1
|
Rubera I, Hummler E, Beermann F. Transgenic mice and their impact on kidney research. Pflugers Arch 2008; 458:211-22. [PMID: 19084992 DOI: 10.1007/s00424-008-0624-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 11/25/2008] [Indexed: 12/12/2022]
Abstract
The kidney is a key organ in the maintenance of ion and fluid homeostasis and specific transport systems localized along the nephron guarantee this function. Due to its large functional heterogeneity, experiments on the whole organ level cannot be easily performed, and thus more refined tools are needed, like for example the development of specific recombination systems to gain knowledge on the physiological role of single proteins implicated in ion transport. This review introduces the transgenic technology developed over the past decades, and then focuses on recent strategies for generating kidney-specific gene targeting, over-expression, and gene ablation in mice, that will help to understand the physiological role of proteins implicated in salt and water balance in the kidney.
Collapse
|
2
|
Abstract
Manipulation of the mouse genome through mis-expressing, knocking out, and introducing mutations into genes of interest has provided important insights into the genetic pathways responsible for human skeletal development. These pathways contribute to the sequential phases of skeletal morphogenesis that include patterning, condensation, and overt organogenesis of the membranous and endochondral embryonic skeletons and to subsequent linear growth. Disturbances in these pathways account for many developmental syndromes and disorders of the human skeleton. Recurrent themes include establishment of interlocking regulatory circuits involving growth factors, receptors, signalling pathways, and transcription factors that control cellular programmes such as migration, adhesion, proliferation, differentiation, and apoptosis, and use of common molecules for different purposes. Technical advances suggest that genetic engineering in mice will continue to be highly instructive in the field of skeletal biology.
Collapse
Affiliation(s)
- William A Horton
- Shriners Hospital for Children, Oregon Health and Science University, 3101 Sam Jackson Park Road, Portland, OR 97239-3009, USA.
| |
Collapse
|
3
|
Zuo J. Transgenic and gene targeting studies of hair cell function in mouse inner ear. JOURNAL OF NEUROBIOLOGY 2002; 53:286-305. [PMID: 12382282 DOI: 10.1002/neu.10128] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Despite the rapid discovery of a large number of genes in sensory hair cells of the inner ear, the functional roles of these genes in hair cells remain largely undetermined. Recent advances in transgenic and gene targeting technologies in mice have offered unprecedented opportunities to genetically manipulate the expression of these genes and to study their functional roles in hair cells in vivo. Transgenic analyses have revealed the presence of hair-cell-specific promoters in the genes encoding Math1, myosin VIIa, Pou4f3, and the alpha9 subunit of the acetylcholine receptor (alpha9 AChR). Targeted inactivation using embryonic stem cell technology and transgenic expression studies have revealed the roles of several genes involved in hair cell lineage (Math1), differentiation (Pou4f3), mechanotransduction (Myo1c, and Myo7a), electromotility (Prestin), and efferent modulation (Chrna9, encoding alpha9 AChR). Although many of these genes also play roles in other tissues, inactivation of these genes in hair cells alone will soon be possible by using the Cre-loxP system. Also imminent is the development of genetic methods to inactivate genes specifically in mouse hair cells at a desired time, by using inducible systems established in other types of neurons. Combining these types of manipulation of gene expression will enable hearing researchers to elucidate some of the fundamental and unique features of hair cell function such as mechanotransduction, frequency tuning, active mechanical amplification, and efferent modulation.
Collapse
Affiliation(s)
- Jian Zuo
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, Tennessee 38105-2794, USA.
| |
Collapse
|
4
|
Zappone MV, Galli R, Catena R, Meani N, De Biasi S, Mattei E, Tiveron C, Vescovi AL, Lovell-Badge R, Ottolenghi S, Nicolis SK. Sox2 regulatory sequences direct expression of a (beta)-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development 2000; 127:2367-82. [PMID: 10804179 DOI: 10.1242/dev.127.11.2367] [Citation(s) in RCA: 234] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sox2 is one of the earliest known transcription factors expressed in the developing neural tube. Although it is expressed throughout the early neuroepithelium, we show that its later expression must depend on the activity of more than one regionally restricted enhancer element. Thus, by using transgenic assays and by homologous recombination-mediated deletion, we identify a region upstream of Sox2 (−5.7 to −3.3 kb) which can not only drive expression of a (beta)-geo transgene to the developing dorsal telencephalon, but which is required to do so in the context of the endogenous gene. The critical enhancer can be further delimited to an 800 bp fragment of DNA surrounding a nuclease hypersensitive site within this region, as this is sufficient to confer telencephalic expression to a 3.3 kb fragment including the Sox2 promoter, which is otherwise inactive in the CNS. Expression of the 5.7 kb Sox2(beta)-geo transgene localizes to the neural plate and later to the telencephalic ventricular zone. We show, by in vitro clonogenic assays, that transgene-expressing (and thus G418-resistant) ventricular zone cells include cells displaying functional properties of stem cells, i.e. self-renewal and multipotentiality. We further show that the majority of telencephalic stem cells express the transgene, and this expression is largely maintained over two months in culture (more than 40 cell divisions) in the absence of G418 selective pressure. In contrast, stem cells grown in parallel from the spinal cord never express the transgene, and die in G418. Expression of endogenous telencephalic genes was similarly observed in long-term cultures derived from the dorsal telencephalon, but not in spinal cord-derived cultures. Thus, neural stem cells of the midgestation embryo are endowed with region-specific gene expression (at least with respect to some networks of transcription factors, such as that driving telencephalic expression of the Sox2 transgene), which can be inherited through multiple divisions outside the embryonic environment.
Collapse
Affiliation(s)
- M V Zappone
- Dipartimento di Genetica e di Biologia dei Microrganismi, Università di Milano, via L.Celoria 26, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Collick A, Bois P, Grant G, Buard J. Current and future contributions of transgenic mice to the analysis of germline toxicology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 444:119-25; discussion 125-7. [PMID: 10026941 DOI: 10.1007/978-1-4899-0089-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Evermore sophisticated tests are need to study germline toxicology. The gene conversion-based systems developed in Leicester and in the USA are steps in the right direction, but a lot of validation both in vivo and in vitro is required. Transgenic technology can also be used to research the biology of testis, so that we know more how to make it more human-like. If you talk to toxicologists, they always complain: 'but it 's only a rat, it's only a mouse, it's not a man'. In future, once we understand more biology--it might be possible to make the toxicological response of a transgenic mouse more human-like. As we all know, the testis is a complex biological system and it is only when we get a better understanding of what is going on to the fundamental level are such developments possible. Indeed, it might be possible to do even more exciting things, such as taking mitotic human tissue culture cells and to inducing them to enter meiosis in vitro. Such a system would be a natural complement to the in vitro tests widely used in industry.
Collapse
Affiliation(s)
- A Collick
- Department of Genetics, University of Leicester
| | | | | | | |
Collapse
|
6
|
Liu P, Zhang H, McLellan A, Vogel H, Bradley A. Embryonic lethality and tumorigenesis caused by segmental aneuploidy on mouse chromosome 11. Genetics 1998; 150:1155-68. [PMID: 9799267 PMCID: PMC1460401 DOI: 10.1093/genetics/150.3.1155] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Chromosome engineering in mice enables the construction of models of human chromosomal diseases and provides key reagents for genetic studies. To begin to define functional information for a small portion of chromosome 11, deficiencies, duplications, and inversions were constructed in embryonic stem cells with sizes ranging from 1 Mb to 22 cM. Two deficiencies and three duplications were established in the mouse germline. Mice with a 1-Mb duplication developed corneal hyperplasia and thymic tumors, while two different 3- to 4-cM deficiencies were embryonically lethal in heterozygous mice. A duplication corresponding to one of these two deficiencies was able to rescue its haplolethality.
Collapse
Affiliation(s)
- P Liu
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
7
|
Wolf E, Zakhartchenko V, Brem G. Nuclear transfer in mammals: recent developments and future perspectives. J Biotechnol 1998; 65:99-110. [PMID: 9828456 DOI: 10.1016/s0168-1656(98)00132-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A clone can be defined as a set of genetically identical animals. Small clones of two or occasionally up to four identical animals can be obtained by embryo splitting or blastomere separation. Embryo cloning by nuclear transfer involves the transfer of genetic material from a donor cell (karyoplast) to the cytoplasm of an oocyte or zygote from which the genetic material has been removed (cytoplast). In farm animals, metaphase II oocytes are most widely used as cytoplasts. There are now many factors known to influence the efficiency of embryo cloning by nuclear transfer. These include stage of development and cell cycle of donor cells, the choice of the recipient cell, the methods for activation of oocytes, the cell cycle coordination between donor cell and recipient cytoplast, and the method for fusion between nuclear donor and recipient cytoplast. Recent progress in cloning embryos and animals from cultured cells of embryonic, fetal, or adult origin offers a wide spectrum of potential applications of nuclear transfer, such as the unlimited multiplication of elite embryos or animals from selected matings and the potential for precise genetic modification of farm animals for gene farming or xenotransplantation.
Collapse
Affiliation(s)
- E Wolf
- Lehrstuhl für Molekulare Tierzucht und Haustiergenetik/Genzentrum, Ludwig-Maximilians-Universität, München, Germany
| | | | | |
Collapse
|
8
|
Abstract
The mouse whey acidic protein (WAP) gene in mouse embryonic stem (ES) cells has been targeted with a loxP-flanked neomycin phosphotransferase-thymidine kinase (neo-TK) cassette inserted into exon 4. Southern blot revealed that 51 of 199 colonies were correctly targeted (1:4). Next, a Cre-encoding plasmid was electroporated into a targeted cell line to cause the deletion of the neo-TK cassette. Modified ES cell colonies were identified by polymerase chain reaction (PCR); 44 out of 50 colonies (88%) had undergone Cre-mediated deletion. Finally, a loxP-tagged cell line was co-electroporated with a Cre-encoding plasmid and a loxP-containing neo plasmid for site-specific insertion into the WAP locus. The frequency of this event was 23% (11 of 48) of that obtained with random integration. This demonstrates the feasibility of using the Cre-loxP system for site-specific integration in ES cells. Moreover, this is the first report of targeting a loxP-containing transgene into a predetermined location in ES cells. Ultimately, a mouse model derived from these modified ES cells will usher in a second generation of animal "bioreactor" models where the inserted transgene is controlled exclusively by the endogenous locus regulatory elements. In addition, oncogenesis can be explored from single copy oncogene/tumor suppressor gene inserts, which are regulated in a temporal and tissue-specific manner. It is hoped that regulation of transgene expression in this fashion will help elucidate the underlying mechanisms of normal development in the mammary gland.
Collapse
Affiliation(s)
- E B Rucker
- Department of Veterinary Anatomy and Public Health, Texas A & M University, College Station 77843, USA
| | | |
Collapse
|
9
|
Abstract
Transgenic and knockout mice have been proposed as substitutes for one of the standard 2-yr rodent assays. The advantages of using genetically engineered mouse models is that fewer mice are needed, the time to develop disease is greatly reduced, and the mice are predisposed to developing cancer by virtue of gain or loss of functions. The models currently being used have yielded a large amount of data and have proved to be informative for risk assessment; however, they are still far from ideal. In fact, they inherently do not reflect the complexity of mutation and carcinogenesis in humans. Recent advances in technology and the creation of new knockout mice may produce more useful and more sensitive models. This review covers two recent advances in technology--inducible and regulatable gene expression and targeted genetic modifications in the genome--that will allow us to make better models. I also discuss new gene deletion and transgenic mouse models and their potential impact on risk-assessment assays. These models are presented in the context of four basic components or events that occur in the multistep process leading to cancer: maintenance of gene expression patterns, genome stability and DNA repair, cell-cell communication and signaling, and cell-cycle regulation. Finally, surrogate markers and utility in risk assessment are also discussed. This review is meant to stimulate further discussion in the field and to generate excitement about working toward the next generation of risk-assessment models.
Collapse
Affiliation(s)
- M P Rosenberg
- Department of Genomics, Glaxo Wellcome Research, Inc., Research Triangle Park, North Carolina
| |
Collapse
|
10
|
Yang XW, Model P, Heintz N. Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat Biotechnol 1997; 15:859-65. [PMID: 9306400 DOI: 10.1038/nbt0997-859] [Citation(s) in RCA: 421] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Escherichia coli-based artificial chromosomes have become important tools for physical mapping and sequencing in various genome projects. The lack of a general method to modify these large bacterial clones, however, has limited their utility in functional studies. We developed a simple method to modify bacterial artificial chromosomes directly in the recombination-deficient E. coli host strain by homologous recombination for in vivo studies. The IRES-LacZ marker gene was introduced into a 131 kb BAC containing the murine zinc finger gene, RU49. No rearrangements or deletions were detected in the modified BACs. Furthermore, transgenic mice were generated by pronuclear injection of the modified BAC, and germline transmission of the intact BAC has been obtained. Proper expression of the lacZ transgene in the brain has been observed, which could not be obtained with conventional transgenic constructs.
Collapse
Affiliation(s)
- X W Yang
- Laboratory of Molecular Biology, Rockefeller University, New York, NY 10021, USA
| | | | | |
Collapse
|