1
|
Matsuzaki H, Kimura M, Morihashi M, Tanimoto K. Imprinted DNA methylation of the H19 ICR is established and maintained in vivo in the absence of Kaiso. Epigenetics Chromatin 2024; 17:20. [PMID: 38840164 PMCID: PMC11151560 DOI: 10.1186/s13072-024-00544-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Paternal allele-specific DNA methylation of the imprinting control region (H19 ICR) controls genomic imprinting at the Igf2/H19 locus. We previously demonstrated that the mouse H19 ICR transgene acquires imprinted DNA methylation in preimplantation mouse embryos. This activity is also present in the endogenous H19 ICR and protects it from genome-wide reprogramming after fertilization. We also identified a 118-bp sequence within the H19 ICR that is responsible for post-fertilization imprinted methylation. Two mutations, one in the five RCTG motifs and the other a 36-bp deletion both in the 118-bp segment, caused complete and partial loss, respectively, of methylation following paternal transmission in each transgenic mouse. Interestingly, these mutations overlap with the binding site for the transcription factor Kaiso, which is reportedly involved in maintaining paternal methylation at the human H19 ICR (IC1) in cultured cells. In this study, we investigated if Kaiso regulates imprinted DNA methylation of the H19 ICR in vivo. RESULTS Neither Kaiso deletion nor mutation of Kaiso binding sites in the 118-bp region affected DNA methylation of the mouse H19 ICR transgene. The endogenous mouse H19 ICR was methylated in a wild-type manner in Kaiso-null mutant mice. Additionally, the human IC1 transgene acquired imprinted DNA methylation after fertilization in the absence of Kaiso. CONCLUSIONS Our results indicate that Kaiso is not essential for either post-fertilization imprinted DNA methylation of the transgenic H19 ICR in mouse or for methylation imprinting of the endogenous mouse H19 ICR.
Collapse
Affiliation(s)
- Hitomi Matsuzaki
- Institute of Life and Environmental Sciences, Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Minami Kimura
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mizuki Morihashi
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keiji Tanimoto
- Institute of Life and Environmental Sciences, Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan
| |
Collapse
|
2
|
Matsuzaki H, Takahashi T, Kuramochi D, Hirakawa K, Tanimoto K. Five nucleotides found in RCTG motifs are essential for post-fertilization methylation imprinting of the H19 ICR in YAC transgenic mice. Nucleic Acids Res 2023; 51:7236-7253. [PMID: 37334871 PMCID: PMC10415150 DOI: 10.1093/nar/gkad516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/02/2023] [Indexed: 06/21/2023] Open
Abstract
Genomic imprinting at the mouse Igf2/H19 locus is controlled by the H19 ICR, within which paternal allele-specific DNA methylation originating in sperm is maintained throughout development in offspring. We previously found that a 2.9 kb transgenic H19 ICR fragment in mice can be methylated de novo after fertilization only when paternally inherited, despite its unmethylated state in sperm. When the 118 bp sequence responsible for this methylation in transgenic mice was deleted from the endogenous H19 ICR, the methylation level of its paternal allele was significantly reduced after fertilization, suggesting the activity involving this 118 bp sequence is required for methylation maintenance at the endogenous locus. Here, we determined protein binding to the 118 bp sequence using an in vitro binding assay and inferred the binding motif to be RCTG by using a series of mutant competitors. Furthermore, we generated H19 ICR transgenic mice with a 5-bp substitution mutation that disrupts the RCTG motifs within the 118 bp sequence, and observed loss of methylation from the paternally inherited transgene. These results indicate that imprinted methylation of the H19 ICR established de novo during the post-fertilization period involves binding of specific factors to distinct sequence motifs within the 118 bp sequence.
Collapse
Affiliation(s)
- Hitomi Matsuzaki
- Faculty of Life and Environmental Sciences, Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Takuya Takahashi
- Graduate school of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Daichi Kuramochi
- Graduate school of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Katsuhiko Hirakawa
- Graduate school of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Keiji Tanimoto
- Faculty of Life and Environmental Sciences, Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
3
|
Murat El Houdigui S, Adam-Guillermin C, Armant O. Ionising Radiation Induces Promoter DNA Hypomethylation and Perturbs Transcriptional Activity of Genes Involved in Morphogenesis during Gastrulation in Zebrafish. Int J Mol Sci 2020; 21:ijms21114014. [PMID: 32512748 PMCID: PMC7312202 DOI: 10.3390/ijms21114014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/22/2022] Open
Abstract
Embryonic development is particularly vulnerable to stress and DNA damage, as mutations can accumulate through cell proliferation in a wide number of cells and organs. However, the biological effects of chronic exposure to ionising radiation (IR) at low and moderate dose rates (< 6 mGy/h) remain largely controversial, raising concerns for environmental protection. The present study focuses on the molecular effects of IR (0.005 to 50 mGy/h) on zebrafish embryos at the gastrula stage (6 hpf), at both the transcriptomics and epigenetics levels. Our results show that exposure to IR modifies the expression of genes involved in mitochondrial activity from 0.5 to 50 mGy/h. In addition, important developmental pathways, namely, the Notch, retinoic acid, BMP and Wnt signalling pathways, were altered at 5 and 50 mGy/h. Transcriptional changes of genes involved in the morphogenesis of the ectoderm and mesoderm were detected at all dose rates, but were prominent from 0.5 to 50 mGy/h. At the epigenetic level, exposure to IR induced a hypomethylation of DNA in the promoter of genes that colocalised with both H3K27me3 and H3Kme4 histone marks and correlated with changes in transcriptional activity. Finally, pathway enrichment analysis demonstrated that the DNA methylation changes occurred in the promoter of important developmental genes, including morphogenesis of the ectoderm and mesoderm. Together, these results show that the transcriptional program regulating morphogenesis in gastrulating embryos was modified at dose rates greater than or equal to 0.5 mGy/h, which might predict potential neurogenesis and somitogenesis defects observed at similar dose rates later in development.
Collapse
Affiliation(s)
- Sophia Murat El Houdigui
- PSE-ENV/SRTE/LECO, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Cadarache, 13115 Saint-Paul-Lez-Durance, France;
| | - Christelle Adam-Guillermin
- PSE-SANTE/SDOS/LMDN, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Cadarache, 13115 Saint-Paul-Lez-Durance, France;
| | - Olivier Armant
- PSE-ENV/SRTE/LECO, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Cadarache, 13115 Saint-Paul-Lez-Durance, France;
- Correspondence:
| |
Collapse
|
4
|
Hill RJ, Crossan GP. DNA cross-link repair safeguards genomic stability during premeiotic germ cell development. Nat Genet 2019; 51:1283-1294. [PMID: 31367016 PMCID: PMC6675612 DOI: 10.1038/s41588-019-0471-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/24/2019] [Indexed: 11/09/2022]
Abstract
Germline de novo mutations are the basis of evolutionary diversity but also of genetic disease. However, the molecular origin, mechanisms and timing of germline mutagenesis are not fully understood. Here, we define a fundamental role for DNA interstrand cross-link repair in the germline. This repair process is essential for primordial germ cell (PGC) maturation during embryonic development. Inactivation of cross-link repair leads to genetic instability that is restricted to PGCs within the genital ridge during a narrow temporal window. Having successfully activated the PGC transcriptional program, a potent quality control mechanism detects and drives damaged PGCs into apoptosis. Therefore, these findings define a source of DNA damage and the nature of the subsequent DNA repair response in germ cells, which ensures faithful transmission of the genome between generations.
Collapse
Affiliation(s)
- Ross J Hill
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
5
|
Li S, Chen M, Li Y, Tollefsbol TO. Prenatal epigenetics diets play protective roles against environmental pollution. Clin Epigenetics 2019; 11:82. [PMID: 31097039 PMCID: PMC6524340 DOI: 10.1186/s13148-019-0659-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
It is thought that germ cells and preimplantation embryos during development are most susceptible to endogenous and exogenous environmental factors because the epigenome in those cells is undergoing dramatic elimination and reconstruction. Exposure to environmental factors such as nutrition, climate, stress, pathogens, toxins, and even social behavior during gametogenesis and early embryogenesis has been shown to influence disease susceptibility in the offspring. Early-life epigenetic modifications, which determine the expression of genetic information stored in the genome, are viewed as one of the general mechanisms linking prenatal exposure and phenotypic changes later in life. From atmospheric pollution, endocrine-disrupting chemicals to heavy metals, research increasingly suggests that environmental pollutions have already produced significant consequences on human health. Moreover, mounting evidence now links such pollution to relevant modification in the epigenome. The epigenetics diet, referring to a class of bioactive dietary compounds such as isothiocyanates in broccoli, genistein in soybean, resveratrol in grape, epigallocatechin-3-gallate in green tea, and ascorbic acid in fruits, has been shown to modify the epigenome leading to beneficial health outcomes. This review will primarily focus on the causes and consequences of prenatal environment pollution exposure on the epigenome, and the potential protective role of the epigenetics diet, which could play a central role in neutralizing epigenomic aberrations against environmental pollutions.
Collapse
Affiliation(s)
- Shizhao Li
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Min Chen
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yuanyuan Li
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
6
|
Krishnan K, Rahman S, Hasbum A, Morales D, Thompson LM, Crews D, Gore AC. Maternal care modulates transgenerational effects of endocrine-disrupting chemicals on offspring pup vocalizations and adult behaviors. Horm Behav 2019; 107:96-109. [PMID: 30576639 PMCID: PMC6366859 DOI: 10.1016/j.yhbeh.2018.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 01/08/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) can act upon a developing organism to change its endocrine health and behavior in adulthood. Beyond actions on the exposed individuals, transgenerational effects of several EDCs have been reported. This study assessed the combinatorial impact of EDC-altered maternal care and transgenerational inheritance on F3 male and female offspring. Pregnant rats were exposed to EDCs with different modes of action: the weakly estrogenic polychlorinated biphenyl (PCB) mixture Aroclor 1221, the anti-androgenic fungicide vinclozolin (VIN), or the vehicle (6% dimethylsulfoxide in sesame oil; VEH) during embryonic development. The F1 male and female offspring were bred through the paternal- or maternal-lineage with untreated partners to generate F2 offspring. This process was repeated through both maternal and paternal lineages to create the F3 generation. Maternal care of F2 dams towards their F3 offspring was altered in a lineage-dependent manner, particularly in PCB paternal-lineage animals. When F3 pups were recorded for ultrasonic vocalizations (USVs) following separation from the mother, the rate of neonatal USVs in F3 offspring were decreased in PCB paternal-lineage pups. In adulthood, anxiety-like behaviors of the F3 rats were tested, with only small effects of EDCs detected. These interactions of maternal behaviors and EDC effects across generations, especially via the paternal lineage, has implications for health and environmental responses in wildlife and humans.
Collapse
Affiliation(s)
- Krittika Krishnan
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Shafaqat Rahman
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Asbiel Hasbum
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Daniel Morales
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lindsay M Thompson
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - David Crews
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA; Department of Integrative Biology, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea C Gore
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA; Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
7
|
Geoffron S, Abi Habib W, Chantot-Bastaraud S, Dubern B, Steunou V, Azzi S, Afenjar A, Busa T, Pinheiro Canton A, Chalouhi C, Dufourg MN, Esteva B, Fradin M, Geneviève D, Heide S, Isidor B, Linglart A, Morice Picard F, Naud-Saudreau C, Oliver Petit I, Philip N, Pienkowski C, Rio M, Rossignol S, Tauber M, Thevenon J, Vu-Hong TA, Harbison MD, Salem J, Brioude F, Netchine I, Giabicani E. Chromosome 14q32.2 Imprinted Region Disruption as an Alternative Molecular Diagnosis of Silver-Russell Syndrome. J Clin Endocrinol Metab 2018; 103:2436-2446. [PMID: 29659920 DOI: 10.1210/jc.2017-02152] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 03/07/2018] [Indexed: 02/13/2023]
Abstract
CONTEXT Silver-Russell syndrome (SRS) (mainly secondary to 11p15 molecular disruption) and Temple syndrome (TS) (secondary to 14q32.2 molecular disruption) are imprinting disorders with phenotypic (prenatal and postnatal growth retardation, early feeding difficulties) and molecular overlap. OBJECTIVE To describe the clinical overlap between SRS and TS and extensively study the molecular aspects of TS. PATIENTS We retrospectively collected data on 28 patients with disruption of the 14q32.2 imprinted region, identified in our center, and performed extensive molecular analysis. RESULTS Seventeen (60.7%) patients showed loss of methylation of the MEG3/DLK1 intergenic differentially methylated region by epimutation. Eight (28.6%) patients had maternal uniparental disomy of chromosome 14 and three (10.7%) had a paternal deletion in 14q32.2. Most patients (72.7%) had a Netchine-Harbison SRS clinical scoring system ≥4/6, and consistent with a clinical diagnosis of SRS. The mean age at puberty onset was 7.2 years in girls and 9.6 years in boys; 37.5% had premature pubarche. The body mass index of all patients increased before pubarche and/or the onset of puberty. Multilocus analysis identified multiple methylation defects in 58.8% of patients. We identified four potentially damaging genetic variants in genes encoding proteins involved in the establishment or maintenance of DNA methylation. CONCLUSIONS Most patients with 14q32.2 disruption fulfill the criteria for a clinical diagnosis of SRS. These clinical data suggest similar management of patients with TS and SRS, with special attention to their young age at the onset of puberty and early increase of body mass index.
Collapse
Affiliation(s)
- Sophie Geoffron
- Sorbonne Université, INSERM, UMR_S 938 Centre de Recherche Saint Antoine, Assistance Publique - Hôpitaux de Paris (APHP), Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| | - Walid Abi Habib
- Sorbonne Université, INSERM, UMR_S 938 Centre de Recherche Saint Antoine, Assistance Publique - Hôpitaux de Paris (APHP), Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| | - Sandra Chantot-Bastaraud
- APHP, Hôpital Armand Trousseau, Département de Génétique, UF de Génétique Chromosomique, Paris, France
| | - Béatrice Dubern
- Sorbonne Université, INSERM, UMRS U1166 (Eq 6) Nutriomics, Institut de Cardiométabolisme et Nutrition, APHP, Hôpital Armand Trousseau, Service de Nutrition et de Gastroentérologie Pédiatriques, Paris, France
| | - Virginie Steunou
- Sorbonne Université, INSERM, UMR_S 938 Centre de Recherche Saint Antoine, Assistance Publique - Hôpitaux de Paris (APHP), Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| | - Salah Azzi
- Sorbonne Université, INSERM, UMR_S 938 Centre de Recherche Saint Antoine, Assistance Publique - Hôpitaux de Paris (APHP), Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| | - Alexandra Afenjar
- Sorbonne Université, APHP, Hôpital Armand Trousseau, Département de Génétique Clinique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs et Déficiences Intellectuelles de Causes Rares, Paris, France
| | - Tiffanny Busa
- Assistance Publique des Hôpitaux de Marseille, Hôpital Timone Enfants, Centre de Référence Anomalies du Développement et Syndromes Malformatifs Provence Alpes Côte d'Azur, Département de Génétique Médicale et Génomique Fonctionnelle, Aix Marseille Université, Marseille cedex 7, France
| | - Ana Pinheiro Canton
- Sorbonne Université, INSERM, UMR_S 938 Centre de Recherche Saint Antoine, Assistance Publique - Hôpitaux de Paris (APHP), Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
- Unidade de Endocrinologia Genética, Laboratório de Endocrinologia Celular e Molecular LIM25, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil
| | - Christel Chalouhi
- APHP, Hôpital Necker-Enfants-Malades, Service de Pédiatrie Générale, Paris, France
| | - Marie-Noëlle Dufourg
- Sorbonne Université, INSERM, UMR_S 938 Centre de Recherche Saint Antoine, Assistance Publique - Hôpitaux de Paris (APHP), Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| | - Blandine Esteva
- Sorbonne Université, INSERM, UMR_S 938 Centre de Recherche Saint Antoine, Assistance Publique - Hôpitaux de Paris (APHP), Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| | - Mélanie Fradin
- Centre Hospitalier Universitaire (CHU) Hôpital Sud, Service de Génétique Clinique, Centre de Référence Maladies Rares Centre Labéllisé 'Anomalies du Développement'-Ouest, Rennes cedex 2, France
| | - David Geneviève
- Hôpital Arnaud de Villeneuve, Unité de Génétique Clinique, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Montpellier, France
- INSERM U1183, Institute of Regenerative Medicine and Biotherapie, Montpellier University, CHU Montpellier, Montpellier cedex 5, France
| | - Solveig Heide
- APHP, Hôpital Armand Trousseau, Département de Génétique, UF de Génétique Chromosomique, Paris, France
| | - Bertrand Isidor
- CHU Nantes, Service de Génétique Médicale, Nantes cedex 1, France
| | - Agnès Linglart
- APHP, Bicêtre Paris Sud Hospital, Reference Center for Rare Mineral Metabolism Disorders (Filière OSCAR) and the Plateforme d'Expertise Paris Sud Maladies Rares, Le Kremlin Bicêtre, France
- APHP, Bicêtre Paris Sud Hospital, Department of Pediatric Endocrinology and Diabetology, Le Kremlin Bicêtre, France
- INSERM U1169, Bicêtre Paris Sud Hospital, Le Kremlin Bicêtre, Université Paris-Saclay, France
| | - Fanny Morice Picard
- CHU de Bordeaux, Hôpital Pellegrin-Enfants, Department of Pediatric Dermatology, National Centre for Rare Skin Disorders, Bordeaux cedex, France
| | - Catherine Naud-Saudreau
- Bretagne Sud Hospital Center, Pediatric Endocrinology and Diabetology, Lorient cedex, France
| | - Isabelle Oliver Petit
- CHU de Toulouse, Hôpital des Enfants, Unité d'Endocrinologie, Obésité, Maladies Osseuses, Génétique et Gynécologie Médicale, Toulouse cedex 9, France
| | - Nicole Philip
- Assistance Publique des Hôpitaux de Marseille, Hôpital Timone Enfants, Centre de Référence Anomalies du Développement et Syndromes Malformatifs Provence Alpes Côte d'Azur, Département de Génétique Médicale et Génomique Fonctionnelle, Aix Marseille Université, Marseille cedex 7, France
| | - Catherine Pienkowski
- CHU de Toulouse, Hôpital des Enfants, Unité d'Endocrinologie, Obésité, Maladies Osseuses, Génétique et Gynécologie Médicale, Toulouse cedex 9, France
| | - Marlène Rio
- APHP, Hôpital Necker-Enfants-Malades, Service de Génétique, Paris, France
- INSERM UMR 1163, Paris Descartes-Sorbonne Paris Cité Université, Institut Imagine, Paris, France
| | - Sylvie Rossignol
- Hôpitaux Universitaires de Strasbourg, Service de Pédiatrie, Strasbourg cedex, France
- INSERM U1112, Laboratoire de Génétique Médicale, Institut de Génétique Médicale d'Alsace, Faculté de Médecine de Strasbourg, Strasbourg cedex, France
| | - Maithé Tauber
- CHU de Toulouse, Hôpital des Enfants, Unité d'Endocrinologie, Obésité, Maladies Osseuses, Génétique et Gynécologie Médicale, Toulouse cedex 9, France
- INSERM U1043, Centre de Physiopathologie de Toulouse Purpan, Université Paul-Sabatier, Toulouse, France
- Centre de Référence du Syndrome de Prader Willi, Toulouse cedex 9, France
| | - Julien Thevenon
- CHU Dijon, Hôpital d'Enfants, Centre de Génétique et Centre de Référence "Anomalies du Développement et Syndromes Malformatifs," Dijon cedex, France
- CHU Grenoble-Alpes, Hôpital Couple-Enfants, Centre de Génétique, Centre de Référence "Anomalies du Développement et Syndromes Malformatifs," La Tronche, France
| | - Thuy-Ai Vu-Hong
- Sorbonne Université, INSERM, UMR_S 938 Centre de Recherche Saint Antoine, Assistance Publique - Hôpitaux de Paris (APHP), Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| | - Madeleine D Harbison
- Icahn School of Medicine at Mount Sinai, Department of Pediatrics, New York, New York
| | - Jennifer Salem
- The MAGIC Foundation, Russell-Silver Syndrome/Small for Gestational Age Research & Education Fund, Warrenville, Illinois
| | - Frédéric Brioude
- Sorbonne Université, INSERM, UMR_S 938 Centre de Recherche Saint Antoine, Assistance Publique - Hôpitaux de Paris (APHP), Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| | - Irène Netchine
- Sorbonne Université, INSERM, UMR_S 938 Centre de Recherche Saint Antoine, Assistance Publique - Hôpitaux de Paris (APHP), Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| | - Eloïse Giabicani
- Sorbonne Université, INSERM, UMR_S 938 Centre de Recherche Saint Antoine, Assistance Publique - Hôpitaux de Paris (APHP), Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| |
Collapse
|
8
|
Oji A, Amano T, Maeta Y, Hori N, Hatsuzawa K, Sato K, Nakanishi T. Fate of methylated/unmethylated H19 imprinting control region after paternal and maternal pronuclear injection. Exp Anim 2017; 66:367-378. [PMID: 28674270 PMCID: PMC5682349 DOI: 10.1538/expanim.17-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The paternal-allele-specific methylation of the Igf2/H19 imprinting
control region (ICR) is established during gametogenesis and maintained throughout
development. To elucidate the requirement of the germline passage in the maintenance of
the imprinting methylation, we established a system introducing a methylated or
unmethylated ICR-containing DNA fragment (ICR-F) into the paternal or maternal genome by
microinjecting into the paternal or maternal pronucleus of fertilized eggs, and traced the
methylation pattern in the ICR-F. When the ICR-F was injected in a methylated form, it was
demethylated approximately to half degree at blastocyst stage but was almost completely
remethylated at 3 weeks of age. In the case of the unmethylated form, the ICR-F remained
unmethylated at the blastocyst stage, but was almost half-methylated at 3 weeks of age.
Interestingly, the paternally injected ICR-F was highly methylated compared with
maternally injected ICR-F at 3 weeks of age, partially mimicking the endogenous
methylation pattern. Moreover, introduction of mutations in the CTCF (CCCTC binding
factor) binding sites of the ICR-F, which are known to be important for the maintenance of
hypomethylated maternal ICR, induced hypermethylation of the mutated ICR-F in both
paternal and maternal pronuclear injected 3-week-old mice. Our results suggest the
presence of a protection-against-methylation activity of the CTCF binding site in
establishing the preferential paternal methylation during post-fertilization development
and the importance of germline passage in the maintenance of the parental specific
methylation at H19 ICR.
Collapse
Affiliation(s)
- Asami Oji
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishicho, Yonago, Tottori 683-8503, Japan
| | - Tomojiro Amano
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishicho, Yonago, Tottori 683-8503, Japan
| | - Yasuaki Maeta
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishicho, Yonago, Tottori 683-8503, Japan
| | - Naohiro Hori
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishicho, Yonago, Tottori 683-8503, Japan.,Chromosome Engineering Research Center, Tottori University, 86 Nishicho, Yonago, Tottori 683-8503, Japan
| | - Kiyotaka Hatsuzawa
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishicho, Yonago, Tottori 683-8503, Japan
| | - Kenzo Sato
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishicho, Yonago, Tottori 683-8503, Japan.,Chromosome Engineering Research Center, Tottori University, 86 Nishicho, Yonago, Tottori 683-8503, Japan
| | - Tomoko Nakanishi
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishicho, Yonago, Tottori 683-8503, Japan.,Chromosome Engineering Research Center, Tottori University, 86 Nishicho, Yonago, Tottori 683-8503, Japan.,Present address: Laboratory of Molecular Genetics, The Institute of Medical Science, Tokyo University, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
9
|
Anckaert E, Fair T. DNA methylation reprogramming during oogenesis and interference by reproductive technologies: Studies in mouse and bovine models. Reprod Fertil Dev 2017; 27:739-54. [PMID: 25976160 DOI: 10.1071/rd14333] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 04/01/2015] [Indexed: 12/24/2022] Open
Abstract
The use of assisted reproductive technology (ART) to overcome fertility problems has continued to increase since the birth of the first baby conceived by ART over 30 years ago. Similarly, embryo transfer is widely used as a mechanism to advance genetic gain in livestock. Despite repeated optimisation of ART treatments, pre- and postnatal outcomes remain compromised. Epigenetic mechanisms play a fundamental role in successful gametogenesis and development. The best studied of these is DNA methylation; the appropriate establishment of DNA methylation patterns in gametes and early embryos is essential for healthy development. Superovulation studies in the mouse indicate that specific ARTs are associated with normal imprinting establishment in oocytes, but abnormal imprinting maintenance in embryos. A similar limited impact of ART on oocytes has been reported in cattle, whereas the majority of embryo-focused studies have used cloned embryos, which do exhibit aberrant DNA methylation. The present review discusses the impact of ART on oocyte and embryo DNA methylation with regard to data available from mouse and bovine models.
Collapse
Affiliation(s)
- Ellen Anckaert
- Follicle Biology Laboratory and Center for Reproductive Medicine, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, Brussels 1090, Belgium
| | - Trudee Fair
- School of Agriculture and Food Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
10
|
Thakur A, Mackin SJ, Irwin RE, O’Neill KM, Pollin G, Walsh C. Widespread recovery of methylation at gametic imprints in hypomethylated mouse stem cells following rescue with DNMT3A2. Epigenetics Chromatin 2016; 9:53. [PMID: 27895716 PMCID: PMC5118886 DOI: 10.1186/s13072-016-0104-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/08/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Imprinted loci are paradigms of epigenetic regulation and are associated with a number of genetic disorders in human. A key characteristic of imprints is the presence of a gametic differentially methylated region (gDMR). Previous studies have indicated that DNA methylation lost from gDMRs could not be restored by DNMT1, or the de novo enzymes DNMT3A or 3B in stem cells, indicating that imprinted regions must instead undergo passage through the germline for reprogramming. However, previous studies were non-quantitative, were unclear on the requirement for DNMT3A/B and showed some inconsistencies. In addition, new putative gDMR has recently been described, along with an improved delineation of the existing gDMR locations. We therefore aimed to re-examine the dependence of methylation at gDMRs on the activities of the methyltransferases in mouse embryonic stem cells (ESCs). RESULTS We examined the most complete current set of imprinted gDMRs that could be assessed using quantitative pyrosequencing assays in two types of ESCs: those lacking DNMT1 (1KO) and cells lacking a combination of DNMT3A and DNMT3B (3abKO). We further verified results using clonal analysis and combined bisulfite and restriction analysis. Our results showed that loss of methylation was approximately equivalent in both cell types. 1KO cells rescued with a cDNA-expressing DNMT1 could not restore methylation at the imprinted gDMRs, confirming some previous observations. However, nearly all gDMRs were remethylated in 3abKO cells rescued with a DNMT3A2 expression construct (3abKO + 3a2). Transcriptional activity at the H19/Igf2 locus also tracked with the methylation pattern, confirming functional reprogramming in the latter. CONCLUSIONS These results suggested (1) a vital role for DNMT3A/B in methylation maintenance at imprints, (2) that loss of DNMT1 and DNMT3A/B had equivalent effects, (3) that rescue with DNMT3A2 can restore imprints in these cells. This may provide a useful system in which to explore factors influencing imprint reprogramming.
Collapse
Affiliation(s)
- Avinash Thakur
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Centre for Molecular Biosciences, University of Ulster, Coleraine, BT52 1SA UK
- Terry Fox Laboratory, BC Cancer Agency, 675 W 10th Ave, Vancouver, BC V5Z 1G1 Canada
| | - Sarah-Jayne Mackin
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Centre for Molecular Biosciences, University of Ulster, Coleraine, BT52 1SA UK
| | - Rachelle E. Irwin
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Centre for Molecular Biosciences, University of Ulster, Coleraine, BT52 1SA UK
| | - Karla M. O’Neill
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Centre for Molecular Biosciences, University of Ulster, Coleraine, BT52 1SA UK
- Centre for Experimental Medicine, The Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE UK
| | - Gareth Pollin
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Centre for Molecular Biosciences, University of Ulster, Coleraine, BT52 1SA UK
| | - Colum Walsh
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Centre for Molecular Biosciences, University of Ulster, Coleraine, BT52 1SA UK
| |
Collapse
|
11
|
Abstract
Epigenetic mechanisms play an essential role in the germline and imprinting cycle. Germ cells show extensive epigenetic programming in preparation for the generation of the totipotent state, which in turn leads to the establishment of pluripotent cells in blastocysts. The latter are the cells from which pluripotent embryonic stem cells are derived and maintained in culture. Following blastocyst implantation, postimplantation epiblast cells develop, which give rise to all somatic cells as well as primordial germ cells, the precursors of sperm and eggs. Pluripotent stem cells in culture can be induced to undergo differentiation into somatic cells and germ cells in culture. Understanding the natural cycles of epigenetic reprogramming that occur in the germline will allow the generation of better and more versatile stem cells for both therapeutic and research purposes.
Collapse
Affiliation(s)
- Wolf Reik
- The Babraham Institute, Babraham Research Campus, Cambridge CB2 3EG, United Kingdom Wellcome Trust Cancer Research UK Gurdon Institute & Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - M Azim Surani
- Wellcome Trust Cancer Research UK Gurdon Institute & Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| |
Collapse
|
12
|
O'Doherty AM, MacHugh DE, Spillane C, Magee DA. Genomic imprinting effects on complex traits in domesticated animal species. Front Genet 2015; 6:156. [PMID: 25964798 PMCID: PMC4408863 DOI: 10.3389/fgene.2015.00156] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/06/2015] [Indexed: 11/13/2022] Open
Abstract
Monoallelically expressed genes that exert their phenotypic effect in a parent-of-origin specific manner are considered to be subject to genomic imprinting, the most well understood form of epigenetic regulation of gene expression in mammals. The observed differences in allele specific gene expression for imprinted genes are not attributable to differences in DNA sequence information, but to specific chemical modifications of DNA and chromatin proteins. Since the discovery of genomic imprinting some three decades ago, over 100 imprinted mammalian genes have been identified and considerable advances have been made in uncovering the molecular mechanisms regulating imprinted gene expression. While most genomic imprinting studies have focused on mouse models and human biomedical disorders, recent work has highlighted the contributions of imprinted genes to complex trait variation in domestic livestock species. Consequently, greater understanding of genomic imprinting and its effect on agriculturally important traits is predicted to have major implications for the future of animal breeding and husbandry. In this review, we discuss genomic imprinting in mammals with particular emphasis on domestic livestock species and consider how this information can be used in animal breeding research and genetic improvement programs.
Collapse
Affiliation(s)
- Alan M O'Doherty
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield Ireland
| | - David E MacHugh
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield Ireland ; Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield Ireland
| | - Charles Spillane
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre, School of Natural Sciences, National University of Ireland Galway, Galway Ireland
| | - David A Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield Ireland ; Department of Animal Science, University of Connecticut, Storrs, CT USA
| |
Collapse
|
13
|
O'Doherty AM, Magee DA, O'Shea LC, Forde N, Beltman ME, Mamo S, Fair T. DNA methylation dynamics at imprinted genes during bovine pre-implantation embryo development. BMC DEVELOPMENTAL BIOLOGY 2015; 15:13. [PMID: 25881176 PMCID: PMC4363183 DOI: 10.1186/s12861-015-0060-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 02/12/2015] [Indexed: 12/31/2022]
Abstract
Background In mammals, maternal differentially methylated regions (DMRs) acquire DNA methylation during the postnatal growth stage of oogenesis, with paternal DMRs acquiring DNA methylation in the perinatal prospermatagonia. Following fusion of the male and female gametes, it is widely accepted that murine DNA methylation marks at the DMRs of imprinted genes are stable through embryogenesis and early development, until they are reprogrammed in primordial germ cells. However, the DNA methylation dynamics at DMRs of bovine imprinted genes during early stages of development remains largely unknown. The objective of this investigation was to analyse the methylation dynamics at imprinted gene DMRs during bovine embryo development, from blastocyst stage until implantation. Results To this end, pyrosequencing technology was used to quantify DNA methylation at DMR-associated CpG dinucleotides of six imprinted bovine genes (SNRPN, MEST, IGF2R, PLAGL1, PEG10 and H19) using bisulfite-modified genomic DNA isolated from individual blastocysts (Day 7); ovoid embryos (Day 14); filamentous embryos (Day 17) and implanting conceptuses (Day 25). For all genes, the degree of DNA methylation was most variable in Day 7 blastocysts compared to later developmental stages (P < 0.05). Furthermore, mining of RNA-seq transcriptomic data and western blot analysis revealed a specific window of expression of DNA methylation machinery genes (including DNMT3A, DNMT3B, TRIM28/KAP1 and DNMT1) and proteins (DNMT3A, DNMT3A2 and DNMT3B) by bovine embryos coincident with imprint stabilization. Conclusion The findings of this study suggest that the DNA methylation status of bovine DMRs might be variable during the early stages of embryonic development, possibly requiring an active period of imprint stabilization. Electronic supplementary material The online version of this article (doi:10.1186/s12861-015-0060-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alan M O'Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland. .,School of Medicine and Medical Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| | - David A Magee
- College of Agriculture, Health and Natural Resources, Animal Science, University of Connecticut, Connecticut, USA.
| | - Lynee C O'Shea
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland.
| | - Niamh Forde
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland.
| | - Marijke E Beltman
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland.
| | - Solomon Mamo
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland.
| | - Trudee Fair
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
14
|
Huntriss J, Woodfine K, Huddleston JE, Murrell A, Picton HM. Analysis of DNA Methylation Patterns in Single Blastocysts by Pyrosequencing®. Methods Mol Biol 2015; 1315:259-270. [PMID: 26103905 DOI: 10.1007/978-1-4939-2715-9_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Extensive epigenetic reprogramming occurs during mammalian gametogenesis and preimplantation development. DNA methylation patterns that are laid down during these stages are essential for subsequent normal foetal development. The requirement for more precise assessment of the epigenetic programming of in vitro-derived human preimplantation embryo has become of paramount importance following the identification of epigenetic diseases that are associated with assisted reproduction and/or infertility. Such techniques are also useful and applicable to experimental reproductive biology. In order to expand our knowledge of epigenetic marks, including DNA methylation, during mammalian reproduction and early development, it is necessary to test new and sufficiently sensitive protocols. There are, however, unique challenges to obtain DNA methylation data from the small cell numbers that are present in the preimplantation embryo. In this protocol, we describe the successful application of Pyrosequencing(®) to yield quantitative DNA methylation data over several CpG sites at differentially methylated regions (DMRs) at imprinted loci in single blastocysts, in this case, human blastocysts. Future developments of the protocol will allow DNA methylation analysis of a more extensive panel of genes for each embryo and at the same time, since the protocol allows for the extraction of mRNA from the embryo, the comparison between DNA methylation and gene expression.
Collapse
Affiliation(s)
- John Huntriss
- Division of Reproduction and Early Development, Leeds Institute of Cardiovascular and Molecular Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK,
| | | | | | | | | |
Collapse
|
15
|
Zeng C, Peng W, Ding L, He L, Zhang Y, Fang D, Tang K. A preliminary study on epigenetic changes during boar spermatozoa cryopreservation. Cryobiology 2014; 69:119-27. [DOI: 10.1016/j.cryobiol.2014.06.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 05/23/2014] [Accepted: 06/18/2014] [Indexed: 02/05/2023]
|
16
|
Chamberlain AA, Lin M, Lister RL, Maslov AA, Wang Y, Suzuki M, Wu B, Greally JM, Zheng D, Zhou B. DNA methylation is developmentally regulated for genes essential for cardiogenesis. J Am Heart Assoc 2014; 3:e000976. [PMID: 24947998 PMCID: PMC4309105 DOI: 10.1161/jaha.114.000976] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 04/11/2014] [Indexed: 01/13/2023]
Abstract
BACKGROUND DNA methylation is a major epigenetic mechanism altering gene expression in development and disease. However, its role in the regulation of gene expression during heart development is incompletely understood. The aim of this study is to reveal DNA methylation in mouse embryonic hearts and its role in regulating gene expression during heart development. METHODS AND RESULTS We performed the genome-wide DNA methylation profiling of mouse embryonic hearts using methyl-sensitive, tiny fragment enrichment/massively parallel sequencing to determine methylation levels at ACGT sites. The results showed that while global methylation of 1.64 million ACGT sites in developing hearts remains stable between embryonic day (E) 11.5 and E14.5, a small fraction (2901) of them exhibit differential methylation. Gene Ontology analysis revealed that these sites are enriched at genes involved in heart development. Quantitative real-time PCR analysis of 350 genes with differential DNA methylation showed that the expression of 181 genes is developmentally regulated, and 79 genes have correlative changes between methylation and expression, including hyaluronan synthase 2 (Has2). Required for heart valve formation, Has2 expression in the developing heart valves is downregulated at E14.5, accompanied with increased DNA methylation in its enhancer. Genetic knockout further showed that the downregulation of Has2 expression is dependent on DNA methyltransferase 3b, which is co-expressed with Has2 in the forming heart valve region, indicating that the DNA methylation change may contribute to the Has2 enhancer's regulating function. CONCLUSIONS DNA methylation is developmentally regulated for genes essential to heart development, and abnormal DNA methylation may contribute to congenital heart disease.
Collapse
Affiliation(s)
- Alyssa A. Chamberlain
- Division of Hematology, Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY (A.A.C., M.L., A.A.M., Y.W., M.S., B.W., J.M.G., D.Z.)
| | - Mingyan Lin
- Division of Hematology, Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY (A.A.C., M.L., A.A.M., Y.W., M.S., B.W., J.M.G., D.Z.)
| | - Rolanda L. Lister
- Division of Hematology, Department of Obstetrics & Gynecology and Women's Health (Maternal & Fetal Medicine), Albert Einstein College of Medicine of Yeshiva University, Bronx, NY (R.L.L.)
| | - Alex A. Maslov
- Division of Hematology, Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY (A.A.C., M.L., A.A.M., Y.W., M.S., B.W., J.M.G., D.Z.)
| | - Yidong Wang
- Division of Hematology, Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY (A.A.C., M.L., A.A.M., Y.W., M.S., B.W., J.M.G., D.Z.)
| | - Masako Suzuki
- Division of Hematology, Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY (A.A.C., M.L., A.A.M., Y.W., M.S., B.W., J.M.G., D.Z.)
| | - Bingruo Wu
- Division of Hematology, Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY (A.A.C., M.L., A.A.M., Y.W., M.S., B.W., J.M.G., D.Z.)
| | - John M. Greally
- Division of Hematology, Department of Medicine, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY (J.M.G.)
- Division of Hematology, Department of Pediatrics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY (J.M.G.)
- Division of Hematology, Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY (A.A.C., M.L., A.A.M., Y.W., M.S., B.W., J.M.G., D.Z.)
| | - Deyou Zheng
- Division of Hematology, Department of Neurology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY (D.Z.)
- Division of Hematology, Department of Neuroscience, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY (D.Z.)
- Division of Hematology, Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY (A.A.C., M.L., A.A.M., Y.W., M.S., B.W., J.M.G., D.Z.)
| | - Bin Zhou
- Division of Cardiology, Departments of Medicine, Pediatrics, and Genetics, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY (B.Z.)
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China (B.Z.)
| |
Collapse
|
17
|
Girardot M, Feil R, Llères D. Epigenetic deregulation of genomic imprinting in humans: causal mechanisms and clinical implications. Epigenomics 2013; 5:715-28. [DOI: 10.2217/epi.13.66] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mammalian genes controlled by genomic imprinting play important roles in development and diverse postnatal processes. A growing number of congenital disorders have been linked to genomic imprinting. Each of these is caused by perturbed gene expression at one principal imprinted domain. Some imprinting disorders, including the Prader–Willi and Angelman syndromes, are caused almost exclusively by genetic mutations. In several others, including the Beckwith–Wiedemann and Silver–Russell growth syndromes, and transient neonatal diabetes mellitus, imprinted expression is perturbed mostly by epigenetic alterations at ‘imprinting control regions’ and at other specific regulatory sequences. In a minority of these patients, DNA methylation is altered at multiple imprinted loci, suggesting that common trans-acting factors are affected. Here, we review the epimutations involved in congenital imprinting disorders and the associated clinical features. Trans-acting factors known to be causally involved are discussed and other trans-acting factors that are potentially implicated are also presented.
Collapse
Affiliation(s)
- Michael Girardot
- Institute of Molecular Genetics (IGMM), CNRS UMR-5535, 1919 Route de Mende, 34293 Montpellier, France
- Universities of Montpellier I & II, Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics (IGMM), CNRS UMR-5535, 1919 Route de Mende, 34293 Montpellier, France
| | - David Llères
- Institute of Molecular Genetics (IGMM), CNRS UMR-5535, 1919 Route de Mende, 34293 Montpellier, France
- Universities of Montpellier I & II, Montpellier, France
| |
Collapse
|
18
|
Rotondo JC, Selvatici R, Di Domenico M, Marci R, Vesce F, Tognon M, Martini F. Methylation loss at H19 imprinted gene correlates with methylenetetrahydrofolate reductase gene promoter hypermethylation in semen samples from infertile males. Epigenetics 2013; 8:990-7. [PMID: 23975186 PMCID: PMC3883776 DOI: 10.4161/epi.25798] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Aberrant methylation at the H19 paternal imprinted gene has been identified in different cohorts of infertile males. The causes of H19 methylation errors are poorly understood. In this study, we investigated the methylation status of the H19 gene in semen DNA samples from infertile males affected by MTHFR gene promoter hypermethylation. DNA from normal and abnormal semen samples harbouring MTHFR gene promoter hypermethylated, hmMTHFR-nor and hmMTHFR-abn, and without MTHFR methylation, MTHFR-nor and MTHFR-abn, were investigated for methylation status in the H19 locus using bisulfite-treated DNA PCR, followed by cloning and sequencing. The prevalence of H19 hypomethylated clones was 20% in hmMTHFR-nor and 0% in MTHFR-nor semen samples (p<0.05), and 28% in hmMTHFR-abn compared with 16% in MTHFR-abn semen samples (p>0.05). These results underscore the association between H19 methylation defects and hypermethylation of the MTHFR gene promoter in normal semen samples and suggest that aberrant methylation at H19 may occur in the normal sperm of infertile males affected by MTHFR gene dysfunction. These findings provide new insights into the mechanisms causing abnormal methylation in imprinted genes and, in turn, male infertility.
Collapse
Affiliation(s)
- John C Rotondo
- Department of Morphology, Surgery and Experimental Medicine; University of Ferrara; Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Cantone I, Fisher AG. Epigenetic programming and reprogramming during development. Nat Struct Mol Biol 2013; 20:282-9. [DOI: 10.1038/nsmb.2489] [Citation(s) in RCA: 320] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/11/2012] [Indexed: 01/02/2023]
|
20
|
Zhao MT, Rivera RM, Prather RS. Locus-specific DNA methylation reprogramming during early porcine embryogenesis. Biol Reprod 2013; 88:48. [PMID: 23303676 DOI: 10.1095/biolreprod.112.104471] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
During early mammalian embryogenesis, there is a wave of DNA demethylation postfertilization and de novo methylation around implantation. The paternal genome undergoes active DNA demethylation, whereas the maternal genome is passively demethylated after fertilization in most mammals except for sheep and rabbits. However, the emerging genome-wide DNA methylation landscape has revealed a regulatory and locus-specific DNA methylation reprogramming pattern in mammalian preimplantation embryos. Here we optimized a bisulfite sequencing protocol to draw base-resolution DNA methylation profiles of several selected genes in gametes, early embryos, and somatic tissue. We observed locus-specific DNA methylation reprogramming in early porcine embryos. First, some pluripotency genes (POU5F1 and NANOG) followed a typical wave of DNA demethylation and remethylation, whereas CpG-rich regions of SOX2 and CDX2 loci were hypomethylated throughout development. Second, a differentially methylated region of an imprint control region in the IGF2/H19 locus exhibited differential DNA methylation which was maintained in porcine early embryos. Third, a centromeric repeat element retained a moderate DNA methylation level in gametes, early embryos, and somatic tissue. The diverse DNA methylation reprogramming during early embryogenesis is thought to be possibly associated with the multiple functions of DNA methylation in transcriptional regulation, genome stability and genomic imprinting. The latest technology such as oxidative bisulfite sequencing to identify 5-hydroxymethylcytosine will further clarify the DNA methylation reprogramming during porcine embryonic development.
Collapse
Affiliation(s)
- Ming-Tao Zhao
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
21
|
Kharche SD, Birade HS. Parthenogenesis and activation of mammalian oocytes for <i>in vitro</i> embryo production: A review. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.42025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Park BW, Shen W, Linher-Melville K, Li J. Deleted in azoospermia-like enhances in vitro derived porcine germ cell formation and meiosis. Stem Cells Dev 2012; 22:939-50. [PMID: 23259838 DOI: 10.1089/scd.2012.0323] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Evidence supporting that deleted in azoospermia-like (DAZL) plays a key role during gametogenesis and meiosis continues to emerge. Our study aimed to determine whether overexpression of DAZL using a lentiviral approach in a somatic stem cell to germ cell in vitro differentiation culture could enhance the formation of primordial germ cell-like cells (PLCs) and oocyte-like cells (OLCs). Introduction of DAZL at the beginning of induced differentiation significantly increased the formation of Fragilis-positive PLCs, which was independent of mitotic proliferation. In addition, mRNA levels of the germ cell markers Oct4, Stella, and Vasa were also higher in the DAZL-transduced group and suppressed when DAZL was knocked down using small interference RNA. At later stages of differentiation, the expression of several genes associated with meiosis, including Scp3, Dmc1, Rec8, and Stra8, was determined to be significantly higher when DAZL was overexpressed, which was abrogated by its knockdown. Exogenous introduction of DAZL also increased the protein levels of SCP3 and VASA, which again was reversed by its knockdown. Although not a common phenomenon in the in vitro differentiation system, the percentage of SCP3-positive cells displaying meiotic chromosome patterns in the DAZL-transduced group was higher than in the control, as was the overall percentage of OLCs that were generated. The introduction of factors such as DAZL into a stem cell-to-germ cell differentiation culture may provide an opportunity to better understand the key genes and their interactions during gametogenesis, also providing a means to enhance the generation of germ cells in vitro.
Collapse
Affiliation(s)
- Bong-Wook Park
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
23
|
Zhang H, Zhu JK. Active DNA demethylation in plants and animals. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2012. [PMID: 23197304 DOI: 10.1101/sqb.2012.77.014936] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Active DNA demethylation regulates many vital biological processes, including early development and locus-specific gene expression in plants and animals. In Arabidopsis, bifunctional DNA glycosylases directly excise the 5-methylcytosine base and then cleave the DNA backbone at the abasic site. Recent evidence suggests that mammals utilize DNA glycosylases after 5-methylcytosine is oxidized and/or deaminated. In both cases, the resultant single-nucleotide gap is subsequently filled with an unmodified cytosine through the DNA base excision repair pathway. The enzymatic removal of 5-methylcytosine is tightly integrated with histone modifications and possibly noncoding RNAs. Future research will increase our understanding of the mechanisms and critical roles of active DNA demethylation in various cellular processes as well as inspire novel genetic and chemical therapies for epigenetic disorders.
Collapse
Affiliation(s)
- H Zhang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
24
|
PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature 2012; 486:415-9. [PMID: 22722204 DOI: 10.1038/nature11093] [Citation(s) in RCA: 330] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 03/28/2012] [Indexed: 11/08/2022]
Abstract
The modification of DNA by 5-methylcytosine (5mC) has essential roles in cell differentiation and development through epigenetic gene regulation. 5mC can be converted to another modified base, 5-hydroxymethylcytosine (5hmC), by the tet methylcytosine dioxygenase (Tet) family of enzymes. Notably, the balance between 5hmC and 5mC in the genome is linked with cell-differentiation processes such as pluripotency and lineage commitment. We have previously reported that the maternal factor PGC7 (also known as Dppa3, Stella) is required for the maintenance of DNA methylation in early embryogenesis, and protects 5mC from conversion to 5hmC in the maternal genome. Here we show that PGC7 protects 5mC from Tet3-mediated conversion to 5hmC by binding to maternal chromatin containing dimethylated histone H3 lysine 9 (H3K9me2) in mice. In addition, imprinted loci that are marked with H3K9me2 in mature sperm are protected by PGC7 binding in early embryogenesis. This type of regulatory mechanism could be involved in DNA modifications in somatic cells as well as in early embryos.
Collapse
|
25
|
Park YJ, Herman H, Gao Y, Lindroth AM, Hu BY, Murphy PJ, Putnam JR, Soloway PD. Sequences sufficient for programming imprinted germline DNA methylation defined. PLoS One 2012; 7:e33024. [PMID: 22403732 PMCID: PMC3293921 DOI: 10.1371/journal.pone.0033024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 02/09/2012] [Indexed: 11/18/2022] Open
Abstract
Epigenetic marks are fundamental to normal development, but little is known about signals that dictate their placement. Insights have been provided by studies of imprinted loci in mammals, where monoallelic expression is epigenetically controlled. Imprinted expression is regulated by DNA methylation programmed during gametogenesis in a sex-specific manner and maintained after fertilization. At Rasgrf1 in mouse, paternal-specific DNA methylation on a differential methylation domain (DMD) requires downstream tandem repeats. The DMD and repeats constitute a binary switch regulating paternal-specific expression. Here, we define sequences sufficient for imprinted methylation using two transgenic mouse lines: One carries the entire Rasgrf1 cluster (RC); the second carries only the DMD and repeats (DR) from Rasgrf1. The RC transgene recapitulated all aspects of imprinting seen at the endogenous locus. DR underwent proper DNA methylation establishment in sperm and erasure in oocytes, indicating the DMD and repeats are sufficient to program imprinted DNA methylation in germlines. Both transgenes produce a DMD-spanning pit-RNA, previously shown to be necessary for imprinted DNA methylation at the endogenous locus. We show that when pit-RNA expression is controlled by the repeats, it regulates DNA methylation in cis only and not in trans. Interestingly, pedigree history dictated whether established DR methylation patterns were maintained after fertilization. When DR was paternally transmitted followed by maternal transmission, the unmethylated state that was properly established in the female germlines could not be maintained. This provides a model for transgenerational epigenetic inheritance in mice.
Collapse
Affiliation(s)
- Yoon Jung Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Republic of Korea
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
- * E-mail: (YJP); (PDS)
| | - Herry Herman
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Ying Gao
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Anders M. Lindroth
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Benjamin Y. Hu
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Patrick J. Murphy
- Genetics and Development Graduate Field, Cornell University, Ithaca, New York, United States of America
| | - James R. Putnam
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Paul D. Soloway
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
- Genetics and Development Graduate Field, Cornell University, Ithaca, New York, United States of America
- * E-mail: (YJP); (PDS)
| |
Collapse
|
26
|
Huntriss J, Woodfine K, Huddleston JE, Murrell A, Rutherford AJ, Elder K, Khan AA, Hemmings K, Picton H. Quantitative analysis of DNA methylation of imprinted genes in single human blastocysts by pyrosequencing. Fertil Steril 2011; 95:2564-7.e1-8. [PMID: 21575943 DOI: 10.1016/j.fertnstert.2011.04.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Revised: 03/24/2011] [Accepted: 04/04/2011] [Indexed: 01/14/2023]
Abstract
We report the first quantitative assessment of DNA methylation for any gene in the human preimplantation embryo to reveal that imprints exist at KvDMR1, RB1, SNRPN, and GRB10 in the human blastocyst. For comparison, in two human embryonic stem cell lines, imprints were also observed at KvDMR1, SNRPN, GRB10, and other imprinted loci, whereas RB1 and MEG3 were hypermethylated.
Collapse
Affiliation(s)
- John Huntriss
- Division of Reproduction and Early Development, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, The LIGHT Laboratories, Clarendon Way, Leeds, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dyce PW, Shen W, Huynh E, Shao H, Villagómez DA, Kidder GM, King WA, Li J. Analysis of Oocyte-Like Cells Differentiated from Porcine Fetal Skin-Derived Stem Cells. Stem Cells Dev 2011; 20:809-19. [DOI: 10.1089/scd.2010.0395] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Paul W. Dyce
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | - Wei Shen
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
- Laboratory of Germ Cell Biology, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Evanna Huynh
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | - Hua Shao
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | - Daniel A.F. Villagómez
- Department of Biomedical Science, University of Guelph, Guelph, Ontario, Canada
- Departamento de Producción Animal, Universidad de Guadalajara, Zapopan, México
| | - Gerald M. Kidder
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario and Children's Health Research Institute, London, Ontario, Canada
| | - W. Allan King
- Department of Biomedical Science, University of Guelph, Guelph, Ontario, Canada
| | - Julang Li
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
28
|
Xiao Y, Zhang HL, Bai LY, Wang XM, Li WG, Yang LG. [Active DNA demethylation in mammals]. YI CHUAN = HEREDITAS 2011; 33:298-306. [PMID: 21482518 DOI: 10.3724/sp.j.1005.2011.00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
DNA methylation is a stable and heritable epigenetic mark, and it is one of the best characterized epigenetic modifications. Active DNA demethylation has been reported both in plant and animal cells, and the mechanism behind it is becoming clear in plant. Whereas a bona fide enzyme, which is responsible for active DNA demethylation, have not been identified in mammals, and active demethylation pathway is controversial. In the present review, we described that active DNA demethylation take place in a spatial- and temporal-specific way on the basis of recent literatures. Moreover, several candidate pathways such as oxygenation and deamination of 5-methyl cytosine and DNA repair pathways, which may be responsible for the active process were introduced on a cell- and tissue-specific view. The aim of this paper is to help re-searchers reveal the mechanism underlying this important event during epigenetic reprogramming in mammals.
Collapse
Affiliation(s)
- Yao Xiao
- Key Lab of Education Ministry of China in Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | |
Collapse
|
29
|
Patra SK, Deb M, Patra A. Molecular marks for epigenetic identification of developmental and cancer stem cells. Clin Epigenetics 2011; 2:27-53. [PMID: 22704268 PMCID: PMC3365374 DOI: 10.1007/s13148-010-0016-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 11/24/2010] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Epigenetic regulations of genes by reversible methylation of DNA (at the carbon-5 of cytosine) and numerous reversible modifications of histones play important roles in normal physiology and development, and epigenetic deregulations are associated with developmental disorders and various disease states, including cancer. Stem cells have the capacity to self-renew indefinitely. Similar to stem cells, some malignant cells have the capacity to divide indefinitely and are referred to as cancer stem cells. In recent times, direct correlation between epigenetic modifications and reprogramming of stem cell and cancer stem cell is emerging. Major discoveries were made with investigations on reprogramming gene products, also known as master regulators of totipotency and inducer of pluoripotency, namely, OCT4, NANOG, cMYC, SOX2, Klf4, and LIN28. The challenge to induce pluripotency is the insertion of four reprogramming genes (Oct4, Sox2, Klf4, and c-Myc) into the genome. There are always risks of silencing of these genes by epigenetic modifications in the host cells, particularly, when introduced through retroviral techniques. In this contribution, we will discuss some of the major discoveries on epigenetic modifications within the chromatin of various genes associated with cancer progression and cancer stem cells in comparison to normal development of stem cell. These modifications may be considered as molecular signatures for predicting disorders of development and for identifying disease states. ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (doi:10.1007/s13148-010-0016-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Orissa 769008 India
| | - Moonmoon Deb
- Epigenetics and Cancer Research Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Orissa 769008 India
| | - Aditi Patra
- Department of Animal Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal India
| |
Collapse
|
30
|
Milroy C, Liu L, Hammoud S, Hammoud A, Peterson CM, Carrell DT. Differential methylation of pluripotency gene promoters in in vitro matured and vitrified, in vivo-matured mouse oocytes. Fertil Steril 2011; 95:2094-9. [PMID: 21457962 DOI: 10.1016/j.fertnstert.2011.02.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To assess the methylation patterns of four pluripotency gene promoters in mouse oocytes after in vivo maturation, in vitro maturation (IVM), and vitrification followed by IVM. DESIGN Experimental study. SETTING Research laboratory. ANIMAL(S) Three populations of metaphase II mouse oocytes were analyzed after in vivo maturation, IVM, and vitrification followed by IVM (V-IVM). Cumulus cells and blastocyst embryos were controls. INTERVENTION(S) The CpG methylation patterns (overall and CpG specific) in the promoters of four pluripotency genes (Oct4, Nanog, Foxd3, and Sox2) were analyzed for each cell type by traditional DNA bisulfite sequencing. MAIN OUTCOME MEASURE(S) Differences for overall methylation were evaluated using the Student's t-test and for individual CpG sites by χ2 analysis. RESULT(S) Significantly lower levels of overall methylation in promoters of Oct4 (25%) and Sox2 (4.5%) were noted in V-IVM oocytes compared with in vivo-matured oocytes (62.5% and 8.5%, respectively). Cumulus cell promoters were generally hypomethylated at Nanog, Foxd3. and Sox2, but hypermethylated at Oct4. CONCLUSION(S) The methylation status of Oct4 and Sox2 promoters of V-IVM mouse oocytes are altered when compared with in vivo-matured oocytes. The biological risk and significance of these changes are unknown and this study indicates caution and that further analyses are warranted.
Collapse
Affiliation(s)
- Colleen Milroy
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, School of Medicine, University of Utah, Salt Lake City, Utah 84108, USA
| | | | | | | | | | | |
Collapse
|
31
|
Chromosome-wide analysis of parental allele-specific chromatin and DNA methylation. Mol Cell Biol 2011; 31:1757-70. [PMID: 21321082 DOI: 10.1128/mcb.00961-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To reveal the extent of domain-wide epigenetic features at imprinted gene clusters, we performed a high-resolution allele-specific chromatin analysis of over 100 megabases along the maternally or paternally duplicated distal chromosome 7 (Chr7) and Chr15 in mouse embryo fibroblasts (MEFs). We found that reciprocal allele-specific features are limited to imprinted genes and their differentially methylated regions (DMRs), whereas broad local enrichment of H3K27me3 (BLOC) is a domain-wide feature at imprinted clusters. We uncovered novel allele-specific features of BLOCs. A maternally biased BLOC was found along the H19-Igf2 domain. A paternal allele-specific gap was found along Kcnq1ot1, interrupting a biallelic BLOC in the Kcnq1-Cdkn1c domain. We report novel allele-specific chromatin marks at the Peg13 and Slc38a4 DMRs, Cdkn1c upstream region, and Inpp5f_v2 DMR and paternal allele-specific CTCF binding at the Peg13 DMR. Additionally, we derived an imprinted gene predictor algorithm based on our allele-specific chromatin mapping data. The binary predictor H3K9ac and CTCF or H3K4me3 in one allele and H3K9me3 in the reciprocal allele, using a sliding-window approach, recognized with precision the parental allele specificity of known imprinted genes, H19, Igf2, Igf2as, Cdkn1c, Kcnq1ot1, and Inpp5f_v2 on Chr7 and Peg13 and Slc38a4 on Chr15. Chromatin features, therefore, can unequivocally identify genes with imprinted expression.
Collapse
|
32
|
Lee DH, Tran DA, Singh P, Oates N, Rivas GE, Larson GP, Pfeifer GP, Szabó PE. MIRA-SNuPE, a quantitative, multiplex method for measuring allele-specific DNA methylation. Epigenetics 2011; 6:212-23. [PMID: 20948294 DOI: 10.4161/epi.6.2.13699] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
5-methyl-C (5mC) and 5-hydroxymethyl-C (5hmC) are epigenetic marks with well known and putative roles in gene regulation, respectively. These two DNA covalent modifications cannot be distinguished by bisulfite sequencing or restriction digestion, the standard methods of 5mC detection. The methylated CpG island recovery assay (MIRA), however, specifically detects 5mC but not 5hmC. We further developed MIRA for the analysis of allele-specific CpG methylation at differentially methylated regions (DMRs) of imprinted genes. MIRA specifically distinguished between the parental alleles by capturing the paternally methylated H19/Igf2 DMR and maternally methylated KvDMR1 in mouse embryo fibroblasts (MEFs) carrying paternal and maternal duplication of mouse distal Chr7, respectively. MIRA in combination with multiplex single nucleotide primer extension (SNuPE) assays specifically captured the methylated parental allele from normal cells at a set of maternally and paternally methylated DMRs. The assay correctly recognized aberrant biallelic methylation in a case of loss-of imprinting. The MIRA-SNuPE assays revealed that placenta exhibited less DNA methylation bias at DMRs compared to yolk sac, amnion, brain, heart, kidney, liver and muscle. This method should be useful for the analysis of allele-specific methylation events related to genomic imprinting, X chromosome inactivation and for verifying and screening haplotype-associated methylation differences in the human population.
Collapse
Affiliation(s)
- Dong-Hoon Lee
- Department of Molecular and Cellular Biology, City of Hope National Medical Center, Duarte, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Hutter B, Bieg M, Helms V, Paulsen M. Imprinted genes show unique patterns of sequence conservation. BMC Genomics 2010; 11:649. [PMID: 21092170 PMCID: PMC3091771 DOI: 10.1186/1471-2164-11-649] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 11/22/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genomic imprinting is an evolutionary conserved mechanism of epigenetic gene regulation in placental mammals that results in silencing of one of the parental alleles. In order to decipher interactions between allele-specific DNA methylation of imprinted genes and evolutionary conservation, we performed a genome-wide comparative investigation of genomic sequences and highly conserved elements of imprinted genes in human and mouse. RESULTS Evolutionarily conserved elements in imprinted regions differ from those associated with autosomal genes in various ways. Whereas for maternally expressed genes strong divergence of protein-encoding sequences is most prominent, paternally expressed genes exhibit substantial conservation of coding and noncoding sequences. Conserved elements in imprinted regions are marked by enrichment of CpG dinucleotides and low (TpG+CpA)/(2·CpG) ratios indicate reduced CpG deamination. Interestingly, paternally and maternally expressed genes can be distinguished by differences in G+C and CpG contents that might be associated with unusual epigenetic features. Especially noncoding conserved elements of paternally expressed genes are exceptionally G+C and CpG rich. In addition, we confirmed a frequent occurrence of intronic CpG islands and observed a decelerated degeneration of ancient LINE-1 repeats. We also found a moderate enrichment of YY1 and CTCF binding sites in imprinted regions and identified several short sequence motifs in highly conserved elements that might act as additional regulatory elements. CONCLUSIONS We discovered several novel conserved DNA features that might be related to allele-specific DNA methylation. Our results hint at reduced CpG deamination rates in imprinted regions, which affects mostly noncoding conserved elements of paternally expressed genes. Pronounced differences between maternally and paternally expressed genes imply specific modes of evolution as a result of differences in epigenetic features and a special response to selective pressure. In addition, our data support the potential role of intronic CpG islands as epigenetic key regulatory elements and suggest that evolutionary conserved LINE-1 elements fulfill regulatory functions in imprinted regions.
Collapse
Affiliation(s)
- Barbara Hutter
- Lehrstuhl für Computational Biology, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany
- Theoretische Bioinformatik (B080), Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Matthias Bieg
- Lehrstuhl für Computational Biology, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany
| | - Volkhard Helms
- Lehrstuhl für Computational Biology, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany
| | - Martina Paulsen
- Lehrstuhl für Genetik/Epigenetik, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany
| |
Collapse
|
35
|
Beaujean N, Mason K, Bonnet-Garnier A, Salvaing J, Debey P. [Embryonic genome organization after fertilization in mammals]. Biol Aujourdhui 2010; 204:205-13. [PMID: 20950564 DOI: 10.1051/jbio/2010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Indexed: 11/15/2022]
Abstract
In mammals, the embryonic genome is first transcriptionally inactive after fertilization. Embryonic development is then strictly dependent on the maternally inherited RNA and proteins accumulated before ovulation and present in the oocyte cytoplasm. The onset of embryonic gene expression is initiated later during development, i.e. during the "embryonic genome activation (EGA)". EGA takes place at various preimplantation stages according to species and is dependent on the presence of the basal transcriptional machinery components but also on parental genomes reorganizations after fertilization. Indeed, during the first embryonic cycles, nuclei undergo intense remodeling that could be a key regulator of embryonic development.
Collapse
Affiliation(s)
- Nathalie Beaujean
- INRA, UMR1198 Biologie du Développement et Reproduction, 78352 Jouy-en-Josas, France.
| | | | | | | | | |
Collapse
|
36
|
Abstract
DNA methylation is one of the best-characterized epigenetic modifications and has been implicated in numerous biological processes, including transposable element silencing, genomic imprinting and X chromosome inactivation. Compared with other epigenetic modifications, DNA methylation is thought to be relatively stable. Despite its role in long-term silencing, DNA methylation is more dynamic than originally thought as active DNA demethylation has been observed during specific stages of development. In the past decade, many enzymes have been proposed to carry out active DNA demethylation and growing evidence suggests that, depending on the context, this process may be achieved by multiple mechanisms. Insight into how DNA methylation is dynamically regulated will broaden our understanding of epigenetic regulation and have great implications in somatic cell reprogramming and regenerative medicine.
Collapse
|
37
|
|
38
|
Lennerz JK, Timmerman RJ, Grange DK, DeBaun MR, Feinberg AP, Zehnbauer BA. Addition of H19 'loss of methylation testing' for Beckwith-Wiedemann syndrome (BWS) increases the diagnostic yield. J Mol Diagn 2010; 12:576-88. [PMID: 20616360 DOI: 10.2353/jmoldx.2010.100005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) is a clinical diagnosis; however, molecular confirmation via abnormal methylation of DMR2(LIT1) and/or DMR1(H19) has clinical utility due to epigenotype-tumor association. Despite the strong link between H19 hypermethylation and tumor risk, several diagnostic laboratories only test for hypomethylation of LIT1. We assessed the added diagnostic value of combined LIT1 and H19 testing in a large series of referred samples from 1298 patients, including 53 well-characterized patients from the St. Louis Children's Hospital BWS-Registry (validation samples) and 1245 consecutive nationwide referrals (practice samples). Methylation-sensitive enzymatic digestion with Southern hybridization assessed loss of normal imprinting. In the validation group, abnormal LIT1 hypomethylation was detected in 60% (32/52) of patients but LIT1/H19-combined testing was abnormal in 68% (36/53); sensitivity in the practice setting demonstrated 27% (342/1245) abnormal LIT1 and 32% (404/1245) abnormal LIT1/H19-combined. In addition, H19 methylation was abnormal in 7% of LIT1-normal patients. We observed absence of uniparental disomy (UPD) in 27% of combined LIT1/H19-abnormal samples, diagnostic of multilocus methylation abnormalities; in contrast to studies implicating that combined LIT1/H19 abnormalities are diagnostic of UPD. The overall low detection rate, even in validated patient samples and despite characterization of both loci and UPD status, emphasizes the importance of clinical diagnosis in BWS.
Collapse
Affiliation(s)
- Jochen K Lennerz
- Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Development from separate parental germ cells through fertilization and proceeding to a fully functioning adult animal occurs through an intricate program of transcriptional and chromatin changes. Epigenetic alterations such as DNA methylation are an important part of this process. This review looks at the role of DNA methylation in early embryonic development, as well as how this epigenetic mark affects stem cell differentiation and tissue-specific gene expression in somatic cells.
Collapse
Affiliation(s)
- Theresa M Geiman
- Laboratory of Cancer Prevention, National Cancer Institute-Frederick, SAIC-Frederick, MD 21702, USA.
| | | |
Collapse
|
40
|
Linher K, Dyce P, Li J. Primordial germ cell-like cells differentiated in vitro from skin-derived stem cells. PLoS One 2009; 4:e8263. [PMID: 20011593 PMCID: PMC2788220 DOI: 10.1371/journal.pone.0008263] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 11/19/2009] [Indexed: 01/19/2023] Open
Abstract
Background We have previously demonstrated that stem cells isolated from fetal porcine skin have the potential to form oocyte-like cells (OLCs) in vitro. However, primordial germ cells (PGCs), which must also be specified during the stem cell differentiation to give rise to these putative oocytes at more advanced stages of culture, were not systematically characterized. The current study tested the hypothesis that a morphologically distinct population of cells derived from skin stem cells prior to OLC formation corresponds to putative PGCs, which differentiate further into more mature gametes. Methodology/Principal Findings When induced to differentiate in an appropriate microenvironment, a subpopulation of morphologically distinct cells, some of which are alkaline phosphatase (AP)-positive, also express Oct4, Fragilis, Stella, Dazl, and Vasa, which are markers indicative of germ cell formation. A known differentially methylated region (DMR) within the H19 gene locus, which is demethylated in oocytes after establishment of the maternal imprint, is hypomethylated in PGC-like cells compared to undifferentiated skin-derived stem cells, suggesting that the putative germ cell population undergoes imprint erasure. Additional evidence supporting the germ cell identity of in vitro-generated PGC-like cells is that, when labeled with a Dazl-GFP reporter, these cells further differentiate into GFP-positive OLCs. Significance The ability to generate germ cell precursors from somatic stem cells may provide an in vitro model to study some of the unanswered questions surrounding early germ cell formation.
Collapse
Affiliation(s)
- Katja Linher
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | - Paul Dyce
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | - Julang Li
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
41
|
The DM domain protein DMRT1 is a dose-sensitive regulator of fetal germ cell proliferation and pluripotency. Proc Natl Acad Sci U S A 2009; 106:22323-8. [PMID: 20007774 DOI: 10.1073/pnas.0905431106] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dmrt1 (doublesex and mab-3 related transcription factor 1) is a conserved transcriptional regulator of male differentiation required for testicular development in vertebrates. Here, we show that in mice of the 129Sv strain, loss of Dmrt1 causes a high incidence of teratomas, whereas these tumors do not form in Dmrt1 mutant C57BL/6J mice. Conditional gene targeting indicates that Dmrt1 is required in fetal germ cells but not in Sertoli cells to prevent teratoma formation. Mutant 129Sv germ cells undergo apparently normal differentiation up to embryonic day 13.5 (E13.5), but some cells fail to arrest mitosis and ectopically express pluripotency markers. Expression analysis and chromatin immunoprecipitation identified DMRT1 target genes, whose missexpression may underlie teratoma formation. DMRT1 indirectly activates the GDNF coreceptor Ret, and it directly represses the pluripotency regulator Sox2. Analysis of human germ cell tumors reveals similar gene expression changes correlated to DMRT1 levels. Dmrt1 behaves genetically as a dose-sensitive tumor suppressor gene in 129Sv mice, and natural variation in Dmrt1 activity can confer teratoma susceptibility. This work reveals a genetic link between testicular dysgenesis, pluripotency regulation, and teratoma susceptibility that is highly sensitive to genetic background and to gene dosage.
Collapse
|
42
|
Abdalla H, Yoshizawa Y, Hochi S. Active demethylation of paternal genome in mammalian zygotes. J Reprod Dev 2009; 55:356-60. [PMID: 19721335 DOI: 10.1262/jrd.20234] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epigenetic reprogramming in early preimplantation embryos, that refers to erasing and remodeling epigenetic marks such as DNA methylation, is essential for differentiation and development. In many species, paternal genome is subjected to genome-wide active demethylation before the DNA replication commences, while maternal genome maintains its methylation status until being demethylated passively during the subsequent cleavage divisions. The purpose of this manuscript was to review the available knowledge about the paternal genome active demethylation process concerning the possible mechanisms, species variation and the factors affecting the active demethylation dynamics such as in vitro protocols for production of pronuclear-stage zygotes. Better understanding the mechanisms by which the epigenetic reprogramming is occurred may contribute to clarify the biological significance of this process.
Collapse
Affiliation(s)
- Hany Abdalla
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | | | | |
Collapse
|
43
|
Song Z, Min L, Pan Q, Shi Q, Shen W. Maternal imprinting during mouse oocyte growth in vivo and in vitro. Biochem Biophys Res Commun 2009; 387:800-5. [PMID: 19646963 DOI: 10.1016/j.bbrc.2009.07.131] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 07/25/2009] [Indexed: 10/20/2022]
Abstract
Epigenetic regulation of gene expression is critical for oogenesis in mammals. In this study, a simple and efficient method was used to obtain the oocytes from cultured fetal mouse ovaries of 12.5dpc. The methylation pattern of these oocytes was examined. The results showed that the establishment of imprinting of Igf2r and Peg3 in oocytes derived from cultured fetal mouse germ cells in vitro follows a slower time course than that of oocytes in vivo. However, oocytes in vitro and in vivo share similar methylation patterns. Igf2r was gradually de novo methylated, and the methylation covers 80% CpG sites in oocytes cultured for 28days. However, only 45% of the CpG sites is methylated in Peg3 at the same stage. Furthermore, it demonstrated that the degree of DNA methylation is positively correlated with the size of oocytes in vitro and in vivo, indicating a progressive methylation process during oocyte growth.
Collapse
|
44
|
A randomly integrated transgenic H19 imprinting control region acquires methylation imprinting independently of its establishment in germ cells. Mol Cell Biol 2009; 29:4595-603. [PMID: 19546235 DOI: 10.1128/mcb.00275-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The imprinted expression of the mouse Igf2/H19 locus is governed by the differential methylation of the imprinting control region (ICR), which is established initially in germ cells and subsequently maintained in somatic cells, depending on its parental origin. By grafting a 2.9-kbp H19 ICR fragment into a human beta-globin yeast artificial chromosome in transgenic mice, we previously showed that the ICR could recapitulate imprinted methylation and expression at a heterologous locus, suggesting that the H19 ICR in the beta-globin locus contained sufficient information to maintain the methylation mark (K. Tanimoto, M. Shimotsuma, H. Matsuzaki, A. Omori, J. Bungert, J. D. Engel, and A. Fukamizu, Proc. Natl. Acad. Sci. USA 102:10250-10255, 2005). Curiously, however, the transgenic H19 ICR was not methylated in sperm, which was distinct from that seen in the endogenous locus. Here, we reevaluated the ability of the H19 ICR to mark the parental origin using more rigid criteria. In the testis, the methylation levels of the solitary 2.9-kbp transgenic ICR fragment varied significantly between six transgenic mouse lines. However, in somatic cells, the paternally inherited ICR fragment exhibited consistently higher methylation levels at five out of six randomly integrated sites in the mouse genome. These results clearly demonstrated that the H19 ICR could acquire parent-of-origin-dependent methylation after fertilization independently of the chromosomal integration site or the prerequisite methylation acquisition in male germ cells.
Collapse
|
45
|
Park CH, Kim HS, Lee SG, Lee CK. Methylation status of differentially methylated regions at Igf2/H19 locus in porcine gametes and preimplantation embryos. Genomics 2008; 93:179-86. [PMID: 18983907 DOI: 10.1016/j.ygeno.2008.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 10/01/2008] [Accepted: 10/03/2008] [Indexed: 01/09/2023]
Abstract
The aim of this study was to demonstrate how differential methylation imprints are established during porcine preimplantation embryo development. For the methylation analysis, the primers for the three Igf2/H19 DMRs were designed and based upon previously published sequences. The methylation marks of Igf2/H19 DMRs were analysed in sperm and MII oocytes with our results showing that these regions are fully methylated in sperm but remain unmethylated in MII oocytes. In order to identify the methylation pattern at the pronuclear stage, we indirectly compared the methylation profile of Igf2/H19 DMR3 in each zygote derived by in vitro fertilization, parthenogenesis, and androgenesis. Interestingly, this region was found to be differently methylated according to parental origins; DMR3 was hemimethylated in in vitro fertilized zygotes, fully methylated in parthenogenetic zygotes, and demethylated in androgenetic zygotes. These results indicate that the methylation mark of the paternal allele is erased by active demethylation, and that of the maternal one is de novo methylated. We further examined the methylation imprints of Igf2/H19 DMR3 during early embryonic development. The hemimethylated pattern as seen in zygotes fertilized in vitro was observed up to the 4-cell embryo stage. However, this mark was exclusively demethylated at the 8-cell stage and then restored at the morula stage. These results suggest that methylation imprints are established via dynamic changes during early embryonic development in porcine embryos.
Collapse
Affiliation(s)
- Chi-Hun Park
- Department of Agricultural Biotechnology, Seoul National University San 56-1 Shillim-dong Gwanak-gu, Seoul 151-921, Korea
| | | | | | | |
Collapse
|
46
|
Lepikhov K, Zakhartchenko V, Hao R, Yang F, Wrenzycki C, Niemann H, Wolf E, Walter J. Evidence for conserved DNA and histone H3 methylation reprogramming in mouse, bovine and rabbit zygotes. Epigenetics Chromatin 2008; 1:8. [PMID: 19014417 PMCID: PMC2590599 DOI: 10.1186/1756-8935-1-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 11/03/2008] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND In mammals the parental genomes are epigenetically reprogrammed after fertilization. This reprogramming includes a rapid demethylation of the paternal (sperm-derived) chromosomes prior to DNA replication in zygotes. Such active DNA demethylation in the zygote has been documented for several mammalian species, including mouse, rat, pig, human and cow, but questioned to occur in rabbit. RESULTS When comparing immunohistochemical patterns of antibodies against 5-methyl-cytosine, H3K4me3 and H3K9me2 modifications we observe similar pronuclear distribution and dynamics in mouse, bovine and rabbit zygotes. In rabbit DNA demethylation of the paternal chromosomes occurs at slightly advanced pronuclear stages. We also show that the rabbit oocyte rapidly demethylates DNA of donor fibroblast after nuclear transfer. CONCLUSION Our data reveal that major events of epigenetic reprogramming during pronuclear maturation, including mechanisms of active DNA demethylation, are apparently conserved among mammalian species.
Collapse
Affiliation(s)
- Konstantin Lepikhov
- University of Saarland, Natural Sciences - Technical Faculty III, Biological Sciences, Genetics/Epigenetics, 66123 Saarbrücken, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Activation du génome embryonnaire. ACTA ACUST UNITED AC 2008; 36:1126-32. [DOI: 10.1016/j.gyobfe.2008.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 07/28/2008] [Indexed: 12/18/2022]
|
48
|
Wiley CD, Matundan HH, Duselis AR, Isaacs AT, Vrana PB. Patterns of hybrid loss of imprinting reveal tissue- and cluster-specific regulation. PLoS One 2008; 3:e3572. [PMID: 18958286 PMCID: PMC2570336 DOI: 10.1371/journal.pone.0003572] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 10/10/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Crosses between natural populations of two species of deer mice, Peromyscus maniculatus (BW), and P. polionotus (PO), produce parent-of-origin effects on growth and development. BW females mated to PO males (bwxpo) produce growth-retarded but otherwise healthy offspring. In contrast, PO females mated to BW males (POxBW) produce overgrown and severely defective offspring. The hybrid phenotypes are pronounced in the placenta and include POxBW conceptuses which lack embryonic structures. Evidence to date links variation in control of genomic imprinting with the hybrid defects, particularly in the POxBW offspring. Establishment of genomic imprinting is typically mediated by gametic DNA methylation at sites known as gDMRs. However, imprinted gene clusters vary in their regulation by gDMR sequences. METHODOLOGY/PRINCIPAL FINDINGS Here we further assess imprinted gene expression and DNA methylation at different cluster types in order to discern patterns. These data reveal POxBW misexpression at the Kcnq1ot1 and Peg3 clusters, both of which lose ICR methylation in placental tissues. In contrast, some embryonic transcripts (Peg10, Kcnq1ot1) reactivated the silenced allele with little or no loss of DNA methylation. Hybrid brains also display different patterns of imprinting perturbations. Several cluster pairs thought to use analogous regulatory mechanisms are differentially affected in the hybrids. CONCLUSIONS/SIGNIFICANCE These data reinforce the hypothesis that placental and somatic gene regulation differs significantly, as does that between imprinted gene clusters and between species. That such epigenetic regulatory variation exists in recently diverged species suggests a role in reproductive isolation, and that this variation is likely to be adaptive.
Collapse
Affiliation(s)
- Christopher D. Wiley
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Harry H. Matundan
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Amanda R. Duselis
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Alison T. Isaacs
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Paul B. Vrana
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
49
|
Lefèvre C, Mann JR. RNA expression microarray analysis in mouse prospermatogonia: identification of candidate epigenetic modifiers. Dev Dyn 2008; 237:1082-9. [PMID: 18330932 DOI: 10.1002/dvdy.21482] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mammalian totipotent and pluripotent lineage exhibits genome-wide dynamics with respect to DNA methylation content. The first phase of global DNA demethylation and de novo remethylation occurs during preimplantation development and gastrulation, respectively, while the second phase occurs in primordial germ cells and primary oocytes/prospermatogonia, respectively. These dynamics are indicative of a comprehensive epigenetic resetting or reprogramming of the genome in preparation for major differentiation events. To gain further insight into the mechanisms driving DNA methylation dynamics and other types of epigenetic modification, we performed an RNA expression microarray analysis of fetal prospermatogonia at the stage when they are undergoing rapid de novo DNA remethylation. We have identified a number of highly or specifically expressed genes that could be important for determining epigenetic change in prospermatogonia. These data provide a useful resource in the discovery of molecular pathways involved in epigenetic reprogramming in the mammalian germ line.
Collapse
|
50
|
Bettegowda A, Lee KB, Smith GW. Cytoplasmic and nuclear determinants of the maternal-to-embryonic transition. Reprod Fertil Dev 2008; 20:45-53. [PMID: 18154697 DOI: 10.1071/rd07156] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although improvements in culture systems have greatly enhanced in vitro embryo production, success rates under the best conditions are still far from ideal. The reasons for developmental arrest of the majority of in vitro produced embryos are unclear, but likely attributable, in part, to intrinsic and extrinsic influences on the cytoplasmic and/or nuclear environment of an oocyte and/or early embryo that impede normal progression through the maternal-to-embryonic transition. The maternal-to-embryonic transition is the time period during embryonic development spanning from fertilisation until when control of early embryogenesis changes from regulation by oocyte-derived factors to regulation by products of the embryonic genome. The products of numerous maternal effect genes transcribed and stored during oogenesis mediate this transition. Marked epigenetic changes to chromatin during this window of development significantly modulate embryonic gene expression. Depletion of maternal mRNA pools is also an obligatory event during the maternal-to-embryonic transition critical to subsequent development. An increased knowledge of the fundamental mechanisms and mediators of the maternal-to-embryonic transition is foundational to understanding the regulation of oocyte quality and future breakthroughs relevant to embryo production.
Collapse
Affiliation(s)
- Anilkumar Bettegowda
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|