1
|
Abstract
It is known that spermatogenic disorders are associated with genetic deficiency, although the primary mechanism is still unclear. It is difficult to demonstrate the molecular events occurring in testis, which contains germ cells at different developmental stages. However, transcriptomic methods can help us reveal the molecular drive of male gamete generation. Many transcriptomic studies have been performed on rodents by utilizing the timing of the first wave of spermatogenesis, which is not a suitable strategy for research in fertile men. With the development of separation methods for male germ cells, transcriptome research on the molecular drive of spermatogenesis in fertile men has seen great progress, and the results could be ultimately applied to improve the diagnosis and treatment for male infertility.
Collapse
Affiliation(s)
| | | | - Zheng Li
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127; Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080; Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| |
Collapse
|
2
|
Genomic and post-genomic leads toward regulation of spermatogenesis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 113:409-22. [DOI: 10.1016/j.pbiomolbio.2013.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/08/2013] [Indexed: 01/15/2023]
|
3
|
Abstract
Spermatogenesis is a highly sophisticated process involved in the transmission of genetic heritage. It includes halving ploidy, repackaging of the chromatin for transport, and the equipment of developing spermatids and eventually spermatozoa with the advanced apparatus (e.g., tightly packed mitochondrial sheat in the mid piece, elongating of the tail, reduction of cytoplasmic volume) to elicit motility once they reach the epididymis. Mammalian spermatogenesis is divided into three phases. In the first the primitive germ cells or spermatogonia undergo a series of mitotic divisions. In the second the spermatocytes undergo two consecutive divisions in meiosis to produce haploid spermatids. In the third the spermatids differentiate into spermatozoa in a process called spermiogenesis. Paracrine, autocrine, juxtacrine, and endocrine pathways all contribute to the regulation of the process. The array of structural elements and chemical factors modulating somatic and germ cell activity is such that the network linking the various cellular activities during spermatogenesis is unimaginably complex. Over the past two decades, advances in genomics have greatly improved our knowledge of spermatogenesis, by identifying numerous genes essential for the development of functional male gametes. Large-scale analyses of testicular function have deepened our insight into normal and pathological spermatogenesis. Progress in genome sequencing and microarray technology have been exploited for genome-wide expression studies, leading to the identification of hundreds of genes differentially expressed within the testis. However, although proteomics has now come of age, the proteomics-based investigation of spermatogenesis remains in its infancy. Here, we review the state-of-the-art of large-scale proteomic analyses of spermatogenesis, from germ cell development during sex determination to spermatogenesis in the adult. Indeed, a few laboratories have undertaken differential protein profiling expression studies and/or systematic analyses of testicular proteomes in entire organs or isolated cells from various species. We consider the pros and cons of proteomics for studying the testicular germ cell gene expression program. Finally, we address the use of protein datasets, through integrative genomics (i.e., combining genomics, transcriptomics, and proteomics), bioinformatics, and modelling.
Collapse
Affiliation(s)
- Sophie Chocu
- Inserm, U1085, IRSET, University of Rennes I, Campus de Beaulieu, Rennes, France
| | | | | | | |
Collapse
|
4
|
Lardenois A, Gattiker A, Collin O, Chalmel F, Primig M. GermOnline 4.0 is a genomics gateway for germline development, meiosis and the mitotic cell cycle. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2010; 2010:baq030. [PMID: 21149299 PMCID: PMC3004465 DOI: 10.1093/database/baq030] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
GermOnline 4.0 is a cross-species database portal focusing on high-throughput expression data relevant for germline development, the meiotic cell cycle and mitosis in healthy versus malignant cells. It is thus a source of information for life scientists as well as clinicians who are interested in gene expression and regulatory networks. The GermOnline gateway provides unlimited access to information produced with high-density oligonucleotide microarrays (3'-UTR GeneChips), genome-wide protein-DNA binding assays and protein-protein interaction studies in the context of Ensembl genome annotation. Samples used to produce high-throughput expression data and to carry out genome-wide in vivo DNA binding assays are annotated via the MIAME-compliant Multiomics Information Management and Annotation System (MIMAS 3.0). Furthermore, the Saccharomyces Genomics Viewer (SGV) was developed and integrated into the gateway. SGV is a visualization tool that outputs genome annotation and DNA-strand specific expression data produced with high-density oligonucleotide tiling microarrays (Sc_tlg GeneChips) which cover the complete budding yeast genome on both DNA strands. It facilitates the interpretation of expression levels and transcript structures determined for various cell types cultured under different growth and differentiation conditions. Database URL: www.germonline.org/
Collapse
Affiliation(s)
- Aurélie Lardenois
- Inserm, U625, GERHM, IFR-140, Université de Rennes 1, F-35042 Rennes, France
| | | | | | | | | |
Collapse
|
5
|
Calvel P, Rolland AD, Jégou B, Pineau C. Testicular postgenomics: targeting the regulation of spermatogenesis. Philos Trans R Soc Lond B Biol Sci 2010; 365:1481-500. [PMID: 20403865 DOI: 10.1098/rstb.2009.0294] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sperm are, arguably, the most differentiated cells produced within the body of any given species. This is owing to the fact that spermatogenesis is an intricate and highly specialized process evolved to suit the individual particularities of each sexual species. Despite a vast diversity in method, the aim of spermatogenesis is always the same, the idealized transmission of genetic patrimony. Towards this goal certain requirements must always be met, such as a relative twofold reduction in ploidy, repackaging of the chromatin for transport and specialized enhancements for cell motility, recognition and fusion. In the past 20 years, the study of molecular networks coordinating male germ cell development, particularly in mammals, has become more and more facilitated thanks to large-scale analyses of genome expression. Such postgenomic endeavors have generated landscapes of data for both fundamental and clinical reproductive biology. Continuous, large-scale integration analyses of these datasets are undertaken which provide access to very precise information on a myriad of biomolecules. This review presents commonly used transcriptomic and proteomic workflows applied to various testicular germ cell studies. We will also provide a general overview of the technical possibilities available to reproductive genomic biologists, noting the advantages and drawbacks of each technique.
Collapse
Affiliation(s)
- Pierre Calvel
- Inserm, U625, IFR 140, University of Rennes I, Campus de Beaulieu, Rennes 35042, France
| | | | | | | |
Collapse
|
6
|
Roy Choudhury D, Small C, Wang Y, Mueller PR, Rebel VI, Griswold MD, McCarrey JR. Microarray-based analysis of cell-cycle gene expression during spermatogenesis in the mouse. Biol Reprod 2010; 83:663-75. [PMID: 20631398 DOI: 10.1095/biolreprod.110.084889] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mammalian spermatogenesis is a continuum of cellular differentiation in a lineage that features three principal stages: 1) a mitotically active stage in spermatogonia, 2) a meiotic stage in spermatocytes, and 3) a postreplicative stage in spermatids. We used a microarray-based approach to identify changes in expression of cell-cycle genes that distinguish 1) mitotic type A spermatogonia from meiotic pachytene spermatocytes and 2) pachytene spermatocytes from postreplicative round spermatids. We detected expression of 550 genes related to cell-cycle function in one or more of these cell types. Although a majority of these genes were expressed during all three stages of spermatogenesis, we observed dramatic changes in levels of individual transcripts between mitotic spermatogonia and meiotic spermatocytes and between meiotic spermatocytes and postreplicative spermatids. Our results suggest that distinct cell-cycle gene regulatory networks or subnetworks are associated with each phase of the cell cycle in each spermatogenic cell type. In addition, we observed expression of different members of certain cell-cycle gene families in each of the three spermatogenic cell types investigated. Finally, we report expression of 221 cell-cycle genes that have not previously been annotated as part of the cell cycle network expressed during spermatogenesis, including eight novel genes that appear to be testis-specific.
Collapse
|
7
|
Testicular Development and Spermatogenesis: Harvesting the Postgenomics Bounty. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 636:16-41. [DOI: 10.1007/978-0-387-09597-4_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Krysko DV, Diez-Fraile A, Criel G, Svistunov AA, Vandenabeele P, D’Herde K. Life and death of female gametes during oogenesis and folliculogenesis. Apoptosis 2008; 13:1065-87. [DOI: 10.1007/s10495-008-0238-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 06/26/2008] [Indexed: 12/27/2022]
|
9
|
Wyrobek AJ, Mulvihill JJ, Wassom JS, Malling HV, Shelby MD, Lewis SE, Witt KL, Preston RJ, Perreault SD, Allen JW, DeMarini DM, Woychik RP, Bishop JB. Assessing human germ-cell mutagenesis in the Postgenome Era: a celebration of the legacy of William Lawson (Bill) Russell. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2007; 48:71-95. [PMID: 17295306 PMCID: PMC2071946 DOI: 10.1002/em.20284] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Birth defects, de novo genetic diseases, and chromosomal abnormality syndromes occur in approximately 5% of all live births, and affected children suffer from a broad range of lifelong health consequences. Despite the social and medical impact of these defects, and the 8 decades of research in animal systems that have identified numerous germ-cell mutagens, no human germ-cell mutagen has been confirmed to date. There is now a growing consensus that the inability to detect human germ-cell mutagens is due to technological limitations in the detection of random mutations rather than biological differences between animal and human susceptibility. A multidisciplinary workshop responding to this challenge convened at The Jackson Laboratory in Bar Harbor, Maine. The purpose of the workshop was to assess the applicability of an emerging repertoire of genomic technologies to studies of human germ-cell mutagenesis. Workshop participants recommended large-scale human germ-cell mutation studies be conducted using samples from donors with high-dose exposures, such as cancer survivors. Within this high-risk cohort, parents and children could be evaluated for heritable changes in (a) DNA sequence and chromosomal structure, (b) repeat sequences and minisatellites, and (c) global gene expression profiles and pathways. Participants also advocated the establishment of a bio-bank of human tissue samples from donors with well-characterized exposure, including medical and reproductive histories. This mutational resource could support large-scale, multiple-endpoint studies. Additional studies could involve the examination of transgenerational effects associated with changes in imprinting and methylation patterns, nucleotide repeats, and mitochondrial DNA mutations. The further development of animal models and the integration of these with human studies are necessary to provide molecular insights into the mechanisms of germ-cell mutations and to identify prevention strategies. Furthermore, scientific specialty groups should be convened to review and prioritize the evidence for germ-cell mutagenicity from common environmental, occupational, medical, and lifestyle exposures. Workshop attendees agreed on the need for a full-scale assault to address key fundamental questions in human germ-cell environmental mutagenesis. These include, but are not limited to, the following: Do human germ-cell mutagens exist? What are the risks to future generations? Are some parents at higher risk than others for acquiring and transmitting germ-cell mutations? Obtaining answers to these, and other critical questions, will require strong support from relevant funding agencies, in addition to the engagement of scientists outside the fields of genomics and germ-cell mutagenesis.
Collapse
Affiliation(s)
| | - John J. Mulvihill
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - John S. Wassom
- YAHSGS, LLC, Richland, Washington
- Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Heinrich V. Malling
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Michael D. Shelby
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | | | - Kristine L. Witt
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - R. Julian Preston
- US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Sally D. Perreault
- US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - James W. Allen
- US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - David M. DeMarini
- US Environmental Protection Agency, Research Triangle Park, North Carolina
| | | | - Jack B. Bishop
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
- *Correspondence to: Dr. Jack B. Bishop, National Institute of Environmental Health Sciences, EC-01, PO Box 12233, Research Triangle Park, North Carolina, USA. E-mail:
| | | |
Collapse
|
10
|
Gattiker A, Niederhauser-Wiederkehr C, Moore J, Hermida L, Primig M. The GermOnline cross-species systems browser provides comprehensive information on genes and gene products relevant for sexual reproduction. Nucleic Acids Res 2006; 35:D457-62. [PMID: 17145711 PMCID: PMC1751528 DOI: 10.1093/nar/gkl957] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We report a novel release of the GermOnline knowledgebase covering genes relevant for the cell cycle, gametogenesis and fertility. GermOnline was extended into a cross-species systems browser including information on DNA sequence annotation, gene expression and the function of gene products. The database covers eight model organisms and Homo sapiens, for which complete genome annotation data are available. The database is now built around a sophisticated genome browser (Ensembl), our own microarray information management and annotation system (MIMAS) used to extensively describe experimental data obtained with high-density oligonucleotide microarrays (GeneChips) and a comprehensive system for online editing of database entries (MediaWiki). The RNA data include results from classical microarrays as well as tiling arrays that yield information on RNA expression levels, transcript start sites and lengths as well as exon composition. Members of the research community are solicited to help GermOnline curators keep database entries on genes and gene products complete and accurate. The database is accessible at .
Collapse
Affiliation(s)
| | | | | | | | - Michael Primig
- To whom correspondence should be addressed. Tel: +41 61 267 2098; Fax: +41 61 267 3398;
| |
Collapse
|
11
|
Kim H, Lim D, Han BK, Sung S, Jeon M, Moon S, Kang Y, Nam J, Han JY. ChickGCE: a novel germ cell EST database for studying the early developmental stage in chickens. Genomics 2006; 88:252-7. [PMID: 16714094 DOI: 10.1016/j.ygeno.2006.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 03/12/2006] [Accepted: 03/25/2006] [Indexed: 11/25/2022]
Abstract
We established a database to study germ cells during the early developmental stage in the chicken. The ChickGCE database provides integrated expressed sequence tag (EST) data from chicken testis, ovary, embryonic gonads, and primordial germ cells. We gathered data on 10,294 ESTs from approximately 1000 embryonic gonads, and we experimentally determined 10,851 ESTs from primordial germ cells purified from 7955 embryonic gonads by magnetically activated cell sorting. The EST testis and ovary datasets were retrieved from the public database of The Institute for Genomic Research (TIGR). The EST data were clustered and assembled into unique sequences, contigs, and singletons. The ChickGCE database provides functional annotation, identification, and putative embryonic germ-cell-specific novel transcripts based on the Gene Ontology database, as well as statistical analyses of expression patterns and pair-wise comparisons of two types of tissue- and germ-cell-specific alternative splicing events in the chicken. The new database is accessible online and queries can be answered using several search options, including tissue database searches, keywords, clone IDs, expected values, and BLAST search scores.
Collapse
Affiliation(s)
- Heebal Kim
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hochwagen A, Wrobel G, Cartron M, Demougin P, Niederhauser-Wiederkehr C, Boselli MG, Primig M, Amon A. Novel response to microtubule perturbation in meiosis. Mol Cell Biol 2005; 25:4767-81. [PMID: 15899877 PMCID: PMC1140642 DOI: 10.1128/mcb.25.11.4767-4781.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the mitotic cell cycle, microtubule depolymerization leads to a cell cycle arrest in metaphase, due to activation of the spindle checkpoint. Here, we show that under microtubule-destabilizing conditions, such as low temperature or the presence of the spindle-depolymerizing drug benomyl, meiotic budding yeast cells arrest in G(1) or G(2), instead of metaphase. Cells arrest in G(1) if microtubule perturbation occurs as they enter the meiotic cell cycle and in G(2) if cells are already undergoing premeiotic S phase. Concomitantly, cells down-regulate genes required for cell cycle progression, meiotic differentiation, and spore formation in a highly coordinated manner. Decreased expression of these genes is likely to be responsible for halting both cell cycle progression and meiotic development. Our results point towards the existence of a novel surveillance mechanism of microtubule integrity that may be particularly important during specialized cell cycles when coordination of cell cycle progression with a developmental program is necessary.
Collapse
Affiliation(s)
- Andreas Hochwagen
- Center for Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, E17-233, 40 Ames St., Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Hermida L, Brachat S, Voegeli S, Philippsen P, Primig M. The Ashbya Genome Database (AGD)--a tool for the yeast community and genome biologists. Nucleic Acids Res 2005; 33:D348-52. [PMID: 15608214 PMCID: PMC539963 DOI: 10.1093/nar/gki009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Ashbya Genome Database (AGD) is a comprehensive online source of information covering genes from the filamentous fungus Ashbya gossypii. The database content is based upon comparative genome annotation between A.gossypii and the closely related budding yeast Saccharomyces cerevisiae taking both sequence similarity and synteny (conserved order and orientation) into account. Release 2 of AGD contains 4718 protein-encoding loci located across seven chromosomes. Information can be retrieved using systematic or standard locus names from A.gossypii as well as budding and fission yeast. Approximately 90% of the genes in the genome of A.gossypii are homologous and syntenic to loci of budding yeast. Therefore, AGD is a useful tool not only for the various yeast communities in general but also for biologists who are interested in evolutionary aspects of genome research and comparative genome annotation. The database provides scientists with a convenient graphical user interface that includes various locus search and genome browsing options, data download and export functionalities and numerous reciprocal links to external databases including SGD, MIPS, GeneDB, KEGG, GermOnline and Swiss-Prot/TrEMBL. AGD is accessible at http://agd.unibas.ch/.
Collapse
Affiliation(s)
- Leandro Hermida
- Department of Applied Microbiology, Biozentrum, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
14
|
Wrobel G, Primig M. Mammalian male germ cells are fertile ground for expression profiling of sexual reproduction. Reproduction 2005; 129:1-7. [PMID: 15615893 DOI: 10.1530/rep.1.00408] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent large-scale transcriptional profiling experiments of mammalian spermatogenesis using rodent model systems and different types of microarrays have yielded insight into the expression program of male germ cells. These studies revealed that an astonishingly large number of loci are differentially expressed during spermatogenesis. Among them are several hundred transcripts that appear to be specific for meiotic and post-meiotic germ cells. This group includes many genes that were previously implicated in spermatogenesis and/or fertility and others that are as yet poorly characterized. Profiling experiments thus reveal candidates for regulation of spermatogenesis and fertility as well as targets for innovative contraceptives that act on gene products absent in somatic tissues. In this review, consolidated high density oligonucleotide microarray data from rodent total testis and purified germ cell samples are analyzed and their impact on our understanding of the transcriptional program governing male germ cell differentiation is discussed.
Collapse
Affiliation(s)
- Gunnar Wrobel
- Biozentrum and Swiss Institute of Bioinformatics, Klingelbergstrasse 50-70, 4056 Basel, Switzerland
| | | |
Collapse
|
15
|
Schlecht U, Demougin P, Koch R, Hermida L, Wiederkehr C, Descombes P, Pineau C, Jégou B, Primig M. Expression profiling of mammalian male meiosis and gametogenesis identifies novel candidate genes for roles in the regulation of fertility. Mol Biol Cell 2004; 15:1031-43. [PMID: 14718556 PMCID: PMC363067 DOI: 10.1091/mbc.e03-10-0762] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We report a comprehensive large-scale expression profiling analysis of mammalian male germ cells undergoing mitotic growth, meiosis, and gametogenesis by using high-density oligonucleotide microarrays and highly enriched cell populations. Among 11,955 rat loci investigated, 1268 were identified as differentially transcribed in germ cells at subsequent developmental stages compared with total testis, somatic Sertoli cells as well as brain and skeletal muscle controls. The loci were organized into four expression clusters that correspond to somatic, mitotic, meiotic, and postmeiotic cell types. This work provides information about expression patterns of approximately 200 genes known to be important during male germ cell development. Approximately 40 of those are included in a group of 121 transcripts for which we report germ cell expression and lack of transcription in three somatic control cell types. Moreover, we demonstrate the testicular expression and transcriptional induction in mitotic, meiotic, and/or postmeiotic germ cells of 293 as yet uncharacterized transcripts, some of which are likely to encode factors involved in spermatogenesis and fertility. This group also contains potential germ cell-specific targets for innovative contraceptives. A graphical display of the data is conveniently accessible through the GermOnline database at http://www.germonline.org.
Collapse
Affiliation(s)
- Ulrich Schlecht
- Biozentrum and Swiss Institute of Bioinformatics, 4056 Basel; Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|