1
|
Chen X, Wang X, Li C, Zhang Y, Feng S, Xu S. A scientometric analysis of research on the role of NMDA receptor in the treatment of depression. Front Pharmacol 2024; 15:1394730. [PMID: 38974036 PMCID: PMC11224522 DOI: 10.3389/fphar.2024.1394730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Background There have been numerous studies on NMDA receptors as therapeutic targets for depression. However, so far, there has been no comprehensive scientometric analysis of this field. Thus, we conducted a scientometric analysis with the aim of better elucidating the research hotspots and future trends in this field. Methods Publications on NMDAR in Depression between 2004 and 2023 were retrieved from the Web of Science Core Collection (WoSCC) database. Then, VOSviewer, CiteSpace, Scimago Graphica, and R-bibliometrix-were used for the scientometric analysis and visualization. Results 5,092 qualified documents were identified to scientometric analysis. In the past 20 years, there has been an upward trend in the number of annual publications. The United States led the world in terms of international collaborations, publications, and citations. 15 main clusters were identified from the co-cited references analysis with notable modularity (Q-value = 0.7628) and silhouette scores (S-value = 0.9171). According to the keyword and co-cited references analysis, treatment-resistant depression ketamine (an NMDAR antagonist), oxidative stress, synaptic plasticity, neuroplasticity related downstream factors like brain-derived neurotrophic factor were the research hotspots in recent years. Conclusion As the first scientometric analysis of NMDAR in Depression, this study shed light on the development, trends, and hotspots of research about NMDAR in Depression worldwide. The application and potential mechanisms of ketamine in the treatment of major depressive disorder (MDD) are still a hot research topic at present. However, the side effects of NMDAR antagonist like ketamine have prompted research on new rapid acting antidepressants.
Collapse
Affiliation(s)
| | | | | | | | - Shanwu Feng
- Department of Anesthesiology, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, Nanjing, China
| | - Shiqin Xu
- Department of Anesthesiology, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, Nanjing, China
| |
Collapse
|
2
|
Song RX, Zhou TT, Jia SY, Li WG, Wang J, Li BD, Shan YD, Zhang LM, Li XM. Hydrogen sulfide mitigates memory impairments via the restoration of glutamatergic neurons in a mouse model of hemorrhage shock and resuscitation. Exp Neurol 2024; 376:114758. [PMID: 38513970 DOI: 10.1016/j.expneurol.2024.114758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Impaired long-term memory, a complication of traumatic stress including hemorrhage shock and resuscitation (HSR), has been reported to be associated with multiple neurodegenerations. The ventral tegmental area (VTA) participates in both learned appetitive and aversive behaviors. In addition to being prospective targets for the therapy of addiction, depression, and other stress-related diseases, VTA glutamatergic neurons are becoming more widely acknowledged as powerful regulators of reward and aversion. This study revealed that HSR exposure induces memory impairments and decreases the activation in glutamatergic neurons, and decreased β power in the VTA. We also found that optogenetic activation of glutamatergic neurons in the VTA mitigated HSR-induced memory impairments, and restored β power. Moreover, hydrogen sulfide (H2S), a gasotransmitter with pleiotropic roles, has neuroprotective functions at physiological concentrations. In vivo, H2S administration improved HSR-induced memory deficits, elevated c-fos-positive vesicular glutamate transporters (Vglut2) neurons, increased β power, and restored the balance of γ-aminobutyric acid (GABA) and glutamate in the VTA. This work suggests that glutamatergic neuron stimulation via optogenetic assay and exogenous H2S may be useful therapeutic approaches for improving memory deficits following HSR.
Collapse
Affiliation(s)
- Rong-Xin Song
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou No.2 Hospital, Cangzhou, China
| | - Ting-Ting Zhou
- Department of Anesthesia and Trauma Research, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou No.2 Hospital, Cangzhou, China
| | - Shi-Yan Jia
- Department of Anesthesia and Trauma Research, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou No.2 Hospital, Cangzhou, China
| | - Wen-Guang Li
- Graduate School, Hebei Medical University, Shijiazhuang, China
| | - Jun Wang
- Department of Orthopedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou No.2 Hospital, Cangzhou, China
| | - Bao-Dong Li
- Department of Neurology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou No.2 Hospital, Cangzhou, China
| | - Yu-Dong Shan
- Department of Anesthesia and Trauma Research, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou No.2 Hospital, Cangzhou, China
| | - Li-Min Zhang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou No.2 Hospital, Cangzhou, China.
| | - Xiao-Ming Li
- Department of Orthopedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou No.2 Hospital, Cangzhou, China; Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Resrearch, Cangzhou, China.
| |
Collapse
|
3
|
El-Ansary A, Al-Ayadhi L. Effects of Walnut and Pumpkin on Selective Neurophenotypes of Autism Spectrum Disorders: A Case Study. Nutrients 2023; 15:4564. [PMID: 37960217 PMCID: PMC10647375 DOI: 10.3390/nu15214564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Special diets or nutritional supplements are regularly given to treat children with autism spectrum disorder (ASD). The increased consumption of particular foods has been demonstrated in numerous trials to lessen autism-related symptoms and comorbidities. A case study on a boy with moderate autism who significantly improved after three years of following a healthy diet consisting of pumpkin and walnuts was examined in this review in connection to a few different neurophenotypes of ASD. We are able to suggest that a diet high in pumpkin and walnuts was useful in improving the clinical presentation of the ASD case evaluated by reducing oxidative stress, neuroinflammation, glutamate excitotoxicity, mitochondrial dysfunction, and altered gut microbiota, all of which are etiological variables. Using illustrated figures, a full description of the ways by which a diet high in pumpkin and nuts could assist the included case is offered.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Autism Center, Lotus Holistic Alternative Medical Center, Abu Dhabi P.O. Box 110281, United Arab Emirates
- Autism Research and Treatment Center, P.O. Box 2925, Riyadh 11461, Saudi Arabia;
| | - Laila Al-Ayadhi
- Autism Research and Treatment Center, P.O. Box 2925, Riyadh 11461, Saudi Arabia;
- Department of Physiology, Faculty of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| |
Collapse
|
4
|
Sartori BM, Moreira Júnior RE, Paiva IM, Moraes IB, Murgas LDS, Brunialti-Godard AL. Acute ethanol exposure leads to long-term effects on memory, behavior, and transcriptional regulation in the zebrafish brain. Behav Brain Res 2023; 444:114352. [PMID: 36842314 DOI: 10.1016/j.bbr.2023.114352] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 02/27/2023]
Abstract
Alcohol consumption is associated with alterations in memory and learning processes in humans and animals. In this context, research models such as the zebrafish (Danio rerio) arise as key organisms in behavioral and molecular studies that attempt to clarify alterations in the Central Nervous System (CNS), like those related to alcohol use. Accordingly, we used the zebrafish as a model to evaluate the effects of ethanol on the learning and memory process, as well as its relationship with behavior and transcriptional regulation of lrfn2, lrrk2, grin1a, and bdnf genes in the brain. To this end, for the memory and learning evaluation, we conducted the Novel Object Recognition test (NOR); for behavior, the Novel Tank test; and for gene transcription, qPCR, after 2 h, 24 h, and 8 days of ethanol exposure. As a result, we noticed in the NOR that after 8 days of ethanol exposure, the control group spent more time exploring the novel object than when compared to 2 h post-exposure, indicating that naturally zebrafish remember familiar objects. In animals in the Treatment group, however, no object recognition behavior was observed, suggesting that alcohol affected the learning and memory processes of the animals and stimulated an anxiolytic effect in them. Regarding transcriptional regulation, 24 h after alcohol exposure, we found hyper-regulation of bdnf and, after 8 days, a hypo-regulation of lrfn2 and lrrk2. To conclude, we demonstrated that ethanol exposure may have influenced learning ability and memory formation in zebrafish, as well as behavior and regulation of gene transcription. These data are relevant for further understanding the application of zebrafish in research associated with ethanol consumption and behavior.
Collapse
Affiliation(s)
- Barbara Miranda Sartori
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Renato Elias Moreira Júnior
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Isadora Marques Paiva
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; Centro de Pesquisas em Doenças Inflamatórias (CRID), Faculdade de Medicina de Ribeirão Preto, Departamento de Farmacologia, Universidade de São Paulo (FMRP), Ribeirão Preto, Brazil
| | - Izabela Barbosa Moraes
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia (UFOB), Barreiras, Brazil
| | - Luis David Solis Murgas
- Biotério Central, Departamento de Medicina Veterinária, Universidade Federal de Lavras (UFLA), Lavras, Brazil
| | - Ana Lúcia Brunialti-Godard
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.
| |
Collapse
|
5
|
Montanari M, Martella G, Bonsi P, Meringolo M. Autism Spectrum Disorder: Focus on Glutamatergic Neurotransmission. Int J Mol Sci 2022; 23:ijms23073861. [PMID: 35409220 PMCID: PMC8998955 DOI: 10.3390/ijms23073861] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022] Open
Abstract
Disturbances in the glutamatergic system have been increasingly documented in several neuropsychiatric disorders, including autism spectrum disorder (ASD). Glutamate-centered theories of ASD are based on evidence from patient samples and postmortem studies, as well as from studies documenting abnormalities in glutamatergic gene expression and metabolic pathways, including changes in the gut microbiota glutamate metabolism in patients with ASD. In addition, preclinical studies on animal models have demonstrated glutamatergic neurotransmission deficits and altered expression of glutamate synaptic proteins. At present, there are no approved glutamatergic drugs for ASD, but several ongoing clinical trials are currently focusing on evaluating in autistic patients glutamatergic pharmaceuticals already approved for other conditions. In this review, we provide an overview of the literature concerning the role of glutamatergic neurotransmission in the pathophysiology of ASD and as a potential target for novel treatments.
Collapse
Affiliation(s)
- Martina Montanari
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Department of Systems Neuroscience, University Tor Vergata, 00133 Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Correspondence: (P.B.); (M.M.)
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Correspondence: (P.B.); (M.M.)
| |
Collapse
|
6
|
CCL5 promotion of bioenergy metabolism is crucial for hippocampal synapse complex and memory formation. Mol Psychiatry 2021; 26:6451-6468. [PMID: 33931731 PMCID: PMC8760051 DOI: 10.1038/s41380-021-01103-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/10/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022]
Abstract
Glucoregulatory efficiency and ATP production are key regulators for neuronal plasticity and memory formation. Besides its chemotactic and neuroinflammatory functions, the CC chemokine--CCL5 displays neurotrophic activity. We found impaired learning-memory and cognition in CCL5-knockout mice at 4 months of age correlated with reduced hippocampal long-term potentiation and impaired synapse structure. Re-expressing CCL5 in knockout mouse hippocampus restored synaptic protein expression, neuronal connectivity and cognitive function. Using metabolomics coupled with FDG-PET imaging and seahorse analysis, we found that CCL5 participates in hippocampal fructose and mannose degradation, glycolysis, gluconeogenesis as well as glutamate and purine metabolism. CCL5 additionally supports mitochondrial structural integrity, purine synthesis, ATP generation, and subsequent aerobic glucose metabolism. Overexpressing CCL5 in WT mice also enhanced memory-cognition performance as well as hippocampal neuronal activity and connectivity through promotion of de novo purine and glutamate metabolism. Thus, CCL5 actions on glucose aerobic metabolism are critical for mitochondrial function which contribute to hippocampal spine and synapse formation, improving learning and memory.
Collapse
|
7
|
Tabassum S, Ahmad S, Madiha S, Shahzad S, Batool Z, Sadir S, Haider S. Free L-glutamate-induced modulation in oxidative and neurochemical profile contributes to enhancement in locomotor and memory performance in male rats. Sci Rep 2020; 10:11206. [PMID: 32641780 PMCID: PMC7343824 DOI: 10.1038/s41598-020-68041-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 05/04/2020] [Indexed: 12/30/2022] Open
Abstract
Glutamate (Glu), the key excitatory neurotransmitter in the central nervous system, is considered essential for brain functioning and has a vital role in learning and memory formation. Earlier it was considered as a harmful agent but later found to be useful for many body functions. However, studies regarding the effects of free l-Glu administration on CNS function are limited. Therefore, current experiment is aimed to monitor the neurobiological effects of free l-Glu in male rats. l-Glu was orally administered to rats for 5-weeks and changes in behavioral performance were monitored. Thereafter, brain and hippocampus were collected for oxidative and neurochemical analysis. Results showed that chronic supplementation of free l-Glu enhanced locomotor performance and cognitive function of animals which may be attributed to the improved antioxidant status and cholinergic, monoaminergic and glutamatergic neurotransmission in brain and hippocampus. Current results showed that chronic supplementation of l-Glu affects the animal behaviour and brain functioning via improving the neurochemical and redox system of brain. Free l-Glu could be a useful therapeutic agent to combat neurological disturbances however this requires further targeted studies.
Collapse
Affiliation(s)
- Saiqa Tabassum
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan.,Department of Biosciences, Faculty of Life Science, Shaheed Zulfiqar Ali Bhutto Institute of Science and Technology (Szabist), Karachi, Pakistan
| | - Saara Ahmad
- Department of Biological and Biomedical Sciences, Aga Khan University Hospital, Karachi, Pakistan
| | - Syeda Madiha
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Sidrah Shahzad
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Zehra Batool
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sadia Sadir
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Saida Haider
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
8
|
Noninvasive Brain Stimulation Enhances Memory Acquisition and Is Associated with Synaptoneurosome Modification in the Rat Hippocampus. eNeuro 2019; 6:ENEURO.0311-19.2019. [PMID: 31699891 PMCID: PMC6900464 DOI: 10.1523/eneuro.0311-19.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/15/2019] [Accepted: 10/31/2019] [Indexed: 01/11/2023] Open
Abstract
Transcranial direct-current stimulation (tDCS) is a non-invasive brain stimulation approach previously shown to enhance memory acquisition, but more studies are needed to elucidate the underlying mechanisms. Here, we examined the effects of anodal tDCS (0.25 mA for 30 min) on the memory performance of male Sprague Dawley rats in the passive avoidance test (PAT) and the associated modifications to the hippocampal proteomes. Results indicate anodal tDCS applied before the acquisition period significantly enhanced memory performance in the PAT. Following PAT, synaptoneurosomes were biochemically purified from the hippocampi of tDCS-treated or sham-treated rats and individual protein abundances were determined by bottom-up liquid chromatography mass spectrometry analysis. Proteomic analysis identified 184 differentially expressed hippocampal proteins when comparing the sham to the tDCS before memory acquisition treatment group. Ingenuity pathway analysis (IPA) showed anodal tDCS before memory acquisition significantly enhanced pathways associated with memory, cognition, learning, transmission, neuritogenesis, and long-term potentiation (LTP). IPA identified significant upstream regulators including bdnf, shank3, and gsk3b. Protein-protein interaction (PPI) and protein sequence similarity (PSS) networks show that glutamate receptor pathways, ion channel activity, memory, learning, cognition, and long-term memory were significantly associated with anodal tDCS. Centrality measures from both networks identified key proteins including dlg, shank, grin, and gria that were significantly modified by tDCS applied before the acquisition period. Together, our results provide descriptive molecular evidence that anodal tDCS enhances memory performance in the PAT by modifying hippocampal synaptic plasticity related proteins.
Collapse
|
9
|
JUNHO BRUNOTERRA, DE OLIVEIRA VICTORFERNANDES. The role of NMDA receptor antagonists, amantadine and memantine, in schizophrenia treatment: a systematic review. ARCH CLIN PSYCHIAT 2019. [DOI: 10.1590/0101-60830000000218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Liu X, Zheng X, Du G, Li Z, Qin X. Brain metabonomics study of the antidepressant-like effect of Xiaoyaosan on the CUMS-depression rats by 1H NMR analysis. JOURNAL OF ETHNOPHARMACOLOGY 2019; 235:141-154. [PMID: 30708033 DOI: 10.1016/j.jep.2019.01.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoyaosan (XYS), a famous TCM prescription with a long history of clinical use for relieving a wide variety of depression symptoms, consists of Radix Bupleuri (Bupleurum chinense DC.), Radix Angelicae Sinensis (Angelica sinensis (Oliv.) Diels), Radix PaeoniaeAlba (Paeonia lactiflora Pall.), Rhizoma Atractylodis Macrocepha lae (Atractylodes macrocephala Koidz.), Poria (Poria cocos (Schw.)Wolf), Radix Glycyrrhizae (Glycyrrhiza uralensis Fisch.), Herba Menthae Haplocalycis (Mentha haplocalyx Briq.), and Rhizoma Zin-giberis Recens (Zingiber officinale Rosc.). AIM OF THE STUDY We aimed to characterize the diversity and variation of two kinds metabolites of brain, i.e. aqueous and lipophilic metabolites, gaining comprehensive insights into the metabolic processes of depression-like behavior, and to reveal the mechanisms of antidepressant-like effects of XYS. MATERIALS AND METHODS We first established a CUMS (Chronic Unpredictable Mild Stress)-induced depression-like behavior model. We then extracted both aqueous and lipophilic metabolites of rat brains by a two-phase extraction method, which were subsequently characterized by two differential sequences of 1H nuclear magnetic resonance (NMR). Multivariate analysis including Principal Components Analysis (PCA) and Orthogonal Partial Least Squares-Discriminate Analysis (OPLS-DA) was applied. RESULTS Metabolic profiling by PCA indicated that XYS significantly reversed the metabolic perturbation caused by CUMS. OPLS-DA showed a total of 15 metabolites including 6 lipophilic and 9 aqueous metabolites was screened as potential biomarkers involved in CUMS-induced depression-like behavior. On top of this, five pathways including (1)D-glutamine and D-glutamate metabolism, (2) valine, leucine and isoleucine biosynthesis, (3) alanine, aspartate and glutamate metabolism, (4) taurine and hypotaurine metabolism and (5) arginine and proline metabolism were recognized as the most influenced pathways associated with the process of CUMS-induced depression-like behavior. Notably, XYS significantly reversed abnormality of 5 aqueous and 4 lipophilic metabolites to normal, suggesting that XYS synergistically mediated abnormalities of multiple pathways (1), (3), (4) and (5). CONCLUSIONS It is the first report to investigate the antidepressant-like effects and underlying mechanisms of XYS from the perspective of brain metabolites. In a broad sense, this study brings novel and valuable insights to evaluate the efficacy of traditional Chinese medicine (TCM), to interpret mechanisms, and to provide the theoretical basis for further research on therapeutic mechanisms in clinical practice.
Collapse
Affiliation(s)
- Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, Shanxi, China; Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Taiyuan 030006, Shanxi, China.
| | - Xingyu Zheng
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, Shanxi, China; Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Taiyuan 030006, Shanxi, China
| | - Guanhua Du
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, Shanxi, China; Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Taiyuan 030006, Shanxi, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, Shanxi, China; Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Taiyuan 030006, Shanxi, China.
| |
Collapse
|
11
|
Gibson CL, Balbona JT, Niedzwiecki A, Rodriguez P, Nguyen KCQ, Hall DH, Blakely RD. Glial loss of the metallo β-lactamase domain containing protein, SWIP-10, induces age- and glutamate-signaling dependent, dopamine neuron degeneration. PLoS Genet 2018; 14:e1007269. [PMID: 29590100 PMCID: PMC5891035 DOI: 10.1371/journal.pgen.1007269] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/09/2018] [Accepted: 02/22/2018] [Indexed: 12/24/2022] Open
Abstract
Across phylogeny, glutamate (Glu) signaling plays a critical role in regulating neural excitability, thus supporting many complex behaviors. Perturbed synaptic and extrasynaptic Glu homeostasis in the human brain has been implicated in multiple neuropsychiatric and neurodegenerative disorders including Parkinson's disease, where theories suggest that excitotoxic insults may accelerate a naturally occurring process of dopamine (DA) neuron degeneration. In C. elegans, mutation of the glial expressed gene, swip-10, results in Glu-dependent DA neuron hyperexcitation that leads to elevated DA release, triggering DA signaling-dependent motor paralysis. Here, we demonstrate that swip-10 mutations induce premature and progressive DA neuron degeneration, with light and electron microscopy studies demonstrating the presence of dystrophic dendritic processes, as well as shrunken and/or missing cell soma. As with paralysis, DA neuron degeneration in swip-10 mutants is rescued by glial-specific, but not DA neuron-specific expression of wildtype swip-10, consistent with a cell non-autonomous mechanism. Genetic studies implicate the vesicular Glu transporter VGLU-3 and the cystine/Glu exchanger homolog AAT-1 as potential sources of Glu signaling supporting DA neuron degeneration. Degeneration can be significantly suppressed by mutations in the Ca2+ permeable Glu receptors, nmr-2 and glr-1, in genes that support intracellular Ca2+ signaling and Ca2+-dependent proteolysis, as well as genes involved in apoptotic cell death. Our studies suggest that Glu stimulation of nematode DA neurons in early larval stages, without the protective actions of SWIP-10, contributes to insults that ultimately drive DA neuron degeneration. The swip-10 model may provide an efficient platform for the identification of molecular mechanisms that enhance risk for Parkinson's disease and/or the identification of agents that can limit neurodegenerative disease progression.
Collapse
Affiliation(s)
- Chelsea L. Gibson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States of America
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States of America
| | - Joseph T. Balbona
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States of America
| | - Ashlin Niedzwiecki
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States of America
| | - Peter Rodriguez
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States of America
| | - Ken C. Q. Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - David H. Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Randy D. Blakely
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States of America
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States of America
- Department of Psychiatry, Vanderbilt University, Nashville, TN, United States of America
- The Brain Institute, Florida Atlantic University, Jupiter, FL, United States of America
- * E-mail:
| |
Collapse
|
12
|
Huang S, Tong H, Lei M, Zhou M, Guo W, Li G, Tang X, Li Z, Mo M, Zhang X, Chen X, Cen L, Wei L, Xiao Y, Li K, Huang Q, Yang X, Liu W, Zhang L, Qu S, Li S, Xu P. Astrocytic glutamatergic transporters are involved in Aβ-induced synaptic dysfunction. Brain Res 2017; 1678:129-137. [PMID: 29066369 DOI: 10.1016/j.brainres.2017.10.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 01/15/2023]
Abstract
In Alzheimer's disease (AD), dementia severity correlates most strongly with decreased synapse density in the hippocampus and cerebral cortex. Although studies in rodents have established that hippocampal long-term potentiation (LTP) is inhibited by soluble oligomers of beta-amyloid (Aβ), the synaptic mechanisms remain unclear. Here, field excitatory postsynaptic potentials (fEPSP) recordings were made in the CA1 region of mouse hippocampal slices. The medium of APP-expressing CHO cells, which contain soluble forms of Aβ including small oligomers, inhibited LTP and facilitated long-term depression (LTD), thus making the LTP/LTD curve shift toward the right. This phenomenon could be mimicked by the non-selective glutamate transporter inhibitor, DL-TBOA. More specifically, the Aβ impaired LTP and facilitated LTD were occluded by the selective astrocytic glutamate transporter inhibitors, TFB-TBOA. In cultured astrocytes, the Aβ oligomers also decrease astrocytic glutamate transporters (EAAT1, EAAT2) expression. We conclude that soluble Aβ oligomers decrease the activation of astrocytic glutamate transporters, thereby impairing synaptic plasticity.
Collapse
Affiliation(s)
- Shuxuan Huang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Huichun Tong
- Clinical Medicine Research Centre, Shunde Hospital, Southern Medical University, Foshan, Guangdong 528300, China; Department of Neurology, Shunde Hospital, Southern Medical University, Foshan, Guangdong 528300, China
| | - Ming Lei
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Miaomiao Zhou
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Guihua Li
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Xiaolu Tang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Zhe Li
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Mingshu Mo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Xiuping Zhang
- Teaching Center of Experimental Medicine, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Luan Cen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Lei Wei
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510082, China
| | - Yousheng Xiao
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Kaiping Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Qinghui Huang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China; State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Xinling Yang
- Department of Neurology, The Third Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Weiguo Liu
- Department of Geroatric&Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Li Zhang
- Department of Geroatric&Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shaogang Qu
- Clinical Medicine Research Centre, Shunde Hospital, Southern Medical University, Foshan, Guangdong 528300, China; Department of Neurology, Shunde Hospital, Southern Medical University, Foshan, Guangdong 528300, China.
| | - Shaomin Li
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Ann Romney Center for Neurologic Disease, Brigham and Women's Hospital of Harvard Medical School, Boston, MA 02115, USA.
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China.
| |
Collapse
|
13
|
Yang HC, Chen IC, Tsay YC, Li ZR, Chen CH, Hwu HG, Chen CH. Using an Event-History with Risk-Free Model to Study the Genetics of Alcoholism. Sci Rep 2017; 7:1975. [PMID: 28512340 PMCID: PMC5434012 DOI: 10.1038/s41598-017-01791-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 04/04/2017] [Indexed: 11/16/2022] Open
Abstract
Case–control genetic association studies typically ignore possible later disease onset in currently healthy subjects and assume that subjects with diseases equally contribute to the likelihood for inference, regardless of their onset age. Therefore, we used an event-history with risk-free model to simultaneously characterize alcoholism susceptibility and onset age in 65 independent non-Hispanic Caucasian males in the Collaborative Study on the Genetics of Alcoholism. Following data quality control, we analysed 22 single nucleotide polymorphisms (SNPs) on 12 candidate genes. The single-SNP analysis showed that the dominant minor allele of rs2134655 on DRD3 increases alcoholism susceptibility; the dominant minor allele of rs1439047 on NTRK2 delays the alcoholism onset age, but the additive minor allele of rs172677 on GRIN2B and the dominant minor allele of rs63319 on ALDH1A1 advance the alcoholism onset age; and the dominant minor allele of rs1079597 on DRD2 shortens the onset age range. Similarly, multiple-SNPs analysis revealed joint effects of rs2134655, rs172677 and rs1079597, with an adjustment for habitual smoking. This study provides a more comprehensive understanding of the genetics of alcoholism than previous case–control studies.
Collapse
Affiliation(s)
- Hsin-Chou Yang
- Institute of Statistical Science, Academia Sinica, Taipei, 11529, Taiwan
| | - I-Chen Chen
- Institute of Statistical Science, Academia Sinica, Taipei, 11529, Taiwan.,Department of Biostatistics, University of Kentucky, Lexington, KY, 40506, USA
| | - Yuh-Chyuan Tsay
- Institute of Statistical Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Zheng-Rong Li
- Institute of Statistical Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Chun-Houh Chen
- Institute of Statistical Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Hai-Gwo Hwu
- Graduate Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan.,Department of Psychiatry, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Hsin Chen
- Institute of Statistical Science, Academia Sinica, Taipei, 11529, Taiwan. .,Graduate Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
14
|
Mitra S, Sameer Kumar GS, Tiwari V, Lakshmi BJ, Thakur SS, Kumar S. Implication of Genetic Deletion of Wdr13 in Mice: Mild Anxiety, Better Performance in Spatial Memory Task, with Upregulation of Multiple Synaptic Proteins. Front Mol Neurosci 2016; 9:73. [PMID: 27625594 PMCID: PMC5003927 DOI: 10.3389/fnmol.2016.00073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 08/08/2016] [Indexed: 11/29/2022] Open
Abstract
WDR13 expresses from the X chromosome and has a highly conserved coding sequence. There have been multiple associations of WDR13 with memory. However, its detailed function in context of brain and behavior remains unknown. We characterized the behavioral phenotype of 2 month old male mice lacking the homolog of WDR13 gene (Wdr13−/0). Taking cue from analysis of its expression in the brain, we chose hippocampus for molecular studies to delineate its function. Wdr13−/0 mice spent less time in the central area of the open field test (OFT) and with the novel object in novel object recognition test (NOR) as compared to the wild-type. However, these mice didn't show any significant changes in total time spent in arms or in frequency of arm entries in elevated plus maze (EPM). In the absence of Wdr13, there was a significant upregulation of synaptic proteins, viz., SYN1, RAB3A, CAMK2A etc. accompanied with increased spine density of hippocampal CA1 neurons and better spatial memory in mice as measured by increased time spent in the target quadrant of Morris water maze (MWM) during probe test. Parallel study from our lab has established c-JUN, ER α/β, and HDAC 1,3,7 as interacting partners of WDR13. WDR13 represses transcription from AP1 (c-JUN responsive) and Estrogen Receptor Element (ERE) promoters. We hypothesized that absence of Wdr13 would result in de-regulated expression of a number of genes including multiple synaptic genes leading to the observed phenotype. Knocking down Wdr13 in Neuro2a cell lines led to increased transcripts of Camk2a and Nrxn2 consistent with in-vivo results. Summarily, our data provides functional evidence for the role of Wdr13 in brain.
Collapse
Affiliation(s)
- Shiladitya Mitra
- Council of Scientific and Industrial Research - Centre for Cellular and Molecular Biology Hyderabad, India
| | - Ghantasala S Sameer Kumar
- Council of Scientific and Industrial Research - Centre for Cellular and Molecular Biology Hyderabad, India
| | - Vivek Tiwari
- Council of Scientific and Industrial Research - Centre for Cellular and Molecular Biology Hyderabad, India
| | - B Jyothi Lakshmi
- Council of Scientific and Industrial Research - Centre for Cellular and Molecular Biology Hyderabad, India
| | - Suman S Thakur
- Council of Scientific and Industrial Research - Centre for Cellular and Molecular Biology Hyderabad, India
| | - Satish Kumar
- Council of Scientific and Industrial Research - Centre for Cellular and Molecular Biology Hyderabad, India
| |
Collapse
|
15
|
Positive allosteric modulators of α7 nicotinic acetylcholine receptors affect neither the function of other ligand- and voltage-gated ion channels and acetylcholinesterase, nor β-amyloid content. Int J Biochem Cell Biol 2016; 76:19-30. [PMID: 27129924 DOI: 10.1016/j.biocel.2016.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 11/22/2022]
Abstract
The activity of positive allosteric modulators (PAMs) of α7 nicotinic acetylcholine receptors (AChRs), including 3-furan-2-yl-N-p-tolyl-acrylamide (PAM-2), 3-furan-2-yl-N-o-tolylacrylamide (PAM-3), and 3-furan-2-yl-N-phenylacrylamide (PAM-4), was tested on a variety of ligand- [i.e., human (h) α7, rat (r) α9α10, hα3-containing AChRs, mouse (m) 5-HT3AR, and several glutamate receptors (GluRs)] and voltage-gated (i.e., sodium and potassium) ion channels, as well as on acetylcholinesterase (AChE) and β-amyloid (Aβ) content. The functional results indicate that PAM-2 inhibits hα3-containing AChRs (IC50=26±6μM) with higher potency than that for NR1aNR2B and NR1aNR2A, two NMDA-sensitive GluRs. PAM-2 affects neither the activity of m5-HT3ARs, GluR5/KA2 (a kainate-sensitive GluR), nor AChE, and PAM-4 does not affect agonist-activated rα9α10 AChRs. Relevant clinical concentrations of PAM-2-4 do not inhibit Nav1.2 and Kv3.1 ion channels. These PAMs slightly enhance the activity of GluR1 and GluR2, two AMPA-sensitive GluRs. PAM-2 does not change the levels of Aβ42 in an Alzheimer's disease mouse model (i.e., 5XFAD). The molecular docking and dynamics results using the hα7 model suggest that the active sites for PAM-2 include the intrasubunit (i.e., PNU-120596 locus) and intersubunit sites. These results support our previous study showing that these PAMs are selective for the α7 AChR, and clarify that the procognitive/promnesic/antidepressant activity of PAM-2 is not mediated by other targets.
Collapse
|
16
|
Benzimidazolone bioisosteres of potent GluN2B selective NMDA receptor antagonists. Eur J Med Chem 2016; 116:136-146. [PMID: 27061977 DOI: 10.1016/j.ejmech.2016.03.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 01/27/2016] [Accepted: 03/21/2016] [Indexed: 11/24/2022]
Abstract
Overactivation of the NMDA receptor is associated with excitotoxic events leading to neurodegenerative processes as observed during the development of Alzheimer's disease, ParFnson's disease, Chorea Huntington and epilepsy. Negative allosteric modulators addressing selectively the ifenprodil binding site of GluN2B subunit containing NMDA receptors are of major interest due to their neuroprotective potential accompanied by few side effects. Herein benzimidazolone bioisosteres of potent GluN2B antagonists 1-5 were designed and synthesized. A seven step sequence provided the central intermediate 19 in 28% yield. Elimination of water, methylation, epoxidation, epoxide rearrangement and finally reductive amination afforded the [7]annulenobenzimidazolone 30 with a 3-phenylpropylamino substituent in 6-position. Although 30 fits nicely into the pharmacophore of potent GluN2B antagonists, the gluN2B binding affinity of 30 was only moderate (Ki = 697 nM). Additionally, 30 shows low selectivity over the σ2 receptor (Ki = 549 nM). The moderate GluN2B affinity was explained by the rigid tricyclic structure of the [7]annulenobenzimidazolone 30.
Collapse
|
17
|
Han L, Howe JR, Pickering DS. Neto2 Influences on Kainate Receptor Pharmacology and Function. Basic Clin Pharmacol Toxicol 2016; 119:141-8. [PMID: 26928870 DOI: 10.1111/bcpt.12575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/24/2016] [Indexed: 01/17/2023]
Abstract
Neuropilin tolloid-like protein 2 (Neto2) is an auxiliary subunit of kainate receptors (KARs). It specifically regulates KARs, for example slows desensitization and deactivation, increases the rate of recovery from desensitization, promotes modal gating and increases agonist sensitivity. Although the mechanism of Neto2 modulation is still unclear, gain-of-function results from the characterization of GluK1-GluA2 chimeras indicate that the GluK1 sequences included in these chimeras (part or all of the TMD and part of the linkers between the TMDs and LBD) play a key role in Neto2 modulation of KAR. In addition, GluK2 M3-S2 linkers and the D1-D1 dimer interface were also recently identified to be important for Neto2 modulation, and some studies suggested that Neto2's N-terminal regions, LDLa domain and the C-terminal regions are important for its modulation of KARs. Although more studies are needed to confirm the roles of these domains and to identify all the domains and residues essential for KAR modulation, these results facilitate our understanding of Neto2 modulation at the structural level, which could potentially aid the development of novel therapies for the treatment of diseases that are associated with KARs, for example epilepsies, non-syndromic autosomal recessive mental retardation, schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Liwei Han
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - James R Howe
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Darryl S Pickering
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Sajja VSSS, Hubbard WB, Hall CS, Ghoddoussi F, Galloway MP, VandeVord PJ. Enduring deficits in memory and neuronal pathology after blast-induced traumatic brain injury. Sci Rep 2015; 5:15075. [PMID: 26537106 PMCID: PMC4633584 DOI: 10.1038/srep15075] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/15/2015] [Indexed: 01/06/2023] Open
Abstract
Few preclinical studies have assessed the long-term neuropathology and behavioral deficits after sustaining blast-induced neurotrauma (BINT). Previous studies have shown extensive astrogliosis and cell death at acute stages (<7 days) but the temporal response at a chronic stage has yet to be ascertained. Here, we used behavioral assays, immmunohistochemistry and neurochemistry in limbic areas such as the amygdala (Amy), Hippocampus (Hipp), nucleus accumbens (Nac), and prefrontal cortex (PFC), to determine the long-term effects of a single blast exposure. Behavioral results identified elevated avoidance behavior and decreased short-term memory at either one or three months after a single blast event. At three months after BINT, markers for neurodegeneration (FJB) and microglia activation (Iba-1) increased while index of mature neurons (NeuN) significantly decreased in all brain regions examined. Gliosis (GFAP) increased in all regions except the Nac but only PFC was positive for apoptosis (caspase-3). At three months, tau was selectively elevated in the PFC and Hipp whereas α-synuclein transiently increased in the Hipp at one month after blast exposure. The composite neurochemical measure, myo-inositol+glycine/creatine, was consistently increased in each brain region three months following blast. Overall, a single blast event resulted in enduring long-term effects on behavior and neuropathological sequelae.
Collapse
Affiliation(s)
| | - W Brad Hubbard
- School of Biomedical Engineering and Sciences, Virginia Polytechnic and State University, Blacksburg, VA
| | - Christina S Hall
- School of Biomedical Engineering and Sciences, Virginia Polytechnic and State University, Blacksburg, VA
| | - Farhad Ghoddoussi
- Department of Anesthesiology, Wayne State University School of Medicine, Detroit, MI
| | - Matthew P Galloway
- Department of Anesthesiology, Wayne State University School of Medicine, Detroit, MI.,Department of Psychiatry, Wayne State University School of Medicine, Detroit, MI
| | - Pamela J VandeVord
- School of Biomedical Engineering and Sciences, Virginia Polytechnic and State University, Blacksburg, VA.,Salem VA Medical Center, Research &Development Service, Salem, VA, USA
| |
Collapse
|
19
|
Liu M, Li J, Dai P, Zhao F, Zheng G, Jing J, Wang J, Luo W, Chen J. Microglia activation regulates GluR1 phosphorylation in chronic unpredictable stress-induced cognitive dysfunction. Stress 2015; 18:96-106. [PMID: 25472821 DOI: 10.3109/10253890.2014.995085] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic stress is considered to be a major risk factor in the development of psychopathological syndromes in humans. Cognitive impairments and long-term potentiation (LTP) impairments are increasingly recognized as major components of depression, anxiety disorders and other stress-related chronic psychological illnesses. It seems timely to systematically study the potentially underlying neurobiological mechanisms of altered cognitive and synaptic plasticity in the course of chronic stress. In the present study, a rat model of chronic unpredictable stress (CUS) induced a cognitive impairment in spatial memory in the Morris water maze (MWM) test and a hippocampal LTP impairment. CUS also induced hippocampal microglial activation and attenuated phosphorylation of glutamate receptor 1 (GluR1 or GluA1). Moreover, chronic treatment with the selective microglial activation blocker, minocycline (120 mg/kg per day), beginning 3 d before CUS treatment and continuing through the behavioral testing period, prevented the CUS-induced impairments of spatial memory and LTP induction. Additional studies showed that minocycline-induced inhibition of microglia activation was associated with increased phosphorylation of GluR1. These results suggest that hippocampal microglial activation modulates the level of GluR1 phosphorylation and might play a causal role in CUS-induced cognitive and LTP disturbances.
Collapse
Affiliation(s)
- Mingchao Liu
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University , Xi'an , China and
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Buemi MR, De Luca L, Chimirri A, Ferro S, Gitto R, Alvarez-Builla J, Alajarin R. Indole derivatives as dual-effective agents for the treatment of neurodegenerative diseases: Synthesis, biological evaluation, and molecular modeling studies. Bioorg Med Chem 2013; 21:4575-80. [DOI: 10.1016/j.bmc.2013.05.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/13/2013] [Accepted: 05/17/2013] [Indexed: 01/31/2023]
|
21
|
Freunscht I, Popp B, Blank R, Endele S, Moog U, Petri H, Prott EC, Reis A, Rübo J, Zabel B, Zenker M, Hebebrand J, Wieczorek D. Behavioral phenotype in five individuals with de novo mutations within the GRIN2B gene. Behav Brain Funct 2013; 9:20. [PMID: 23718928 PMCID: PMC3685602 DOI: 10.1186/1744-9081-9-20] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 05/10/2013] [Indexed: 01/10/2023] Open
Abstract
Background Intellectual disability (ID) is often associated with behavioral problems or disorders. Mutations in the GRIN2B gene (MRD6, MIM613970) have been identified as a common cause of ID (prevalence of 0.5 – 1% in individuals with ID) associated with EEG and behavioral problems. Methods We assessed five GRIN2B mutation carriers aged between 3 and 14 years clinically and via standardized questionnaires to delineate a detailed behavioral phenotype. Parents and teachers rated problem behavior of their affected children by completing the Developmental Behavior Checklist (DBC) and the Conners’ Rating Scales Revised (CRS-R:L). Results All individuals had mild to severe ID and needed guidance in daily routine. They showed characteristic behavior problems with prominent hyperactivity, impulsivity, distractibility and a short attention span. Stereotypies, sleeping problems and a friendly but boundless social behavior were commonly reported. Conclusion Our observations provide an initial delineation of the behavioral phenotype of GRIN2B mutation carriers.
Collapse
|
22
|
Glutamate: a truly functional amino acid. Amino Acids 2012; 45:413-8. [DOI: 10.1007/s00726-012-1280-4] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 03/26/2012] [Indexed: 12/30/2022]
|
23
|
Davidovic L, Navratil V, Bonaccorso CM, Catania MV, Bardoni B, Dumas ME. A metabolomic and systems biology perspective on the brain of the fragile X syndrome mouse model. Genome Res 2011; 21:2190-202. [PMID: 21900387 DOI: 10.1101/gr.116764.110] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fragile X syndrome (FXS) is the first cause of inherited intellectual disability, due to the silencing of the X-linked Fragile X Mental Retardation 1 gene encoding the RNA-binding protein FMRP. While extensive studies have focused on the cellular and molecular basis of FXS, neither human Fragile X patients nor the mouse model of FXS--the Fmr1-null mouse--have been profiled systematically at the metabolic and neurochemical level to provide a complementary perspective on the current, yet scattered, knowledge of FXS. Using proton high-resolution magic angle spinning nuclear magnetic resonance ((1)H HR-MAS NMR)-based metabolic profiling, we have identified a metabolic signature and biomarkers associated with FXS in various brain regions of Fmr1-deficient mice. Our study highlights for the first time that Fmr1 gene inactivation has profound, albeit coordinated consequences in brain metabolism leading to alterations in: (1) neurotransmitter levels, (2) osmoregulation, (3) energy metabolism, and (4) oxidative stress response. To functionally connect Fmr1-deficiency to its metabolic biomarkers, we derived a functional interaction network based on the existing knowledge (literature and databases) and show that the FXS metabolic response is initiated by distinct mRNA targets and proteins interacting with FMRP, and then relayed by numerous regulatory proteins. This novel "integrated metabolome and interactome mapping" (iMIM) approach advantageously unifies novel metabolic findings with previously unrelated knowledge and highlights the contribution of novel cellular pathways to the pathophysiology of FXS. These metabolomic and integrative systems biology strategies will contribute to the development of potential drug targets and novel therapeutic interventions, which will eventually benefit FXS patients.
Collapse
Affiliation(s)
- Laetitia Davidovic
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 6097, 06560 Valbonne, France.
| | | | | | | | | | | |
Collapse
|