receptor may have an important role in regulating the levels of transcripts and proteins involved in the development of Alzheimer's disease (AD)-the prevalent cause of dementia affecting the elderly population in our society. It is reported that IGF-II/M6P receptor overexpression can increase the levels/processing of amyloid precursor protein leading to the generation of β-amyloid peptide, which is associated with degeneration of neurons and subsequent development of AD pathology. Given the significance of the receptor in mediating the transport and functioning of the lysosomal enzymes, it is being considered for therapeutic delivery of enzymes to the lysosomes to treat lysosomal storage disorders. Notwithstanding these results, additional studies are required to validate and fully characterize the function of the IGF-II/M6P receptor in the normal brain and its involvement in various neurodegenerative disorders including AD. It is also critical to understand the interaction between the IGF-II/M6P receptor and lysosomal enzymes in neurodegenerative processes, which may shed some light on developing approaches to detect and prevent neurodegeneration through the dysfunction of the receptor and the endosomal-lysosomal system.
Collapse
Affiliation(s)
- Y Wang
- Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2M8, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - R G MacDonald
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - G Thinakaran
- Departments of Neurobiology, Neurology, and Pathology, The University of Chicago, Chicago, IL, 60637, USA
| | - S Kar
- Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2M8, Canada.
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, T6G 2M8, Canada.
| |
Collapse
|
17
|
Smekalova EM, Kotelevtsev YV, Leboeuf D, Shcherbinina EY, Fefilova AS, Zatsepin TS, Koteliansky V. lncRNA in the liver: Prospects for fundamental research and therapy by RNA interference. Biochimie 2016; 131:159-172. [DOI: 10.1016/j.biochi.2016.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 06/14/2016] [Indexed: 12/19/2022]
|
18
|
McKean DM, Homsy J, Wakimoto H, Patel N, Gorham J, DePalma SR, Ware JS, Zaidi S, Ma W, Patel N, Lifton RP, Chung WK, Kim R, Shen Y, Brueckner M, Goldmuntz E, Sharp AJ, Seidman CE, Gelb BD, Seidman JG. Loss of RNA expression and allele-specific expression associated with congenital heart disease. Nat Commun 2016; 7:12824. [PMID: 27670201 PMCID: PMC5052634 DOI: 10.1038/ncomms12824] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 08/04/2016] [Indexed: 12/22/2022] Open
Abstract
Congenital heart disease (CHD), a prevalent birth defect occurring in 1% of newborns, likely results from aberrant expression of cardiac developmental genes. Mutations in a variety of cardiac transcription factors, developmental signalling molecules and molecules that modify chromatin cause at least 20% of disease, but most CHD remains unexplained. We employ RNAseq analyses to assess allele-specific expression (ASE) and biallelic loss-of-expression (LOE) in 172 tissue samples from 144 surgically repaired CHD subjects. Here we show that only 5% of known imprinted genes with paternal allele silencing are monoallelic versus 56% with paternal allele expression-this cardiac-specific phenomenon seems unrelated to CHD. Further, compared with control subjects, CHD subjects have a significant burden of both LOE genes and ASE events associated with altered gene expression. These studies identify FGFBP2, LBH, RBFOX2, SGSM1 and ZBTB16 as candidate CHD genes because of significantly altered transcriptional expression.
Collapse
Affiliation(s)
- David M McKean
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Cardiovascular Division, Brigham and Women's Hospital, Harvard University, Boston, Massachusetts 02115, USA
| | - Jason Homsy
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Cardiovascular Division, Brigham and Women's Hospital, Harvard University, Boston, Massachusetts 02115, USA.,Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Neil Patel
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Joshua Gorham
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Steven R DePalma
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Harvard University, Boston, Massachusetts 02115, USA
| | - James S Ware
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,National Institute for Health Research Cardiovascular Biomedical Research Unit at Royal Brompton and Harefield National Health Service Foundation Trust and Imperial College London, London SW3 6NP, UK.,National Heart and Lung Institute, Imperial College London, London SW3 6NP, UK
| | - Samir Zaidi
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Wenji Ma
- Department of Systems Biology, Columbia University Medical Center, New York, New York 10032, USA
| | - Nihir Patel
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA.,Howard Hughes Medical Institute, Yale University, Connecticut 06510, USA
| | - Wendy K Chung
- Department of Pediatrics and Medicine, Columbia University Medical Center, New York, New York 10032, USA
| | - Richard Kim
- Section of Cardiothoracic Surgery, University of Southern California Keck School of Medicine, Los Angeles, California 90089, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Medical Center, New York, New York 10032, USA.,Department of Biomedical Informatics, Columbia University Medical Center, New York, New York 10032, USA
| | - Martina Brueckner
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Elizabeth Goldmuntz
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Andrew J Sharp
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Cardiovascular Division, Brigham and Women's Hospital, Harvard University, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Harvard University, Boston, Massachusetts 02115, USA
| | - Bruce D Gelb
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - J G Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
19
|
Chorney M, Chorney K, Seese N, Owen M, Daniels J, McGuffin P, Thompson L, Detterman D, Benbow C, Lubinski D, Eley T, Plomin R. A Quantitative Trait Locus Associated With Cognitive Ability in Children. Psychol Sci 2016. [DOI: 10.1111/1467-9280.00032] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Quantitative trait loci (QTLs) associated with general cognitive ability ( g) were investigated for several groups of children selected for very high or for average cognitive functioning. A DNA marker in the gene for insulin-like growth factor-2 receptor (IGF2R) on Chromosome 6 yielded a significantly greater frequency of a particular form of the gene (allele) in a high- g group (.303; average IQ = 136, N = 51) than in a control group (.156; average IQ = 103, N = 51). This association was replicated in an extremely-high- g group (all estimated IQs > 160, N = 52) as compared with an independent control group (average IQ = 101, N = 50), with allelic frequencies of .340 and .169, respectively. Moreover, a high-mathematics-ability group ( N = 62) and a high-verbal-ability group ( N = 51) yielded results that were in the same direction but only marginally significant ( p = .06 and .08, respectively).
Collapse
Affiliation(s)
- M.J. Chorney
- Department of Microbiology and Immunology, Milton S. Hershey Medical Center, Pennsylvania State University
| | - K. Chorney
- Department of Microbiology and Immunology, Milton S. Hershey Medical Center, Pennsylvania State University
| | - N. Seese
- Department of Microbiology and Immunology, Milton S. Hershey Medical Center, Pennsylvania State University
| | - M.J. Owen
- Department of Psychological Medicine, University of Wales College of Medicine, Cardiff, Wales, United Kingdom
| | - J. Daniels
- Department of Psychological Medicine, University of Wales College of Medicine, Cardiff, Wales, United Kingdom
| | - P. McGuffin
- Department of Psychological Medicine, University of Wales College of Medicine, Cardiff, Wales, United Kingdom
| | - L.A. Thompson
- Department of Psychology, Case Western Reserve University
| | - D.K. Detterman
- Department of Psychology, Case Western Reserve University
| | - C. Benbow
- Department of Psychology, Iowa State University
| | - D. Lubinski
- Department of Psychology, Iowa State University
| | - T. Eley
- Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, London, United Kingdom
| | - R. Plomin
- Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, London, United Kingdom
| |
Collapse
|
20
|
El Tayebi HM, Abdelaziz AI. Epigenetic regulation of insulin-like growth factor axis in hepatocellular carcinoma. World J Gastroenterol 2016; 22:2668-2677. [PMID: 26973407 PMCID: PMC4777991 DOI: 10.3748/wjg.v22.i9.2668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/29/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
The insulin-like growth factor (IGF) signaling pathway is an important pathway in the process of hepatocarcinogenesis, and the IGF network is clearly dysregulated in many cancers and developmental abnormalities. In hepatocellular carcinoma (HCC), only a minority of patients are eligible for curative treatments, such as tumor resection or liver transplant. Unfortunately, there is a high recurrence of HCC after surgical tumor removal. Recent research efforts have focused on targeting IGF axis members in an attempt to find therapeutic options for many health problems. In this review, we shed lights on the regulation of members of the IGF axis, mainly by microRNAs in HCC. MicroRNAs in HCC attempt to halt the aberrant expression of the IGF network, and a single microRNA can have multiple downstream targets in one or more signaling pathways. Targeting microRNAs is a relatively new approach for identifying an efficient radical cure for HCC.
Collapse
|
21
|
Marášek P, Dzijak R, Studenyak I, Fišerová J, Uličná L, Novák P, Hozák P. Paxillin-dependent regulation of IGF2 and H19 gene cluster expression. J Cell Sci 2015; 128:3106-16. [PMID: 26116569 PMCID: PMC4541046 DOI: 10.1242/jcs.170985] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/31/2015] [Indexed: 12/15/2022] Open
Abstract
Paxillin (PXN) is a focal adhesion protein that has been implicated in signal transduction from the extracellular matrix. Recently, it has been shown to shuttle between the cytoplasm and the nucleus. When inside the nucleus, paxillin promotes cell proliferation. Here, we introduce paxillin as a transcriptional regulator of IGF2 and H19 genes. It does not affect the allelic expression of the two genes; rather, it regulates long-range chromosomal interactions between the IGF2 or H19 promoter and a shared distal enhancer on an active allele. Specifically, paxillin stimulates the interaction between the enhancer and the IGF2 promoter, thus activating IGF2 gene transcription, whereas it restrains the interaction between the enhancer and the H19 promoter, downregulating the H19 gene. We found that paxillin interacts with cohesin and the mediator complex, which have been shown to mediate long-range chromosomal looping. We propose that these interactions occur at the IGF2 and H19 gene cluster and are involved in the formation of loops between the IGF2 and H19 promoters and the enhancer, and thus the expression of the corresponding genes. These observations contribute to a mechanistic explanation of the role of paxillin in proliferation and fetal development.
Collapse
Affiliation(s)
- Pavel Marášek
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics AS CR, Prague 142 20, Czech Republic Faculty of Science, Charles University in Prague, Prague 128 43, Czech Republic
| | - Rastislav Dzijak
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics AS CR, Prague 142 20, Czech Republic Department of Genome Integrity, Institute of Molecular Genetics AS CR, Prague 142 20, Czech Republic
| | - Irina Studenyak
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics AS CR, Prague 142 20, Czech Republic
| | - Jindřiška Fišerová
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics AS CR, Prague 142 20, Czech Republic
| | - Lívia Uličná
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics AS CR, Prague 142 20, Czech Republic
| | - Petr Novák
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology AS CR, Prague 142 00, Czech Republic
| | - Pavel Hozák
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics AS CR, Prague 142 20, Czech Republic
| |
Collapse
|
22
|
Fanganiello RD, Ishiy FAA, Kobayashi GS, Alvizi L, Sunaga DY, Passos-Bueno MR. Increased In Vitro Osteopotential in SHED Associated with Higher IGF2 Expression When Compared with hASCs. Stem Cell Rev Rep 2015; 11:635-44. [DOI: 10.1007/s12015-015-9592-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Li H, Hui X, Li P, Xu A, Li S, Jin S, Wu D. Expression and efficient purification of tag-cleaved active recombinant human insulin-like growth factor-II from Escherichia coli. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0562-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Enguita-Germán M, Fortes P. Targeting the insulin-like growth factor pathway in hepatocellular carcinoma. World J Hepatol 2014; 6:716-737. [PMID: 25349643 PMCID: PMC4209417 DOI: 10.4254/wjh.v6.i10.716] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/14/2014] [Accepted: 08/31/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. Only 30%-40% of the patients with HCC are eligible for curative treatments, which include surgical resection as the first option, liver transplantation and percutaneous ablation. Unfortunately, there is a high frequency of tumor recurrence after surgical resection and most HCC seem resistant to conventional chemotherapy and radiotherapy. Sorafenib, a multi-tyrosine kinase inhibitor, is the only chemotherapeutic option for patients with advanced hepatocellular carcinoma. Patients treated with Sorafenib have a significant increase in overall survival of about three months. Therefore, there is an urgent need to develop alternative treatments. Due to its role in cell growth and development, the insulin-like growth factor system is commonly deregulated in many cancers. Indeed, the insulin-like growth factor (IGF) axis has recently emerged as a potential target for hepatocellular carcinoma treatment. To this aim, several inhibitors of the pathway have been developed such as monoclonal antibodies, small molecules, antisense oligonucleotides or small interfering RNAs. However recent studies suggest that, unlike most tumors, HCC development requires increased signaling through insulin growth factor II rather than insulin growth factor I. This may have great implications in the future treatment of HCC. This review summarizes the role of the IGF axis in liver carcinogenesis and the current status of the strategies designed to target the IGF-I signaling pathway for hepatocellular carcinoma treatment.
Collapse
|
25
|
Nordin M, Bergman D, Halje M, Engström W, Ward A. Epigenetic regulation of the Igf2/H19 gene cluster. Cell Prolif 2014; 47:189-99. [PMID: 24738971 DOI: 10.1111/cpr.12106] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 01/14/2014] [Indexed: 12/13/2022] Open
Abstract
Igf2 (insulin-like growth factor 2) and H19 genes are imprinted in mammals; they are expressed unevenly from the two parental alleles. Igf2 is a growth factor expressed in most normal tissues, solely from the paternal allele. H19 gene is transcribed (but not translated to a protein) from the maternal allele. Igf2 protein is a growth factor particularly important during pregnancy, where it promotes both foetal and placental growth and also nutrient transfer from mother to offspring via the placenta. This article reviews epigenetic regulation of the Igf2/H19 gene-cluster that leads to parent-specific expression, with current models including parental allele-specific DNA methylation and chromatin modifications, DNA-binding of insulator proteins (CTCFs) and three-dimensional partitioning of DNA in the nucleus. It is emphasized that key genomic features are conserved among mammals and have been functionally tested in mouse. 'The enhancer competition model', 'the boundary model' and 'the chromatin-loop model' are three models based on differential methylation as the epigenetic mark responsible for the imprinted expression pattern. Pathways are discussed that can account for allelic methylation differences; there is a recent study that contradicts the previously accepted fact that biallelic expression is accompanied with loss of differential methylation pattern.
Collapse
Affiliation(s)
- M Nordin
- Faculty of Veterinary Medicine, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
26
|
Schreiner F, Gohlke B, Stutte S, Bartmann P, Hecher K, Oldenburg J, El-Maarri O, Woelfle J. 11p15 DNA-methylation analysis in monozygotic twins with discordant intrauterine development due to severe twin-to-twin transfusion syndrome. Clin Epigenetics 2014; 6:6. [PMID: 24678997 PMCID: PMC3986638 DOI: 10.1186/1868-7083-6-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 02/26/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Prenatal growth restriction and low birth weight have been linked to long-term alterations of health, presumably via adaptive modifications of the epigenome. Recent studies indicate a plasticity of the 11p15 epigenotype in response to environmental changes during early stages of human development. STUDY DESIGN We analyzed methylation levels at different 11p15 loci in 20 growth-discordant monozygotic twin pairs. Intrauterine development was discordant due to severe twin-to-twin transfusion syndrome (TTTS), which was treated by fetoscopic laser coagulation of communicating vessels before 25 weeks of gestation. Methylation levels at age 4 were determined in blood and buccal cell-derived DNA by the single nucleotide primer extension reaction ion pair reverse-phase high performance liquid chromatography (SNuPE IP RP HPLC) assay. Methylation at LINE-1 repeats was analyzed as an estimate of global methylation. RESULTS In general, variance of locus-specific methylation levels appeared to be higher in buccal cell- as compared to blood cell-derived DNA samples. Paired analyses within the twin pairs revealed significant differences at only one CpG site (IGF2 dmr0 SN3 (blood), +1.9% in donors; P = 0.013). When plotting the twin pair-discordance in birth weight against the degree of discordance in site-specific methylation at age 4, only a few CpGs were found to interact (one CpG site each at IGF2dmr0 in blood/saliva DNA, one CpG at LINE-1 repeats in saliva DNA), with 26 to 36% of the intra-twin pair divergence at these sites explained by prenatal growth discordance. However, across the entire cohort of 40 children, site-specific methylation did not correlate with SD-scores for weight or length at birth. Insulin-like growth factor-II serum concentrations showed significant within-twin pair correlations at birth (R = 0.57) and at age 4 (R = 0.79), but did not differ between donors and recipients. They also did not correlate with the analyzed 11p15 methylation parameters. CONCLUSION In a cohort of 20 growth-discordant monozygotic twin pairs, severe alteration in placental blood supply due to TTTS appears to leave only weak, if any, epigenetic marks at the analyzed CpG sites at 11p15.
Collapse
Affiliation(s)
- Felix Schreiner
- Pediatric Endocrinology Division, Children's Hospital, University of Bonn, Adenauerallee 119, 53113 Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Autuoro JM, Pirnie SP, Carmichael GG. Long noncoding RNAs in imprinting and X chromosome inactivation. Biomolecules 2014; 4:76-100. [PMID: 24970206 PMCID: PMC4030979 DOI: 10.3390/biom4010076] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 12/18/2013] [Accepted: 12/27/2013] [Indexed: 12/11/2022] Open
Abstract
The field of long noncoding RNA (lncRNA) research has been rapidly advancing in recent years. Technological advancements and deep-sequencing of the transcriptome have facilitated the identification of numerous new lncRNAs, many with unusual properties, however, the function of most of these molecules is still largely unknown. Some evidence suggests that several of these lncRNAs may regulate their own transcription in cis, and that of nearby genes, by recruiting remodeling factors to local chromatin. Notably, lncRNAs are known to exist at many imprinted gene clusters. Genomic imprinting is a complex and highly regulated process resulting in the monoallelic silencing of certain genes, based on the parent-of-origin of the allele. It is thought that lncRNAs may regulate many imprinted loci, however, the mechanism by which they exert such influence is poorly understood. This review will discuss what is known about the lncRNAs of major imprinted loci, and the roles they play in the regulation of imprinting.
Collapse
Affiliation(s)
- Joseph M Autuoro
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030, USA.
| | - Stephan P Pirnie
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030, USA.
| | - Gordon G Carmichael
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030, USA.
| |
Collapse
|
28
|
King V, Hibbert N, Seckl JR, Norman JE, Drake AJ. The effects of an obesogenic diet during pregnancy on fetal growth and placental gene expression are gestation dependent. Placenta 2013; 34:1087-90. [PMID: 24090886 DOI: 10.1016/j.placenta.2013.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/30/2013] [Accepted: 09/11/2013] [Indexed: 01/04/2023]
Abstract
Exposure to overnutrition in utero may increase offspring cardiometabolic disease risk. A mouse model of maternal exposure to an obesogenic diet (DIO) was used to determine effects on fetal and placental weight and gene expression in mid- and late gestation. DIO altered placental gene expression in mid-gestation without differences in fetal or placental weights. Weight gain was attenuated in DIO dams in late gestation and male pup weight was reduced, however there were no persistent changes in placental gene expression. Differences in maternal weight gain and/or specific dietary components may impact on fetal and placental growth and later disease risk.
Collapse
Affiliation(s)
- V King
- MRC/University of Edinburgh Centre for Reproductive Health, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | | | | | | | | |
Collapse
|
29
|
Bebbere D, Bauersachs S, Fürst RW, Reichenbach HD, Reichenbach M, Medugorac I, Ulbrich SE, Wolf E, Ledda S, Hiendleder S. Tissue-specific and minor inter-individual variation in imprinting of IGF2R is a common feature of Bos taurus Concepti and not correlated with fetal weight. PLoS One 2013; 8:e59564. [PMID: 23593146 PMCID: PMC3620161 DOI: 10.1371/journal.pone.0059564] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 02/19/2013] [Indexed: 11/18/2022] Open
Abstract
The insulin-like growth factor 2 receptor (IGF2R) is essential for prenatal growth regulation and shows gene dosage effects on fetal weight that can be affected by in-vitro embryo culture. Imprinted maternal expression of murine Igf2r is well documented for all fetal tissues excluding brain, but polymorphic imprinting and biallelic expression were reported for IGF2R in human. These differences have been attributed to evolutionary changes correlated with specific reproductive strategies. However, data from species suitable for testing this hypothesis are lacking. The domestic cow (Bos taurus) carries a single conceptus with a similar gestation length as human. We identified 12 heterozygous concepti informative for imprinting studies among 68 Bos taurus fetuses at Day 80 of gestation (28% term) and found predominantly maternal IGF2R expression in all fetal tissues but brain, which escapes imprinting. Inter-individual variation in allelic expression bias, i.e. expression of the repressed paternal allele relative to the maternal allele, ranged from 4.6−8.9% in heart, 4.3−10.2% in kidney, 6.1−11.2% in liver, 4.6−15.8% in lung and 3.2−12.2% in skeletal muscle. Allelic bias for mesodermal tissues (heart, skeletal muscle) differed significantly (P<0.05) from endodermal tissues (liver, lung). The placenta showed partial imprinting with allelic bias of 22.9−34.7% and differed significantly (P<0.001) from all other tissues. Four informative fetuses were generated by in-vitro fertilization (IVF) with embryo culture and two individuals displayed fetal overgrowth. However, there was no evidence for changes in imprinting or DNA methylation after IVF, or correlations between allelic bias and fetal weight. In conclusion, imprinting of Bos taurus IGF2R is similar to mouse except in placenta, which could indicate an effect of reproductive strategy. Common minor inter-individual variation in allelic bias and absence of imprinting abnormalities in IVF fetuses suggest changes in IGF2R expression in overgrown fetuses could be modulated through other mechanisms than changes in imprinting.
Collapse
Affiliation(s)
- Daniela Bebbere
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University, Munich, Germany
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Stefan Bauersachs
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University, Munich, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Rainer W. Fürst
- Physiology Weihenstephan, Technische Universität München, Freising, Germany
| | | | - Myriam Reichenbach
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Ivica Medugorac
- Chair of Animal Genetics and Husbandry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Susanne E. Ulbrich
- Physiology Weihenstephan, Technische Universität München, Freising, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University, Munich, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Sergio Ledda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Stefan Hiendleder
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University, Munich, Germany
- JS Davies Non-Mendelian Genetics Group, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, Australia
- Research Centre for Reproductive Health, Robinson Institute, The University of Adelaide, Roseworthy Campus, Roseworthy, Australia
- * E-mail:
| |
Collapse
|
30
|
Expression of antisense of insulin-like growth factor-2 receptor RNA non-coding (AIRN) during early gestation in cattle. Anim Reprod Sci 2013; 138:64-73. [PMID: 23473694 DOI: 10.1016/j.anireprosci.2013.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 01/02/2013] [Accepted: 01/28/2013] [Indexed: 11/23/2022]
Abstract
The insulin-like growth factor type 2 receptor (IGF2R) regulates fetal growth by removing IGF2 from circulation. In mice, expression of the Igf2r gene is only imprinted after implantation and is associated with expression of the antisense non-coding (nc)RNA, Airn. The objectives of this study were, first, to determine if bovine AIRN was expressed during developmentally important stages of gestation, and second, to determine if expression of bAIRN was affected by method of embryo production. Control reactions confirmed that sequence verified bAIRN PCR amplicons resulted from RNA within the sample and not from genomic DNA contamination. IGF2R mRNA was expressed in all fetal liver samples at Days 35-55 and 70 of gestation as well as in 8 of 9 Day 15 conceptuses, 10 of 10 Day 18 conceptuses, and in all day 7 blastocyst pools. bAIRN was expressed in all samples of fetal liver at Days 35-55 and 70 of gestation. The proportion of conceptuses that expressed bAIRN increased from 1 of 9 at Day 15 of gestation to 8 of 10 at Day 18 of gestation. No bAIRN was expressed in any blastocyst pools. The relative level of bAIRN was greater (P<0.05) in fetal liver from embryos produced in vivo compared to that from embryos produced in vitro. In summary bAIRN was not expressed in blastocyst-stage embryos, was expressed in an increasing proportion of embryos around the time of maternal recognition of pregnancy and was expressed following implantation. Furthermore, relative levels of bAIRN in bovine fetal liver can be altered by method of embryo production.
Collapse
|
31
|
Buckberry S, Bianco-Miotto T, Hiendleder S, Roberts CT. Quantitative allele-specific expression and DNA methylation analysis of H19, IGF2 and IGF2R in the human placenta across gestation reveals H19 imprinting plasticity. PLoS One 2012; 7:e51210. [PMID: 23227253 PMCID: PMC3515552 DOI: 10.1371/journal.pone.0051210] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 11/02/2012] [Indexed: 11/18/2022] Open
Abstract
Imprinted genes play important roles in placental differentiation, growth and function, with profound effects on fetal development. In humans, H19 and IGF2 are imprinted, but imprinting of IGF2R remains controversial. The H19 non-coding RNA is a negative regulator of placental growth and altered placental imprinting of H19-IGF2 has been associated with pregnancy complications such as preeclampsia, which have been attributed to abnormal first trimester placentation. This suggests that changes in imprinting during the first trimester may precede aberrant placental morphogenesis. To better understand imprinting in the human placenta during early gestation, we quantified allele-specific expression for H19, IGF2 and IGF2R in first trimester (6–12 weeks gestation) and term placentae (37–42 weeks gestation) using pyrosequencing. Expression of IGF2R was biallelic, with a mean expression ratio of 49∶51 (SD = 0.07), making transient imprinting unlikely. Expression from the repressed H19 alleles ranged from 1–25% and was higher (P<0.001) in first trimester (13.5±8.2%) compared to term (3.4±2.1%) placentae. Surprisingly, despite the known co-regulation of H19 and IGF2, little variation in expression of the repressed IGF2 alleles was observed (2.7±2.0%). To identify regulatory regions that may be responsible for variation in H19 allelic expression, we quantified DNA methylation in the H19-IGF2 imprinting control region and H19 transcription start site (TSS). Unexpectedly, we found positive correlations (P<0.01) between DNA methylation levels and expression of the repressed H19 allele at 5 CpG’s 2000 bp upstream of the H19 TSS. Additionally, DNA methylation was significantly higher (P<0.05) in first trimester compared with term placentae at 5 CpG’s 39–523 bp upstream of the TSS, but was not correlated with H19 repressed allele expression. Our data suggest that variation in H19 imprinting may contribute to early programming of placental phenotype and illustrate the need for quantitative and robust methodologies to further elucidate the role of imprinted genes in normal and pathological placental development.
Collapse
Affiliation(s)
- Sam Buckberry
- The Robinson Institute, Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Tina Bianco-Miotto
- The Robinson Institute, Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia, Australia
- The Robinson Institute, Research Centre for Early Origins of Health and Disease, School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Stefan Hiendleder
- The Robinson Institute, Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia, Australia
- JS Davies Epigenetics and Genetics Group, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Claire T. Roberts
- The Robinson Institute, Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|
32
|
Robbins KM, Chen Z, Wells KD, Rivera RM. Expression of KCNQ1OT1, CDKN1C, H19, and PLAGL1 and the methylation patterns at the KvDMR1 and H19/IGF2 imprinting control regions is conserved between human and bovine. J Biomed Sci 2012; 19:95. [PMID: 23153226 PMCID: PMC3533950 DOI: 10.1186/1423-0127-19-95] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/06/2012] [Indexed: 01/22/2023] Open
Abstract
Background Beckwith-Wiedemann syndrome (BWS) is a loss-of-imprinting pediatric overgrowth syndrome. The primary features of BWS include macrosomia, macroglossia, and abdominal wall defects. Secondary features that are frequently observed in BWS patients are hypoglycemia, nevus flammeus, polyhydramnios, visceromegaly, hemihyperplasia, cardiac malformations, and difficulty breathing. BWS is speculated to occur primarily as the result of the misregulation of imprinted genes associated with two clusters on chromosome 11p15.5, namely the KvDMR1 and H19/IGF2. A similar overgrowth phenotype is observed in bovine and ovine as a result of embryo culture. In ruminants this syndrome is known as large offspring syndrome (LOS). The phenotypes associated with LOS are increased birth weight, visceromegaly, skeletal defects, hypoglycemia, polyhydramnios, and breathing difficulties. Even though phenotypic similarities exist between the two syndromes, whether the two syndromes are epigenetically similar is unknown. In this study we use control Bos taurus indicus X Bos taurus taurus F1 hybrid bovine concepti to characterize baseline imprinted gene expression and DNA methylation status of imprinted domains known to be misregulated in BWS. This work is intended to be the first step in a series of experiments aimed at determining if LOS will serve as an appropriate animal model to study BWS. Results The use of F1 B. t. indicus x B. t. taurus tissues provided us with a tool to unequivocally determine imprinted status of the regions of interest in our study. We found that imprinting is conserved between the bovine and human in imprinted genes known to be associated with BWS. KCNQ1OT1 and PLAGL1 were paternally-expressed while CDKN1C and H19 were maternally-expressed in B. t. indicus x B. t. taurus F1 concepti. We also show that in bovids, differential methylation exists at the KvDMR1 and H19/IGF2 ICRs. Conclusions Based on these findings we conclude that the imprinted gene expression of KCNQ1OT1, CDKN1C, H19, and PLAGL1 and the methylation patterns at the KvDMR1 and H19/IGF2 ICRs are conserved between human and bovine. Future work will determine if LOS is associated with misregulation at these imprinted loci, similarly to what has been observed for BWS.
Collapse
|
33
|
IGF2/H19 hypomethylation is tissue, cell, and CpG site dependent and not correlated with body asymmetry in adolescents with Silver-Russell syndrome. Clin Epigenetics 2012; 4:15. [PMID: 22989232 PMCID: PMC3523983 DOI: 10.1186/1868-7083-4-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/21/2012] [Indexed: 11/10/2022] Open
Abstract
Background Silver-Russell syndrome (SRS) is characterized by severe intrauterine and postnatal growth failure and frequent body asymmetry. Half of the patients with SRS carry a DNA hypomethylation of the imprinting center region 1 (ICR1) of the insulin-like growth factor 2 (IGF2)/H19 locus, and the clinical phenotype is most severe in these patients. We aimed to elucidate the epigenetic basis of asymmetry in SRS and the cellular consequences of the ICR1 hypomethylation. Results The ICR1 methylation status was analyzed in blood and in addition in buccal smear probes and cultured fibroblasts obtained from punch biopsies taken from the two body halves of 5 SRS patients and 3 controls. We found that the ICR1 hypomethylation in SRS patients was stronger in blood leukocytes and oral mucosa cells than in fibroblasts. ICR1 CpG sites were affected differently. The severity of hypomethylation was not correlated to body asymmetry. IGF2 expression and IGF-II secretion of fibroblasts were not correlated to the degree of ICR1 hypomethylation. SRS fibroblasts responded well to stimulation by recombinant human IGF-I or IGF-II, with proliferation rates comparable with controls. Clonal expansion of primary fibroblasts confirmed the complexity of the cellular mosaicism. Conclusions We conclude that the ICR1 hypomethylation SRS is tissue, cell, and CpG site specific. The correlation of the ICR1 hypomethylation to IGF2 and H19 expression is not strict, may depend on the investigated tissue, and may become evident only in case of more severe methylation defects. The body asymmetry in juvenile SRS patients is not related to a corresponding ICR1 hypomethylation gradient, rendering more likely an intrauterine origin of asymmetry. Overall, it may be instrumental to consider not only the ICR1 methylation status as decisive for IGF2/H19 expression regulation.
Collapse
|
34
|
Biallelic transcription of the porcine IGF2R gene. Gene 2012; 500:181-5. [PMID: 22503898 DOI: 10.1016/j.gene.2012.03.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/16/2012] [Accepted: 03/21/2012] [Indexed: 11/20/2022]
Abstract
Here we report biallelic IGF2R gene expression in pig. We investigated SNPs in IGF2R exon 37 and in the 3'UTR and found biallelic expression in fetal brain and in livers, muscle and kidney tissues of fetal, newborn and adult pigs. PCR-RFLP and DNA sequencing results show consistently that IGF2R is expressed from both parental alleles although differential allelic expression may occur. The CpG island around IGF2R exon 1 was hypomethylated in all studied tissues and development stages. The CpG island in IGF2R intron 2 was hemimethylated in all studied tissues of fetal, newborn and adult pigs where the maternal allele was hypermethylated. It is therefore a differentially methylated region (DMR) by definition. RT-PCR showed no evidence for AIR transcription. A blast analyses revealed ESTs from intron 1 in sense direction, which are likely internally primed transcript artifacts. We suggest that porcine IGF2R expression widely resembles that of the human ortholog.
Collapse
|
35
|
Abstract
Insulin-like growth factor-II (IGF-II) affects many aspects of cellular function through its ability to activate several different receptors and, consequently, numerous intracellular signalling molecules. Thus, IGF-II is a key regulator of normal foetal development and growth. However, abnormalities in IGF-II function are associated with cardiovascular disease and cancer. Here, we review the cellular mechanisms by which IGF-II's physiological and pathophysiological actions are exerted by discussing the involvement of the type 1 and type 2 IGF receptors (IGF1R and IGF2R), the insulin receptor and the downstream MAP kinase, PI-3 kinase and G-protein-coupled signalling pathways in mediating IGF-II stimulated cellular proliferation, survival, differentiation and migration.
Collapse
Affiliation(s)
- Lynda K Harris
- Maternal and Fetal Health Research Centre, University of Manchester, UK
| | | |
Collapse
|
36
|
Golbabapour S, Abdulla MA, Hajrezaei M. A concise review on epigenetic regulation: insight into molecular mechanisms. Int J Mol Sci 2011; 12:8661-94. [PMID: 22272098 PMCID: PMC3257095 DOI: 10.3390/ijms12128661] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/07/2011] [Accepted: 11/10/2011] [Indexed: 12/17/2022] Open
Abstract
Epigenetic mechanisms are responsible for the regulation of transcription of imprinted genes and those that induce a totipotent state. Starting just after fertilization, DNA methylation pattern undergoes establishment, reestablishment and maintenance. These modifications are important for normal embryo and placental developments. Throughout life and passing to the next generation, epigenetic events establish, maintain, erase and reestablish. In the context of differentiated cell reprogramming, demethylation and activation of genes whose expressions contribute to the pluripotent state is the crux of the matter. In this review, firstly, regulatory epigenetic mechanisms related to somatic cell nuclear transfer (SCNT) reprogramming are discussed, followed by embryonic development, and placental epigenetic issues.
Collapse
Affiliation(s)
- Shahram Golbabapour
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (M.A.A.); (M.H.)
| | - Mahmood Ameen Abdulla
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (M.A.A.); (M.H.)
| | - Maryam Hajrezaei
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (M.A.A.); (M.H.)
| |
Collapse
|
37
|
[Studies on SNP and genomic imprinting of the PEG1 gene in swine]. YI CHUAN = HEREDITAS 2011; 33:738-42. [PMID: 22049687 DOI: 10.3724/sp.j.1005.2011.00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PEG1 affects animal embryo growth and maternal behavior. The paternal allele-specific expression of PEG1 was reported in most animal species, but the expressive pattern of PEG1 was not clear in piglets born. In order to investigate the imprinting pattern of PEG1 in pig, 166 samples were used to SNP of PEG1 from Landrace, Yorkshire, and Lantang breeds by PCR-SSCP. Single nucleotide polymorphism (SNP) of PEG1 in exon 12 was identfied. The genotype frequency and the expressive pattern were anslyzed in swine by RT-PCR-RFLP/SSCP. One SNP (a G-->A transition) was identified in exon 12 of PEG1. Maternal expression of PEG1 exon 12 was observed in all major organs (stomach, thymus, pancreas, spleen, lung, muscle, liver, tongue, kidney, brain, bladder, and heart) and placenta of three heterozygous pigs. PEG1 was paternally expressed and maternally imprinted in swine.
Collapse
|
38
|
|
39
|
Poole RL, Baple E, Crolla JA, Temple IK, Mackay DJG. Investigation of 90 patients referred for molecular cytogenetic analysis using aCGH uncovers previously unsuspected anomalies of imprinting. Am J Med Genet A 2010; 152A:1990-3. [PMID: 20635366 DOI: 10.1002/ajmg.a.33530] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study was an investigation of 90 patients referred to the Wessex Regional Genetics Laboratory for and negative by molecular cytogenetic analysis using array comparative genomic hybridization. This patient cohort represents typical referrals to a regional genetic centre. Methylation analysis was performed at 13 imprinted loci [PLAGL1, IGF2R, MEST, GRB10, H19, IGF2 DMR2 (IGF2P0), KCNQ1OT1 (KvDMR), MEG3, SNRPN, PEG3, GNAS (GNAS exon 1a and NESP55) and GNASAS]. In total 6/90 (6.67%) were shown to have a methylation defect, 2 of which were associated with known imprinting disorders: 1 patient had isolated hypomethylation at IGF2P0, an atypical epigenotype associated with Russell-Silver syndrome, and 1 showed hypomethylation at KvDMR consistent with a diagnosis of Beckwith-Wiedemann syndrome. A further 4 patients, 3 exhibiting complete hypermethylation, and 1 partial hypomethylation, had aberrations at IGF2R, the clinical significance of which remains unclear. This study demonstrates the potential utility of epigenetic investigation in routine diagnostic testing.
Collapse
Affiliation(s)
- Rebecca L Poole
- Division of Human Genetics, University of Southampton School of Medicine, Southampton SO16 6YD, UK.
| | | | | | | | | |
Collapse
|
40
|
Adkins RM, Somes G, Morrison JC, Hill JB, Watson EM, Magann EF, Krushkal J. Association of birth weight with polymorphisms in the IGF2, H19, and IGF2R genes. Pediatr Res 2010; 68:429-34. [PMID: 20639793 PMCID: PMC3063315 DOI: 10.1203/pdr.0b013e3181f1ca99] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
There is a substantial genetic component for birth weight variation. We tested 18 single nucleotide polymorphisms (SNPs) in the IGF2, H19, and IGF2R genes for associations with birth weight variation in 342 mother-newborn pairs (birth weight 2.1-4.7 kg at term) and 527 parent-newborn trios (birth weight 2.1-5.1 kg) across three localities. SNPs in the IGF2R (rs8191754; maternal genotype), IGF2 (rs3741205; newborn genotype), and 5' region of the H19 (rs2067051, rs2251375, and rs4929984) genes were associated with birth weight. Detailed analyses to distinguish direct maternal, direct newborn, and parent of origin effects for the most strongly associated H19 SNP (rs4929984) determined that the association of maternal genotype with newborn birth weight was due to parent of origin effects not direct maternal effects. That SNP is located near the CTCF binding sites that influence expression of the maternally imprinted IGF2 and paternally imprinted H19 locus, and there are statistically significant and independent opposite effects of the same rs4929984 allele, depending on the parent from which it was inherited.
Collapse
Affiliation(s)
- Ronald M Adkins
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee 38103, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Chiu YF, Chuang LM, Kao HY, Shih KC, Lin MW, Lee WJ, Quertermous T, Curb JD, Chen I, Rodriguez BL, Hsiung CA. Sex-specific genetic architecture of human fatness in Chinese: the SAPPHIRe Study. Hum Genet 2010; 128:501-13. [PMID: 20725740 DOI: 10.1007/s00439-010-0877-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 08/11/2010] [Indexed: 01/02/2023]
Abstract
To dissect the genetic architecture of sexual dimorphism in obesity-related traits, we evaluated the sex-genotype interaction, sex-specific heritability and genome-wide linkages for seven measurements related to obesity. A total of 1,365 non-diabetic Chinese subjects from the family study of the Stanford Asia-Pacific Program of Hypertension and Insulin Resistance were used to search for quantitative trait loci (QTLs) responsible for the obesity-related traits. Pleiotropy and co-incidence effects from the QTLs were also examined using the bivariate linkage approach. We found that sex-specific differences in heritability and the genotype-sex interaction effects were substantially significant for most of these traits. Several QTLs with strong linkage evidence were identified after incorporating genotype by sex (G × S) interactions into the linkage mapping, including one QTL for hip circumference [maximum LOD score (MLS) = 4.22, empirical p = 0.000033] and two QTLs: for BMI on chromosome 12q with MLS 3.37 (empirical p = 0.0043) and 3.10 (empirical p = 0.0054). Sex-specific analyses demonstrated that these linkage signals all resulted from females rather than males. Most of these QTLs for obesity-related traits replicated the findings in other ethnic groups. Bivariate linkage analyses showed several obesity traits were influenced by a common set of QTLs. All regions with linkage signals were observed in one gender, but not in the whole sample, suggesting the genetic architecture of obesity-related traits does differ by gender. These findings are useful for further identification of the liability genes for these phenotypes through candidate genes or genome-wide association analysis.
Collapse
Affiliation(s)
- Y-F Chiu
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, 35 Keyan Rd, Zhunan, Miaoli 350, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Turan N, Katari S, Gerson LF, Chalian R, Foster MW, Gaughan JP, Coutifaris C, Sapienza C. Inter- and intra-individual variation in allele-specific DNA methylation and gene expression in children conceived using assisted reproductive technology. PLoS Genet 2010; 6:e1001033. [PMID: 20661447 PMCID: PMC2908687 DOI: 10.1371/journal.pgen.1001033] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 06/17/2010] [Indexed: 11/29/2022] Open
Abstract
Epidemiological studies have reported a higher incidence of rare disorders involving imprinted genes among children conceived using assisted reproductive technology (ART), suggesting that ART procedures may be disruptive to imprinted gene methylation patterns. We examined intra- and inter-individual variation in DNA methylation at the differentially methylated regions (DMRs) of the IGF2/H19 and IGF2R loci in a population of children conceived in vitro or in vivo. We found substantial variation in allele-specific methylation at both loci in both groups. Aberrant methylation of the maternal IGF2/H19 DMR was more common in the in vitro group, and the overall variance was also significantly greater in the in vitro group. We estimated the number of trophoblast stem cells in each group based on approximation of the variance of the binomial distribution of IGF2/H19 methylation ratios, as well as the distribution of X chromosome inactivation scores in placenta. Both of these independent measures indicated that placentas of the in vitro group were derived from fewer stem cells than the in vivo conceived group. Both IGF2 and H19 mRNAs were significantly lower in placenta from the in vitro group. Although average birth weight was lower in the in vitro group, we found no correlation between birth weight and IGF2 or IGF2R transcript levels or the ratio of IGF2/IGF2R transcript levels. Our results show that in vitro conception is associated with aberrant methylation patterns at the IGF2/H19 locus. However, very little of the inter- or intra-individual variation in H19 or IGF2 mRNA levels can be explained by differences in maternal DMR DNA methylation, in contrast to the expectations of current transcriptional imprinting models. Extraembryonic tissues of embryos cultured in vitro appear to be derived from fewer trophoblast stem cells. It is possible that this developmental difference has an effect on placental and fetal growth. We have screened a population of children conceived in vitro for epigenetic alterations at two loci that carry parent-of-origin specific methylation marks. We made the observation that epigenetic variability was greater in extraembryonic tissues than embryonic tissues in both groups, as has also been demonstrated in the mouse. The greater level of intra-individual variation in extraembryonic tissues of the in vitro group appears to result from these embryos having fewer trophoblast stem cells. We also made the unexpected observation that variability in parental origin-dependent epigenetic marking was poorly correlated with gene expression. In fact, there is such a high level of inter-individual variation in IGF2 transcript level that the presumed half-fold reduction in IGF2 mRNA accounted for by proper transcriptional imprinting versus complete loss of imprinting would account for less than 5% of the total population variance. Given this level of variability in the expression of an imprinted gene, the presumed operation of “parental conflict” as the selective force acting to maintain imprinted gene expression at the IGF2/H19 locus in the human should be revisited.
Collapse
Affiliation(s)
- Nahid Turan
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sunita Katari
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Leigh F. Gerson
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Raffi Chalian
- Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michael W. Foster
- Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - John P. Gaughan
- Biostatistics Consulting Center, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Christos Coutifaris
- Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Carmen Sapienza
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
43
|
Fahey ME, Mills W, Higgins DG, Moore T. Maternally and paternally silenced imprinted genes differ in their intron content. Comp Funct Genomics 2010; 5:572-83. [PMID: 18629181 PMCID: PMC2447473 DOI: 10.1002/cfg.437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 11/01/2004] [Accepted: 11/12/2004] [Indexed: 12/31/2022] Open
Abstract
Imprinted genes exhibit silencing of one of the parental alleles during embryonic development. In a previous study imprinted genes were found to have reduced intron content relative to a non-imprinted control set (Hurst et al., 1996). However, due to the small sample size, it was not possible to analyse the source of this effect. Here, we re-investigate this observation using larger datasets of imprinted and control (non-imprinted) genes that allow us to consider mouse and human, and maternally and paternally silenced, imprinted genes separately. We find that, in the human and mouse, there is reduced intron content in the maternally silenced imprinted genes relative to a non-imprinted control set. Among imprinted genes, a strong bias is also observed in the distribution of intronless genes, which are found exclusively in the maternally silenced dataset. The paternally silenced dataset in the human is not different to the control set; however, the mouse paternally silenced dataset has more introns than the control group. A direct comparison of mouse maternally and paternally silenced imprinted gene datasets shows that they differ significantly with respect to a variety of intron-related parameters. We discuss a variety of possible explanations for our observations.
Collapse
Affiliation(s)
- Marie E Fahey
- Department of Biochemistry, Biosciences Institute, University College Cork, College Road, Cork, Ireland
| | | | | | | |
Collapse
|
44
|
Bressan FF, De Bem THC, Perecin F, Lopes FL, Ambrosio CE, Meirelles FV, Miglino MA. Unearthing the roles of imprinted genes in the placenta. Placenta 2009; 30:823-34. [PMID: 19679348 DOI: 10.1016/j.placenta.2009.07.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 07/22/2009] [Indexed: 11/17/2022]
Abstract
Mammalian fetal survival and growth are dependent on a well-established and functional placenta. Although transient, the placenta is the first organ to be formed during pregnancy and is responsible for important functions during development, such as the control of metabolism and fetal nutrition, gas and metabolite exchange, and endocrine control. Epigenetic marks and gene expression patterns in early development play an essential role in embryo and fetal development. Specifically, the epigenetic phenomenon known as genomic imprinting, represented by the non-equivalence of the paternal and maternal genome, may be one of the most important regulatory pathways involved in the development and function of the placenta in eutherian mammals. A lack of pattern or an imprecise pattern of genomic imprinting can lead to either embryonic losses or a disruption in fetal and placental development. Genetically modified animals present a powerful approach for revealing the interplay between gene expression and placental function in vivo and allow a single gene disruption to be analyzed, particularly focusing on its role in placenta function. In this paper, we review the recent transgenic strategies that have been successfully created in order to provide a better understanding of the epigenetic patterns of the placenta, with a special focus on imprinted genes. We summarize a number of phenotypes derived from the genetic manipulation of imprinted genes and other epigenetic modulators in an attempt to demonstrate that gene-targeting studies have contributed considerably to the knowledge of placentation and conceptus development.
Collapse
Affiliation(s)
- F F Bressan
- Department of Basic Sciences, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | | | | | | | | | | | | |
Collapse
|
45
|
Huang JM, Yu S, Kim J. Identification of an antisense transcript to ZIM2 in the primate lineage. Gene 2009; 445:1-6. [PMID: 19539734 DOI: 10.1016/j.gene.2009.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 06/05/2009] [Accepted: 06/09/2009] [Indexed: 11/24/2022]
Abstract
In this study, we identified an antisense transcript to ZIM2 (zinc finger imprinted gene 2) in the human, called ZIM2as. Sequence analysis of the 110 kb region spanned by this transcript revealed a cluster of tandemly repeated sequence in the human, orangutan, and chimpanzee as well as a loss of approximately 70 kb from the corresponding region in the rhesus. The homologous region in most mammals contains a cluster of olfactory receptor (OLFR) genes, but this gene cluster has been lost from the primate lineage. Expression analyses confirmed that ZIM2as is expressed in the human brain and testis. Two CpG islands near the promoter region of ZIM2as showed different methylation patterns in these three species. The CpG island distal to ZIM2as showed an allele-specific DNA methylation pattern in the human testis, while the CpG island proximal to the ZIM2as promoter showed a mosaic methylation pattern in the chimpanzee. The methylation status of several nearby zinc finger genes was unchanged among the primates tested. Overall, this study reports the presence of a previously unreported primate-specific antisense transcript in the PEG3 imprinted domain, suggesting that the formation of this transcript may coincide with the loss of the OLFR cluster.
Collapse
Affiliation(s)
- Jennifer M Huang
- Department of Biological Sciences, 202 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | |
Collapse
|
46
|
|
47
|
Kobayashi H, Yamada K, Morita S, Hiura H, Fukuda A, Kagami M, Ogata T, Hata K, Sotomaru Y, Kono T. Identification of the mouse paternally expressed imprinted gene Zdbf2 on chromosome 1 and its imprinted human homolog ZDBF2 on chromosome 2. Genomics 2009; 93:461-72. [DOI: 10.1016/j.ygeno.2008.12.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 12/30/2008] [Accepted: 12/30/2008] [Indexed: 12/20/2022]
|
48
|
Rezgui D, Williams C, Savage SA, Prince SN, Zaccheo OJ, Jones EY, Crump MP, Hassan AB. Structure and function of the human Gly1619Arg polymorphism of M6P/IGF2R domain 11 implicated in IGF2 dependent growth. J Mol Endocrinol 2009; 42:341-56. [PMID: 19208780 PMCID: PMC2659294 DOI: 10.1677/jme-08-0154] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 01/08/2009] [Accepted: 02/04/2009] [Indexed: 11/27/2022]
Abstract
The mannose 6-phosphate/IGF 2 receptor (IGF2R) is comprised of 15 extra-cellular domains that bind IGF2 and mannose 6-phosphate ligands. IGF2R transports ligands from the Golgi to the pre-lysosomal compartment and thereafter to and from the cell surface. IGF2R regulates growth, placental development, tumour suppression and signalling. The ligand IGF2 is implicated in the growth phenotype, where IGF2R normally limits bioavailability, such that loss and gain of IGF2R results in increased and reduced growth respectively. The IGF2R exon 34 (5002A>G) polymorphism (rs629849) of the IGF2 specific binding domain has been correlated with impaired childhood growth (A/A homozygotes). We evaluated the function of the Gly1619Arg non-synonymous amino acid modification of domain 11. NMR and X-ray crystallography structures located 1619 remote from the ligand binding region of domain 11. Arg1619 was located close to the fibronectin type II (FnII) domain of domain 13, previously implicated as a modifier of IGF2 ligand binding through indirect interaction with the AB loop of the binding cleft. However, comparison of binding kinetics of IGF2R, Gly1619 and Arg1619 to either IGF2 or mannose 6-phosphate revealed no differences in 'on' and 'off' rates. Quantitative PCR, (35)S pulse chase and flow cytometry failed to demonstrate altered gene expression, protein half-life and cell membrane distribution, suggesting the polymorphism had no direct effect on receptor function. Intronic polymorphisms were identified which may be in linkage disequilibrium with rs629849 in certain populations. Other potential IGF2R polymorphisms may account for the correlation with childhood growth, warranting further functional evaluation.
Collapse
Affiliation(s)
| | - Christopher Williams
- Department of Organic and Biological ChemistrySchool of Chemistry, University of BristolBristol, BS8 1TSUK
| | - Sharon A Savage
- Division of Cancer Epidemiology and GeneticsNational Cancer Institute6120 Executive Boulevard, EPS/7018, Rockville, Maryland, 20852USA
| | | | | | - E Yvonne Jones
- Cancer Research UK Receptor Structure Research Group, Division of Structural BiologyWellcome Trust Centre for Human Genetics, University of OxfordOxford, OX3 7BNUK
| | - Matthew P Crump
- Department of Organic and Biological ChemistrySchool of Chemistry, University of BristolBristol, BS8 1TSUK
| | | |
Collapse
|
49
|
El‐Shewy HM, Luttrell LM. Chapter 24 Insulin‐Like Growth Factor‐2/Mannose‐6 Phosphate Receptors. VITAMINS & HORMONES 2009; 80:667-97. [DOI: 10.1016/s0083-6729(08)00624-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Pravtcheva DD, Wise TL. Igf2r improves the survival and transmission ratio of Igf2 transgenic mice. Mol Reprod Dev 2008; 75:1678-87. [PMID: 18361416 DOI: 10.1002/mrd.20909] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mammals with excess insulin-like growth factor 2 (IGFII) during embryogenesis have developmental defects that can lead to perinatal lethality. In adults, higher levels of IGFII increase the risk of cancer and may accelerate the development of atherosclerosis. IGFII can be increased as a consequence of genetic abnormalities and polymorphisms, and through epigenetic mechanisms. Decreasing IGFII levels thus can benefit human health. Degradation of IGFII is mediated by the insulin-like growth factor type 2 receptor (IGF2R). The growth-stimulatory effects of IGFII, and their attenuation by the IGF2R, are considered important for the evolution of IGFII/IGF2R interaction and imprinting. The IGFII/IGF2R interactions during development have been previously examined in mice carrying knock-out alleles of these genes or their regulators. Here we tested the ability of the IGF2R to ameliorate the negative effects of IGFII on development and survival in crosses between Igf2 and Igf2r transgenic mice, which may be a better model for natural variations in the levels of these genes' products. A fraction of hemizygous Igf2 transgenic mice die in the perinatal period, some with cleft palates, with an ensuing reduction in the frequency of transgenic mice among the surviving offspring. The Igf2r transgene lowers the frequency of cleft palate and increases the percentage of Igf2 transgenic mice among the live offspring. These findings draw attention to the fact that Igf2-associated lethality selects for the retention of IGFII/IGF2R binding in present day mammals; it may have played a similar role in the acquisition of IGFII/IGF2R binding in ancient mammals.
Collapse
Affiliation(s)
- Dimitrina D Pravtcheva
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314, USA.
| | | |
Collapse
|